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This correspondence investigates a reconfigurable intelligent surface (RIS)-assisted wireless communication system with security threats. The RIS is deployed to enhance the secrecy outage probability (SOP) of the data sent to a legitimate user. By deriving the distributions of the received signal-to-noise-ratios (SNRs) at the legitimate user and the eavesdropper, we formulate, in a closed-form expression, a tight bound for the SOP under the constraint of discrete phase control at the RIS. The SOP is characterized as a function of the number of antenna elements, N , and the number of discrete phase choices, 2 b . It is revealed that the performance loss in terms of SOP due to the discrete phase control is ignorable for large N when b ≥ 3. In addition, we explicitly quantify this SOP loss when binary phase shifts with b = 1 is utilized. It is identified that increasing the RIS antenna elements by 1.6 times can achieve the same SOP with binary phase shifts as that by the RIS with ideally continuous phase shifts. Numerical simulations are conducted to verify the accuracy of these theoretical observations.

In recent years, physical layer security (PLS) has gained considerable interest for securing wireless communications. As a complement to conventional cryptographic methods, PLS ensures secure communications by exploiting the dynamics of propagation channels. Since RISs have the ability of adjusting the propagation channels, their deployment empowers the design of PLS with an additional dimension by exploiting passive BF. In order to maximize the theoretical secrecy, literature [START_REF] Shen | Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[END_REF]- [START_REF] Zhou | Secure wireless communication in RIS-aided MISO system with hardware impairments[END_REF] investigated joint optimization of the active and passive BFs at the transmitter and RIS, respectively. In [START_REF] Lv | Secure two-way communications via intelligent reflecting surfaces[END_REF], the average secrecy rate (SR) was characterized for an RIS-assisted two-way communication system through a lower bound. More recently in [START_REF] Luo | Reconfigurable intelligent surface: Reflection design against passive eavesdropping[END_REF], the SR was further analyzed for a system where the RIS reflection is utilized as a multiplicative randomness against a wiretapper.

Besides the analysis of SR, secrecy outage probability (SOP) is another relevant performance measure to quantify the performance of PLS, especially for systems undergoing slow-varying channels. The SOP is defined as the probability that the instantaneous secrecy capacity falls below a target SR. The SOPs of RIS-aided communication systems have been investigated in [START_REF] Yang | Secrecy performance analysis of RIS-aided wireless communication systems[END_REF]- [START_REF] Khoshafa | Reconfigurable intelligent surfaces-aided physical layer security enhancement in D2D underlay communications[END_REF]. Both analytical and asymptotic analyses have been provided to reveal the impacts of key system parameters on SOP. In particular, the work in [START_REF] Wang | Secrecy performance analysis of IRS-aided UAV relay system[END_REF] considered the SOP of an RIS-aided unmanned aerial vehicle (UAV) relay system. In [START_REF] Khoshafa | Reconfigurable intelligent surfaces-aided physical layer security enhancement in D2D underlay communications[END_REF], the authors analyzed the SOP as well as the probability of non-zero secrecy capacity of an RIS-aided device-to-device (D2D) communication system. However, most studies on SOP analysis considered RIS with continuous phase shifts, which leads to unaffordable high complexity in practice. Even though discrete phase shifts have been considered for RIS reflection optimizations, e.g., in [START_REF] Wu | Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[END_REF] [START_REF] Papazafeiropoulos | Intelligent reflecting surface-assisted MU-MISO systems with imperfect hardware: Channel estimation and beamforming design[END_REF], few studies have been conducted on theoretical performance analysis with discrete RIS phase shifts especially in terms of SOP. Quantitative insight on RIS design has only been discovered for some non-security scenarios [START_REF] Zhang | Reconfigurable intelligent surfaces assisted communications with limited phase shifts: How many phase shifts are enough?[END_REF]. This is because discrete phase shifts make the performance expressions of the cascaded RIS channels much less tractable. In particular for secure communications, it can be even challenging to directly derive the corresponding cascaded channel distributions of both the legitimate user and eavesdropper.

In this work, we investigate the SOP of an RIS-assisted secure communication system and quantitatively characterize the impacts of discrete phase shifts in closed-form expressions. Concretely, we first derive the exact distributions of the received signal-to-noise-ratios (SNRs) at the legitimate user and the eavesdropper. Then, we present a closedform expression for a tight upper bound of the SOP. Based on the obtained expressions, the asymptotic scaling law of SOP is characterized in high-SNR regimes. In particular, the SOP decreases with the slope of e -0.8N for large N and b ≥ 3, where N is the number of RIS elements and b is the number of quantization bits. Compared with the ideally continuous phase control, we further obtain that the performance loss in terms of SOP caused by using binary phase shifts, i.e., b = 1, can be compensated by deploying a larger RIS with size 1.6N . The remainder of this paper is organized as follows. The system model is introduced in Section II. In Section III, we derive the distribution of the received SNRs at the legitimate user and at the eavesdropper. In Section IV, we provide a closed-form expression for an upper bound of the SOP, and we study it in notable asymptotic regimes.

Simulation results and conclusions are given in Section V and VI, respectively. 

II. SYSTEM MODEL

We consider an RIS-assisted secure communication system consisting of a source (S), an RIS with N reflecting elements, a legitimate user (D), and an eavesdropper (E), as illustrated in Fig. 1. The direct link between S and D is assumed to be blocked by obstacles, such as buildings, which is likely to occur at high frequency bands. In this scenario, the data transmission between S and D is ensured by the RIS. The eavesdropper is at a location where it can overhear the information from both S and the RIS. 1 Nodes S, D, and E are equipped with a single antenna for transmission and reception and all links experience Rayleigh fading. 2 The channel coefficients of the S-RIS, RIS-D, RIS-E, and S-E links are respectively denoted by h i , g i , p i , and h SE ∼ CN (0, 1), where CN is the complex Gaussian distribution. By applying channel estimation methods in [START_REF] Liu | Deep denoising neural network assisted compressive channel estimation for mmWave intelligent reflecting surfaces[END_REF], [START_REF] Wan | Terahertz massive MIMO with holographic reconfigurable intelligent surfaces[END_REF] and the references therein, we assume that the channel coefficients of h i and g i are perfectly known to S. However, the channel gains of p i and h SE are not available to S, as the eavesdropper is usually a passive device that does not emit signals.

By assuming quasi-static flat fading channels, the signal received at D is expressed as

r D = √ P η(d SR d RD ) -υ/2 N i=1 h i g i e jφi x + n D , (1) 
where P denotes the transmit power at S, x is the transmit signal, η ∈ (0, 1] is the RIS amplitude reflection coefficient with η = 1 corresponding to lossless reflection, {φ i } N i=1 represents the phase shift of the ith reflecting element of the RIS, and n D ∼ CN (0, N 0 ) is the additive white Gaussian noise (AWGN) with zero mean and variance N 0 . Without loss of generality, the signal power is normalized, i.e., E[|x| 2 ] = 1 where E [•] denotes the expectation of a random variable (RV). In addition, d SR and d RD are the distances of the S-RIS and RIS-D links, respectively, and υ is the path loss exponent.

From (1), the received SNR at D is calculated as

γ D = η 2 P N i=1 h i g i e jφi 2 N 0 d υ SR d υ RD . (2) 
In the case of ideally continuous phase shifts, γ D is maximized by setting the phases of the RIS elements equal to

φ i = φ opt i -∠ (h i g i ),
where ∠ returns the phase of the complex number. This optimized phase compensates the 1 The direct link between S and E exists when the eavesdropper is not blocked by obstacles [START_REF] Yang | Secrecy performance analysis of RIS-aided wireless communication systems[END_REF] [13]. 2 The RIS-related links can be modeled as Rayleigh fading, also as [START_REF] Yang | Secrecy performance analysis of RIS-aided wireless communication systems[END_REF] [13], when the RIS is not optimally deployed to ensure strong LoS links.

phase shift introduced by fading channels. Due to hardware limitations, however, the phase shifts {φ i } N i=1 of the RIS elements are usually limited to a finite number of controllable discrete values. In particular, the set of discrete phase shifts is denoted by A

0, 2π 2 b , ..., (2 b -1)2π 2 b
, where b is the number of quantization bits. In this case, usually, the phase shift of the ith RIS element, φ sub i ∈ A, is chosen as

φ sub i arg min φ∈A φ opt i -φ . (3) 
Then, the received SNR in the presence of the discrete phase shifts is rewritten as

γ D = γSRD N i=1 h i g i e jφ sub i 2 , (4) 
where γSRD

η 2 P N0d υ SR d υ RD
denotes the average SNR.

The eavesdropper receives signals from the direct link from S and the reflected link from the RIS. Then, the received signal at E is written as

r E = √ P η(d SR d RE ) -υ/2 N i=1 h i p i e jφ sub i +d -υ/2 SE h SE x + n E , (5) 
where d RE and d SE denote the distances of the RIS-E and S-E links, respectively, and

n E ∼ CN (0, N 0 ) is the AWGN at E. Then, the received SNR at E is γ E = √ γSRE N i=1 h i p i e jφ sub i + √ γSE h SE 2 , (6) 
where γSRE

η 2 P N0d υ SR d υ RE
and γSE

η 2 P N0d υ SE
represent the average SNRs of the S-RIS-E and S-E links, respectively.

III. DISTRIBUTIONS OF THE RECEIVED SNRS

In order to analyze the SOP of the system, we need to first characterize the distributions of γ D and γ E .

A. Distribution of γ D

Let us denote the quantization error of phase shifts by

Θ i φ sub i -φ opt i , which is uniformly distributed [14] [15] [17], i.e., Θ i ∼ U -2 -b π, 2 -b π . Then, γ D in (4) is rewritten as γ D (a) = γSRD N i=1 h i g i e j(Θi+φ opt i ) 2 (b) = γSRD N i=1 |h i | |g i | e jΘi 2 (c) = γSRD X 2 +Y 2 (d) = γ D1 +γ D2 , (7) 
where (a) follows by the identity 

φ sub i = Θ i + φ opt i , (b) is obtained by using φ opt i = -∠ (h i g i ), (c) follows by the definitions X N i=1 |h i | |g i | cos Θ i and Y N i=1 |h i | |g i | sin Θ i ,
F γD 1 (x) = 1 - 1 2 erfc α+ √ x β -f γD 2 (y) = λ µ y µ-1 Γ (µ) e -λy , (9) 
where

α = m 1 √ γSRD , β = √ 2σ 1 √ γSRD , m 1 = N π 4 sinc 2 -b , σ 2 1 = N 2 [1 + sinc(2 1-b )] -N π 2 16 sinc 2 2 -b , λ = 1 2σ 2 2 γSRD , µ = 1 2 , σ 2 2 = N 2 [1 -sinc(2 1-b )],
where sinc(x) sin πx πx and Γ (•) is the Gamma function [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF]Eq. (8.310)]. Proof: The proof of the independence of γ D1 and γ D2 for large values of N is provided in Appendix A. Specifically, by applying the central limit theorem (CLT) [START_REF] Pishro-Nik | Introduction to Probability, Statistics and Random Processes[END_REF], X and Y converge in distribution to Gaussian RVs for large N . Since |h i | and |g i | are independently distributed Rayleigh RVs with mean √ π/2 and variance (4-π)/4, By applying Lemma 1 and ( 7), the CDF of γ D equals

we obtain E [X] = m 1 , Var[X] = σ 2 1 , E [Y ] = 0, and 
Var[Y ] = σ 2 2 . It follows X d -→ N (m 1 , σ 2 1 ), Y d -→ N (0, σ 2 2 ), (10) 
F γD (z) = D f γD 1 ,γD 2 (x, y) dxdy (d) = z 0 f γD 2 (y) F γD 1 (z -y) dy (e) = z 0 λ µ y µ-1 Γ (µ) e -λy × 1- 1 2 erfc √ z -y+α β - 1 2 erfc √ z -y-α β dy, (11) 
where D {(x, y) : x + y ≤ z, x > 0, y > 0}, (d) utilizes the independence of γ D1 and γ D2 in Lemma 1, and

(e) is obtained by using ( 8) and [START_REF] Lv | Secure two-way communications via intelligent reflecting surfaces[END_REF].

B. Distribution of γ E

Let us first consider the distribution of Z √ γSRE

N i=1 h i p i e jφ sub i + √ γSE h SE . Then, γ E in (6) can be calculated according to the relationship of γ E = |Z| 2 .
The distribution of Z is provided in the following lemma. As disclosed in Lemma 2, γ E has an exponential distribution with mean N γSRE + γSE . Therefore, the PDF of

γ E is f γE (x) = ǫe -ǫx , x ≥ 0 ( 12 
)
where ǫ = 1/(N γSRE + γSE ).

IV. THEORETICAL ANALYSIS OF THE SOP

A. SOP Analysis

The SOP is an essential performance metric to quantify the performance of PLS, which is defined as the probability that the instantaneous secrecy capacity falls below a target positive SR C th . From [START_REF] Yang | Secrecy performance analysis of RIS-aided wireless communication systems[END_REF]- [START_REF] Khoshafa | Reconfigurable intelligent surfaces-aided physical layer security enhancement in D2D underlay communications[END_REF] [22], the SOP is calculated as

SOP = Pr (ln (1 + γ D ) -ln (1 + γ E ) < C th ) = ∞ 0 F γD ((1 + x) ϕ -1)f γE (x) dx, (13) 
where ϕ e C th . It is still difficult to compute (13) because the CDF of γ D in [START_REF] Yang | Secrecy performance analysis of RIS-aided wireless communication systems[END_REF] involves an intractable integral.

Thus, instead of seeking for a closed-form expression for the SOP, we derive an upper bound as follows

SOP < ∞ 0 F γD 1 ((1 + x) ϕ -1)f γE (x) dx = SOP . ( 14 
)
Remark 1: Note that SOP in ( 14) is tight when N is large, because γ D1 ≫γ D2 holds with high probability, whose proof is provided in Appendix C.

Lemma 3:

The upper bound in ( 14) can be expressed as

SOP = 1 - 1 2 (I 1 + I 2 ) , (15) 
where I 1 and I 2 are respectively defined as follows

I 1 = erfc √ ϕ-1+α β - 2 √ A β e AB 2 + (ϕ-1)ǫ ϕ -α 2 β 2 × 1-erf B √ A+ √ ϕ-1 2 √ A , (16) 
I 2 = erfc √ ϕ-1-α β - 2 √ A β e AB 2 + (ϕ-1)ǫ ϕ -α 2 β 2 × 1-erf -B √ A+ √ ϕ-1 2 √ A , (17) 
where A = β 2 ϕ 4(β 2 ǫ+ϕ) and B = 2α β 2 . Proof: See Appendix D.

B. Asymptotic SOP Analysis

We consider application scenarios characterized by a low transmission rate but high security requirements, such as for the Internet of Things [START_REF] Wang | Physical-layer security of 5G wireless networks for IoT: Challenges and opportunities[END_REF]. The target SR C th can be so small that ϕ → 1. In this case, we obtain

SOP (f) → 1 2σ 2 1 γSRD ǫ+1 e - m 2 1 γSRD ǫ 2σ 2 1 γSRD ǫ+1 (g) → 1 2σ 2 1 γSRD ǫ e - m 2 1 2σ 2 1 = 1 k 1+sinc (2x)-π 2 8 sinc 2 (x) e - 1 16[1+sinc(2x)] π 2 sinc 2 (x) -2 N , (18) 
where (f) is obtained from ( 15) by setting ϕ → 1, and (g) holds true in the high-SNR regime when γSRD ≫ {γ SRE , γSE } and by using the following inequalities

2σ 2 1 γSRD ǫ = 1+sinc (2x)-π 2 8 sinc 2 (x) γSRE + γSE /N γSRD ≥ γSRD 2 (γ SRE + γSE ) ≫ 1, (19) 
where x 2 -b and the inequality in [START_REF] Pishro-Nik | Introduction to Probability, Statistics and Random Processes[END_REF] follows by 1 + sinc (2x) -π 2 8 sinc 2 (x) ≥ 1 2 for x ∈ 0, 1 2 . The last equality in [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF] is obtained by defining k γSRD / γSRE + 1 N γSE . By direct inspection of ( 18), we evince that SOP decreases if γSRD increases, which means that enhancing the average SNR at the legitimate user always improves the secrecy performance even for a limited number of discrete phase shift status. In particular, we have SOP → 0 when γSRD → ∞ while keeping N , b, γSRE , and γSE fixed.

Besides, inspired by [START_REF] Zeng | Reconfigurable intelligent surface (RIS) assisted wireless coverage extension: RIS orientation and location optimization[END_REF], we have the following remark to show the impact of the RIS location on SOP.

Remark 2:

The SOP improves when {d SR , d RD } decreases and d RE increases. For large N , it is further found that the asymptotic SOP hardly changes with a moderate variation of d SR . This behavior is also explained from the fact that reducing the distance from the source to RIS increases the received SNRs for both the legitimate user and the eavesdropper. Therefore, in the case that the location of the eavesdropper is unknown, we should prioritize deploying the RIS closer to the legitimate user than to the source.

Proof: From (18), we see that the location of the RIS is only reflected in the parameter k =

d -υ RD d -υ RE + 1 N d SE d SR -υ ,
and the asymptotic SOP in [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF] decreases as k grows.

Moreover, the high-SNR expression in [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF] is also useful for understanding the asymptotic secrecy performance given the number of control bits of discrete phase shifts. Some relevant case studies are reported as follows.

Case 1: Under the assumption of continuous-valued phase shifts, i.e., b = +∞, the SOP in [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF] reduces to

SOP b=+∞ → 8 k (16 -π 2 ) e -π 2 32-2π 2 N . (20) 
Case 2: Under the assumption of 1-bit binary phase shifts, i.e., b = 1, the SOP in (18) reduces to

SOP b=1 → 2 k e -N 2 . (21) 
Case 3: Under the assumption of b ≥ 3, we prove in Appendix E that the quantization noise, which is due to the use of discrete phase shifts, is one order-of-magnitude smaller than the SOP of the continuous phase shifts disclosed in Case 1. and SOP | b=1 → 2γ SRE /γ SRD e -0.5N for sufficiently large N . We see that the SOP loss due to the 1-bit quantization, compared to the ideal continuous-valued phase shifts, can be asymptotically compensated by increasing the number of RIS elements by about 1.6 times.

Proof: Let N 1 and N 2 denote the numbers of RIS elements corresponding to b = +∞ and b = 1, respectively.

By solving SOP | b=1 ≤ SOP | b=+∞ , it follows that N 2 ≥ π 2 16-π 2 N 1 -ln 4 16-π 2 ≈ 1.6N 1 .
This completes the proof.

the setup N = 30 with b = +∞, which validates the obtained guideline in Remark 3.

VI. CONCLUSION

This paper studied the SOP of an RIS-assisted communication system with discrete phase shifts. The main contribution is to unveil the achievable scaling law of SOP with respect to N and b. Specifically, the increased number of RIS elements was quantified to compensate the performance loss caused by binary phase shifts. By taking into account that the distribution of Θ i is symmetric around its mean value, which is equal to zero,

we have E [XY ] = 0 [START_REF] Trigui | Performance evaluation and diversity analysis of RIS-assisted communications over generalized fading channels in the presence of phase noise[END_REF]. Then, the covariance of X and Y is

Cov [X, Y ] = E [XY ] -E [X] E [Y ] = E [XY ] = 0, (22) 
which indicates that X and Y are uncorrelated RVs.

For large values of N , 

φ sub i = Θ i + φ opt
i , the RV Z can be rewritten as

Z = √ γSRE N i=1 |h i | |p i | e j(∠pi-∠gi+Θi) + √ γSE h SE , (23) 
where ∠p i and ∠g i are uniformly distributed in [0, 2π). The RV Θ i depends on the phase error at the RIS, and Since p i is a circularly-symmetric Gaussian RV, we have Pr(e j∠pi ) = Pr(e j∠pi e j(-∠gi +Θi) ). Thus, |p i | e j(∠pi-∠gi+Θi) is a zero-mean circularly-symmetric complex Gaussian RV as well. This implies that the real and imaginary parts of Z are uncorrelated and hence independent since they are Gaussian distributed. Also, they have zero means and the same variance.

APPENDIX C PROOF OF REMARK 1

Since the RV γ D2 /γ D1 is nonnegative, we obtain

Pr γ D2 γ D1 < 0.1 (h) ≥ 1 - E γD 2 γD 1 0.1 (i) = 1 - E [γ D2 ] 0.1E [γ D1 ] , (24) 
where (h) is obtained by applying the Markov inequality [START_REF] Pishro-Nik | Introduction to Probability, Statistics and Random Processes[END_REF], and (i) comes from the fact that γ D1 and γ D2 are independent.

Furthermore,

E[γD 2 ] E[γD 1 ] is calculated as E [γ D2 ] E [γ D1 ] = σ 2 2 m 2 1 +σ 2 1 = 8[1 -sinc(2x)] (N -1)π 2 sinc 2 (x)+8[1+sinc(2x)] , (25) 
where x = 2 -b ∈ (0, 1 2 ] and it is easy to check that

E[γD 2 ] E[γD 1 ]
is increasing as x grows by calculating its first order derivative. It follows

E [γ D2 ] E [γ D1 ] ≤ E [γ D2 ] E [γ D1 ] x= 1 2 = 2 N + 1 . (26) 
Therefore, ( 24) is further expressed as

Pr γ D2 γ D1 < 0.1 ≥ 1 - E [γ D2 ] 0.1E [γ D1 ] = 1 - 20 N + 1 . ( 27 
)
When N is large, we finally obtain Pr By inserting ( 8) and ( 12) in ( 14), the upper bound of the SOP can be rewritten as

SOP = ∞ 0 1 - 1 2 erfc α + (1 + x) ϕ -1 β - 1 2 erfc (1 + x) ϕ -1 -α β ǫe -ǫx dx =1 - 1 2 ∞ 0 erfc α + (1 + x) ϕ -1 β ǫe -ǫx dx + ∞ 0 erfc (1 + x) ϕ -1 -α β ǫe -ǫx dx =1 - 1 2 (I 1 + I 2 ) . (28) 
The integral I 1 is calculated by using the integration by parts method. We have

I 1 = ∞ 0 erfc (1 + x) ϕ -1 + α β ǫe -ǫx dx = -erfc (1 + x) ϕ -1 + α β e -ǫx ∞ x=0 + ∞ 0 e -ǫx d erfc (1 + x) ϕ -1 + α β = erfc √ ϕ-1+α β - 1 √ πβ J 1 , (29) 
where J 1 is expressed as

J 1 = ∞ 0 ϕe -ǫx e - √ (1+x)ϕ-1+α 2 /β 2 (1 + x) ϕ -1 dx = 2e (ϕ-1)ǫ ϕ -α 2 β 2 ∞ √ ϕ-1 e -1 β 2 + ǫ ϕ t 2 -2α β 2 t dt = 2e (ϕ-1)ǫ ϕ -α 2 β 2 √ πAe AB 2 1-erf B √ A+ √ ϕ -1 2 √ A , (30) 
t = (1 + x) ϕ -1, and the last equality is obtained by using [18, Eq. (3.322)], where A = β 2 ϕ 4(β 2 ǫ+ϕ) and B = 2α β 2 . Further, by substituting (30) into (29), I 1 is obtained as shown in [START_REF] Zhang | Reconfigurable intelligent surfaces assisted communications with limited phase shifts: How many phase shifts are enough?[END_REF]. Analogously, I 2 is calculated by replacing α in [START_REF] Zhang | Reconfigurable intelligent surfaces assisted communications with limited phase shifts: How many phase shifts are enough?[END_REF] with -α, which yields the desired result in [START_REF] Xu | Reconfigurable intelligent surfaces-assisted communications with discrete phase shifts: How many quantization levels are required to achieve full diversity?[END_REF].

APPENDIX E PROOF OF CASE 3

We apply the Taylor expansion to the SOP in [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF]. More precisely, around x = 0 and for small values of 

Fig. 1 .

 1 Fig. 1. The system model of an RIS-assisted secure communication.

  and (d) is obtained by defining γ D1 γSRD X 2 and γ D2 γSRD Y 2 . Before deriving the distribution of γ D , we introduce the following lemma. Lemma 1: If N is large, γ D1 and γ D2 are statistically independent. Also, the cumulative distribution function (CDF) of γ D1 and the probability density function (PDF) of γ D2 are, respectively,

  the convergence in distribution by virtue of the CLT. γ D1 is a non-central χ 2 RV and γ D2 is a central χ 2 RV with one degree of freedom, where χ 2 denotes the Chi-square distribution. Then, by using [20, Eq. (2.3-35)] and [21, Eq. (27)], F γD 1 (•) is derived. The PDF f γD 2 (•) is obtained from [20, Eq. (2.3-28)]. The proof completes.

Lemma 2 :

 2 For large N , Z d -→ CN (0, N γSRE + γSE ), and the real and imaginary parts of Z are independent RVs with equal variance. Proof: See Appendix B.

Remark 3 :

 3 According to Case 1 and Case 2, the SOP tends to SOP | b=+∞ → 8γ SRE / [(16π 2 ) γSRD ]e -0.8N

  INDEPENDENCE OF γ D1 AND γ D2

N

  i=1 |h i | |g i | e jΘi is approximately a complex Gaussian RV by virtue of the CLT, and its real part X and imaginary part Y are jointly Gaussian RVs. Since two uncorrelated Gaussian RVs are independent as well, it follows that γ D1 and γ D2 are independent. APPENDIX B PROOF OF LEMMA 2 First, we note that h i and φ sub i are dependent RVs since φ sub i and φ opt i = -∠ (h i g i ) are correlated RVs. Since

  ∠p i and ∠g i depend on the positions of the eavesdropper and the legitimate user, respectively. Since the RV p i = |p i | e j∠pi is independent of the three RVs |h i |, ∠g i , and Θ i and has zero mean, we obtain E |h i | |p i | e j(∠pi-∠gi+Θi) = 0, and Var |h i | |p i | e j(∠pi-∠gi+Θi) = 1. For large values of N , N i=1 |h i | |p i | e j(∠pi-∠gi+Θi) d -→ CN (0, N ) by virtue of the CLT, and then Z d -→ CN (0, N γSRE + γSE ).

γD 2 γD 1 < 0 . 1

 101 →1, which means that γ D1 ≫ γ D2 holds with high probability. APPENDIX D PROOF OF LEMMA 3

x = 2 8 k( 16 -π 2 ) , c 2 = π 2 6 c 1 , 4 = c 1 e

 28162141 -b < 1, we have 1 k 1+sinc (2x)-π 2 8 sinc 2 (x) = c 1 + c 2 x 2 + O x 4 , and c 3 = π 2 32-2π 2 .By substituting (31) and (32) in[START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF], the SOP is further rewritten asSOP → c 1 + c 2 x 2 + O x 4 e -c3N + O x -c3N + c 2 e -c3N x 2 + O x 4 . (33)Since the first term in (33) is the SOP for b = +∞ as given in Case 1, the performance loss due to finite values of b is dominated by the second term in (33), i.e., c 2 e -c3N x 2 . If we restrict that the performance loss is one order of magnitude smaller than Case 1 for b = +∞, it gives c 2 e -c3N x 2 / c 1 e -c3N < 1/10, which impliesx < 3/ (5π 2 ) and equivalently b ≥ 3.

erfc √ x-α β ,(8)

V. NUMERICAL RESULTS

In this section, Monte-Carlo simulations are illustrated to validate our analysis. The tested parameters are set to γSE = -5 dB and γSRE = 0 dB. Fig. 2 shows the impact of b on the SOP when N = 30 and C th = 0.05. We observe that the analytical results in (15) match well with the numerical curves. Monte-Carlo simulations are illustrated for values of the SOP no smaller than 10 -3 due to the limited number of channel realizations simulated. As stated in Case 3, the gap between b = 3 and b = +∞ in Fig. 2 does appear negligible for high SNRs.

In Fig. 3, we consider a larger C th = 0.2 to verify the effectiveness of the asymptotic analysis. We plot the SOP for N = 30 by setting b = 1 and b = +∞. As expected, the asymptotic expressions in [START_REF] Proakis | Digital Communications[END_REF] and ( 21) are quite tight in the high-SNR regime. Then, we plot the SOP for b = 1 by setting N = 48 (i.e., which is equal to 1.6 × 30) and N = 60 (2 × 30). We see that the setup N = 48 with b = 1 provides, in the high-SNR regime, the same SOP as