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Two-dimensional numerical simulations with the particle tracking method were conducted to analyze the dispersion behind the detonation front and its mean structure. The mixtures were 2 H 2 -O 2 -7 Ar and 2 H 2 -O 2 of increased irregularity in ambient conditions. The detonation could be described as a two-scale phenomenon, specially for the unstable case.

The first scale is related to the main heat release zone, and the second where some classical laws of turbulence remain relevant. The dispersion of the particles was promoted by the fluctuations of the leading shock and its curvature, the presence of the reaction front, and to a lesser extent transverse waves, jets, and vortex motion. Indeed, the dispersion and the relative dispersion could be scaled using the reduced activation energy and the 𝜒 parameter, respectively, suggesting that the main mechanism driving the dispersion came from the onedimensional leading shock fluctuations and heat release. The dispersion within the induction time scale was closely related to the cellular structure, particles accumulating along the trajectory of the triple points. Then, after a transient where the fading transverse waves and the vortical motions coming from jets and slip lines were present, the relative dispersion relaxed towards a Richardson-Obukhov regime, specially for the unstable case. Two new Lagrangian Favre average procedures for the gaseous detonation in the instantaneous shock frame were proposed and the mean profiles were compared with those from Eulerian procedure. The characteristic lengths for the detonation were similar, meaning that the Eulerian procedure gave the mean structure with a reasonable accuracy.

velocity of which is around several ∼mm/µs. Research on detonation is very active in terms of propulsion application [START_REF] Wolanski | Detonative propulsion[END_REF][START_REF] Anand | Rotating detonation combustors and their similarities to rocket instabilities[END_REF] and safety engineering [START_REF] Oran | Mechanism and occurrence of detonation in vapor cloud explosions[END_REF]. Indeed, pressure increase downstream of the detonation waves is very high. As such, the use of this combustion mode in a chamber may give many advantages over conventional combustor based on deflagration. The Fickett-Jacob cycle shows that higher thermal efficiency can be theoretically achieved. The compressor and the combustion chamber may thus be more compact. On the other hand, unintentional detonations imply severe damages to humans and goods. Chapman-Jouguet (CJ) theory can predict the experimental detonation velocity in the ideal case with great accuracy. A control volume embeds the leading shock and the state far from the front where a chemical equilibrium is achieved. CJ velocity can be determined from the fact that the propagation velocity is minimum. The fact that the CJ velocity can be calculated from the initial conditions and the thermodynamic properties is the so-called Khariton's principle, meaning that any material capable of exothermic reaction can detonate without losses from boundaries [START_REF] Higgins | Steady one-dimensional detonations[END_REF].

Later, Zel'dovich, von Neumman and Döring (ZND) proposed the steady one-dimensional model for the detonation structure. The induction reaction is triggered by the adiabatic compression of the leading shock front, after which the exothermic reaction takes place. The reactants are transformed into products, the deflagration zone traveling at the same velocity than that of the shock. Characteristic lengths such as the induction and reaction lengths can thus be estimated by the integration of the ZND model.

In contrast to the ZND model assumptions, detonation has an unsteady, multi-dimensional cellular structure (Gamezo et al. 1999a;[START_REF] Austin | The role of instability in gaseous detonation PhD thesis California Institute of Technology[END_REF][START_REF] Pintgen | Direct observations of reaction zone in propagating detonations[END_REF][START_REF] Austin | Reaction zone in highly unstable detonations[END_REF][START_REF] Radulescu | The ignition mechanism in irregular structure gaseous detonations[END_REF][START_REF] Radulescu | The hydrodynamic structure of unstable cellular detonations[END_REF][START_REF] Shepherd | Detonation in gases[END_REF][START_REF] Kiyanda | Photographic investigation into the mechanism of combustion in irregular detonation waves[END_REF]. The cornerstone of the latter consists of an incident shock, a Mach stem and a transverse wave, linked by a triple point, trajectory of which draws a fish cell like structure. The stronger Mach stem and the weaker incident shock wave alternate in the propagation direction of the wave front. The leading shock front velocity fluctuated around and 0.9-1.25 and 0.7-1.7 times the CJ velocity in weakly unstable and unstable mixtures, respectively (Gamezo et al. 1999a).

Near the end of the cell, collision of transverse waves, propagating perpendicularly to the leading shocks, may result in very high explosion centers. At a result of all these events, a wide range of distribution of induction, reaction lengths and composition was present, due to the exponential dependence of the chemical reaction rates on temperature [START_REF] Austin | The role of instability in gaseous detonation PhD thesis California Institute of Technology[END_REF][START_REF] Pintgen | Direct observations of reaction zone in propagating detonations[END_REF][START_REF] Austin | Reaction zone in highly unstable detonations[END_REF].

From unsteady one-dimensional (1D) simulations, Ng et al. (2005a), [START_REF] Henrick | Simulations of pulsating one-dimensional detonations with true fifth order accuracy[END_REF] and [START_REF] Romick | The effect of diffusion on the dynamics of unsteady detonations[END_REF] showed that the shock pressure followed a period-doubling Feigenbaum scenario, through the increase of the reduced activation, with [START_REF] Abderrahmane | Applying nonlinear dynamics theory to one-dimensional pulsating detonations[END_REF] determining that the corresponding chaos was deterministic. [START_REF] Shepherd | Detonation in gases[END_REF] argued that the detonation could be statistically tractable. The hydrodynamic thickness 𝑥 HT is the distance between the leading shock and the mean location of the sonic locus, although the latter oscillated and did not strictly coincide any more with the end of the chemical reaction [START_REF] Kasimov | On the dynamics of self-sustained one-dimensional detonations: a numerical study in the shock-attached frame[END_REF][START_REF] Stewart | Theory of detonation with an embedded sonic locus[END_REF]. As such, this length can be meant as a measure of the detonation driving zone [START_REF] Short | High explosive detonation-confiner interactions[END_REF][START_REF] Chiquete | Characteristic path analysis of confinement influence on steady twodimensional detonation propagation[END_REF]) that embeds in the multidimensional case the leading shock and the sonic surfaces.

Moreover, this length could be related to the dynamic parameters of detonation [START_REF] Murray | On the transformation of Planar Detonation to Cylindrical Detonation[END_REF][START_REF] Murray | The influence of yielding confinement on large-scale ethylene-air detonations[END_REF], 1986;[START_REF] Reynaud | Computation of the mean hydrodynamic structure of gaseous detonation with losses[END_REF].

The hydrodynamic thickness was estimated from both experimental and numerical studies.

In experimental studies, the bow shock technique [START_REF] Vasil'ev | Location of the sonic transition behind a detonation front[END_REF][START_REF] Weber | The thickness of detonation waves visualised by slight obstacles[END_REF] or the decay of the pressure signal [START_REF] Edwards | The location of the Chapman-Jouguet surface in a multiheaded detonation wave[END_REF][START_REF] Jarsalé | Ethylene-air detonation in water spray[END_REF] were used. Its estimation in numerical studies were determined by averaging the flow field [START_REF] Lee | On the hydrodynamic thickness of cellular detonations[END_REF][START_REF] Radulescu | The hydrodynamic structure of unstable cellular detonations[END_REF] or by shortening the computational domain until the effect of the rarefactions of the Taylor wave were no more effective (Gamezo et al. 1999b;[START_REF] Mi | An approach to measure the hydrodynamic thickness of detonations in numerical simulations[END_REF]. Gamezo et al. (1999a) investigated the effects of the reduced activation energy on detonation, by comparing the Reynolds averages from simulations with the ZND results.

Later, [START_REF] Lee | On the hydrodynamic thickness of cellular detonations[END_REF] and [START_REF] Radulescu | The hydrodynamic structure of unstable cellular detonations[END_REF] proposed a Favre averaging procedure in the mean shock frame. They revealed two important characteristic lengths, associated with chemical exothermicity and the slower dissipation of the hydrodynamic fluctuations, which govern the location of the average sonic surface, thus demonstrating the usefulness of the statistical analysis for detonation. Furthermore, [START_REF] Sow | Mean structure of one-dimensional unstable detonations with friction[END_REF] proposed the Favre average procedure for the detonation in the non-inertial instantaneous shock frame to take into account the unsteadiness of the shock front. So far, the Favre average procedure to obtain one-dimensional profiles was applied to planar detonations [START_REF] Lee | On the hydrodynamic thickness of cellular detonations[END_REF][START_REF] Radulescu | The hydrodynamic structure of unstable cellular detonations[END_REF][START_REF] Maxwell | Influence of turbulent fluctuation on detonation propagation[END_REF][START_REF] Taileb | Numerical study of 3D gaseous detonations in a square channel[END_REF]Taileb et al. , 2021;;[START_REF] Sow | The effect of the polytropic index 𝛾 on the structure of gaseous detonations[END_REF], in nonuniform mixtures (Mi et al. 2017a,b), in mixtures with concentration gradients [START_REF] Han | Role of transversal concentration gradient in detonation propagation[END_REF], in mixtures with fluctuations in concentrations [START_REF] Zhou | Effects of fluctuation in concentration on detonation propagation[END_REF], cylindrical detonation [START_REF] Han | The role of global curvature on the structure and propagation of weakly unstable cylindrical detonations[END_REF], also in non-ideal configurations such as detonations bounded by an inert layer [START_REF] Reynaud | A computational study of the interaction of gaseous detonation with a compressible layer[END_REF][START_REF] Reynaud | Computation of the mean hydrodynamic structure of gaseous detonation with losses[END_REF], with wall losses [START_REF] Chinnayya | Computational study of detonation wave propagation in narrow channels[END_REF][START_REF] Sow | Mean structure of one-dimensional unstable detonations with friction[END_REF][START_REF] Sow | Computational study of non-ideal and mildly-unstable detonation waves[END_REF][START_REF] Sow | On the viscous boundary layer of weakly unstable detonations in narrow channels[END_REF], and in two-phase detonations with water spray [START_REF] Watanabe | Numerical investigation on propagation behavior of gaseous detonation in water spray[END_REF][START_REF] Watanabe | Numerical analysis of the mean structure of gaseous detonation with dilute water spray[END_REF][START_REF] Watanabe | Numerical analysis on behavior of dilute water droplets in detonation[END_REF] and with fuel spray [START_REF] Jourdaine | Investigation of liquid n-heptane/air spray detonation with an Eulerian-Eulerian model[END_REF].

All these studies have extracted their one-dimensional profiles from straight lines parallel to the direction of detonation propagation. However, [START_REF] Sow | The effect of the polytropic index 𝛾 on the structure of gaseous detonations[END_REF] showed that these straight lines did not coincide with the material trajectories, due to convective mixing, which increased with lower isentropic indexes, due to jet enhancement. Moreover, [START_REF] Borzou | Lagrangian trackers to investigate the detonation dynamics[END_REF] and [START_REF] Radulescu | A detonation paradox: Why inviscid detonation simulations predict the incorrect trend for the role of instability in gaseous cellular detonations?[END_REF] tracked Lagrangian tracers, trajectories of which were affected by the cellular structure of a single-headed detonation. These studies are the very few previous investigations on dispersion behind detonation front, to the best of our knowledge. In addition, the comparison between Lagrangian and Eulerian averaging processes has not been done yet.

In order to address this issue, unsteady two-dimensional simulations with the Lagrangian particle tracking method were conducted for detonation in a straight channel for two mixtures of increased irregularity. Both the distance traveled by the Lagrangian particle behind the front and the time from shock passage were recorded in the course of the simulations. The degree of the dispersion and the relative dispersion [START_REF] Babiano | Relative dispersion in two-dimensional turbulence[END_REF][START_REF] Sawford | Turbulent relative dispersion[END_REF][START_REF] Salazar | Two-particle dispersion in isotropic turbulent flows[END_REF] were evaluated. Two new Favre average procedures, based on the distance traveled by the Lagrangian particle or the time from the shock passage were proposed to assess the accuracy of the previous Eulerian Favre average procedure.

The plan of this paper is as follows. The governing equations and the numerical method are presented in Section 2.1 and 2.2, respectively. The procedure to record the values for each Lagrangian particle is explained in Section 2.3. Section 3 describes the problem statement.

The results and discussions are given in Section 4. The dispersion behind the detonation front and the anisotropic motion are firstly examined in Section 4.1. Then, the dispersion in the induction time scale is analyzed in Section 4.2. Furthermore, the relative dispersion is discussed in Section 4.3. Moreover, the two new Lagrangian Favre average procedures are described and the 1D profiles from these procedures are compared with the Eulerian estimates in Section 4.4. Finally, the main conclusions are drawn in Section 5. 2. Numerical setup

Governing equations

The governing equations for the gaseous phase are the two-dimensional (2D) reactive compressible Navier-Stokes equations, with the ideal equation of state. The chemical reaction mechanism proposed by [START_REF] Hong | An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements[END_REF], which considers 9 species (H 2 , O 2 , H, O, OH, H 2 O, HO 2 , H 2 O 2 and Ar) and 20 elemental reactions, is used. In addition, the reliable performance of this detailed chemical reaction mechanism can be achieved over a range of the reactant concentrations, stoichiometries, pressures, and temperature from 950 K to greater than 3000 K according to the validation by [START_REF] Hong | An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements[END_REF].

𝜕U 𝜕𝑡

+ 𝜕E 𝜕𝑥 + 𝜕F 𝜕𝑦 + 𝜕E d 𝜕𝑥 + 𝜕F d 𝜕𝑦 = S (2.1) U =          𝜌 𝜌𝑢 𝜌𝑣 𝑒 𝜌𝑌 𝑘          , E =          𝜌𝑢 𝜌𝑢 2 + 𝑝 𝜌𝑢𝑣 (𝑒 + 𝑝)𝑢 𝜌𝑌 𝑘 𝑢          , F =          𝜌𝑣 𝜌𝑢𝑣 𝜌𝑣 2 + 𝑝 (𝑒 + 𝑝)𝑣 𝜌𝑌 𝑘 𝑣          E d =          0 -𝜏 𝑥 𝑥 -𝜏 𝑥 𝑦 -𝜏 𝑥 𝑥 𝑢 -𝜏 𝑥 𝑦 𝑣 + 𝑞 𝑥 𝑗 𝑥,𝑘          , F d =          0 -𝜏 𝑦 𝑥 -𝜏 𝑦𝑦 -𝜏 𝑦 𝑥 𝑢 -𝜏 𝑦𝑦 𝑣 + 𝑞 𝑦 𝑗 𝑦,𝑘          , S =          0 0 0 0 𝜔 𝑘          𝑝 = 𝜌𝑅𝑇 (2.2)
Here, 𝑥, 𝑦, 𝑡, 𝜌, 𝑢, 𝑣, 𝑝, 𝑇, 𝑒, 𝑌 𝑘 and 𝑅 = 𝑅 u ( 𝑁 s 𝑘=1 𝑌 𝑘 /𝑊 𝑘 ) are longitudinal coordinate, transverse coordinate, time, density, velocity in 𝑥 direction, velocity in 𝑦 direction, pressure, temperature, total energy, mass fraction of species 𝑘 and gas constant, respectively. 𝑁 s , 𝑅 u , and 𝑊 𝑘 are the total number chemical species, universal gas constant, and molecular weight of species 𝑘. 𝜏, 𝑞, 𝑗 𝑘 and 𝜔 𝑘 denote the shear stress, heat flux, diffusion flux, and reaction rate, respectively. The total energy can be written as the following formula.

𝑒 = 𝑁 s ∑︁ 𝑘=1 𝜌𝑌 𝑘 ℎ 𝑘 -𝑝 + 1 2 𝜌 𝑢 2 + 𝑣 2 (2.3)
Here, ℎ 𝑘 is enthalpy for species 𝑘. The Stokes' hypothesis is utilized and the bulk viscosity can be neglected. The shear stress is expressed as

𝜏 𝑥 𝑥 = 2 3 𝜇 2 𝜕𝑢 𝜕𝑥 - 𝜕𝑣 𝜕𝑦 (2.4) 𝜏 𝑥 𝑦 = 𝜏 𝑦 𝑥 = 𝜇 𝜕𝑢 𝜕𝑦 + 𝜕𝑣 𝜕𝑥 (2.5) 𝜏 𝑦 𝑦 = 2 3 𝜇 2 𝜕𝑣 𝜕𝑦 - 𝜕𝑢 𝜕𝑥 (2.6)
Here, 𝜇 is viscosity. The heat flux is the sum of the heat flux by the temperature gradient (i.e., Fourier's law) and the heat flux by the enthalpy transport. The heat flux caused by
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𝑞 𝑥 = -𝜅 𝜕𝑇 𝜕𝑥 -𝜌 𝑁 s ∑︁ 𝑘=1 ℎ 𝑘 𝐷 𝑘 𝜕𝑌 𝑘 𝜕𝑥 (2.7) 𝑞 𝑦 = -𝜅 𝜕𝑇 𝜕𝑦 -𝜌 𝑁 s ∑︁ 𝑘=1 ℎ 𝑘 𝐷 𝑘 𝜕𝑌 𝑘 𝜕𝑦 (2.8)
Here, 𝜅 and 𝐷 𝑘 are thermal conductivity and diffusion coefficient for species 𝑘. The diffusive flux is evaluated using Fick's law as the following equations

𝑗 𝑥,𝑘 = -𝜌𝐷 𝑘 𝜕𝑌 𝑘 𝜕𝑥 (2.9) 𝑗 𝑦,𝑘 = -𝜌𝐷 𝑘 𝜕𝑌 𝑘 𝜕𝑦 (2.10)
The diffusive flux caused by temperature gradient, i.e. Soret effect, is neglected in this study. The Soret effect is only important for light species and at low temperature (Warntz et al. 2006) so that its effect will be negligible for the propagation of detonation wave and the flow field behind the front. 𝐷 𝑘 used in Eqs. 2.9 and 2.10 is evaluated by the mixing rule for the diffusive flux in terms of the mass fraction [START_REF] Kee | Chemically reacting flow Theory and Practice[END_REF]) (see Eq. 2.31) so that the expression for the diffusive flux in mixture average evaluation is consistent. The correction velocity to ensure that the summation of the diffusive fluxes is zero was not taken into account in our computations. Indeed, the magnitude of correction is significantly small (Reaction Design 2000). Moreover, in order to ensure that the summation of the mass fractions to be one numerically, each mass fraction was normalized by the summation of the mass fractions, after the numerical integration.

The thermodynamic properties such as enthaply ℎ 𝑘 , specific heat at the constant pressure 𝑐 p,𝑘 and entropy 𝑠 0 𝑘 for species 𝑘 are assumed to be function of temperature and are determined from the Janaf thermochemical polynomials [START_REF] Mcbride | Coefficients for calculating thermodynamic and transport properties of individual species[END_REF] .

ℎ 𝑘 (𝑅 u /𝑊 𝑘 )𝑇 = 𝑎 1,𝑘 + 𝑎 2,𝑘 2 𝑇 + 𝑎 3,𝑘 3 𝑇 2 + 𝑎 4,𝑘 4 
𝑇 3 + 𝑎 5,𝑘 5 
𝑇 4 + 𝑎 6,𝑘 𝑇 (2.11) 𝑐 p,𝑘 𝑅 u /𝑊 𝑘 = 𝑎 1,𝑘 + 𝑎 2,𝑘 𝑇 + 𝑎 3,𝑘 𝑇 2 + 𝑎 4,𝑘 𝑇 3 + 𝑎 5,𝑘 𝑇 4 (2.12) 𝑠 0 𝑘 𝑅 u /𝑊 𝑘 = 𝑎 1,𝑘 ln 𝑇 + 𝑎 2,𝑘 𝑇 + 𝑎 3,𝑘 2 𝑇 2 + 𝑎 4,𝑘 3 
𝑇 3 + 𝑎 5,𝑘 4 𝑇 4 + 𝑎 7,𝑘 (2.13)
Here, 𝑎 1,𝑘 , 𝑎 2,𝑘 , 𝑎 3,𝑘 , 𝑎 4,𝑘 , 𝑎 5,𝑘 , 𝑎 6,𝑘 , and 𝑎 7,𝑘 are the coefficient depending on the species 𝑘 and temperature range (𝑇 < 1000 K or 𝑇 ≧ 1000 K).

From a preliminary study, a method proposed by [START_REF] Gordon | Computer program for calculation of complex chemical equilibrium compositions and applications supplement I -transport properties[END_REF] is shown to be accurate compared to the experimental data as for the viscosity and thermal conductivity.

However, the coefficients for HO 2 in a method proposed by [START_REF] Gordon | Computer program for calculation of complex chemical equilibrium compositions and applications supplement I -transport properties[END_REF] are not available. As for the transport properties of viscosity 𝜇 𝑘 and thermal conductivity 𝜅 𝑘 for species 𝑘 apart from HO 2 , a method proposed by [START_REF] Gordon | Computer program for calculation of complex chemical equilibrium compositions and applications supplement I -transport properties[END_REF] is used to estimate the gas viscosity and thermal conductivity as the following equations. The viscosity and thermal conductivity for HO 2 are calculated from the Chapman-Enskog method [START_REF] Chapman | The Mathematical Theory of Non-uniform Gases[END_REF] and the Eucken method [START_REF] Poling | The Properties of Gases and Liquids[END_REF], respectively.

The viscosity for HO 2 is evaluated by the Chapman-Enskog method [START_REF] Chapman | The Mathematical Theory of Non-uniform Gases[END_REF] by the equation 2.16.

𝜇 HO 2 = 2.6693 × 10 -6 √︁ 𝑊 HO 2 𝑇 𝜎 2 HO 2 Ω 22 (2.16)
Here, 𝜎 HO 2 and Ω 22 are the Lennard-Jones collision diameter for HO 2 and the collision integral, respectively. The collision integrals Ω 22 are calculated from the following empirical formula suggested by [START_REF] Neufeld | Empirical equations to calculate 16 of the transport collision integral Ω (𝑙,𝑠) * for the Lennard-Jones (12-6) potential[END_REF]. (see Eq. 2.17)

Ω 22 = 𝐶 22 1 (𝑇 * ) -𝐶 22 2 + 𝐶 22 3 exp (-𝐶 22 4 𝑇 * ) + 𝐶 22 5 exp (-𝐶 22 6 𝑇 * ) (2.17)
Here, the constants in Eq. 2.17 are defined as follows. 𝐶 Here, 𝜀 𝑘 and 𝑘 𝐵 are the Lennard-Jones potential well depth for species k and the Boltzmann constant, respectively. The thermal conductivity for HO 2 is evaluated by the Eucken method [START_REF] Poling | The Properties of Gases and Liquids[END_REF] as

𝜅 HO 2 = 7 2 𝑅 u 𝜇 HO 2 (2.19)
The Wilke method [START_REF] Wilke | A viscosity equation for gas mixtures[END_REF]) and the Wassiljewa method [START_REF] Law | Combustion Physics[END_REF]) are used to estimate the multi-component gas viscosity and thermal conductivity based on the pure species values.

𝜇 = 𝑁 s ∑︁ 𝑘=1 𝜇 𝑘 1 + 1 𝑋 𝑘 𝑁 s 𝑙≠𝑘 𝑋 𝑙 Φ 𝑘𝑙 (2.20) 𝜅 = 𝑁 s ∑︁ 𝑘=1 𝜅 𝑘 1 + 1.065 𝑋 𝑘 𝑁 s 𝑙≠𝑘 𝑋 𝑙 Φ 𝑘𝑙 (2.21)
Here, 𝑋 𝑘 is the molar fraction for species k and Φ 𝑘𝑙 is calculated as

Φ 𝑘𝑙 = [1 + (𝜇 𝑘 /𝜇 𝑙 ) 1/2 (𝑊 𝑙 /𝑊 𝑘 ) 1/4 ] 2 2 √ 2(1 + 𝑊 𝑘 /𝑊 𝑙 ) 1/2 (2.22)
The diffusion coefficient of a compound 𝑘 into the mixture of the other compounds is evaluated based on the binary diffusion coefficient between the species 𝑘 and 𝑙 from the Chapman-Enskog method [START_REF] Chapman | The Mathematical Theory of Non-uniform Gases[END_REF]. The binary diffusion coefficient between the species 𝑘 and 𝑙 is the function of temperature and pressure and expressed as the following formula.

𝐷 𝑘𝑙 = 2.628 × 10 -2 √ 𝑇 3 𝑝𝜎 2 𝑘𝑙 Ω 11 √︄ (𝑊 𝑘 + 𝑊 𝑙 ) 2𝑊 𝑘 𝑊 𝑙 (2.23)
Here, 𝜎 𝑘𝑙 and Ω 11 are the effective collision diameter for species 𝑘 and 𝑙, and the collision integral. The collision integral Ω 11 is estimated by the following empirical formula [START_REF] Neufeld | Empirical equations to calculate 16 of the transport collision integral Ω (𝑙,𝑠) * for the Lennard-Jones (12-6) potential[END_REF]. Here, 𝑥 p,i and 𝑦 p,i are the x position and y positions for the i th Lagrangian particle. 𝑢 i and 𝑣 i are the x and y components of the velocity at the i th particle position, respectively.

Ω 11 =

Numerical methods

The detailed formulation of the numerical method can be found in [START_REF] Watanabe | Gaseous detonation with dilute water spray in a two-dimensional straight channel: analysis based on numerical simulation[END_REF]. A classical first order operator-splitting method is employed to couple the hydrodynamics with the detail chemistry. The spatial derivatives of the convective term are discretized by fifth order advection upstream splitting method using pressure based weight functions (known as AUSMPW+) improved by [START_REF] Kim | Methods for the accurate computations of hypersonic flows: I. AUSMPW+ scheme[END_REF] based on a modified weighted essentially non-oscillatory scheme (known as MWENO-Z) [START_REF] Hu | A modified fifth-order WENOZ method for hyperbolic conservation laws[END_REF]) and a second-order central differential scheme is applied to the discretization of the diffusive term. The time integration method for the convective and diffusion terms is the third order total variation diminishing Runge-Kutta method [START_REF] Gottlieb | Strong stability-preserving high-order time discretization methods[END_REF]), and the multi-time-scale method [START_REF] Gou | A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanism[END_REF] is used for the time integration of the chemical source term.

The first order Euler method is used for the integration of the Lagrangian particles. The gas phase quantities around the i th Lagrangian particle 𝜓 𝑖 are estimated by interpolating the surrounding three nearby Eulerian cell values by the barycentric interpolation [START_REF] Shimura | Two-dimensional CFD-DEM simulation of vertical shock wave-induced dust lifting process[END_REF] as follows (see Eq. 2.34).

𝜓 𝑖 = 𝑐 1 𝜓 1 + 𝑐 2 𝜓 2 + 𝑐 3 𝜓 3 (2.34)
Here, 𝜓 1 , 𝜓 2 and 𝜓 3 are the gas phase quantities at three Eulerian cells nearby the i th Lagrangian particle, respectively. 𝑐 1 , 𝑐 2 and 𝑐 3 are the normalized coefficient which is estimated based on the ratio of area of the triangles to the area of the cell (Shimura and Matsuo 2018; Watanabe 2020).

Recording the variables for each Lagrangian particle

The variables of each Lagrangian particle were recorded during the course of their trajecto- 

𝑥 i = ∫ 𝑢 i d𝑡 (2.35) 𝑦 i = ∫ |𝑣 i |d𝑡 (2.36) 𝑥 xy,i = ∫ 𝑢 2 i + 𝑣 2 i 1/2 d𝑡 (2.37)
Tracking of the Lagrangian particles enabled to obtain the time when the induction process was completed. The thermicity 𝜎, which denotes the influence of chemical reaction on the flow velocity due to both chemical energy release and change in the number of moles present, was used to define the induction time. The thermicity was defined by following equation 2.38 and calculated based on the variables at each Lagrangian particle position.

𝜎 = 𝑁 s ∑︁ 𝑘=1 𝑊 𝑊 𝑘 - ℎ 𝑘 𝑐 p 𝑇 𝜔 𝑘 𝜌 (2.38)
During the simulation, the time, the 𝑥-and 𝑦-Lagrangian particle positions, and the distance traveled by Lagrangian particle when the thermicity was maximum were recorded and updated every time step. The induction time was defined as the time from the shock front to the time when the thermicity was maximum in this study. With the use of the Lagrangian particle tracking method, the induction time for each Lagrangian particle can be accurately evaluated from the difference between the time when the Lagrangian particle passed the leading shock front and the time when the thermicity was maximum.

Problem statement

The schematics for the computational target is shown in length 𝑥 ind was defined as the distance from the leading shock front to the position where the thermicity was maximum, and the reaction length 𝑥 reac was estimated by 𝑢 CJ / 𝜎 max using the maximum thermicity 𝜎 max and the velocity at the CJ plane in the shock frame 𝑢 CJ . In addition, the induction time 𝜏 ind was estimated from the time from the leading shock front to the time when thermicity was maximum, and the reaction time 𝜏 reac was defined as the half pulse width time of thermicity, respectively. The induction time for 2 H 2 -O 2 mixture is about 2 times shorter than that for 2 H 2 -O 2 -7 Ar mixture and the peak thermicity for 2 H 2 -O 2 is about 1 order magnitude higher compared to that for 2 H 2 -O 2 -7 Ar mixture in the present conditions (Fig. ??(b) and Table 1). The mixtures can be classified as weakly and mildly unstable mixture, according to the stability analysis [START_REF] Eckett | The role of unsteadiness in direct initiation of gaseous detonations[END_REF][START_REF] Austin | Reaction zone in highly unstable detonations[END_REF] based on the reduced activation energy and CJ Mach number. Based on the 𝜒 parameter and CJ Mach number, the instability parameters lie slightly below and above the neutral stability curve, for the diluted and non diluted cases (Ng et al. 2005b).

The channel widths for 2 H 2 -O 2 -7 Ar and 2 H 2 -O 2 mixtures are 2.6 mm and 2.0 mm, respectively. The boundary condition for the walls is the adiabatic non-slip wall and the transmissive boundary is applied to the left end. The grid is uniform and the grid width is equal at 2.0 µm and 1.6 µm from the region from the shock front up to 20.6 mm and 11.5 mm behind the front for the 2H 2 -O 2 -7Ar mixture and 2H 2 -O 2 mixture, respectively.

The computational domain with the minimum grid width encompassed the mean leading shock front and the mean sonic plane, which were evaluated in the Section 4.4. Then, the grid is stretched. The grid resolution is about 38 and 30 points per CJ induction length for 2H 2 -O 2 -7Ar mixture and 2H 2 -O 2 mixture, respectively. This resolution has been shown to be largely sufficient to capture the mean structure [START_REF] Reynaud | A computational study of the interaction of gaseous detonation with a compressible layer[END_REF][START_REF] Reynaud | Computation of the mean hydrodynamic structure of gaseous detonation with losses[END_REF]. In addition, this resolution is enough to reproduce the features of the instantaneous flow fields for weakly unstable mixture [START_REF] Mazaheri | Diffusion and hydrodynamic instabilities in gaseous detonations[END_REF]. The grid resolution study was performed in Appendix A and the main conclusions were not called into question by the present grid resolution. For more highly unstable mixtures, this resolution may not be sufficient to capture the unsteady burning mechanism of the unburnt pockets that are likely to form downstream of the leading shocks. The Courant-Friedrichs-Lewy number was fixed at 0.2 and the typical time step size was around 1.0 × 10 -10 s and 0.5 × 10 -10 s for 2H 2 -O 2 -7Ar and 2H 2 -O 2 mixtures, respectively.

The recycling block technique [START_REF] Sow | On the viscous boundary layer of weakly unstable detonations in narrow channels[END_REF]) is applied to enable the detonation to propagate a distance long enough to obtain statistical values. When the leading shock front reached the right boundary during the simulations, the new region with the upstream condition for unburned state was appended to the right of the computational domain and the region near the left boundary which was far from the mean sonic plane was discarded.
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The same procedure was also applied for the Lagrangian particles. When the leading shock front reached the right boundary during the simulations, the new Lagrangian particles were located to the right of the computational domain and the Lagrangian particles which were located in the discarded left domain were excluded from the simulations. The recycling block technique was successfully utilized to reduce the computational cost by the use of smaller computational domain and to simulate the detonation propagation in the previous studies [START_REF] Reynaud | A computational study of the interaction of gaseous detonation with a compressible layer[END_REF][START_REF] Reynaud | Computation of the mean hydrodynamic structure of gaseous detonation with losses[END_REF][START_REF] Sow | On the viscous boundary layer of weakly unstable detonations in narrow channels[END_REF][START_REF] Taileb | Vers des simulations numériques prédictives des détonations gazeuses -Influence de la cinétique chimique, de l'équation d'état et des effets tridimensionnels[END_REF]Taileb et al. , 2021;;[START_REF] Watanabe | Gaseous detonation with dilute water spray in a two-dimensional straight channel: analysis based on numerical simulation[END_REF][START_REF] Watanabe | Numerical analysis on behavior of dilute water droplets in detonation[END_REF]. The length of the propagation for the average procedure is about 1000 𝑥 ind for 2 H 2 -O 2 -7 Ar and 1200 𝑥 ind for 2 H 2 -O 2 . This study has cost about 2.0 million CPU hours with 64 processors.

The Lagrangian particles are initially located in the fresh mixture in every grid point. The number of these particles inside the computational domain changes during the simulation due to the recycling block method and are around 34 millions and 25 millions for 2 H 2 -O 2 -7 Ar mixture and 2 H 2 -O 2 mixture, respectively. In order to get the averaged values, the instantaneous 2D flow fields are saved each time the detonation front propagates 0.5 𝑥 ind . The total number of the particles in the region where the detonation propagates is about 5 × 10 7 and 6 × 10 7 for 2 H 2 -O 2 -7 Ar and 2 H 2 -O 2 mixtures, respectively.

Results and discussions

Dispersion and anisotropy

Firstly As for 2H 2 -O 2 mixture, the cellular structure and the frontal shape were more irregular (Fig. 3), expected from the increased instability parameters. The unburned gas pockets are [START_REF] Kaneshige | Detonation database[END_REF]. Therefore, the cell sizes in the simulations were thus smaller that the experimental ones by a factor of about 2-3. The numerical cell width is reported to be smaller as in previous studies [START_REF] Taylor | Numerical simulations of hydrogen detonations with detailed chemical kinetics[END_REF][START_REF] Taileb | Vers des simulations numériques prédictives des détonations gazeuses -Influence de la cinétique chimique, de l'équation d'état et des effets tridimensionnels[END_REF]. This is not due to the present numerical resolution but may be due to vibrational non-equilibrium effects [START_REF] Taylor | Numerical simulations of hydrogen detonations with detailed chemical kinetics[END_REF][START_REF] Shi | Assessment of vibrational non-equilibrium effect on detonation cell size[END_REF], uncertainties of the chemical reaction model in detonation conditions [START_REF] Mével | Structure of detonation propagating in lean and rich dimethyl ether-oyxgen mixtures[END_REF] and three-dimensional effects [START_REF] Taileb | Numerical study of 3D gaseous detonations in a square channel[END_REF][START_REF] Monnier | An analysis of three-dimensional patterns of experimental detonation cells[END_REF][START_REF] Crane | Three-dimensional detoantion structure and its response to confinement[END_REF]. are different, due to the difference in detonation velocities for both mixtures. It can also be seen that 𝑥 i and 𝑥 xy,i were almost the same, due to the fact that 𝑦 i remained one order of magnitude lower. In the rest of the paper, only the field of 𝑥 i will be discussed instead of that of 𝑥 xy,i . More noticeable was that the transverse distance 𝑦 i was much more spotty for the non-diluted case, as we moved away from the leading shocks, indicative of more vortical structures. Large tongues of gas were also seen to penetrate the different layers and to be entrained in the 𝑥-direction. The longitudinal distance 𝑥 i for the particles inside the boundary layer can also be seen to be shorter than that of the other particles in the core of the flow.

In order to compare the distribution of the distances for both mixtures, the average longitudinal distance 𝑥 i is shown in Fig. 6. The slopes are different due to the difference in the velocity induced by detonation of both mixtures. The standard deviation for 𝑥 i (see (c,d) and 9(c,d), the peak of the pdf for the fluctuations along the longitudinal direction was lower than that of the transverse direction, meaning that the dispersion along the longitudinal direction was greater than that of the transverse one. This finding that the dispersion along the longitudinal direction was greater than that of the transverse wave was not what could be expected from the presence of the transverse waves, characteristics and cornerstones of the detonation cellular structure.

Moreover, the comparison of Figs. 8(c,d) and 9(c,d) showed that the diluted case needed about five times more time to obtain the same level of dispersion than the non-diluted one. 

(𝑥 i -𝑥 i )/𝑥 i , (b) normalized transverse distance 𝑦 i /𝑥 i .
latter, as time passed. Some differences were also present for 𝛿𝑥 i near the boundary layer.

The fluctuations appeared more spotty in the more unstable non-diluted case, with vortical motions also playing a more stronger role in the unstable case.

Figure 12 shows the time history of the variances of the 𝑥-and 𝑦-displacements 𝑥 ′2 i and 𝑦 ′2 i , as well as their correlation 𝑥 ′ i • 𝑦 ′ i , which can be evaluated by Eqs. 4.1,4.2,4.3.

𝑥 ′2 i = 1 𝑁 𝑁 ∑︁ 𝑖=1 (𝑥 p,i -𝑥 p,i,0 ) -(𝑥 p,i -𝑥 p,i,0 ) 2 = 1 𝑁 𝑁 ∑︁ 𝑖=1 (𝑥 i -𝑥 i ) 2 (4.1)
𝑦 ′2 i = 1 𝑁 𝑁 ∑︁ 𝑖=1 𝑦 p,i -𝑦 p,i,0 2 (4.2) 𝑥 ′ i • 𝑦 ′ i = 1 𝑁 𝑁 ∑︁ 𝑖=1 (𝑥 p,i -𝑥 p,i,0 ) -(𝑥 p,i -𝑥 p,i,0 ) • 𝑦 p,i -𝑦 p,i,0 (4.3)
Here, 𝑥 p,i,0 and 𝑦 p,i,0 are x and y initial positions of the particle i, and N is the number of particles.

The levels of fluctuations of the displacements 𝑥 ′2 i and 𝑦 ′2 i were much higher, about twice in the more irregular case (see Fig. 12(a)). As shown previously, the fluctuations in 𝑥 i and 𝑦 i increased as we move away from the shock (Figs. 10 and11). The cross relation 𝑥 ′ i • 𝑦 ′ i oscillated around zero (see Fig. 12(c)). Indeed, the leading shock is curved and thus, for some positive positive 𝑦-displacements at some locations, there will be corresponding negative 𝑦displacements at other locations. Moreover, in 2D, for each vortex rotating clockwise, there is another vortex rotating anti-clockwise. Near the leading shock, the fluctuations of transverse displacements were about that of the longitudinal ones (see Fig. 12(b)). Then the 𝑦-levels decreased comparatively. Thus, far from the shock, the flow became anisotropic. In 2D flows investigated, there lacks the vorticity stretching mechanism that would help to return more rapidly to isotropy (see [START_REF] Taileb | Vers des simulations numériques prédictives des détonations gazeuses -Influence de la cinétique chimique, de l'équation d'état et des effets tridimensionnels[END_REF]). The good collapse of the curves in Fig. 12(d) suggested that a characteristic time scale was the induction time 𝜏 ind and that a characteristic length scale was the induction length times the reduced activation energy 𝐸 a /(𝑅𝑇 vN ) • 𝑥 ind .

This scaling used for the fluctuations of 𝑥-displacement as a function of the time from the shock passage is consistent with asymptotic studies [START_REF] Buckmaster | A theory for triple point spacing in overdriven detonation waves[END_REF]; Lee 2008; Faria 2014) even if the same characteristic length seemed to hold also for the transverse fluctuations in the present study.

Dispersion in induction time scale

The dispersion was studied in this subsection within the induction time scale and was related to the cellular structure.

The time sequence of the dispersion in term of the distance traveled by the Lagrangian particle from shock passage for 2H 2 -O 2 -7Ar and 2H 2 -O 2 mixtures are depicted in Figs. 13 and14, respectively. Only the Lagrangian particles whose time from shock passage is less than the induction time are displayed. When the induction time was longer, the distance traveled 𝑥 xy,i which is only shown within the induction time scale was longer.

In 2H 2 -O 2 -7Ar mixture, the first observation is that the induction process was completed within first half of one cell cycle (Fig. 13). The induction length was shorter behind the Mach stem in the first part of the cell and longer behind the decaying incident shock front in the second part of the cell. After the collision of the transverse waves, the Lagrangian particles, which passed the weaker incident shock completed the induction process. The dispersion was slightly deviated from the straight line parallel to the propagation direction due to the curved leading shock front (Mölder 2016).

In 2H 2 -O 2 mixture, more variation in the induction time behind the leading shock front was observed due to higher reduced activation energy (Fig. 14). The distance in the unburned gas pocket torn from the front was also much longer (see Fig. 14(c,e)). The leading shock curvatures were also higher, inducing more deviation.

In both cases, within the induction time scale, the transverse dispersion was mainly due to the curvature of the leading shock. This effect was more pronounced near the edges of the cell and during the first part of the cell, when the leading detonation front was a Mach stem.

To relate the dispersion with the geometry of the cellular structure, the distance traveled by the Lagrangian particle and the normalized number density of Lagrangian particles 𝛼 L were shown in the position where they recorded their maximum thermicity (see Figs. 15 and16). Note that the number density was the projection of Lagrangian data over the Eulerian grid, with a spacing five times greater than the minimum grid width. The number density was then normalized by its initial value at its initial position to obtain 𝛼 L (see Eq. 4.4).

𝛼 L = 𝑁 𝑖 𝑁 𝑖,0 , (4.4)
where 𝑁 𝑖 and 𝑁 𝑖,0 are the number of the Lagrangian particles, which are located on the Eulerian grid used for the projection and the number of the Lagrangian particles in the initial condition, respectively. The estimation of other variables on the Eulerian grid, such as the distance traveled by Lagrangian particles was done by the same projection over a box of width five times the grid cell size (see Eq. 4.5). Here, Φ L and Φ L,𝑘 are the projected Lagrangian value and the Lagrangian value for the k th Lagrangian particle, which were located on the Eulerian grid, respectively. The distributions of the distance traveled by Lagrangian particle and the number density at the induction time can be seen to be closely related to the cellular structure (see Figs. 15,16,2(c),3(c)). There are regions in the cellular structure where the Lagrangian particles did not complete the induction process (Figs. 15,16). From the instantaneous flow fields, these regions were seen to be thin non-reactive tails in the gas between the leading shock front and the transverse waves due to the lower temperature, which were reported numerically by [START_REF] Gamezo | Fine cellular structure produced by marginal detonations[END_REF] and observed experimentally by [START_REF] Xiao | Dynamics of hydrogen-oxygen-argon cellular detonations with a constant mean lateral strain rate[END_REF] in hydrogen-oxygen-argon mixture.

Φ L = 𝑁 𝑖 𝑘=1 Φ L,𝑘 𝑁 𝑖 (4.5)
The longitudinal distance 𝑥 i tended to be larger at the end of the cell (Figs. 15( In the weakly unstable 2H 2 -O 2 -7Ar mixture, the number density of Lagrangian particles was the highest between the collision of the transverse waves and the triple point collision.

The accumulation of Lagrangian particles at the collision point of the transverse waves gave birth to the local explosion, of which induced blast waves driving the cellular structure, as modeled by [START_REF] Vasilev | Closed theoretical model of a detonation cell[END_REF] and [START_REF] Crane | Geometric modeling and analysis of detonation cellular stability[END_REF].

In addition, there were some differences in the simulation results. The transverse waves accumulated the Lagrangian particles along the the triple point trajectory and the other particles completed the induction process inside the cell in the simulation. This observation was in line with the previous analysis by [START_REF] Strehlow | Multi-dimensional detonation wave structure[END_REF] that the major source of the energy that produced the blast wave came from the transverse shock waves. As the mixture instability increased, the contribution of the transverse waves in the accumulation of the The peak for distribution of 𝑦 i /𝑥 i at the induction time was located around 0.1 (Fig. 17 non diluted cases, respectively. For the diluted case, the first peak corresponded to particles inside the cell, which were the most and which are in the dilute side (values lower than one).

The second peak corresponded to the trajectories of the triple points and the third one to the locations between the collisions of the transverse waves and of the triple points. These two latter peaks are in the dense side (values greater than one). For the non diluted case, only two peaks can be highlighted. The first peak corresponded to the particles inside the cell, as in the diluted case. The second peak corresponded more or less to a merge between the second and third peaks of the diluted case.

The results in Sections 4.1 and 4.2 highlighted that the dispersion of the Lagrangian particles was promoted behind the detonation front. The fact that the scaling for the variance of the 𝑥-displacement 𝑥 ′2 i worked well using 𝐸 a /(𝑅𝑇 vN ) • 𝑥 ind suggested that the dispersion mainly came from an one-dimensional instability mechanism (Fig. 12(d)), mainly due to the pulsations of the leading shock.

The curvature of the leading shock front was responsible for the transverse dispersion of the particles (Mölder 2016), deviating the particles from horizontal detonation propagation direction (Figs. 13 and14). Moreover, another source of transverse dispersion came from the presence of the reaction front. The value of 𝑦 ′2 i /𝑥 ′2 i was maximum around 2𝜏 ind in the simulation results, which was indicative that the dispersion in transverse direction increased around the reaction front (Fig. 12(b)). Indeed, [START_REF] Buckmaster | The effect of structure on the stability of detonations I. Role of the induction zone[END_REF] showed in a study on linear stability of steady, plane, overdriven detonation that the transverse velocity arose from the transverse derivative of the horizontal distance between the locations of the leading shock and the reaction front. Transverse waves clearly contributed to increase these effects [START_REF] Emmons | Flow discontinuities associated with combustion[END_REF]).

In addition, jets induced fluctuations in the longitudinal dispersion (Figs. 

Relative dispersion

The dispersion behind the front was further evaluated in terms of the relative dispersion in this subsection. The initial distance between two Lagrangian particles in the same pair was set to be the grid size upstream of the leading front, which is the minimum grid width. To distinguish the relative dispersion in the longitudinal and transverse directions, the following relative dispersion were evaluated:

𝑟 xy = (𝑥 p,i1 -𝑥 p,i2 ) 2 + (𝑦 p,i1 -𝑦 p,i2 ) 2 1/2 (4.6) 𝑟 x = 𝑥 p,i1 -𝑥 p,i2 (4.7 
)

𝑟 y = 𝑦 p,i1 -𝑦 p,i2 (4.8) 
Here, 𝑥 p,i1 and 𝑦 p,i1 are x and y positions of the particle i1, and 𝑥 p,i2 and 𝑦 p,i2 are x and y position of the particle i2 which forms the pair with particle i1. passage is described in next subsection 4.4. In both mixtures, the average of 𝑟 x is higher than of 𝑟 y , highlighting again the anisotropy downstream the leading front (Fig. 20(a)).

After some time, corresponding to some µs and far from the leading shock, a self-similar behavior for both mixtures was found when the mean relative dispersion scaled as ∼ (𝜏/𝜏 ind ) 3 . [START_REF] Darragh | Particle pair dispersion and eddy diffusivity in a high-speed premixed flame[END_REF] in another context of high speed premixed flames also found such scalings within some range but with different scalings. The exponential time dependence for inert flow [START_REF] Babiano | Relative dispersion in two-dimensional turbulence[END_REF]) did not hold (see Fig. 20(b)) for the lower times, the constant spanning over more than one order of magnitude. Indeed, the latter zone was the zone of the main heat release (see Table 7).

Figure 21 indicates the derivative of the relative dispersion with respect to time. The local exponent value is 3.77 (50 <𝜏/𝜏 ind <80) and 3.38 (20 <𝜏/𝜏 ind <40) for the diluted and non diluted case, respectively. However, the nondimensionalized time 𝜏/𝜏 ind corresponding to the hydrodynamic thickness for both mixtures was around 50 (see Table 7). Therefore, only the unstable case approached the R-O prediction within the detonation driving zone. The diluted case approached the R-O prediction only around the mean sonic surface. The initial distance in the stable case was larger than that in the unstable case, so the relaxation to the R-O scaling may also take longer [START_REF] Bourgoin | The role of pair dispersion in turbulent flow[END_REF]. 𝜏 ind,non-diluted /𝜏 ind,diluted ] 1/2 ∼ 3. This very good correspondence from such rough estimates seemed to indicate that after the main heat release zone, the more unstable the mixture was, the more turbulent the flow can be considered to be.

To evaluate the distribution in the relative dispersion, the pdf for the relative dispersion 𝑟 xy is depicted in Fig. 22 for the diluted and non-diluted mixtures, respectively. The curves for the diffusive limit and the inertia regime were also included in Figs. 22(c,d,e,f) for comparison. These equations are recalled in Appendix C. The distribution become wider as the time from shock passage increased (Fig. 22(a,b)). The same levels of relative dispersion was obtained much more rapidly in the non-diluted case. The relative dispersion is strongly non-gaussian, with long tails developing, indicative of rare events. In Figs. 22(c,d,e,f), the relative dispersion has been rescaled by 𝑟 xy and a reasonably good collapse of the curves was obtained, showing that the process was self-similar in time, except for the rare events.

A good fit for the tails of the pdfs reads 𝐴 exp (-𝛼(𝑟 xy /𝑟 xy ) 𝛽 ) [START_REF] Jullien | Richardson pair dispersion in two-dimensional turbulence[END_REF] 2), consistent with the fact that the mixture was considered to be more unstable near the leading shocks based on the reduced activation energy and 𝜒 parameters.

What was more surprising was the presence of very rare events with high levels of relative dispersion for the diluted and regular case.

The probability of rare events was higher than that of the Richardson's prediction [START_REF] Buaria | Characteristics of backward and forward two-particle relative dispersion in turbulence at different Reynolds numbers[END_REF]) (see Figs. 22(e)(f)). In the derivation of the pdf by Richardson, the dispersion process was described by a diffusive equation. This modeling was based on two assumptions [START_REF] Boffetta | Statistics of two-particle dispersion in two-dimensional turbulence[END_REF]. The first one is that the dispersion process was self-similar in time. In our case, this assumption that the dispersion process was self-similar in time was valid (see Figs. 22(c,d,e,f)). The second one was that the velocity field was short correlated in time [START_REF] Sokolov | Two-particle dispersion by correlated random velocity fields[END_REF]. The relative velocity in quasi-Lagrangian coordinate [START_REF] Boffetta | Pair dispersion in synthetic fully developed turbulence[END_REF]) was then evaluated to check this validity of the latter assumption. The relative velocity in quasi-Lagrangian coordinate v 𝑄𝐿 (R, 𝜏) at time from shock passage 𝜏 was defined by the following equation.

v 𝑄𝐿 (R, 𝜏) = v(r 1 (𝜏) + R, 𝜏) -v(r 1 (𝜏), 𝜏) (4.9)
Here, v(r, 𝜏) is the Eulerian velocity field (𝑢,𝑣) at the position r and the time from shock passage 𝜏. The position of the Lagrangian particles at time from shock passage 𝜏 is r 1 (𝜏).

The separation distance is R. Note that only the particles that have passed the shock were taken into account. The velocities were obtained by interpolation of three nearby Eulerian cells (Eq. 2.34).

The relative velocity in quasi-Lagrangian coordinate as a function of separation distance for 2H 2 -O 2 -7Ar and 2H 2 -O 2 mixtures is shown in Fig. 23. When the separation distance was greater than the induction length, (v 𝑄𝐿 (R, 𝜏)) 2 was constant. However, when the separation distance was less than the induction length, regardless of the mixture regularity and time from shock passage, the square of relative velocity in quasi-Lagrangian coordinate was proportional to square of the separation distance, i.e. (v 𝑄𝐿 (R, 𝜏)) 2 ∝ (R/𝑥 ind ) 2 . This exponent of 2 was much higher than the exponent of 2 /3, which is expected for the case of the Kolmogorov turbulence. Therefore, the velocity field behind the detonation front was not short time correlated. Thus, the dispersion process can not be described by the diffusive equation proposed by Richardson. The probability of the rare event in the relative dispersion was then different from the Richardson's prediction. In addition, the present finding that the velocity field behind the detonation front was different from that in the Kolmogorov simulation for the highly unstable mixture of methane-oxygen. They had to increase the Kolmogorov constant from the theoretical prediction for incompressible three-dimensional Kolomogorov turbulence to match the experimental results. In addition, in 2D simulations of the transition of a turbulent shock-flame complex to detonation, [START_REF] Maxwell | Modelling of the transition of a turbulent shockflame complex to detonation using the linear eddy model[END_REF] decreased this constant. These changes of the constant may come from the fact that the velocity field behind the detonation was not that of a Kolmogorov turbulence.

The fact that the velocities were not short correlated below the induction length, and that the relative dispersion scaled with 𝜒 parameter suggested that within the detonation driving zone, the heat release played a significant role. Indeed, 𝜒 = 𝑥 ind /𝑥 reac • 𝐸 𝑎 /(𝑅𝑇 vN ) (≃ (𝑇/𝑥 reac ) • 𝜕𝑥 ind /𝜕𝑇) vN ) is related to the rather rapid energy deposition, which promotes the dispersion of the particles on the reaction length scale.

The other possible reason for the departure of the probability of the rare event in the relative dispersion from the Richardson's theory was the extreme events of pair separating much faster and slower than the average. [START_REF] Scatamacchia | Extreme events in the dispersions of two neighboring particles under the influence of fluid turbulence[END_REF] reported in 3D incompressible homogeneous and isotropic turbulence that the extreme events making much faster pair separation and much slower pair separation than the average induced the deviation from the behavior in the Richardson's theory. The relative dispersion behind the detonation front was much higher than the average for the Lagrangian particles, which experienced the shear layers emanating from the triple shock interaction and which were located in the boundary layer.

The other particles separated much slower (Figs. 18,19). The possible effect of the presence of slip lines and boundary layers (Figs. 18,19) on the higher possibility of the rare event was estimated by making pdf from the data with and without their presence. The criterion to distinguish the higher relative dispersion due to the slip lines and boundary layers was that the normalized fluctuation of the square of the relative dispersion (𝑟 2 xy -𝑟 xy 2 )/𝑟 2 xy was higher than -0.95.

To evaluate the distribution in the relative dispersion for the data with and without the presence of the slip lines and boundary layers, a new pdf for the normalized relative dispersion for the new set of data is depicted in Fig. 24. Regardless of the data based on the value of (𝑟 2 xy -𝑟 xy 2 )/𝑟 2 xy , the shapes of the pdf were the same as in Figs. 22(e,f) and probability of the rare event in the relative dispersion remained higher than that from Richardson's theory. The same conclusion was obtained if the threshold was changed from -0.95 to 0.95 (not shown here). Thus, the presence of the slip lines and boundary layers was not the main factor for the probability of rare events in the relative dispersion to be higher than that from Richardson's prediction in the flow field behind the detonation front.

Another possible reason for this difference in the pdf of the relative dispersion is that the turbulence has two cascades: an upward cascade coming from exothermic reactions and the downward Kolmogorov-like cascade [START_REF] Radulescu | The propagation and failure mechanism of gaseous detonations: experiments in porous-walled tubes[END_REF][START_REF] Radulescu | The ignition mechanism in irregular structure gaseous detonations[END_REF]). In addition, the dispersion is slightly anisotropic in our 2D case (see Section 4.1), which can explain the deviations from results of isotropic turbulence [START_REF] Xia | Local anisotropy of laboratory twodimensional turbulence affects pair dispersion[END_REF]). Moreover, the curves in the pdf in the simulation are different from that in the diffusive regime.

Eulerian and Lagrangian averaging procedures

As a result of the dispersion, the same distance from the mean leading shock can be reached The Reynolds average values in the Eulerian mean procedure 𝐺 eul for the variable 𝐺 are computed by Eq. 4.10 (Watanabe et al. 2020):

𝐺 eul (𝑥 s ) = 1 𝐻 ∫ 𝐻 0 lim 𝑇 s →∞ 1 𝑇 s ∫ 𝑇 s 0 𝐺 (𝑥 -𝑥 shock (𝑦, 𝑡), 𝑦, 𝑡)d𝑡 d𝑦 (4.10)
Here, 𝑥 shock (𝑦, 𝑡) is the instantaneous 𝑥 position of the leading shock front, which is not straight due to cellular instabilites, 𝐻 is the channel width, and 𝑇 s is the period of sampling, respectively. The longitudinal distance from the leading shock front 𝑥 s = 𝑥 -𝑥 shock perpendicular to the propagation direction is used for the Eulerian averaging process particle 𝐺 lag,dist , as in Eq. 4.12.

𝐺 lag,time (𝜏) = 1 𝑁 𝑁 ∑︁ 𝑖=1 𝐺 i (𝜏) (4.11) 𝐺 lag,dist (𝑥 xy ) = 1 𝑁 𝑁 ∑︁ 𝑖=1 𝐺 i (𝑥 xy ) (4.12)
where 𝐺 i is the value of the parameter at hand on particle i, 𝜏 = 𝑡 -𝑡 shock is the time elapsed from shock passage, 𝑥 xy is the post-shock distance traveled by the particle, and 𝑁 is the number of particles sampled.

Then, from the different Reynolds averaging procedures, the Favre average quantities can be obtained from Reynolds averaged conservative variables η = 𝜌𝜂/𝜌, where 𝜂 is the conservative variable [START_REF] Favre | Equation des gas turbulents compressibles[END_REF].

In order to enable the comparison between 𝐺 eul and 𝐺 lag,time , we need to map the time elapsed from shock passage up to the longitudinal distance from the shock location 𝑥 s,time .

The following mapping will be used in Eq. 4.11: Here, 𝐷 is the average propagation velocity of the detonation front and is equal to 𝐷 CJ in the present simulation conditions. In order to map the distance traveled by Lagrangian particle from the shock passage to the longitudinal distance from the shock location based on the distance traveled by the Lagrangian particle 𝑥 s,dist , the following mapping will be used in Eq. 4.12 for 𝐺 lag,dist :

𝑥 s,dist = ∫ 𝜏 0 (𝐷 -ũ)d𝑡 such as d𝑡 = d𝑥 xy / ũ2 + ṽ2 1/2 (4.14)
Here, ũ and ṽ are the Lagrangian Favre averages of the 𝑥 and 𝑦 components of the velocity in the laboratory frame. Slight oscillations in Lagrangian Favre averages are observed near the front for the diluted case. In all cases, the profiles differed from that of the ZND solution. Indeed, [START_REF] Radulescu | The hydrodynamic structure of unstable cellular detonations[END_REF] and [START_REF] Sow | Mean structure of one-dimensional unstable detonations with friction[END_REF] showed that the fluctuations delayed the energy deposition.

Lalchandani ( 2022) developed a physical model that explained the slower rate of the heat release by the decaying of the shock velocity inside the cell.

As for the regular case (Fig. 28), the distributions of the chemical species, the thermicity and the other variables in Lagrangian and Eulerian results were almost identical. On the other hand, as for the irregular case, the width of the thermicity was wider (Figs. 28(c,e,f,g) and 29(c,e,f,g)). The increasing part of the curves was similar, whereas differences were apparent in the decreasing part of the thermicity, after its peak. All the other profiles then followed the same trend: Eulerian results matched the Lagrangian results before the peak of thermicity, with Lagrangian results decreasing more smoothly afterwards. Less differences were observed in the pressure and Mach number profiles. The maximum differences for the H 2 mass fraction were located after the peak of thermicity. They reached 12% and 18% between the Eulerian and Lagrangian time and distance averages for the diluted mixture and increased up to 33% and 36% for the other mixture.

Based on the reduced activation energy and the related stability analysis for the emergence of longitudinal disturbances in 1D cases, the mixtures could be classified as weakly and mildly unstable. Transverse disturbances then came into play in 2D configurations. As argued at first by [START_REF] Radulescu | The hydrodynamic structure of unstable cellular detonations[END_REF] and by many others [START_REF] Maxwell | Influence of turbulent fluctuation on detonation propagation[END_REF][START_REF] Taileb | Numerical study of 3D gaseous detonations in a square channel[END_REF][START_REF] Reynaud | Computation of the mean hydrodynamic structure of gaseous detonation with losses[END_REF][START_REF] Sow | The effect of the polytropic index 𝛾 on the structure of gaseous detonations[END_REF], the fluctuations and the induced dispersion explain the differences between the mean quantities from numerical simulations and the ZND results.

All dispersion quantities (𝑥 ′2 i , 𝑦 ′2 i ) , when nondimensionalized by 𝐸 a /(𝑅𝑇 vN ) •𝑥 ind were found to be self-similar in the time 𝜏/𝜏 ind . This good agreement suggests that the dispersion could result from an one-dimensional instability mechanism only. It may thus originate from the fluctuations of the leading shocks that induce the induction and reaction length fluctuations, with transverse waves being a necessary corollary.

On the other hand, the relative dispersion was also found to be self-similar in the time 𝜏/𝜏 ind , after the main heat release zone, when the relative dispersion was normalized by 𝜒 • 𝑥 ind , with 𝜒 considered as a dimensionless acceleration. Both mixtures lie on either side on the neutral stability curve. Small values of 𝜒 imply that the pulses of heat release of neighbouring particles will overlap [START_REF] Radulescu | The propagation and failure mechanism of gaseous detonations: experiments in porous-walled tubes[END_REF]. On the other hand, if this 𝜒 parameter is larger, gasdynamic instabilities result from the lack of coherence of the power pulses and discreteness, and led to the deviations observed in the Eulerian and Lagrangian averaging processes after the peak thermicity for the irregular case.

The value of the specific heat ratio at vN state for non diluted case is 1. procedures. The induction and reaction lengths were almost the same. The position of the peak thermicity can be captured regardless of the average method. Only a slight variation was observed for the hydrodynamic thickness for the irregular case after the peak thermicity.

Therefore, the Eulerian Favre average procedure gave the mean structure of the gaseous detonation with a reasonable accuracy.

Conclusions

Two-dimensional simulations with the Lagrangian particle tracking method were conducted for a weakly and a mildly unstable hydrogen-based mixtures at ambient conditions. Two new Lagrangian Favre average procedures, based on the distance traveled by the particle or the time from the shock passage were proposed and 1D profiles were compared with those from Eulerian procedure, based on the longitudinal distance from the shock front.

The integral length was the hydrodynamic thickness that encompasses the mean detonation driving zone from the leading shock to the mean sonic line. The results from the Eulerian and Lagrangian averaging processes gave similar induction length, reaction length and hydrodynamic thickness. The Eulerian results gave the mean structure with a reasonable accuracy. As the mixture instability increased, the Lagrangian results were smoother after the thermicity peak than the Eulerian results.

Dispersion is inherent to the detonation driving zone, due to the fluctuations of the leading 𝜒 as a dimensionless acceleration. The fact that these instability parameters were successful for these scalings strongly suggests that the main mechanism driving the dispersion was the one-dimensional leading shock fluctuations, i.e. its decaying and amplification upon triple shock collision within the cell. For more highly unstable mixtures with larger 𝐸 a /(𝑅𝑇 vN )

and 𝜒, the presence of more frequent unburnt pockets of fresh gases along with their burning mechanisms can circumscribe these findings. Moreover, the displacement fluctuations at a given time was positively correlated to the displacement fluctuations at a later time, corresponding to about the hydrodynamic thickness time scale.

The dispersion in the induction time scale was closely related to the cellular structure.

Particles are not only accumulated between the locations of the transverse wave and triple point collisions but were also along the triple point trajectories. Another finding was that as the mixture instability increased, the contribution of the transverse waves along the triple point trajectories in the accumulation of the particles increased. The differences with the physical picture of cell size model relying on discrete blast dynamics were more apparent.

The induction process was completed within first half of the cell cycle in the diluted case, whereas more variation in the induction time could be found in the non diluted case due to the higher activation energy and the presence of unburnt pockets. Within the induction time scale, the transverse dispersion was mainly due to the curvature of the leading shock. This effect was more pronounced near the edges of the cell and during the first part of the cell, when the leading detonation front was a Mach stem. The detonation could be described as a two-scale phenomenon, specically for the unstable mixture. The first scale, of a few induction lengths about 5 ∼ 10 𝑥 ind , could be related to the main heat release zone, from the shock up to the vicinity of the peak thermicity. The influence of the transverse waves was still present. Indeed, the levels of 𝑦 ′ i were about those of 𝑥 ′ i . Then after a transient, a new zone was present. The transverse 𝑦 ′ i decreased, leading to small anisotropic dispersion ([𝑦 ′2 i /𝑥 ′2 i ] 1/2 ∼ 0.6). The Richardson-Obukhov scaling law surprisingly still holded, in the zone of small heat release after the peak thermicity, suggesting that classical non reacting laws of turbulence may remain relevant. Only the unstable case approached the R-O scaling within the mean detonation driving zone.

The dispersion of the Lagrangian particles was promoted behind the detonation front.

We could try to sort out the production of these fluctuations: 𝑥 displacements due to the decaying detonation front (one dimensional instability mechanism), then 𝑦 displacements due to the curvature of the leading inert shock front and the presence of the reaction front (due to density ratio). The variation of the distance between the leading shock and the reaction front in the transverse direction induced further transverse dispersion (maximum of 𝑦 ′2 i /𝑥 ′2 i around 2𝜏 ind ). Even if the reactive transverse waves were present in the diluted case, and some unburnt pockets in the non diluted case, these differences do not manifest themselves on the dispersion of the Lagrangian particles (collapse of the histories of scaled

𝑥 ′2 i /(𝐸 a /(𝑅𝑇 vN • 𝑥 ind )) 2 and 𝑦 ′2 i /𝑥 ′2 i ).
In our case, due to high isentropic coefficients, the jets have not induced any cell bifurcation.

The study of the derivative of the relative dispersion with respect with time showed that after the main heat release, the relative dispersion relaxed towards the Richardson-Obukhov regime (exponent near 3), specially for the non diluted case. The influence of the vortical motions coming from the jets and the slip lines, the fading of the transverse waves can not be ignored in this transition.

Moreover, the exponent of the pdf for the relative dispersion was also consistent with

Richardson's prediction in unstable case. Furthermore, the pdf for the relative dispersion was self-similar in time. Nevertheless, the velocity field was not short time correlated with a separation distance below the induction length, meaning that the dispersion process could not be described by the diffusive equation. The relative dispersion scaled with the 𝜒 parameter, which suggested that the rapid energy deposition on the reaction length scale also contributed to this phenomenon.

In addition, the present finding on the velocity field behind the detonation front can help to develop a turbulent model for detonation. Lagrangian averaging can have a merit over that from Eulerian results despite its higher computational cost. Conditional pdf as in dispersed detonation flows [START_REF] Watanabe | Numerical analysis on behavior of dilute water droplets in detonation[END_REF]) could improve our understanding of the links between pressure, vortical, entropy modes and chemistry in detonation. resolution than that used in the present study. According to previous studies, the present grid resolution satisfied the requirement for the grid resolution for the convergence of the 1D average profiles [START_REF] Reynaud | A computational study of the interaction of gaseous detonation with a compressible layer[END_REF][START_REF] Reynaud | Computation of the mean hydrodynamic structure of gaseous detonation with losses[END_REF] for both mixtures and a reasonable physical structure in the instantaneous 2D flow field [START_REF] Mazaheri | Diffusion and hydrodynamic instabilities in gaseous detonations[END_REF]) in 2H 2 -O 2 -7Ar mixture.

The numerical convergence was assessed by comparing the simulation results using coarser grid, which was two times larger than the one used for the main results. The same simulation conditions were used and the propagation velocity was the same regardless of the grid resolution. In addition, the average cell width in the simulation from the manual measurement of 150 and 300 cells for 2H 2 -O 2 -7Ar and 2H 2 -O 2 mixture in the coarse grid was 1.3 mm and 0.7 mm, respectively. The average cell width agreed well between the two different grid resolutions.

The comparison of the average dispersion between the two different grid resolutions was shown in Fig. 32. Although minor differences were observed, the profiles for average dispersion with different grid resolutions were similar (Fig. 32).

The effect of the grid resolution on the relative dispersion was also evaluated. The initial distance between two particles in the same pair was doubled, as compared to the computations shown in Section 4.3. Figure 33 depicts the average relative dispersion for 2H 2 -O 2 -7Ar and 2H 2 -O 2 mixtures. The profiles were similar between the two grid resolutions.

In 2H 2 -O 2 mixture, the differences could be seen, as the time from shock passage increased.

Nevertheless, the average relative dispersion 𝑟 xy normalized by the characteristic length scale 5.

In 2H 2 -O 2 -7Ar mixture, the Favre average 1D profiles for pressure, H 2 mass fraction, Mach number and thermicity were well converged between the two different grid resolution regardless of the Favre average procedure (Fig. 34). The Favre average 1D profiles from Eulerian procedure for 2H 2 -O 2 mixture were also similar between the two different grid resolutions (Fig. 35), except some minor differences.

Therefore, the characteristic lengths were similar between the two different grid resolutions.

Moreover, the mean structure was also well captured by the present grid resolution (Tables 4 and5). This observation on the effect of grid resolution on the mean structure was in line with the previous studies [START_REF] Reynaud | A computational study of the interaction of gaseous detonation with a compressible layer[END_REF][START_REF] Reynaud | Computation of the mean hydrodynamic structure of gaseous detonation with losses[END_REF].

Thus, the profiles used for the analysis were well captured in the present grid resolution, and the conclusions on the Lagrangian dispersion and the mean structure in this study were not called into question by the numerical resolution. 𝑥-axis, and in the same way for 𝑒 y,p and 𝑒 y,m in the 𝑦-axis. The roundness and relative roundness denote the degree of the symmetry of the joint pdf and its relative magnitude, respectively. Their values are listed in Table 6. The roundness was not zero and increased as time passed for both mixtures, which means that dispersion became anisotropic. However, the relative roundness rapidly saturated to 35% and to 40% for both mixtures, values of which are consistent with the ratio of 1 -[𝑦 ′2 i /𝑥 ′2 i ] 1/2 ∼ 1 /3 found previously.

Appendix C. Pdfs of the relative dispersion, correlation coefficients and characteristic time scales

The curves for the diffusive limit and the inertia regime are recalled here as they were included in Figs. 22(c-f) for comparison. The pdf for the relative dispersion in the diffusive limit 𝑓 diff is given by Eq. C 1 [START_REF] Buaria | Characteristics of backward and forward two-particle relative dispersion in turbulence at different Reynolds numbers[END_REF]. Richardson predicted the pdf for the relative dispersion in the inertia regime pdf inertia as follows [START_REF] Sawford | Gaussian Lagrangian stochastic models for multi-particle dispersion[END_REF]. The characteristic times normalized by the induction time for both mixtures for the different Favre averaging procedure are listed in Table 7.

pdf diff =
The correlation coefficients between the displacements at 𝑡 0 and at 𝑡 0 +𝜏 c in longitudinal and transverse directions in Table 3 are estimated by the following Eqs. C 3 and C 4, respectively. 

𝜎 𝑥

′ i (𝑡 0 ) 𝑥 ′ i (𝑡 0 +𝜏 c ) = 1 𝑁 c 𝑁 c 𝑖=1 (𝑥 ′ i (𝑡 0 ) -𝑥 ′ i (𝑡 0 )) (𝑥 ′ i (𝑡 0 + 𝜏 c ) -𝑥 ′ i (𝑡 0 + 𝜏 c ) √︂ 1 𝑁 c 𝑁 c 𝑖=1 𝑥 ′ i (𝑡 0 ) -𝑥 ′ i (𝑡 0 ) 2 √︂ 1 𝑁 c 𝑁 c 𝑖=1 𝑥 ′ i (𝑡 0 + 𝜏 c ) -𝑥 ′ i (𝑡 0 + 𝜏 c ) 2 (C 3) 𝜎 𝑦 ′ i (𝑡 0 ) 𝑦 ′ i (𝑡 0 +𝜏 c ) = 1 𝑁 c 𝑁 c 𝑖=1 𝑦 ′ i (𝑡 0 )𝑦 ′ i (𝑡 0 + 𝜏 c ) √︃ 1 𝑁 c 𝑁 c 𝑖=1 𝑦 ′ i (𝑡 0 )𝑦 ′ i (𝑡 0 ) √︃ 1 𝑁 c 𝑁 c 𝑖=1 𝑦 ′ i (𝑡 0 + 𝜏 c )𝑦 ′ i (𝑡 0 + 𝜏 c ) (C 4)
Here, 𝑁 c is the number of Lagrangian particles inside the computational domain at 𝑡 0 + 𝜏 c .
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Figure 1 :

 1 Figure 1: Simulation setup. (a) Schematics of the computational target, (b) ZND thermicity profile in 2 H 2 -O 2 -7 Ar and 2 H 2 -O 2 mixtures.

  Fig. ??(a). The fully developed twodimensional gaseous detonation propagates in a straight channel. Two types of reactive mixtures have been investigated: 70% diluted stoichiometric hydrogen oxygen mixture 2 H 2 -O 2 -7 Ar and stoichiometric hydrogen oxygen mixture 2 H 2 -O 2 at ambient conditions (0.1 MPa and 300 K). The effect of instabilities can thus be assessed on the dispersion and the averaging processes. Figure ??(b) shows the thermicity profile for both mixtures.

Figure 2 :

 2 Figure 2: 2D instantaneous flow fields in 2 H 2 -O 2 -7 Ar mixture. (a) Temperature, (b) thermicity, (c) maximum pressure.

  , the global features of 2 H 2 -O 2 -7 Ar and 2 H 2 -O 2 mixtures are depicted using the instantaneous 2D flow fields in Figs.2 and 3, respectively. In 2H 2 -O 2 -7Ar mixture, the cellular structure is regular with two cells in the channel (Fig.2(c)). No unburned gas pocket is formed behind the front and the classical key stone feature can be observed(Figs. 2(a,b)).

Figure 3 :

 3 Figure 3: 2D instantaneous flow fields in 2 H 2 -O 2 mixture. (a) Temperature, (b) thermicity, (c) maximum pressure.

Figures 4 and 5

 5 Figures 4 and 5 show the instantaneous 2D flow fields in the Lagrangian perspective for (a) time front shock passage; (b) longitudinal distance traveled by the particle 𝑥 i , (c) transverse distance traveled by the particle 𝑦 i , (d) distance traveled by the particle 𝑥 xy,i from shock passage for 2 H 2 -O 2 -7 Ar and 2 H 2 -O 2 mixtures, respectively. As we move away from the leading shocks, the time from shock passage and the longitudinal distance 𝑥 i increased.However, their distributions were not uniform in each section, regardless of the mixture instability. This non uniform distribution of the Lagrangian particles is consistent with the numerical findings of[START_REF] Sow | The effect of the polytropic index 𝛾 on the structure of gaseous detonations[END_REF]. The scales of the legends for Figs. 4(a) and 5(a)

Figure 4 :

 4 Figure 4: 2D instantaneous Lagrangian flow fields in 2 H 2 -O 2 -7 Ar mixture, superimposed with Schlieren density. (a) Time from shock passage; (b) longitudinal distance traveled by the Lagrangian particle 𝑥 i , (c) transverse distance traveled by the Lagrangian particle 𝑦 i , (d) distance traveled by the Lagrangian particle 𝑥 xy,i .

Figure 5 :

 5 Figure 5: 2D instantaneous Lagrangian flow fields in 2 H 2 -O 2 mixture, superimposed with Schlieren density. (a) Time from shock passage; (b) longitudinal distance traveled by the Lagrangian particle 𝑥 i , (c) transverse distance traveled by the Lagrangian particle 𝑦 i , (d) distance traveled by the Lagrangian particle 𝑥 xy,i .

Fig. 7

 7 Fig. 7(a)) [ 𝑁 𝑖 (𝑥 ixi ) 2 /𝑁] 1/2 were almost the same. The average transverse distance 𝑦 i (see Fig. 7(b)) can be as high as twice for the non-diluted as compared to the more stable case. Figures 8(a,b) and 9(a,b) depict the joint pdf between the times from shock passage and the longitudinal and transverse distances traveled by the particles. The width of the distributions became wider as the time from shock passage increased. The fluctuations along the transverse distance 𝑦 i also increased (see Figs. 8(d) and 9(d)). From Figs. 8(c,d) and 9(c,d), the peak

Figure 6 :

 6 Figure 6: Average longitudinal distance 𝑥 i for 2 H 2 -O 2 -7 Ar and 2 H 2 -O 2 mixtures.

Figure 7 :

 7 Figure 7: (a) Standard deviation for the longitudinal distance [ 𝑁 𝑖 (𝑥 ixi ) 2 /𝑁] 1/2 and (b) average transverse distance 𝑦 i for 2 H 2 -O 2 -7 Ar and 2 H 2 -O 2 mixtures.

Figure 8

 8 Figure 8: 2 H 2 -O 2 -7 Ar mixture. Joint pdf between (a) times from shock passage and longitudinal distances 𝑥 i , (b) times from shock passage and transverse distances 𝑦 i . Pdf at different instants for (c) longitudinal distances 𝑥 i and distances 𝑥 xy,i , (d) transverse distances 𝑦 i .

Figure 9

 9 Figure 9: 2 H 2 -O 2 mixture. Joint pdf between (a) times from shock passage and longitudinal distances 𝑥 i , (b) times from shock passage and transverse distances 𝑦 i . Pdf at different instants for (c) longitudinal distances 𝑥 i and distances 𝑥 xy,i , (d) transverse distances 𝑦 i .

Figure 10 :

 10 Figure 10: Diluted 2 H 2 -O 2 -7 Ar mixture. 2D instantaneous Lagrangian flow fields, superimposed with Schlieren density in diluted 2 H 2 -O 2 -7 Ar mixture. (a) Normalized fluctuations of the longitudinal distances (𝑥 i -𝑥 i )/𝑥 i , (b) normalized transverse distance 𝑦 i /𝑥 i .

Figure 11 :

 11 Figure 11: Non-diluted 2 H 2 -O 2 mixture. 2D instantaneous Lagrangian flow fields, superimposed with Schlieren density in diluted 2 H 2 -O 2 -7 Ar mixture. (a) Normalized fluctuations of the longitudinal distances (𝑥 i -𝑥 i )/𝑥 i , (b) normalized transverse distance 𝑦 i /𝑥 i .

Figure 12 :

 12 Figure 12: (a) Time history of the variance of the 𝑥-and 𝑦-displacements, 𝑥 ′2 i and 𝑦 ′2 i , (b) nondimensionalized 𝑦-displacements, 𝑦 ′2 i /𝑥 ′2 i as a function of the nondimensionalized time 𝜏/𝜏 ind , (c) 𝑥 ′ i • 𝑦 ′ i /(𝑥 ′2 i + 𝑦 ′2 i ), (d) nondimensionalized 𝑥displacements, 𝑥 ′2 i /(𝐸 a /(𝑅𝑇 vN ) • 𝑥 ind ) 2 as a function of the nondimensionalized time 𝜏/𝜏 ind .

Figure 13 :

 13 Figure 13: Time sequence of instantaneous 2D flow fields of distance traveled from shock passage 𝑥 xy,i in 2H 2 -O 2 -7Ar mixture. Only the Lagrangian particles whose time from shock passage is less than the induction time are displayed. The Lagrangian particles selected for the display were separated by an initial vertical distance of 50 µm. The lines are the density Schlieren and the gray contour in the background is the maximum pressure. The detonation propagated from the left to the right and the time passed from (a) to (f).

Figure 14 :

 14 Figure 14: Time sequence of instantaneous 2D flow fields of distance traveled from shock passage 𝑥 xy,i in 2H 2 -O 2 mixture. Only the Lagrangian particles whose time from shock passage is less than the induction time are displayed. The Lagrangian particles selected for the display were separated by an initial vertical distance of 40 µm. The lines are the density Schlieren and the gray contour in the background is the maximum pressure. The detonation propagated from the left to the right and the time passed from (a) to (f).

Figure 15 :

 15 Figure 15: 2D flow fields of the projected Lagrangian values in the position where the Lagrangian particles experienced the maximum thermicity in 2H 2 -O 2 -7Ar mixture. (a) Projected longitudinal distance traveled 𝑥 i at the induction time, (b) projected transverse distance traveled 𝑦 x,i at the induction time, (c) ratio of transverse distance to longitudinal distance 𝑦 i /𝑥 i at induction time, (d) number density of Lagrangian particles normalized by the initial number density. The displayed region is the same as in Fig. 2. The region where no Lagrangian particle was located was displayed as white color.

Figure 16 :

 16 Figure 16: 2D flow fields of the projected Lagrangian values in the position where the Lagrangian particles experienced the maximum thermicity in 2H 2 -O 2 mixture. (a) Projected longitudinal distance traveled 𝑥 i at the induction time, (b) Projected transverse distance traveled 𝑦 i at the induction time, (c) ratio of transverse distance to longitudinal distance 𝑦 i /𝑥 i at induction time, (d) number density of Lagrangian particles normalized by the initial number density. The displayed region is the same as in Fig.3. The region where no Lagrangian particle was located was displayed as white color.

  a),16(a)), due to the decaying shock wave. Near the edge of the cells, the transverse distance 𝑦 i was comparable to the longitudinal distance traveled 𝑥 i , due to the transverse waves.(Figs. 15(b),16(b)). The ratio 𝑦 i /𝑥 i was also the highest near edges(Figs. 15(c),16(c)), and increased as the mixture became more unstable. This ratio was also minimum at the centerline of the cell.The propagation of the cellular detonation dispersed the Lagrangian particles and their distribution was non uniform(Figs. 15(d),16(d)). The Largrangian particles were locally accumulated the trajectory of the triple points. Less Lagrangian particles were found inside the cells.

Figure 17 :

 17 Figure 17: Pdf for the values at the induction time. (a) Joint pdf between normalized 𝑥 i / xi and 𝑦 i /𝑥 i in 2H 2 -O 2 -7Ar mixture, (b) joint pdf between normalized 𝑥 i / xi and 𝑦 i /𝑥 i in 2H 2 -O 2 mixture, (c) pdf for 𝑦 i /𝑥 i , (d) pdf for normalized number density. xi is the average of 𝑥 i at induction time over the whole computational domain.

  . The distribution of normalized 𝑥 i at the induction time became wider as the mixture instability increased due to the variation of the induction time behind cellular detonation front by the higher reduced activation energy and the presence of unburned gas pockets (Figs.17(a,b)). The distribution of 𝑦 i /𝑥 i was also wider and its average value was larger for the non diluted mixture, due to stronger transverse waves (Figs.17(a,b,c)). High values of 𝑦 i /𝑥 i with small 𝑥 i could be found around the triple point trajectories, due to stronger transverse motion by stronger transverse waves(Figs. 15(c),16(c),17(a,b)). As 𝑥 i increased, 𝑦 i /𝑥 i decreased (seeFigs. 12(b),17(a,b)).

  (c))and the deviation of the trajectories of particles from the straight line in the induction time scale was not large, as seen in Figs. 13,14. The pdf for the normalized number density of Lagrangian particles is depicted in Fig.17(d). It had three and two peaks for diluted and

Figure 18 :

 18 Figure 18: Diluted 2 H 2 -O 2 -7 Ar mixture. 2D instantaneous Lagrangian flow fields, superimposed with Schlieren density. (a) Square of the relative dispersion 𝑟 2 xy , (b) normalized fluctuation of the square of the relative dispersion (𝑟 2 xy -𝑟 2 xy )/𝑟 2 xy .

  10 and 11). The role of the jets on the fluctuations in the dispersion are expected to become more important for mixtures with lower isentropic coefficient at vN state[START_REF] Lau-Chapdelaine | Viscous jetting and Mach stem bifurcation in shock reflections: experiments and simulations[END_REF][START_REF] Sow | The effect of the polytropic index 𝛾 on the structure of gaseous detonations[END_REF] Taileb et al. 2021).

Figure 19 :

 19 Figure 19: Non-diluted 2 H 2 -O 2 mixture. 2D instantaneous Lagrangian flow fields, superimposed with Schlieren density. (a) Square of the relative dispersion 𝑟 2 xy , (b) normalized fluctuation of the square of the relative dispersion (𝑟 2 xy -𝑟 2 xy )/𝑟 2 xy .

  The 2D Lagrangian instantaneous flow fields for the relative dispersion for both mixtures are shown in Figs. 18 and 19. The relative dispersion 𝑟 2 xy was the average value at the time from shock passage. The displayed value of 𝑟 2 xy for each particle was the value averaged over its four pairs. Two main factors contributed to the highest values. First, the particles with higher relative dispersion experienced the shear layers emanating from the triple shock interaction and their curling to form the large scale turbulent eddies. The second factor came from the presence of the boundary layer due to the velocity gradient. The normalized deviation from the average (𝑟 2 xy -𝑟 xy 2 )/𝑟 2 xy highlighted these two main contributions (Figs. 18(b)19(b)). The relative dispersion was higher for the irregular mixture (Figs. 18(a)19(a)), with particles with higher relative dispersion being more dispersed inside the channel.

Figure 20

 20 Figure 20 shows the square of average relative dispersion for 2H 2 -O 2 -7Ar and 2H 2 -O 2 mixtures. The Lagrangian Favre average used for Fig. 20(d) based on the time from shock

  𝑟 xy was scaled by the characteristic length scale 𝜒 • 𝑥 ind . The 𝐸 a /(𝑅𝑇 vN ) • 𝑥 ind length scale used in Section 4.1 was not found to give nice results. Indeed, the relative dispersion of nearby particles is related to their difference of velocities that could be a result of the acceleration of reactive fronts, which is reflected by the nondimensionalized acceleration parameter 𝜒[START_REF] Sharpe | Shock-induced ignition for a two-step chain-branching kinetics model[END_REF][START_REF] Radulescu | A universal parameter quantifying explosion hazards, detonability and hot spot formation: the 𝜒 number[END_REF][START_REF] Tang | Dynamics of shock induced ignition in Fickett's model: Influence of 𝜒[END_REF]. Moreover, compensated by (𝜏/𝜏 ind ) 3 , the nondimensionalized pair dispersion from Fig.20(c) agreed with the Richardson-Obukhov (R-O) law (Richardson 1926; Salazar and Collins 2009), meaning that (𝑟 xy /( 𝜒 • 𝑥 ind )) 2

Figure 20 :

 20 Figure 20: Time history of the average relative dispersion for 2H 2 -O 2 -7Ar and 2H 2 -O 2 mixtures. (a) Square of average relative dispersion 𝑟 x 2 , 𝑟 y 2 , 𝑟 xy 2 , as a function of time passage 𝜏, (b) logarithm of 𝑟 xy 2 /𝑟 xy,0 2 compensated by 𝜏, (c) time history of normalized (𝑟 xy /( 𝜒 • 𝑥 ind )) 2 compensated by normalized (𝜏/𝜏 ind ) 3 , (d) 𝑥-velocity fluctuations √︃ 𝑢 ′2 . 𝑟 xy,0 is the initial value for 𝑟 xy .

Figure 21 :

 21 Figure 21: 2H 2 -O 2 -7Ar and 2H 2 -O 2 mixtures. (a) Time evolution of (𝑟 xy /( 𝜒 • 𝑥 ind )) 2 , (b) local scaling exponent of 𝑟 xy 2 from d log (𝑟 xy /( 𝜒 • 𝑥 ind )) 2 /d [log (𝜏/𝜏 ind )].

Figure 22 :

 22 Figure 22: Left: 2 H 2 -O 2 -7 Ar mixture. Right: 2 H 2 -O 2 mixture. (a,b) pdf for relative dispersion 𝑟 xy , (c,d) pdf for 𝑟 xy /𝑟 xy , (e,f) Enlarged view of pdf for 𝑟 xy /𝑟 xy .

Figure 23 :

 23 Figure 23: Square of relative velocity in quasi-Lagrangian coordinate as a function of separation distance normalized by induction length for various time from shock passage. (a) 2 H 2 -O 2 -7 Ar mixture, (b) 2 H 2 -O 2 mixture. The black solid line is the curve with slope of 2 and the black broken line is the curve with slope of 2 /3.

Figure 24 :

 24 Figure 24: Pdf for 𝑟 xy /𝑟 xy from the categorized data (without slip lines and boundary layers) based on the value of (𝑟 2 xy -𝑟 xy 2 )/𝑟 2 xy . Left: 2 H 2 -O 2 -7 Ar mixture. Right: 2 H 2 -O 2 mixture. (a,c) pdf for 𝑟 xy /𝑟 xy from the data whose (𝑟 2 xy -𝑟 xy 2 )/𝑟 2 xy is higher than -0.95, (b,d) pdf for 𝑟 xy /𝑟 xy from the data whose (𝑟 2 xy -𝑟 xy 2 )/𝑟 2 xy is lower than -0.95.

  by several Lagrangian particles at different times, traveling different distances. Figures 25 and 26 depict the joint pdf between the longitudinal distance from the shock 𝑥 s and (a) the time from shock passage 𝜏 and (b) the distance traveled by the particle 𝑥 xy,i . The width of the distribution for 𝜏 and 𝑥 xy,i at fixed 𝑥 s increased as we moved away from the shock and as the mixture instability increased. A double peak can be observed in the regular case, whereas the dispersion became more uniform in the irregular case. This subsection presents the comparison of the Favre average 1D profiles in terms of Eulerian and Lagrangian point of view on the mean structure for the gaseous detonation.

Figure 25 :

 25 Figure 25: Distribution of 𝜏 and 𝑥 xy,i as a function of the longitudinal distance from shock front in 2 H 2 -O 2 -7 Ar mixture. (a) Joint pdf between the longitudinal distance from shock front 𝑥 s and time from shock front passage 𝜏, (b) Joint pdf between 𝑥 s and the distance traveled by the particle along the trajectory 𝑥 xy,i , (c) pdf of 𝑥 s at several 𝜏, (d) pdf of 𝑥 s at several 𝑥 xy,i .

  . The time from the shock passage 𝜏 and the distance 𝑥 xy traveled by Lagrangian particle from shock passage can thus be also candidates for the Lagrangian averaging procedures. Two Lagrangian average procedures have been proposed. The first consisted in computing the Reynolds average values in the Lagrangian mean procedure based on the time from shock passage 𝐺 lag,time , as in Eq. 4.11. The second one consisted in computing the Reynolds average values in the Lagrangian average procedure based on the distance traveled by Lagrangian

Figure 26 :

 26 Figure 26: Distribution of 𝜏 and 𝑥 xy,i as a function of the longitudinal distance from shock front in 2 H 2 -O 2 mixture. (a) Joint pdf between the longitudinal distance from shock front 𝑥 s and time from shock front passage 𝜏, (b) Joint pdf between 𝑥 s and the distance 𝑥 xy,i , (c) pdf of 𝑥 s at several 𝜏, (d) pdf of 𝑥 s at several 𝑥 xy,i .

  Figure27depicts the relations(Eqs. 4.13 and 4.14) between the distance from the shock front, the time from shock passage and the longitudinal distance from shock location. The results of the two Lagrangian procedures and the ZND model agreed well with each other, meaning that the procedures to convert the target values used in the Lagrangian procedures into the longitudinal distance from the shock front are appropriate.The effects of the distance traveled by the particle and the time elapsed from the shock passage are not taken into account into the Eulerian procedure. However, the time elapsed from the shock passage is more relevant as far as chemical reactions are concerned. There are also differences between the two Lagrangian procedures. Indeed, the difference is more apparent especially in the boundary layer. Due to the lower velocity in the boundary layer, the distance 𝑥 xy does not increase as that in the core of the flow, for the same time elapsed from shock passage. The comparison of the Favre average 1D profiles in the instantaneous shock frame for 2H 2 -O 2 -7Ar and 2H 2 -O 2 mixtures are depicted in Figs. 28 and 29, respectively. The frozen sound speed was used to estimate the Mach number in Figs. 28(d) and 29(d). The trends for the profiles of pressure, temperature and Mach number were nevertheless similar regardless of the Favre average procedure, either from the Eulerian or the Lagrangian point of view.

  Figures 30 and 31 show the joint pdf of the fluctuations of the displacements 𝑥 ′ i = (𝑥 p,i -

Figure 27 :

 27 Figure 27: Lagrangian Favre average 1D profiles for both mixtures (a) 𝑥 s / 𝑥 ind and 𝜏, (b) 𝑥 s / 𝑥 ind and 𝜏/ 𝜏 ind .𝑥 p,i,0 ) -(𝑥 p,i -𝑥 p,i,0 ) and 𝑦 ′ i = 𝑦 p,i -𝑦 p,i,0 at a certain instant 𝑡 0 with that at a later time 𝑡 0 + 𝜏 c , 𝜏 c being equal to approximately ∼ 𝜏 HT /2 and ∼ 2𝜏 HT , where 𝜏 HT is the time corresponding to the hydrodynamic thickness. If the motion were to be brownian, the shape of the joint pdf would correspond to a circle. Instead, in both cases, the joint pdf lied along positive lines, meaning that they are positively correlated to each other. One can see that the shape of the joint pdf got rounder as time passed, all the more so as we got outside the mean detonation driving zone (DDZ). Table3lists the correlation coefficients for the joint pdf of

Figure 28 :

 28 Figure 28: Favre average 1D profiles in 2H 2 -O 2 -7Ar mixture for (a) pressure, (b) temperature, (c) thermicity, (d) Mach number, (e) H 2 mass fraction, (f) OH mass fraction, and (g) H 2 O mass fraction.

Figure 29 :

 29 Figure 29: Favre average 1D profiles in 2H 2 -O 2 mixture for (a) pressure, (b) temperature, (c) thermicity, (d) Mach number, (e) H 2 mass fraction, (f) OH mass fraction, and (g) H 2 O mass fraction.

Figure 30 :

 30 Figure 30: Joint pdf between displacement fluctuations at 𝑡 0 and that at 𝑡 0 + 𝜏 c in 2 H 2 -O 2 -7 Ar mixture. (a) 𝑥 ′ i displacement fluctuations with 𝜏 c = 5 µs, (b) 𝑥 ′ i displacement fluctuations with 𝜏 c = 20 µs, (c) 𝑦 ′ i displacement fluctuations with 𝜏 c = 5 µs, (d) 𝑦 ′ i displacement fluctuations with 𝜏 c = 20 µs.

Figure 31 :

 31 Figure 31: Joint pdf between displacement fluctuations at 𝑡 0 and that at 𝑡 0 + 𝜏 c in 2 H 2 -O 2 mixture. (a) 𝑥 ′ i displacement fluctuations with 𝜏 c = 2 µs, (b) 𝑥 ′ i displacement fluctuations with 𝜏 c = 8 µs, (c) 𝑦 ′ i displacement fluctuations with 𝜏 c = 2 µs, (d) 𝑦 ′ i displacement fluctuations with 𝜏 c = 8 µs.

Figure 32 :

 32 Figure 32: Average dispersion in 2H 2 -O 2 -7Ar and 2H 2 -O 2 mixtures with two different grid resolutions. (a) Time history of 𝑥 ′2 i and 𝑦 ′2 i , (b) 𝑦 ′2 i /𝑥 ′2 i as a function of 𝜏/𝜏 ind , (c) 𝑥 ′ i • 𝑦 ′ i /(𝑥 ′2 i + 𝑦 ′2 i ), (d) 𝑥 ′2 i /(𝐸 a /(𝑅𝑇 vN ) • 𝑥 ind ) 2 as a function of 𝜏/𝜏 ind .

Figure 33 :

 33 Figure 33: Average relative dispersion in 2H 2 -O 2 -7Ar and 2H 2 -O 2 mixtures with two different grid resolutions. (a) Average relative dispersion 𝑟 x 2 , 𝑟 y 2 , 𝑟 xy 2 , as a function of time passage 𝜏, (b) time history of normalized (𝑟 xy /( 𝜒 • 𝑥 ind )) 2 compensated by normalized (𝜏/𝜏 ind ) 3 .

Figure 34 :

 34 Figure 34: Favre average 1D profiles in 2H 2 -O 2 -7Ar mixture with two different grid resolutions for (a) pressure, (b) H 2 mass fraction, (c) Mach number, (d) thermicity.

Figure 35 :

 35 Figure 35: Favre average 1D profiles in 2H 2 -O 2 mixture with two different grid resolutions for (a) pressure, (b) H 2 mass fraction, (c) Mach number, (d) thermicity.

Figure 36 :

 36 Figure 36: Joint pdf for 2 H 2 -O 2 -7 Ar between the fluctuations of longitudinal displacements 𝑥 ′ i and that of the transverse displacements 𝑦 ′ i for different times from shock passage: (a) 5 µs, (b) 10 µs, (c) 15 µs, (d) 20 µs.

Figure 37 :

 37 Figure 37: Joint pdf for 2 H 2 -O 2 between the fluctuations of longitudinal displacements 𝑥 ′ i and that of the transverse displacements 𝑦 ′ i for different times from shock passage: (a) 2 µs, (b) 4 µs, (c) 6 µs, (d) 8 µs.

  𝜀 𝑘 , 𝜀 𝑙 are the Lennard-Jones collision potential well depth for species 𝑘 and 𝑙, respectively. 𝜎 𝑘 and 𝜎 𝑙 are the Lennard-Jones collision diameter for species 𝑘 and 𝑙, 𝑘 into the mixture of the other compound 𝐷 𝑘 to estimate the diffusive flux using the mass fraction gradient is calculated by the following mixing rule[START_REF] Kee | Chemically reacting flow Theory and Practice[END_REF].

	denote the nonpolar and polar molecule, respectively. The diffusion coefficient of a compound
	𝐷 𝑘 =	𝑁 s 𝑙≠𝑘	1 1-𝑌 𝑘 𝐷 𝑘𝑙 + 𝑋 𝑘 𝑋 𝑙	𝑙≠𝑘 𝑁 s	𝐷 𝑘𝑙 𝑌 𝑘	(2.31)
	The trajectories of the gas particles can be simply obtained by massless Lagrangian
	particles with the following equations Eqs.2.32 and 2.33.
				d𝑥 p,i d𝑡	= 𝑢 i	(2.32)
				d𝑦 p,i d𝑡	= 𝑣 i	(2.33)
	𝐶 11			𝐶 11					𝐶 11	𝐶 11
	1 𝑑 ) 𝐶 11 (𝑇 * 2	+	3 exp (𝐶 11 4 𝑇 * 𝑑 )	+	5 exp (𝐶 11 6 𝑇 * 𝑑 )	+	7 exp (𝐶 11 8 𝑇 * 𝑑 )	(2.24)
				𝑇 * 𝑑 =	𝑘 𝐵 𝑇 𝜀 𝑘𝑙	(2.25)
	Here, the constants in Eq. 2.24 are defined as follows. 𝐶 11 1 = 1.06036, 𝐶 11 2 = 0.15610, 𝐶 11 3 =
	0.19300, 𝐶 11 4 = 0.47635, 𝐶 11 5 = 1.03587, 𝐶 11 6 = 1.52996, 𝐶 11 7 = 1.76474, 𝐶 11 8 = 3.89411.
	𝜀 𝑘𝑙 is the effective Lennard-Jones potential well depth for species 𝑘 and 𝑙. 𝜎 𝑘𝑙 and 𝜀 𝑘𝑙 are
	estimated based on the Lennard-Jones collision diameter and Lennard-Jones potential well
	depth for species 𝑘 and 𝑙, and the formula is different depending on whether the collision
	partners are polar or nonpolar. For the case that the partners are either both polar or both
	nonpolar, the equations are							
				𝜀 𝑘𝑙 =	√	𝜀 𝑘 𝜀 𝑙	(2.26)
				𝜎 𝑘𝑙 =	𝜎 𝑘 𝜎 𝑙 2	(2.27)
	Here, respectively. For the case for a polar molecule interacting with a nonpolar molecule, the
	equations are							
				𝜀 𝑘𝑙 = 𝜉 2 √	𝜀 𝑘 𝜀 𝑙	(2.28)
				𝜎 𝑘𝑙 =	𝜎 𝑘 𝜎 𝑙 2	𝜉 -1 6	(2.29)
			𝜉 = 1 +	1 4	𝛼 * np 𝜇 * pol	√︂	𝜀 pol 𝜀 np	(2.30)
	Here, 𝛼 * np and 𝜇 * pol are the reduced polarizability for the nonpolar molecule and the reduced
	dipole moment for the polar molecule, respectively. The subscripts for np and pol in Eq. 2.30

Table 1 :

 1 Table 1 lists the various parameters for both mixtures characterizing detonation such as the CJ velocity 𝐷 CJ , the CJ Mach number 𝑀 CJ , the induction length 𝑥 ind , the reaction length 𝑥 Parameters of the reactive mixtures in the present conditions.

	Parameters 2H 2 -O 2 -7Ar 2H 2 -O 2
	𝐷 CJ [m/s]	1690.7 2834.3
	𝑀 CJ	4.8	5.3
	𝑥 ind [µm]	76.6	48.6
	𝑥 reac [µm]	409	72.5
	𝜏 ind [µs]	0.2	0.09
	𝜏 reac [µs]	0.1	0.02
	𝐸 a /(𝑅𝑇 vN )	4.1	6.9
	𝜒	0.8	4.6
	𝛾 vN	1.49	1.32

reac , the induction time 𝜏 ind , the reaction time 𝜏 reac , the reduced activation energy 𝐸 a /(𝑅𝑇 vN ), the 𝜒=𝐸 a /(𝑅𝑇 vN ) • 𝑥 ind /𝑥 reac parameter, and the specific heat ratio at von Neumann (vN) state 𝛾 vN . Following the definition by Radulescu (2003) and Ng et al. (2005b), the induction

  and their coefficients are given in Table2. The exponent was about 0.35 and applied well for values of 𝑟 xy /𝑟 xy between 5 and 15 for the diluted mixture, and was about 0.63 for values of 𝑟 xy /𝑟 xy between 2 and 8 for the non-diluted one. The exponent for the unstable case agreed very well with the Richardson's proposal of 2 /3[START_REF] Richardson | Atmospheric diffusion shown on a distance-neighbour graph[END_REF] while that in the diluted case was below the latter value. The normalized relative dispersion for the non-diluted was less steeper and higher for the most probable events in the intermediate range (see values of the fitted function in Table

Table 3 :

 3 Correlation coefficients between displacements at 𝑡 0 and at 𝑡 0 + 𝜏 c .

	Averaging procedure

  Table 3 lists the correlation coefficients for the joint pdf of Figs. 30 and 31 that were very high.

Table 4

 4 lists the characteristic lengths for both mixtures for the different Favre averaging

Table 5 :

 5 Characteristic lengths normalized by induction length for 2H 2 -O 2 -7Ar and 2H 2 -O 2 mixtures in the coarse grid resolution. Nondimensionalized cell widths are added for comparison. The Lagrangian (distance) stands for the averaging process, described byEqs. 4.12,4.14 and Lagrangian (time) refers to procedure based onEqs. 4.11,4.13. 

		Induction length	1.1	1.1	1.0
	2H 2 -O 2 -7Ar Reaction length	3.8	3.9	3.9
		Hydrodynamic thickness	114.4	117.9	116.2
		Average cell width	17.0	-	-
		Induction length	0.9	1.0	0.8
	2H 2 -O 2	Reaction length	0.8	0.8	0.8
		Hydrodynamic thickness	129.2	154.8	154.4
		Average cell width	14.2	-	-

  3 √︁ 6/𝜋(𝑟 xy /𝑟 xy ) 2 exp -3 2 (𝑟 xy /𝑟 xy ) 2

(C 1) 
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Appendix A. Assessment of numerical convergence

In this appendix, the numerical convergence was assessed to check the effect of the grid resolution on the simulation results. The high computational cost for the numerical simulations with the Lagrangian particle tracking method prevented us to use higher grid

Appendix B. Evaluation of anisotropy from the fluctuations in displacement

The dispersion was anisotropic (see Fig. 12(b)), where [𝑦 ′2 i /𝑥 ′2 i ] 1/2 decreased from one near the front to two thirds at the end of the DDZ. To quantify further this dispersion, the joint pdf between 𝑥 ′ i and 𝑦 ′ i is depicted in Figs. 36 and 37 for different instants to show their evolution.

The centers are determined where 𝑥 ′ i = 𝑦 ′ i = 0. The boundary of the joint pdf shape was taken at 10 4 . The roundness and relative roundness were then evaluated as a measurement of the anisotropy (see Eqs. B 1 and B 2).

Here, 𝑒 x,p and 𝑒 x,n are the distances from the center to the edges of the boundary in the mixtures. The Lagrangian (distance) stands for the averaging process, described by Eqs. 4.12,4.14 and Lagrangian (time) refers to procedure based on Eqs. 4.11,4.13.