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Network
Tu V. Nguyen, Member, IEEE, Diep N. Nguyen, Senior Member, IEEE,

Marco Di Renzo, Fellow, IEEE, and Rui Zhang, Fellow, IEEE

Abstract—Reconfigurable surfaces (RS) have recently emerged
as an enabler for smart radio environments where they are
used to actively tailor/control the radio propagation (e.g., to
support users under adverse channel conditions). If multiple
RSs are deployed (e.g., coated on various buildings) to support
different groups of users, it is critical to jointly optimize the
phase-shifts of all RSs to mitigate their interference as well as
to leverage the secondary reflections amongst them. Motivated
by the above, this paper considers the uplink transmissions of
multiple users that are grouped and supported by multiple RSs
to communicate with a multi-antenna base station (BS). We
first formulate two optimization problems: the weighted sum-
rate maximization and the minimum achievable rate (from all
users) maximization. Unlike existing works that considered single
user or single RS or multiple RSs without inter-RS reflections, the
considered problems require one to optimize the phase-shifts of
all RSs’ elements and all beamformers at the multi-antenna BS.
The two problems turn out to be non-convex and thus are difficult
to be solved in general. Moreover, the inter-RS reflections give
rise to the coupling of the phase-shifts amongst RSs, making
the optimization problems even more challenging to solve. To
tackle them, we design alternating optimization algorithms that
provably converge to locally optimal solutions. Simulation results
reveal that by properly managing interference and leveraging
the secondary reflections amongst RSs, there is a great benefit
of deploying more RSs to support different groups of users and
so as to achieve a higher rate per user. This gain is even more
significant with a larger number of elements per RS. In contrast,
without properly managing the secondary reflections, increasing
the number of RSs can adversely impact the network throughput,
especially for higher transmit power.

Index Terms—Intelligent reflecting surface (IRS), reconfig-
urable intelligent surface (RIS), secondary reflections, multi-
IRS/RIS interference, multi-user communications, cooperative
beamforming.

I. INTRODUCTION

Reconfigurable surface (RS) also known as Intelligent Re-
flecting Surface (IRS) or Reconfigurable Intelligent Surface
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(RIS) has been emerging as an enabler for realizing so-called
smart radio environments in which the radio propagation can
be deliberately controlled/tailored by deploying nearly-passive
dynamic metasurfaces [2]–[6]. A wireless system assisted by
RSs hence can “reconfigure” the environment to combat the
shadowing and fading impairments or to create well-scattered
environment for spatial multiplexing. An RS is a planar
metasurface that is made up of a large number of passive
reflecting elements. Each of these elements can be optimized
to alter the amplitude and/or the phase-shift of the reflected
signal. These elements together can help effectively “reshape”
the wireless channels [2]–[6]. Such an ability to reconfigure
the radio medium provides another new dimension of freedom
to design wireless systems. Note that all conventional wireless
optimization/designs take channel/radio environment as an
input to adapt with, instead of actively “tailoring/optimizing”
it [7].

With multiple RSs being deployed (e.g., coated on various
buildings) to support distributed users, it is critical to jointly
optimize the phase-shifts and/or amplitudes of all RSs to
mitigate the interference as well as to leverage the secondary
reflections amongst RSs. For example, consider the uplink
transmission from multiple users that are grouped and sup-
ported by multiple RSs to a multi-antenna base station (BS),
as shown in Fig. 1. Due to the close proximity amongst
these groups of users, the RSs can be deployed close to
each other. The signal from a given user not only reaches
the BS by reflecting onto the dedicated RS for the user’s
group (referred to as the primary reflection) but also can
traverse to and reflect on nearby RSs before reaching the BS
(referred to as the secondary reflection or multi-RS reflection).
It is clear that under such a scenario, besides the primary
reflections from users to the BS via each RS, the secondary
reflections amongst multiple RSs cannot be ignored in general.
These secondary reflections can either cause multi-user and/or
multi-RS interference or strengthen the signal reception at the
BS. Therefore, by jointly tuning the phase-shifts of all RSs,
one can simultaneously manage the interference and leverage
the multi-RS “secondary” reflections to enhance the signal
reception at the BS. Such an observation is similar to multi-cell
cooperative multi-input multi-output (MIMO) communications
[36].

Most existing works on multiple RSs, e.g., [14]–[16], ig-
nored the secondary reflections amongst RSs. In [14], the
authors studied a resource allocation problem for a downlink
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wireless communication network with multiple distributed RSs
to maximize the system’s energy efficiency with a maximum
transmit power constraint and minimum rate requirements. The
authors of [15] aimed to maximize the minimum signal-to-
interference-plus-noise ratio (SINR) amongst users by jointly
optimizing the transmit precoding vector at the BS and the
phase-shifts at the RSs for a downlink multi-RS system. In
[16], the outage probability and the average sum-rate for a
single source, single destination and multi-RS system were
studied where the best RS is selected to be active at a time.
Like many other works that ignored the secondary reflections
by justifying that the strength of signal reflected onto multiple
RSs is negligible, such an assumption is only reasonable when
the RSs are far from each other or the signal is reflected
on many RSs (e.g., more than two). For the case when the
RSs are deployed close to each other, e.g., in central business
districts (CBDs) or dense deployment scenarios, as shown in
this paper, the secondary reflections are in fact significant.
Additionally, all aforementioned works did not study the in-
terference management nor leverage the cooperation amongst
RSs via “secondary” reflections. In [17], [18], the authors
considered the beamforming design for the case with two RSs
in which one is placed close to the BS and the other is placed
close to the users. The authors show that there is a significant
gain as compared to the case with a single RS. However, in
the considered scenario there were only two RSs that aim to
support a single group of users. Therefore, the problems in
[17], [18] do not account for the interference amongst RSs
and amongst different groups of users. In practice, especially
in a dense urban environment where shadowing and fading are
severe (e.g., caused by multiple buildings/structures), multiple
RSs can be deployed within one cell to support various groups
of users whose direct links to the BS are weak or blocked.

Given the above, this work takes the first step in exploring
the impact of secondary reflections among multiple RSs by
considering the uplink transmission of multiple groups of users
that are supported by multiple RSs to communicate with a
multi-antenna BS as illustrated in Fig. 1 [1]. For this scenario,
we consider two commonly-adopted optimization problems:
the weighted sum-rate maximization and the minimum-SINR
maximization [1] in which we jointly optimize not only the
phase-shifts of all RSs but also the beamforming vectors at
the BS for all users. As aforementioned, besides the multi-user
interference from multiple groups of users, multi-RS reflection
also induces additional multi-user interference. For that the
two problems are shown to be non-convex. The problems
actually become more challenging to solve due to the coupling
of the phase-shifts amongst RSs. Specifically, the adjustment
of the phase-shifts at one RS also impacts the reflected signals
from other RSs. As such, optimizing/tuning the phase-shifts
at one RS [8]–[13] or multiple RSs but for a single group of
users (e.g., [14]–[18], [38]–[49]) is insufficient in general. In
fact, we need to optimize the RS elements for all RSs and all
users while considering the coupling among them due to the
inter-RS reflections.

Maximizing the weighted sum-rate for multi-user MIMO
systems without RS has been well studied, for example,
in [29]–[33]. Some recent works also studied the single or

multiple RSs considering the weighted sum-rate such as [37]–
[45]. In [37], the authors considered the downlink of a multi-
user multi-input single-output (MISO) system with a single
RS and jointly optimized the transmit beamforming and phase-
shifts of RS’s elements. In [38], the authors used multiple RSs
deployed at the cell-edge to improve the signal reception by
optimizing the precoding matrices at the BS and the phase-
shifts of the RSs. The scenarios with multiple BSs, multiple
RSs, and multiple users in downlink communications were
studied in [39] where the RS-user association design was
optimized considering the co-channel interference. In [46]–
[49], the authors considered the multi-beam multi-hop routing
problem for a downlink of a multi-RS and multi-user system
in which each user communicates with the BS with the help of
a set of RSs. Note that in these works, even though there are
multiple RSs involved in communications from the BS to each
user, only RSs’ primary reflections were considered and the
signal is successively reflected on a sequence of RSs. For the
minimum-SINR maximization problem, the work in [17], [18]
is a special case of the problem investigated in our work by
setting the number of the RSs to two and assign no user to the
second RS. To the best of our knowledge, none of the existing
works in the literature has considered the secondary reflections
for multiple RSs in general. Our major contributions in this
paper are summarized as follows:

• First, we study the impact of the inter-RS or secondary
reflections in a multi-user, multi-RS network. To this end,
we formulate and solve two well-known optimization
problems: the weighted sum-rate maximization and the
minimum-SINR maximization over the users.

• Second, we tackle these two non-convex optimization
problems by designing alternating optimization algo-
rithms that are proved to converge to locally optimal
solutions. For the first problem, we transform each sub-
problem to a difference of convex (DC) structure and use
an available software CVXPY/DCCP package in Python
[26], [27] to efficiently solve it. While for the second
problem, a relaxed version of each of its sub-problems
is transformed to a semidefinite program (SDP) problem
which can be efficiently solved by SDP standard solvers.
Note that unlike existing works that did not account for
the inter-RS reflections, the two considered problems are
more challenging as we need to deal with the coupling
of phase-shifts among different RSs’ elements.

• Third, by optimizing the phase-shifts of all RSs as well
as the beamforming vectors for all users at the BS, we
show that the inter-RS reflections can also be leveraged
to contribute to the signal reception at the BS, leading
to an improved rate per user. We observe that the gain
is more significant with a larger number of elements per
RS.

• Last, we perform extensive simulations to evaluate the
impact of secondary reflections in various settings. For
example, we observe about 6.4%, 15.6%, or 29.9% rate
gains when exploiting the secondary reflections for a
system with 2, 4, or 6 RSs, respectively. Also, when
the number of RS elements is increased, the gain is also
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increased, for instance, there is about 7.2%, 15.6%, and
27.9% gains for a system with four RSs each with 32,
64 and 128 elementss, respectively. However, without
properly managing the secondary reflections, increasing
the number of RSs may adversely impact the network
throughput, especially for high transmit power (e.g. the
achievable rate of six RSs is worse than that of four RSs
at transmit power of 25.5 dBm or higher for a linear
MMSE receiver, or 18.2 dBm or higher for a non-linear
MMSE-SIC receiver).

The rest of this paper is organized as follows. In Section II,
the system model and the problem formulation for multi-RS
system are presented. In Section III, a locally optimal solution
for the weighted sum-rate maximization is presented. The min-
rate/SINR maximization problem is studied in Section IV. In
Section V, numerical results are discussed, and conclusions are
drawn in Section VI.

II. SYSTEM MODEL

We consider a system with an N -antenna BS and K single-
antenna users. Due to the presence of blocking objects in
the network, users are partitioned/clustered into L groups
whose direct radio links to the BS are not available. Such
a scenario is often the case in dense CBD/urban areas with
high-rise buildings and structures. L RSs are then used to
support the transmission of these users, as depicted in Fig.
1. We assume that the lth RS is comprised of Ml ele-
ments and serves Kl single-antenna users in the l-th group
l = 1, 2, · · · , L. We note that

∑L
l=1Kl = K is the total

number of users. To simplify the notation, we denote the set
of users in the lth group, RS elements of the lth RS, and
RSs as Kl = {1, 2, · · · ,Kl}, Ml = {1, 2, · · · ,Ml}, and
L = {1, 2, · · · , L}, respectively.

It is worth noting that in general, each RS element can be
controlled to adjust both its amplitude and/or phase. However,
similar to many other works in literature (e.g., [2], [4], [5],
[17], [18]), for simplicity and cost-effective implementation,
the amplitude of all RS elements is set to one and we only
tune/optimize their phases. The results and analysis in the
sequel can be easily extended to optimize both amplitudes
and phases.

The signal from the k-th user in the l-th group (denoted
as the k(l)-th user for short) can reach the BS by one of
the following paths via at least one RS: (i) single or primary
reflection from the k(l)-th user onto any l̃-th RS then to the
BS, (ii) double reflections (via two RSs) from k(l)-th user
to the l-th RS, then to the l̃-th RS before reaching the BS
(where l 6= l̃), (iii) triple or more reflections (via three or
more RSs), e.g., from k(l)-th user to the l-th RS, then to the l̃-
th RS to the l′-th RS to the BS (where l, l̃ and l′ are pair-wise
different). As aforementioned, most of the works on multiple
RSs in the literature, e.g., [14]–[18], [38]–[49], only consider
the primary reflection (type (i)) but not the secondary nor the
triple/more reflections amongst RSs. Unlike the triple or more
reflections (type (iii)) during which a signal traverses through
more than two RSs hence can be negligible due to much larger
effective pathloss, the secondary reflections amongst RSs may

D1,2 
uL,L,k

x 

x 

uL,2,k 

D2,1 

u1,2,k 

u2,2,k 

u1,1,k 

GL 

G2 

G1 

DL,1 

BS 

D1,L 

x 

Primary reflections 
Secondary reflections 
Blocked direct links 

RS-1 

RS-2 

RS-L 

x 

Fig. 1: Multi-RS assisted multi-groups MIMO communication
system.

not be negligible in practice, and this is the focus of the present
paper. On the one hand, these secondary reflections can cause
unwanted interference at the BS. On the other hand, if we
can properly manage such interference and leverage them,
these secondary reflections can constructively contribute to the
signal detection/decoding at the BS. Note that the secondary
reflections are particularly significant when the RSs are not too
far from each other, e.g., in urban environments with dense
deployment of the RSs. In the sequel, we consider setups
for which closely located RSs are in the Fraunhofer far-field
distance of each others [52], [53].

Let ul̃,k(l) ∈ CMl̃×1, Dl,l̃ ∈ CMl×Ml̃ , and Gl ∈ CN×Ml

denote the baseband equivalent channel matrix from the user
k in the group l to the RS-l̃, the baseband equivalent channel
matrix from the RS-l̃ to the RS-l (for l̃ 6= l), and the
baseband equivalent channel matrix from RS-l to the BS links,
respectively, with l, l̃ ∈ L and k ∈ Kl. Let θl ∈ CMl×1 denote
the phase-shifts vector of the RS-l. We assume the direct links
from users to the BS are weak and can be ignored. Thus,
the effective channel from the k(l)-th user can be written as
follows

hk(l) =

L∑
l̃=1

Gl̃Φl̃ul̃,k(l) +

L∑
l̃=1,l̃ 6=l

Gl̃Φl̃Dl̃,lΦlul,k(l) , (1)

for l ∈ L, and k(l) ∈ Kl, where Φl = diag(θl) denotes the
diagonal reflection matrix of RS-l.

DenoteRl̃,k(l) = Gl̃diag(ul̃,k(l)) ∈ CN×Ml̃ as the cascaded
channel matrix from the k(l)-th user to the l̃-th RS to the
BS (excluding the phase-shifts at the l̃-th RS)1. Also, denote
D̃l̃,k(l) ≡

[
d̃l̃,k(l),1, . . . , d̃l̃,k(l),Ml

]
, Dl̃,ldiag(ul,k(l)) ∈

CMl̃×Ml as the cascaded channel from the k(l)-th user to the
l-th RS to the l̃-th RS (without the RS elements’ phase-shift),

1That is, the (i, j)-th entry of Rl̃,k(l) is the instantaneous channel gain
from the k(l)-th user to the j-th RS element (of the l̃-th RS) to the i-th receive
antenna, in which the phase-shift of this RS element is set to zero.
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where d̃l̃,k(l),j is the j-th column vector of D̃l̃,k(l) . Thus, we
can rewrite (1) as follows

hk(l) =

L∑
l̃=1

Rl̃,k(l)θl̃ +

L∑
l̃=1,l̃ 6=l

Gl̃Φl̃D̃l̃,k(l)θl

=

L∑
l̃=1

Rl̃,k(l)θl̃ +

L∑
l̃=1,l̃ 6=l

Ml∑
j=1

Gl̃diag(d̃l̃,k(l),j)θl̃θl,j

=

L∑
l̃=1

Rl̃,k(l)θl̃ +

L∑
l̃=1,l̃ 6=l

Ml∑
j=1

Ql̃,k(l),jθl̃θl,j , (2)

where Ql̃,k(l),j , Gl̃diag(d̃l̃,k(l),j) ∈ CN×Ml̃ denotes the
total cascaded channel matrix from the k(l)-th user to the j-
th element of the RS-l to the RS-l̃ to the BS without the
phase-shifts at the RS-l and the RS-l̃, where l ∈ L, j ∈ Ml

and k(l) ∈ Kl. From (2), we can see that it suffices to
estimate {Rl̃,k(l)} and {Ql̃,k(l),j} for jointly designing the
passive beamforming coefficients {θl} in the considered multi-
RS cooperative system [17], [18], [21]. Note that channel
estimation for multi-antenna systems is a well-investigated
area with various mature techniques. In [7], [54] and [55],
additionally, the authors have proposed efficient methods to
estimate the effective cascaded channels for double-RS aided
multi-user MIMO systems. These methods can be directly
applied to estimate the CSI for both the primary reflection, i.e.,
{Rl̃,k(l)} and the secondary reflection, i.e., {Ql̃,k(l),j} for any
two RSs l̃ and l. For that, here we assume the cascaded channel
matrices {Rl̃,k(l)} and {Ql̃,k(l),j} are accurately estimated at
the BS.

During the uplink data transmission, the received signal at
the BS is given by

y =

L∑
l=1

Kl∑
k=1

hk(l)sk(l) + n =

L∑
l=1

Kl∑
k=1

 L∑
l̃=1

Rl̃,k(l)θl̃

+

L∑
l̃=1
l̃6=l

Ml∑
j=1

Ql̃,k(l),jθl̃θl,j

 sk(l) + n, (3)

where sk(l) is the k(l)-th user’s transmitted data symbol with
the transmit power equal to Pk(l) , and n ∼ CN (0, σ2IN ) is
the additive white Gaussian noise (AWGN) vector at the BS
with zero mean and covariance matrix σ2IN where σ2 is the
equivalent noise power (n ∈ CN×1) and IN is the identity
matrix of size N . At the BS, a linear receive beamforming
vector wk(l) ∈ CN×1 is applied to decode sk(l) , which results

in

ỹk(l) = wH
k(l)y = wH

k(l)

L∑
l̃=1

Kl∑
k̃=1

(
L∑
l′=1

Rl′,k̃(l̃)θl′

+

L∑
l′ 6=l̃

Ml̃∑
j=1

Ql′,k̃(l̃),jθl′θl̃,j

)
sk̃(l̃) +wH

k(l)n. (4)

Thus, the SINR for decoding the information from the k(l)-th
user is given by (5).

In the equation above, the numerator is the signal power
of the k(l)-th user, while the denominator includes the multi-
user interference from all the other users in the network,
which includes both the primary and secondary reflection
interference, and the thermal noise.

Given the SINR in (5) for all k(l) users, we can jointly
optimize phase-shift design {θl}’s for all RSs and the receive
beamforming vectorswk(l) at the BS for all users to simultane-
ously mitigate the RS interference and leverage the secondary
reflections amongst RSs. To this end, we consider two well-
known optimization problems in the following two sections.

III. WEIGHTED SUM-RATE MAXIMIZATION

Let’s first consider the weighted sum-rate maximization
problem subject to the minimum rate requirement per user.
The problem is formally formulated as follows

(P1): max
{w

k(l)},{θl}

L∑
l=1

Ml∑
k=1

αk(l) log2(1 + γk(l)) (6)

s.t. γk(l) ≥ 2Rk(l)/B − 1, ∀l ∈ L, k ∈ Kl,
|θl,j | = 1, ∀l ∈ L, j ∈Ml,

where γk(l) is given in (5), {αk(l)} are predefined non-negative
weights with

∑
k(l) αk(l) = 1, and {Rk(l)} are also predefined

minimum rates requirement of each user k(l).
Beside the multi-user interference term in the SINR expres-

sion given in (5), the problem (P1) is non-convex due to the
unity constraint on the phase-shift |θl,j | = 1. To tackle it, we
propose an AO algorithm that can be proved to converge to a
locally optimal solution of the problem (P1).

A. Optimize {wk(l)}’s for Fixed {θl}Ll=1

For fixed {θl}Ll=1, the effective channel of each user hk(l)
in (2) is fixed and thus problem (P1) is reduced to K sub-
problems, each of which is equivalent to maximizing the SINR
of the k(l)-th user as given in (5) and can be formulated as

(P2): max
w

k(l)

Pk(l)w
H
k(l)
hk(l)h

H
k(l)
wk(l)

wH
k(l)

( ∑
(l̃,k̃)6=(l,k)

Pk̃(l̃)hk̃(l̃)h
H
k̃(l̃)

+ σ2I

)
wk(l)

.

(7)

γk(l) =

Pk(l)

∣∣∣∣∣wH
k(l)

(
L∑̃
l=1

Rl̃,k(l)θl̃ +
L∑̃
l 6=l

Ml∑
j=1

Ql̃,k(l),jθl̃θl,j

)∣∣∣∣∣
2

∑
(l̃,k̃) 6=(l,k)

Pk̃(l̃)

∣∣∣∣∣wH
k(l)

(
L∑
l′=1

Rl′,k̃(l̃)θl′ +
L∑
l′ 6=l̃

Ml̃∑
j=1

Ql′,k̃(l̃),jθl′θl̃,j

)∣∣∣∣∣
2

+ σ2wH
k(l)
wk(l)

(5)
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It can be shown that (P2) is a convex optimization prob-
lem, and in fact it has a closed-form optimal solution [23].
Let’s denote H = [H1, . . . ,HL] ∈ CN×K and W =
[W1, . . . ,WL] ∈ CN×K , where Hl = [h1(l) , . . . ,h

K
(l)
l

] ∈
CN×Kl and Wl = [w1(l) , . . . ,w

K
(l)
l

] ∈ CN×Kl , denote the
effective user-to-BS channel matrix and the receive beam-
forming matrix applied at the BS, respectively. The problem
(P2) has the optimal minimum mean squared error (MMSE)
solution as [23]

WMMSE = (HPPHH + σ2I)−1HP , (8)

where P = diag
([
p1,p2, . . . ,pL

])
∈ CK×K , with pl ,[√

P1(l) ,
√
P2(l) , . . . ,

√
P
K

(l)
l

]
, is a diagonal transmit power

matrix for all K users. In practice, the equivalent noise power,
σ2, needs to be estimated; the solution to the problem (P2) can
often be simplified to a sub-optimal zero-forcing (ZF) solution
where the noise term σ2I in (8) is omitted and the matrix
pseudo inverse is applied [23].

B. Optimize {θl}Ll=1 for Fixed {wk(l)}’s
For fixed {wk(l)}’s, the problem (P1) in (6) can be refor-

mulated as follows

(P3): max
{θl}

L∑
l=1

Ml∑
k=1

αk(l) log2(1 + γk(l)) (9)

s.t. γk(l) ≥ 2Rk(l)/B − 1, ∀l ∈ L, k ∈ Kl,
|θl,j | = 1, ∀l ∈ L, j ∈Ml.

Similar to (P1), the problem (P3) in (9) is also non-convex.
We note that because of the secondary reflections, the SINR of
a given user now depends not only on the phase-shift vector of
one RS but also on those of other RSs. This is captured by the
coupling of the L phase-shift vectors {θl}Ll=1 in γk(l) for each
user in (P3). Note that most, if not all, of the existing works
that did not account for the secondary reflections do not need
to deal with this coupling among the L phase-shift vectors
{θl}Ll=1. To tackle it in our work, we design an alternating
algorithm to solve the problem (P3) in which we first fix
{θl}l 6=l̂, then solve for θl̂, for each l̂ ∈ L in an iterative
manner. Note that this sub-problem is still non-convex. To
solve it, we observe that the objective function is a difference
of two convex (DC) functions. We thus convert it into a DC
optimization problem and use the disciplined convex-concave
programming (DCCP) method for solving it. This sub-problem
is solved later in Section III.C.

In the following, we first derive γk(l) as a function of θl̂.
There are two scenarios to be considered: i) the k(l)-th user
belongs to the l̂-th RS (i.e., l = l̂) and ii) the k(l)-th user does
not belong to the l̂-th RS (i.e., l 6= l̂).

Theorem 1. The SINR of the k(l)-th user at the BS can be
written as a function of θl̂ as follow.

γk(l) =

∣∣∣qH
l̂,k(l)

θl̂ + pl̂,k(l)

∣∣∣2∑
(l̃,k̃)

6=(l,k)

∣∣∣qH
l̂,k̃(l̃)

θl̂ + pl̂,k̃(l̃)

∣∣∣2 + σ2
k(l)

(10)

where

σ2
k(l) , σ2wH

k(l)wk(l) , (11)

ql̂,k(l) ,


√
Pk(l)w

H
k(l)

(
Rl̂,k(l) + Sl̂,k(l)

)
for l = l̂√

Pk(l)w
H
k(l)

(
Rl̂,k(l) + Tl̂,k(l)

)
for l 6= l̂

,

(12)

and

pl̂,k(l) ,

{ √
Pk(l)w

H
k(l)
Ul̂,k(l) for l = l̂√

Pk(l)w
H
k(l)

(
Ul̂,k(l) + Sl̂,k(l)θl

)
for l 6= l̂

(13)

with Sl̂,k(l) , Tl̂,k(l) and Ul̂,k(l) being independent of θl̂ as
defined in (32) and (33), respectively.

Proof : See Appendix A.
Note that (10) has the same structure for all k(l) but the

underlying terms are different for users that belong to the l̂-th
RS and those that do not, as shown in (12) and (13). Moreover,
to account for the direct links from the users to the BS, one
may update the parameter pl̂,k(l) in the SINR of the k(l)-th
user, as shown in (10), which is independent of the RSs’ phase-
shifts.

C. Optimize θl̂ for Fixed {θl̃}l̃ 6=l̂ and Fixed {wk(l)}’s

For each l̂, we substitute γk(l) = γk(l)(θl̂) as a function of
θl̂ as shown in (10); then problem (P3) becomes

(P3.1): max
θl̂

L∑
l=1

Ml∑
k=1

αk(l) log2(1 + γk(l)(θl̂)) (14)

s.t. γk(l)(θl̂) ≥ 2Rk(l)/B − 1,∀ l, k, (15)
|θl̂,j | = 1, ∀ j ∈Ml̂.

Due to its unity constraints on {θl̂,j}, the above problem
is non-convex. However, we observe that γk(l)(θl̂) is a ratio
of two convex functions of θl̂ (as shown in (10)). Hence,
we can rewrite it as the difference of two convex functions.
Consequently, to solve (P3.1), we first convert the problem
to a DC optimization problem and use the DCCP method,
for example, the CVXPY/DCCP package in Python [26], [27]
to efficiently solve for it. Since the current CVXPY/DCCP
solvers have limited support for complex variables, we need
to convert our problem to real-valued variables. First, let’s
define

Ql̂,k(l) ,

 q
(r)

l̂,k(l)
−q(i)

l̂,k(l)

q
(i)

l̂,k(l)
q

(r)

l̂,k(l)

 , θ̃l̂ ,

[
θ

(r)

l̂

θ
(i)

l̂

]
, and

p̃l̂,k(l) ,

 p
(r)

l̂,k(l)

p
(i)

l̂,k(l)

 , (16)

where x(r) and x(i) denote the real and imaginary part
of a complex vector x, respectively. Note that Ql̂,k(l) ∈
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R2Ml̂×2, θ̃l̂ ∈ R2Ml̂×1, and p̃l̂,k(l) ∈ R2×1. With the above
definitions, we can rewrite∣∣∣qH

l̂,k(l)
θl̂ + pl̂,k(l)

∣∣∣2
= θH

l̂
pl̂,k(l)p

H
l̂,k(l)

θl̂ + 2<{pH
l̂,k(l)

pH
l̂,k(l)

θl̂}+
∣∣∣pl̂,k(l) ∣∣∣2

= θ̃T
l̂
Ql̂,k(l)Q

T
l̂,k(l)

θ̃l̂ + 2p̃T
l̂,k(l)

QT
l̂,k(l)

θ̃l̂ +
∥∥∥p̃l̂,k(l)∥∥∥2

2
,

where ‖x‖2 denotes the l2 norm of a vector x. To further
simplify the notation, we define

Zl̂,k(l) , Ql̂,k(l)Q
T
l̂,k(l)

, Ẑl̂,k(l) ,
∑

(l̃,k̃)6=(l,k)

Zl̂,k̃(l̃) ,

zl̂,k(l) , Ql̂,k(l)Q
T
l̂,k(l)

, ẑl̂,k(l) ,
∑

(l̃,k̃) 6=(l,k)

zl̂,k̃(l̃) , and

cl̂,k(l) ,
∥∥∥p̃l̂,k(l)∥∥∥2

2
, ĉl̂,k(l) , σ2

k(l) +
∑

(l̃,k̃)6=(l,k)

vl̂,k̃(l̃) .

We then can rewrite γk(l) in (14) as a function of θ̃l̂ as follows

γk(l) = γk(l)(θ̃l̂) =
θ̃l̂Zl̂,k(l) θ̃l̂ + 2zl̂,k(l) θ̃l̂ + cl̂,k(l)

θ̃T
l̂
Ẑl̂,k(l) θ̃l̂ + 2ẑl̂,k(l) θ̃l̂ + ĉl̂,k(l)

. (17)

In (17), both Zl̂,k(l) and Ẑl̂,k(l) belong to R2Ml̂×2Ml̂ and are
positive semi-definite, cl̂,k(l) > 0 and ĉl̂,k(l) > 0. To convert
the problem (P3.1) in (6) to a DCCP optimization problem,
we further define

uk(l) , θ̃
T
l̂
Zl̂,k(l) θ̃l̂ + 2zl̂,k(l) θ̃l̂ + cl̂,k(l) ,

vk(l) , θ̃
T
l̂
Ẑl̂,k(l) θ̃l̂ + 2ẑl̂,k(l) θ̃l̂ + ĉl̂,k(l) , ∀ l, k,

s ,
L∑
l=1

Ml∑
k=1

αk(l) log2(vk(l)). (18)

The problem (P3.1) in (14) is then equivalent to the following
optimization problem.

(P3.2): max
θ̃l̂,u,v,s

L∑
l=1

Ml∑
k=1

αk(l) log2(uk(l) + vk(l)) − s

(19)

s.t. uk(l) = θ̃T
l̂
Zl̂,k(l) θ̃l̂ + 2zl̂,k(l) θ̃l̂ + cl̂,k(l)

vk(l) = θ̃T
l̂
Ẑl̂,k(l) θ̃l̂ + 2ẑl̂,k(l) θ̃l̂ + ĉl̂,k(l)

uk(l) ≥ vk(l)
(

2Rk(l)/B − 1
)
, ∀k, l,

s =

L∑
l=1

Ml∑
k=1

αk(l) log2(vk(l)),(
θ

(r)

l̂,j

)2
+
(
θ

(i)

l̂,j

)2
= 1, ∀ j ∈Ml̂

where u,v ∈ RK×1 have their elements as {uk(l)}, {vk(l)},
respectively; s ∈ R is a slack variable; θ(r)

l̂
and θ

(i)

l̂
are

defined in (16). Note that the objective function and con-
straints of the problem (19) satisfy the requirements of a
DCCP problem [27]. If it is feasible, the local optimality is
guaranteed by CVXPY/DCCP solvers [26], [27]. Since the

problem (P3.2) in (19) and (P3.1) in (14) are equivalent, after
solving (P3.2), we can obtain the locally optimal solution
for (14) as θ∗

l̂
= θ̃l̂[1 : Mt/2] + jθ̃l̂[Mt/2 + 1 : Mt] where

j ,
√
−1.

D. Proposed Iterative AO Algorithm

The proposed iterative AO algorithm to solve the optimiza-
tion problem (P1) in (6) is summarized in Algorithm 1, where
we define Θ̃(t) = [θ̃

(t)
1 , θ̃

(t)
2 , . . . , θ̃

(t)
L ] as the phase-shift matrix

at the t-th iteration. The convergence to the locally optimal
solution of the problem (6) is formally stated in the following
theorem.

Algorithm 1 Iterative algorithm to solve the non-convex
optimization problem (P1) in (6).

1: Input: The previous output {w(t−1)

k(l)
, θ̃

(t−1)
l }.

2: Initialize t = 1, {w(0)

k(l)
, θ̃

(0)
l }, {αk(l)}, maximum number

of iteration, and tolerance ξ, ε2 > 0.
3: Compute the weighted sum-rate Γ(0)(W (0), Θ̃(0)) =∑L

l=1

∑Ml

k=1 αk(l) log2(1 + γ
(0)

k(l)

(
w

(0)

k(l)
, Θ̃(0)

)
).

4: Repeat
5: Obtain w(t)

k(l)
from {θ̃(t−1)

l } by solving (8);
6: For l̂ = 1 to L:
7: Obtain θ̃

(t)

l̂
by iteratively solving (19) using the

CVXPY/DCCP solver [26], [27] with wk(l) = w
(t)

k(l)
,

θ̃l = θ̃
(t)
l for l < l̂, and θ̃l = θ̃

(t−1)
l for l > l̂ and

tolerance ε2;
8: Compute the weighted sum-rate Γ(t)(W (t), Θ̃(t)) =∑L

l=1

∑Ml

k=1 αk(l) log2(1 + γ
(t)

k(l)

(
w

(t)

k(l)
, Θ̃(t)

)
);

9: If
10:

∣∣Γ(t) − Γ(t−1)
∣∣<ξ;

11: Then
12: Set {w∗

k(l)
, θ̃∗l } = {w(t)

k(l)
, θ̃

(t)
l } and terminate.

13: Otherwise
14: Update t← t+ 1 and continue.
15: Output: The locally optimal solution χ̂∗ = {w∗

k(l)
, θ̃∗l }.

Theorem 2. Algorithm 1 is guaranteed to converge to a
locally optimal solution of the problem (P1) in (6).

Proof : See Appendix B.
Note that Algorithm 1 (and Algorithm 2 below) is solved

in a centralized manner. It is generally not practical to be
solved in a distributed manner as the RSs are low-cost de-
vices with no, or very limited, computational capability and
power resources [2]–[6]. They are thus not suitable to execute
signal processing or optimization algorithms. Unlike multi-cell
systems, in most existing works on RSs, centralized solutions
are widely adopted.

E. Non-Linear Receiver: MMSE-SIC

In this subsection, in addition to the analysis for linear
receivers reported in previous text, we consider the MMSE
non-linear receiver with successive interference cancellation
(MMSE-SIC), which is known to attain channel capacity
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[56]. We also study the effect of secondary reflections on the
performance of the MMSE-SIC receiver.

As described in [56], the idea of SIC receivers is to subtract
the interference from decoded users during the decoding of
subsequent users. In theory, by changing the order of decoding
and cancellation, this nonlinear receiver structure is optimal
and achieves the capacity region, but at a higher complexity
cost compared with linear receivers. In this subsection, we
consider a fixed decoding order for SIC, starting with the users
in the first group. In each group, the users are decoded from
their lower to higher indices. Note that the choice of this de-
coding order is just for the sake of simplicity in mathematical
presentation and simulations. In fact, the analyses in this paper
are applicable to any fixed decoding order.

We define (l, k) > (l̃, k̃) if and only if l > l̃, or l = l̃ and
k > k̃. Thus, the user k(l) is decoded after the user k̃(l̃) if and
only if (l, k) > (l̃, k̃). Consider decoding the k(l)-th user while
all the k̃(l̃)-th users with (l̃, k̃) < (l, k) have been decoded and
their corresponding transmit signals or interference have been
canceled. The MMSE weight vector for decoding this k(l)-th
user is given by

w̃k(l) = (Hk(l)Pk(l)Pk(l)H
H
k(l) + σ2I)−1hk(l)

√
Pk(l) , (20)

where Hk(l) =
[
hk(l) , . . . ,hK(L)

L

]
is the H matrix af-

ter removing all the columns corresponding to the chan-
nels of the already decoded users, and similarly Pk(l) =
diag

([√
Pk(l) , . . . ,

√
P
K

(L)
L

])
.

The SINR of the k(l)-th user as shown in Theorem 1 can
be written as a function of θl̂ as follow

γk(l) =

∣∣∣qH
l̂,k(l)

θl̂ + pl̂,k(l)

∣∣∣2∑
(l̃,k̃)>(l,k)

∣∣∣qH
l̂,k̃(l̃)

θl̂ + pl̂,k̃(l̃)

∣∣∣2 + σ2
k(l)

, (21)

where we assume the interference from the users decoded
before the k(l)-th user is completely canceled, and thus the
number of interfering terms in the denominator is less for the
subsequently decoded users, and becomes zero for the last
decoded user.

Other equations can be rewritten in a similar way for
MMSE-SIC receiver, e.g.,

Ẑl̂,k(l) ,
∑

(l̃,k̃)>(l,k)

Zl̂,k̃(l̃) , ẑl̂,k(l) ,
∑

(l̃,k̃)>(l,k)

zl̂,k̃(l̃) ,

ĉl̂,k(l) , σ2
k(l) +

∑
(l̃,k̃)>(l,k)

vl̂,k̃(l̃) . (22)

The sub-problems to find the phase-shift θl̂ in Section III-C
with the MMSE-SIC receiver are the same as those for the
linear receiver, except that the effective interference weight
matrices, Ẑl̂,k(l) , ẑl̂,k(l) , and ĉl̂,k(l) , are now given in (22). The
numerical results for the MMSE-SIC receiver are presented in
Section V-B.
F. Complexity Analysis

The complexity of solving the optimization problem in (6) is
the combined complexity of solving the beamforming weights
as in Section III-A and L optimization problems in (9). As

shown in the previous subsection, the complexity of obtaining
the weights in (8) is O(N3). Similar to the analysis in [14],
the complexity of solving the l-th optimization problem in
(19), which has 2K+2Ml variables and 3K+Ml constraints,
is O((2K + 2Ml)

2.5(3K + Ml) log2(1/ε2)) ≈ O((K3.5 +
M3.5
l ) log2(1/ε2)), where ε2 is the accuracy of the DCCP

method for solving (19). Since the AO algorithm iteratively
solves each of these L problems, the corresponding complex-
ity is O((LK3.5 +

∑L
l=1M

3.5
l ) log2(1/ε2)). Therefore, the

total complexity of Algorithm 1 is O(I1(N3 + (LK3.5 +∑L
l=1M

3.5
l ) log2(1/ε2)), where I1 is the required number

of iterations for the outer alternative algorithm to converge.
When all RSs have the same number of elements Ml = M1

for all l, the complexity is given by O(I1(N3 + L(K3.5 +
M3.5

1 ) log2(1/ε2)). Our simulations in Section V show that
Algorithm 1 always converges after about I1 ∼ 100 iterations
under our considered setup.

IV. MINIMUM-RATE MAXIMIZATION

In this section, we aim to maximize the minimum achievable
rate among all users by optimizing the phase-shifts of all RSs
as well as the beamforming vectors at the BS for all groups
of users [1]. The problem is formally written as follows

(P4): max
{w

k(l)},{θl}
min
{l,k}

log2(1 + γk(l)) (23)

s.t. |θl,j | = 1, ∀l ∈ L, j ∈Ml,

where γk(l) is given in (5).
Note that the authors of [17] also aimed to maximize the

minimum achievable rate among all users but for a different
setting. Specifically, as aforementioned, only two RSs and one
group of users were considered in [17]. For that, this work
did not consider the interference as well as the secondary
reflections amongst more than two RSs as in our current work.

It can be easily observed that the constraints |θl,j | = 1 are
non-convex. For that the feasible region of the problem (P4)
is non-convex, so is the optimization problem [1]. As (P4) is
a non-convex problem, a common approach in the literature
to solve it is to design an AO algorithm to find a suboptimal
solution.

First, we fix all the RSs phase-shifts {θl}Ll=1 to optimize the
receive beamforming {wk(l)} for all users k(l). In this case,
the effective channel of each user hk(l) in (2) is fixed and
thus problem (P4) is reduced to K sub-problems. Each of the
sub-problem is to solve for the receive beamforming weight
vector to maximize the SINR of the k(l)-th user.

Then, for each l̂ ∈ L, the corresponding θl̂ is optimized
while the {wk(l)}’s and all other {θl̃}Ll̃ 6=l̂ are fixed. Although
the AO method is also used in [17] and other works, in
our case, solving (P4) is not straightforward due to the new
intricacy introduced by multiple RSs, secondary reflections
amongst RSs, and multiple groups of users. In the next steps,
we focus on optimizing the phase-shifts given the optimal
MMSE beamforming vectors.

A. Optimize {θl}Ll=1 for Fixed {wk(l)}’s
We note that maximizing the minimum log2(1+γk(l)) over

{l, k} is equivalent to maximizing the minimum SINR γk(l)
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over {l, k}. Hence, for fixed {wk(l)}’s, the problem (P4) in
(23) is equivalent to the following optimization problem

(P4.1) : max
{θl},δ

δ (24)

s.t. γk(l) ≥ δ, for all l ∈ L, k ∈ Kl,
|θl,j | = 1, for all l ∈ L, j ∈Ml,

where δ is a slack variable and γk(l) is given in (5).
The problem (P4.1) is non-convex because its constraints

|θl,j | = 1 make its feasible region a non-convex set. We
proceed to apply the AO algorithm to solve for (P4.1) by
alternately optimizing for each θl while considering all the
other phase-shifts to be fixed as detailed in the following
subsection.

B. Optimize θl̂ for Fixed {θl′}l′ 6=l̂ and Fixed {wk(l)}’s

For fixed {θl′}Ll̂=1,l′ 6=l̂ and {wk(l)}’s, the problem (P3) is
reduced to the following problem

(P4.2) : max
θl̂,δ

δ (25)

s.t. γk(l) ≥ δ for all l ∈ L, k ∈ Kl,
|θl̂,j | = 1, for all j ∈Ml̂,

where l̂ ∈ L is a predefined value. Note that (P4.2) is also a
non-convex problem due to the unity constraints on |θl̂,j |.

Using Theorem 1, when only θl̂ is a design variable, the
problem (P4.2) in (25) can be rewritten as follows

max
θl̂,δ

δ

s.t.
∣∣∣qH
l̂,k(l)

θl̂ + pl̂,k(l)

∣∣∣2 (26)

≥ δ
∑

(l̃,k̃)

6=(l,k)

∣∣∣qH
l̂,k̃(l̃)

θl̂ + pl̂,k̃(l̃)

∣∣∣2 + δσ2
k(l)

|θl̂,j | = 1, ∀j ∈Ml̂, and for all (l, k).

We can then rewrite∣∣∣qH
l̂,k(l)

θl̂ + pl̂,k(l)

∣∣∣2 = θ̃H
l̂
Bl̂,k(l) θ̃l̂ +

∣∣∣pl̂,k(l)∣∣∣2
= Tr

(
Bl̂,k(l) θ̃l̂θ̃

H
l̂

)
+
∣∣∣pl̂,k(l) ∣∣∣2 ,

where

Bl̂,k(l) ,

[
ql̂,k(l)q

H
l̂,k(l)

pl̂,k(l)ql̂,k(l)

pH
l̂,k(l)

qH
l̂,k(l)

0

]
, θ̃l̂ ,

[
θl̂
s

]
,

with s is an auxiliary variable (s = 1 to be exact but we relax
this condition and assume |s| = 1). Let’s define Ψl , θ̃lθ̃

H
l .

We then have Ψl � 0 and rank(Ψl) = 1. Since the rank-

one constraint, rank(Ψl) = 1, is non-convex, we relax this
constraint. For that, the problem (26) is rewritten as

(P4.3) : max
Ψl̂,δ

δ (27)

s.t. Tr(Bl̂,k(l)Ψl̂) +
∣∣∣pl̂,k(l) ∣∣∣2 ≥

δ
∑

(l̃,k̃)6=(k(l))

Tr(Bl̂,k̃(l̃)Ψl̂) +

δ

( ∑
(l̃,k̃)6=(k(l))

∣∣∣pl̂,k̃(l̃) ∣∣∣2 + σ2
k(l)

)
Ψl̂ � 0, [Ψl̂]jj = 1,

∀j ∈Ml̂ + 1, and for all (k(l)).

For a fixed δ, (P4.3) is a convex semidefinite program (SDP)
problem and is reduced to a feasibility-check problem [17],
[24]. This problem can be optimally solved by standard convex
optimization solvers [25]. Therefore, (P4.3) can be efficiently
solved by the bisection method; that is, we do a binary search
on δ that has a feasible solution Ψl̂. Once we obtain a globally
maximum δopt (up to a certain numerical accuracy) with a Ψl̂
solution, we can use the Gaussian randomization search to
obtain a solution for θl̂ [6]. Our simulation shows that we can
almost always obtain a numerical solution θl̂ such that the
max-min achievable rate is within a pre-defined error, e.g.,
ε = 0.1%, relative to the globally optimal δopt of the problem
(P4.3).

Because we obtain θl̂ from Ψl̂ using the Gaussian random-
ization method, there is a possibility that the solution at the
(t − 1)-th iteration is better than that at the t-th iteration. To
guarantee that Algorithm 2 converges, we add a heuristic check
as shown in lines 9-14. That is, when the solution θ(t)

l̂
results

in a strictly smaller value of the original objective function
in the problem (P4), it will not be updated. In this case,
Algorithm 2 continues to optimize the phase-shifts of the next
RS, and is only terminated when the condition in line 17 is
met.

Note that one can formulate (P4.2) as a DCCP problem
and solve it using a DCCP-based software with a binary
search over δ. Then, for each fixed δ, the problem is reduced
to a feasibility check. However, for the max-min achievable
rate problem, we propose to solve (P4.2) using the convex
semidefinite programming (SDP), which generally performs
better than the DCCP as we can obtain the global solution for
convex sub-problem (P4.3) using the SDP toolbox and binary
search.

C. Iterative AO Algorithm for Max-Min Achievable Rate

The proposed iterative algorithm is summarized in Algo-
rithm 2, in which Θ(t) = [θ

(t)
1 ,θ

(t)
2 , . . . ,θ

(t)
L ] is the phase-shift

matrix at the iteration t. The convergence of the algorithm is
provided in the following theorem [1].

Theorem 3. The objective value γ(t)
min as shown in Algorithm 2

is monotonically non-decreasing (and always bounded above)
and thus the algorithm is guaranteed to converge.

Proof : See Appendix C.



9

Algorithm 2 Iterative algorithm to solve the non-convex
optimization problem in (23).

1: Input: The previous output {w(t−1)

k(l)
,θ

(t−1)
l }.

2: Initialize t = 1, {w(0)

k(l)
,θ

(0)
l }, tolerance ξ > 0 and ε > 0.

3: Compute the (minimum) achievable rate γ
(0)
min =

min
l,k

γk(l)
(
w

(0)

k(l)
,Θ(0)

)
.

4: Repeat
5: Obtain w(t)

k(l)
from {θ(t−1)

l } by solving (8);
6: For l̂ = 1 to L:
7: Obtain Ψ

(t)

l̂
by solving (27) with wk(l) = w

(t)

k(l)
, θl =

θ
(t)
l for l < l̂, and θl = θ

(t−1)
l for l > l̂, and tolerance ε;

8: Obtain θ̃(t)

l̂
from Ψ

(t)

l̂
using Gaussian randomization

method;
9: If

10: γ
(t)
min(θ̃

(t)

l̂
) ≥ γ(t)

min(θ
(t−1)

l̂
);

11: Then
12: Update θ(t)

l̂
← θ̃

(t)

l̂
;

13: Otherwise
14: Update θ(t)

l̂
← θ

(t−1)

l̂
; (i.e., skip updating.)

15: Compute the (minimum) achievable rate γ
(t)
min =

min
l,k

γk(l)
(
w

(t)

k(l)
,Θ(t)

)
;

16: If
17:

∣∣∣γ(t)
min − γ

(t−1)
min

∣∣∣<ξ;
18: Then
19: Set {w∗

k(l)
,θ∗l } = {w(t)

k(l)
,θ

(t)
l } and terminate.

20: Otherwise
21: Update t← t+ 1 and continue.
22: Output: χ̂∗ = {w∗

k(l)
,θ∗l }.

D. Complexity Analysis

The complexity of solving optimization problem (23) is
the combined complexity of solving the beamforming weights
as shown in (8) whose complexity is mainly due to the
computation of the inverse of an N×N matrix, hence O(N3).
Similar to the analysis in [14], the complexity of solving
the l-th SDP optimization problem in (27) with the bisec-
tion method, which has M2

l variables, is O(M4.5
l log(1/ε))

where ε, as shown in Algorithm 2, is the accuracy of the
bisection search. Note that the algorithm alternately solves L
of these problems, hence the total complexity is O((M4.5

1 +
. . . + M4.5

L ) log(1/ε)). This becomes O(L · M4.5
1 log(1/ε))

when Ml = M1 for all l. Hence, the total complexity of
Algorithm 2 is O(I2((M4.5

1 + . . . + M4.5
L ) log(1/ε) + N3),

or O(I2(LM4.5
1 log(1/ε) + N3) when Ml = M1 for all l,

where I2 is the required number of iterations for the outer
alternative algorithm to be converged. Our simulations below
show that Algorithm 2 always converges after about I2 ∼ 100
iterations under our considered setup.

The complexity of Algorithm 2 is higher than that of
Algorithm 1 due to the SDP related optimization problem.
However, it has the same order as the complexity of other
algorithms proposed in the literature, e.g., [17] and it also
increases linearly with the number of RSs for the multi-RS
case. Furthermore, for system implementation, we can tailor
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Fig. 2: Snapshots of BS, RSs and users locations with a) four
RSs serving three users each or b) six RSs serving two users
each.

the solution to trade off system performance and complexity.
For example, we can divide the optimization solution into
multiple phases, and each phase can update only the BS’s
beamformers and/or the phase-shifts of one or several RSs at
one time (as opposed to updating all the RSs at once). We can
also increase the duration of updating the phase-shifts of RSs’
elements in slow-fading environments.

V. NUMERICAL RESULTS

In this section, we consider the uplink transmission to a BS
with 16 or more antennas, using orthogonal frequency-division
multiplexing (OFDM) and varying the number of RSs. The
number of elements per RS is varied from 32 to 128. The
number of users aided by each RS is from 2 to 12 users.
We assume that each user is allocated with B = 180 KHz
bandwidth. Thus, the noise power at the BS is assumed to
be σ2 = −174 + 10 log10(B) dBm. Similar to the simulation
setup and assumption in [11], [20], [39], we consider a small-
cell situation as shown in Fig. 2.

In this setup, we assume the RSs’ locations are within 180o

half-space reflection of each other. Particularly, the RSs are
located with equal spacing in a half circle with diameter of 20
meters (unless otherwise stated) and facing the center of the
circle (see Fig. 2). The distance between the BS and the center
of the circle is 50 meters. The users’ locations are assumed to
be uniformly distributed in a half circle with diameter drs2rs
and within the 180o half-space reflection of each RS. We
assume the heights of BS, RSs, and users are 15, 20 and
1.5 meters, respectively. The transmit power at each user is
assumed to be the same. In the following, when the number of
the RSs varies from two to six, we specify the RSs’ locations
as (xrs, yrs, 1.5) in meter.

We assume a non-LOS-dominant channel model between
the users and the RSs with the Rician factor κ = −10 dB.
The LOS-dominant channel model between the RSs and the
BS and between any two RSs has Rician factor κ = 5 dB.
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Specifically, the channel model between a source, s, and a
destination, d, is assumed to be as follows:

Hs,d =

√
κ

κ+ 1
H̄s,d +

√
1

κ+ 1
H̃s,d, (28)

where (s, d) can be (User, RS), (RS, RS) or (RS, BS), H̄s,d

denotes the LOS component and H̃s,d denotes the non-LOS
component. We assume a rich scattering environment and thus
the elements of the non-LOS components H̃s,d is modeled
as complex Gaussian independent and identically distributed
random variables with zero mean and unit variance, i.e.,
CN (0, 1). The LOS component is modeled as a rank-one
matrix as follows [11], [49]:

H̄s,d = abH , (29)

where am = exp(j 2π
λ ds(m − 1) sinφs,los sin θd,los) and

bn = exp(j 2π
λ dd(m − 1) sinφd,los sin θd,los), where λ is

the carrier wavelength, ds, dd are inter-antenna or inter-RS-
element separation at s and d (which can be either the BS or
RS), φs,los, θs,los are LOS azimuth and elevation AoDs at s
and φd,los, θd,los are LOS azimuth and elevation AoDs at d,
respectively. In our simulation we set ds = dd = 0.5λ.

Consider a three-terminal reflection link, s→ r → d, where
(s, r, d) can be (User, RS, BS), (User, RS, RS), or (RS, RS,
BS), similar to [11], [19], the combined pathloss is assumed
to follow the far-field product-distance model as follows:

βsrd = βsr · βrd =
C1

dα1
sr
· C2

dα2

rd

, (30)

where C1, C2 are the pathloss at one meter for the sr and
rd links, dsr, drd are the distance between s, r and r, d,
and α1, α2 are the pathloss exponents for the s, r and r, d
links, respectively. We assume the non-LOS-dominant chan-
nel model between users and RS and thus set α1 = 3.0,
C1 = 10

Gs+Gr−30
10 , and the LOS-dominant channel model

for RS-RS or RS-BS links and thus set α2 = 2.2, C2 =

10
Gr+Gd−30

10 , where Gs, Gr, Gd are the antenna/RS element
gain at their respective terminal. We assume 5 dBi gain at
the BS antenna and 0 dBi at the user antenna or the RS
elements. As for the secondary reflections, the signal travels

from User → RSl → RSl′ → BS, and the total pathloss is
modeled as the product of the far-field pathloss of each point-
to-point link, that is, βsrr′d = βsr ·βrr′ ·βr′d, where s, r, r′, d
denote User,RSl, RSl′ , BS, respectively. The transmit power
at each user is assumed to be the same and ranges from 10 up
to 40 dBm (i.e., 10 W). Our performance result is averaged
over 50 independent channel realizations.

A. Sum-Rate Maximization

First, we present the simulation results for the weighted
sum-rate maximization problem. In this simulation, we assume
all the users’ weights are the same, i.e. 1/K, or equivalently
we maximize the sum-rate only. The minimum rate require-
ment (on each user’s achievable rate) is set to zero, unless
otherwise stated. We focus on showing the performance gain
by considering the additional secondary reflections of RSs in
our proposed design as compared to the conventional design
considering the RSs’ primary reflections only. In the following,
we compare our solution (leveraging the inter-RS secondary
reflections) with state-of-the-art IRS/RIS solutions e.g., [17],
[37]–[40], which did not consider the secondary reflections
of RSs. Also, for fair comparison with existing designs in
the literature that ignored the secondary RS reflections while
optimizing the phase-shifts and beamformers, we still evaluate
their performance under the same secondary reflections as for
the proposed scheme.

In Fig. 3.a, we plot the relative gain of the achievable sum-
rate with and without considering the secondary reflections for
a system with 2, 4, or 6 RSs (while the total number of users
is the same, i.e., 12 users). The locations of the RSs in these
scenarios are assumed to be equally spaced and the distance
between two adjacent RSs is 15, 10 and 6.18 meters for the
system with 2, 4, or 6, respectively. At lower transmit power
(i.e., low SNR), we observe some marginal gain, because
the performance is limited by AWGN and the interference
amongst RSs can be tolerated without compromising the rate.
At mid to high transmit power, we can observe significant
performance gain when considering the secondary reflections.
For example, at a transmit power (Ptx) of 35 dBm, we see
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(a) Varying RS distance and number of elements
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Fig. 5: Achievable sum-rate and gain comparison between MMSE and MMSE-SIC receivers.

about 6.4%, 15.6%, or 29.9% gains for the system with 2, 4,
or 6 RSs, respectively. The higher gain observe with more RSs
is partially due to the stronger and more secondary reflections,
which is due to the smaller distance between two adjacent RSs.

In Fig. 3.b, we study how the number of elements per RS
affects system performance with and without managing the
secondary reflections. We observe that the more the number
of RS elements, the higher the gain from managing and
leveraging the secondary reflections. For example, at Ptx of
35 dBm, we see about 7.2%, 15.6%, and 27.9% gains for
32, 64 and 128 elements per RS, respectively. The increase in
gain is due to the fact that with more RS elements, more signal
reflection energy is resulted amongst RSs, thus increasing the
interference from secondary reflections.

In Fig. 4.a, we plot the achievable rate gain as a result of
managing secondary reflections for a system with four RSs and
three users while varying the distance between two adjacent
RSs (i.e., drs2rs) and the number of RSs elements. When the
distance between adjacent RSs is larger, the secondary reflec-
tion effects are smaller as expected, but with increased number
of RS elements, the gain can be significantly improved. For
example, at Ptx of 35 dBm, the gains for the (5m, 32el.)
configuration, i.e., 5 meter (m) distance and 32 RS elements
per RS and (10m, 64el.) are 20.6% and 15.6%, respectively,

and the gains for (15m, 96el.) and (20m, 128el.) are 11.6%
and 8.7%, respectively.

In Fig. 4.b, we plot the sum-rate based on Algorithm 1 for
the system with four RSs each with 3 users versus the number
of iterations without early termination (i.e., we set ξ = 0). We
observe that the algorithm reasonably converges after about 50
iterations for Ptx=10 dBm. It requires a slightly higher number
of iterations for higher Ptx. A similar trend can be observed
for the max-min achievable rate based on Algorithm 2; the
plot is thus omitted for brevity.

B. Sum-Rate Maximization with the MMSE-SIC Receiver

In this subsection, we present the numerical results for
the sum-rate maximization when the MMSE-SIC receiver
presented in Section III-D is utilized. Fig. 5.a depicts the
achievable sum-rate of the MMSE-SIC receiver with and with-
out secondary reflections. It can be seen that the achievable
sum-rate of six RSs (with two users per RS) is worse than that
of four RSs (with three users per RS) when the transmit power
is 18.2 dBm or higher and when the secondary reflections are
not considered.

Fig. 5.b shows the achievable sum-rate for four RSs (with
three users per RS) when the MMSE and the MMSE-SIC
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Fig. 7: The achievable min-rate among users.

receivers are utilized. We observe that the achievable sum-rate
of the MMSE-SIC receiver is about 0.3 bps/Hz higher than
that of the MMSE receiver when the secondary reflections
are considered. In the considered case study, we do not
see a significant gain provided by the MMSE-SIC receiver.
This is because by optimizing the phase-shifts of the RSs
elements, the multi-user interference is already optimized
when the MMSE receiver is utilized. If we do not consider the
secondary reflections, i.e., the corresponding channels are not
estimated and the signals from the secondary reflections are
not cancelled, the rate provided by the MMSE-SIC receiver
is even worse than that of the MMSE receiver. We observe
about 0.8 bps/Hz degradation at transmit power of 30 dBm.
This is because without considering the secondary reflections,
the interference contribution from the secondary reflections is
not cancelled and is accumulated from the decoded users when
the in the MMSE-SIC received is utilized. This degrades the
performance of the subsequently decoded users.

Fig. 5.c plots the achievable sum-rate gain (percentage) for
both the MMSE and MMSE-SIC receivers versus the transmit
power. We observe a much higher gain for the MMSE-SIC
receiver as compared to the MMSE receiver. For example, at

the transmit power of 30 dBm, the MMSE-SIC gains 34.7%
and the MMSE receiver gains 19.1% if six RSs are deployed.
The corresponding gains are 17.7% and 8.4% when four RSs
are deployed.

C. Min-Rate Maximization
In Fig. 6.a, we consider the minimum achievable rate among

users under various configurations: (i) four RSs each with 3
users, (ii) two RSs each with 6 users and (iii) one RS with
12 users; that is, there are 12 users in total. The locations of
the four-RS scenario are shown in Fig. 2. When there are two
RSs, their locations are (xrs, yrs) = (50,±10) meters, and
for the single-RS scenario, the RS is at (50, 10) meters. In all
these configurations, each RS has 64 elements and the BS has
16 antennas. We can see that with the same number of users
and receive antennas, the more RSs, the higher the minimum
achievable rate. With transmit power of 30 dBm, for instance,
we observe a 1.2 bits-per-second (bps)/Hz or 2.4 bps/Hz gain
for a two- or four-RS scenario as compared to the single-RS
system, respectively. This is because of the higher received
signal power on average at the receiver antennas due to the
reflections from more RSs. Note that the performance of the
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scenario without any RS is not shown as there is no feasible
direct link between the users and the BS under our considered
setup. In this figure, we also plot the average achievable rate
among all users and observe that the average achievable rate
has a similar trend which is not much different from the
minimum achievable rate.

Fig. 6.b compares the minimum achievable rate when both
primary and secondary reflections are considered (as in this
paper) and when only the primary reflections are considered
(as in other aforementioned works [14]–[17]). We assume
that the RSs are equally spaced, i.e., the distance between
two adjacent RSs for the scenarios with four and six RSs
are 10 and 6.18 meters, respectively. It can be seen that,
by properly managing the interference and leveraging the
secondary reflections amongst RSs, the minimum achievable
rate is significantly improved. For example, at transmit power
of 30 dBm, we observe about 1.2 or 2.3 bps/Hz gain when
exploiting the secondary reflections for a system with four
or six RSs, respectively. The improvement becomes more
pronounced with higher transmit power/SNR. This is because
at high SNR, the secondary reflections amongst RSs become
more significant while the stronger interference amongst them
can be mitigated/managed under our design framework.

The management of the inter-RS interference becomes more
critical for dense networks. Specifically, we observe that
for a given area, without properly managing the secondary
reflections, adding more RSs may actually degrade the overall
system performance. This is due to the stronger interference
caused by the secondary reflections from more RSs. For
example, when the secondary reflections are not managed
using our proposed method, we observe that the achievable
rate under the six-RS scenario is even worse than that with four
RSs at the transmit power of 25.5 dBm or higher. In contrast,
by properly managing the interference using our method, the
performance under the six-RS scenario always outperforms
that of the four-RS scenario.

In Fig. 7.a, we plot the achievable rate versus different
number of elements per RS for a system with four RSs, three
users per RS, and a BS with 16 antennas. It is seen that the

more the number of RS elements, the higher the achievable
rate due to the power gain at the BS. We can see the higher
the number of elements per RS, the higher the achievable rate.
For example, at transmit power of 30 dBm, we can see a 1.5
bps/Hz gain for a 64-element RS system as compared to that
of the 32-element RS one, and a 1.4 bps/Hz gain is observed
for 128 elements versus 64 elements.

In Fig. 7.b, we plot the achievable rate versus the number
of users per RS for four RSs each with 64 elements and a BS
with 16 antennas. It can be seen that when more users access
the same bandwidth, the lower is the minimum achievable rate,
whereas the sum-rate for all users is actually increased (before
reaching its peak at 4 users per RS). However, when the total
number of users is 5×4 = 20 (or higher) which is greater than
the number of antennas at the BS, which is 16, the achievable
rate is significantly lower due to the lack of sufficient spatial
channel diversity.

In Fig. 8, we plot the achievable rate versus the number of
receive antennas at the BS for four RSs of 64 elements each
and 3 users per RS. It shows that with more receive antennas
at the BS, the higher is the minimum achievable rate. For
example, at transmit power of 30 dBm, we observe about 1.7
bps/Hz or 0.9 bps/Hz gain when there are 64 or 32 antennas
as compared to 16 antennas, respectively. We can also observe
that the rate for 8 antennas is significantly lower than that for
12 or 16 antennas due to the lack of sufficient spatial diversity
since there are totally 12 users in this case.

VI. CONCLUSION

In this paper, we considered an uplink multi-IRS/RIS aided
multi-user MIMO communication system, where the phase-
shifts of all elements at all the RSs and the received beam-
forming at the BS were jointly optimized. We formulated and
solved two optimization problems using AO algorithms. The
numerical results show that by managing the interference and
leveraging the secondary reflections amongst closely-deployed
RSs, the system throughput can be significantly improved
in terms of the sum-rate or the minimum rate among the
users, especially when more RSs or more elements per RS
are employed.

APPENDIX A
PROOF OF THEOREM 1

First, we rewrite the hk(l) as shown in (2) as a function of
θl̂. When l 6= l̂, we have

hk(l) =

L∑
l′=1

Rl′,k(l)θl′ +

L∑
l′ 6=l

Ml∑
j=1

Ql′,k(l),jθl′θl,j

=Rl̂,k(l)θl̂ +

L∑
l′=1,l′ 6=l̂

Rl′,k(l)θl′ +

(
Ml∑
j=1

Ql̂,k(l),jθl,j

)
θl̂

+

Ml∑
j=1

(
L∑

l′ 6=l,l′ 6=l̂

Ql′,k(l),jθl′

)
θl,j

=
(
Rl̂,k(l) + Tl̂,k(l)

)
θl̂ +

(
Ul̂,k(l) + Sl̂,k(l)θl

)
, (31)



14

where we have defined

Sl̂,k(l) ,
[
sl̂,k(l),1, . . . , sl̂,k(l),Ml

]
, (32)

with sl̂,k(l),j ,
∑

l′ 6=l̂,l′ 6=l
Ql′,k(l),jθl′ ,

Tl′,k(l) ,
Ml′∑
j=1

Ql′,k(l),jθl′,j , and Ul′,k(l) ,
L∑

l′=1
l′ 6=l̂

Rl′,k(l)θl′ .

(33)

When l = l̂, we also have

hk(l) =Rl̂,k(l)θl̂ +

L∑
l′=1
l′ 6=l̂

Rl′,k(l)θl′ +

Ml̂∑
j=1

L∑
l′ 6=l̂

Ql′,k(l),jθl′θl̂,j

=Rl̂,k(l)θl̂ +Ul̂,k(l) + Sl̂,k(l)θl̂

=
(
Rl̂,k(l) + Sl̂,k(l)

)
θl̂ +Ul̂,k(l) . (34)

Now by substituting (31) and (34) into (5), we can obtain (10)
with ql̂,k(l) and pl̂,k(l) given in (12) and (13), respectively.

APPENDIX B
PROOF OF THEOREM 2

First, we prove that the sequence Γ(t) is non-decreasing, or
Γ(t) ≥ Γ(t−1) for all t > 0. In step 5 of Algorithm 1, we
obtain w(t)

k(l)
from {θ̃(t−1)

l } by solving (8), which is the opti-
mal MMSE solution. Thus, we have γ̃(t)

k(l)

(
w

(t)

k(l)
, Θ̃(t−1)

)
≥

γ
(t−1)

k(l)

(
w

(t−1)

k(l)
, Θ̃(t−1)

)
, for all l, k. It follows that the

weighted sum-rate satisfies

Γ(t)
(
W (t), Θ̃(t−1)

)
≥ Γ(t−1)

(
W (t−1), Θ̃(t−1)

)
. (35)

Next, in step 6 and 7, for each l̂ ∈ L, we obtain θ̃(t)

l̂
by

solving (19) using CVXPY/DCCP solvers with θ̃(t−1)

l̂
as the

initial value (while the other variables are fixed). It is evident
that

Γ(t)
(
W (t), θ̃

(t)
1 , . . . ,θ

(t)

l̂−1
,θ

(t)

l̂
, θ̃

(t−1)

l̂+1
, . . . , θ̃

(t−1)
L

)
(36)

≥ Γ(t)
(
W (t), θ̃

(t)
1 , . . . ,θ

(t)

l̂−1
,θ

(t−1)

l̂
, θ̃

(t−1)

l̂+1
, . . . , θ̃

(t−1)
L

)
,

for all l̂ ∈ L. Combining the above, we have

Γ(t)
(
W (t), θ̃

(t)
1 , . . . , θ̃

(t)
L

)
≥ Γ(t)

(
W (t), θ̃

(t−1
1 , . . . , θ̃

(t−1)
L

)
,

(37)

and further combining (35) and (37), we have

Γ(t)
(
W (t), Θ̃(t)

)
≥ Γ(t−1)

(
W (t−1), Θ̃(t−1)

)
, (38)

for all t > 0. That is, Γ(t)’s is a non-decreasing sequence. It
is obvious that due to the limited transmit power, the SINR
γ

(t)

k(l)
is bounded from the above by its SNR (by ignoring the

interference terms); hence, Γ(t) is bounded from the above as
well. Therefore, Algorithm 1 is guaranteed to converge.

Next, we show that the algorithm converges to a local
optimum. The following proof is similar to those in [50],
[51]. When Algorithm 1 converges, denote the solution as
χ̂∗ = {w∗

k(l)
, θ̃∗l }. For each sub-problem (P3.2) shown in

(19), if it is feasible, the local optimum is guaranteed to be
achieved by the CVXPY/DCCP solver. Let {θ̃∗

l̂
,u∗,v∗, s∗}

denote the locally optimal solution; then θ∗
l̂

= θ̃∗
l̂
[1 : Mt/2]+

jθ̃∗
l̂
[Mt/2 + 1 : Mt] is a locally optimal solution of the prob-

lem (P3.1) in (14). The Karush–Kuhn–Tucker (KKT) con-
dition for the problem (P3.1) is satisfied at θ∗

l̂
, for each l̂.

Let Γ̃(θl̂) be the objective function of (P3.1), and R(χ̂∗) =
[R1(χ̂∗, R2(χ̂∗)), . . . , RI(χ̂

∗) is the set of the constraints of
the problem (P3.1). Then, we can write

∇θ∗
l̂
Γ̃(χ̂∗) + Y T∇θ∗

l̂
R(χ̂∗) = 0 (39)

yi ≥ 0, yiR(χ̂∗) = 0,∀ i.

where Y = [y1, y2, . . . , yI ] is the optimal Lagrangian variable
set, and ∇x is partially derivative with respect to x. We
also note that {w∗

k(l)
} is a globally optimal solution for (8),

hence its KKT condition is also satisfied with respect to
W = {w∗

k(l)
}, that is

∇W Γ̃(χ̂∗) + Y T∇WR(χ̂∗) = 0 (40)
yi ≥ 0, yiR(χ̂∗) = 0,∀ i.

Combining all conditions in (39) and (40), we have

∇χ̂∗ Γ̃(χ̂∗) + Y T∇χ̂∗R(χ̂∗) = 0

yi ≥ 0, yiR(χ̂∗) = 0,∀ i.

which is the KKT condition for (P3.1) in (6), i.e., χ̂∗ is a
locally optimal solution for (6).

APPENDIX C
PROOF OF THEOREM 3

First, we prove that the sequence γ(t)
min is non-decreasing,

or γ(t)
min ≥ γ

(t−1)
min for all t > 0. In step 5 of Algorithm 2, we

obtain w(t)

k(l)
from {θ(t−1)

l } by solving (8), which is the op-
timal MMSE solution. Thus, we have γ(t)

k(l)

(
w

(t)

k(l)
,Θ(t−1)

)
≥

γ
(t−1)

k(l)

(
w

(t−1)

k(l)
,Θ(t−1)

)
, for all l, k. It follows that the mini-

mum achievable rate among the users satisfies

γ
(t)
min

(
W (t),Θ(t−1)

)
≥ γ(t−1)

min

(
W (t−1),Θ(t−1)

)
. (41)

Next in step 6 and 7, for each l̂ ∈ L, we obtain Ψ
(t)

l̂
by solving

(27) using the CVX solver with the bisection search, which
is guaranteed to find the optimal value for this sub-problem.
The heuristic check in step 8-14 ensures that

γ
(t)
min(θ

(t)

l̂
) ≥ γ(t)

min(θ
(t−1)

l̂
),

for all l̂ ∈ L. Based on the above, we have

γ
(t)
min

(
W (t),Θ(t)

)
≥ γ(t)

min

(
W (t),Θ(t−1)

)
. (42)

Combine (41) and (42), we further have

γ
(t)
min

(
W (t),Θ(t)

)
≥ γ(t−1)

min

(
W (t−1),Θ(t−1)

)
,

for all t > 0. That is, γ(t)
min’s is a non-decreasing sequence. Due

to the limited transmit power, the SINR γ
(t)

k(l)
is bounded from

the above by its SNR (by ignoring the interference terms);
hence, γ(t)

min is bounded from the above as well. Therefore,
Algorithm 2 is guaranteed to converge.
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