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Adaptive Cost Function-Based Shared Driving
Control for Cooperative Lane-Keeping Systems

with User-Test Experiments
Mohamed Radjeb Oudainia, Chouki Sentouh, Anh-Tu Nguyen∗, Senior Member, IEEE, Jean-Christophe Popieul

Abstract—This paper presents a new shared control method
with a dynamic driver-automation conflict management for coop-
erative lane keeping systems (LKS) of automated vehicles. Based
on a human-centered control approach, the proposed shared con-
trol design takes into account the driver’s activity and availability,
as well as the surrounding risk to dynamically adapt the driving
assistance level via an adaptive cost function. To this end, we
propose a method to characterize in real-time the driver’s activity,
which allows for an appropriate assistance level according to
the driving conditions. Linear parameter-varying (LPV) control
technique is leveraged to deal with the time-varying nature of the
vehicle speed and the level of assistance. The uncertainties of the
lateral tires forces are taken into account in the control design via
a norm-bounded representation. Using Lyapunov stability theory,
the control design conditions are derived in terms of linear matrix
inequality (LMI) constraints, which can be effectively solved
by semidefinite programming techniques. User-test experiments
are performed with the SHERPA dynamic car simulator to
demonstrate the effectiveness of the proposed shared control
method from both objective and subjective viewpoints.

Index Terms—Lane-keeping systems, cooperative control,
human-in-the-loop control, human-machine interaction, shared
control, automated driving.

NOMENCLATURE

Mv Mass of vehicle [kg]
Iz, Js Yaw and steer inertia [kg.m2]
vx Longitudinal velocity [m/s]
β, δd Sideslip angle, steering wheel angle [rad]
fw Crosswinds force [N ]
ψL Heading error [rad]
yL Lateral position error [m]
αf , αr Front and rear slip angles [rad]
Cf , Cf Front and rear cornering stiffness [N/rad]
r Yaw rate [rad/s]
lf , lr Distance from COG to front and rear axles [m]
Ts, Td, Ta Self-align, driver and automation torque [N.m]
Rs, Bs Steer gear ratio, steering system damping

I. INTRODUCTION

In the field of automated vehicles, the notion of cooperation
between the human driver and the automation system in

The authors are with the Univ. Polytechnique Hauts-de-France, LAMIH,
CNRS, UMR 8201, Valenciennes, France. C. Sentouh, A.-T. Nguyen, and J.-
C. Popieul are also with the INSA Hauts-de-France, F-59313 Valenciennes,
France (e-mail: firstname.lastname@uphf.fr).

This research has been done within the framework of the CoCoVeIA project
(ANR-19-CE22-0009-01), funded by the Agence Nationale de la Recherche,
the Ministry of Higher Education and Research and the French National
Center for Scientific Research.
∗Corresponding author: Anh-Tu Nguyen (nguyen.trananhtu@gmail.com).

advanced driver assistance systems (ADAS) has been received
increasing attention from both academic and industrial re-
searchers [1]–[4]. An ADAS system actively helps the driver to
execute the driving task, such as lane keeping systems (LKS),
or lane change systems (LCS). However, the interaction be-
tween the driver and the ADAS raises a number of questions
about the transfer of authority and responsibility between them
[5], [6]. The current challenge of ADAS developments is to
incorporate the driver as an active operator in the vehicle
control loop. In recent works, ADAS based on driver-in-the-
loop designs have been used to solve a variety of human-
machine interaction issues, including the sharing and transfer
of authority [7]–[9], the conflict minimization [5], [10]–[12],
and the reduction of the driver workload [13]–[15]. Despite
technological advances, the development of control strategies
that allow ADAS systems to share the driving responsibility
and authority with the human driver still remains an open
research question [6], [16].

A. Related Works
Shared control strategies taking into account the driver

behaviors have been largely studied to improve the human-
machine cooperation [6], [17]. Based on the driver’s actions,
a cooperative path planning algorithm was proposed in [18] to
deal with the driver-automation conflict issue. A cooperative
framework based on data-driven adaptive dynamic program-
ming and a learning iteration model was developed in [19]
to achieve desired steering performance. A driver-automation
cooperation oriented approach was proposed in [5] for shared
control between the human driver and the LKS system. Based
on a weighting approach, Nguyen et al. [10] developed a
shared steering controller, which is able to effectively man-
age the trade-off between the lane keeping performance and
the negative system interference. An H2/H∞ haptic shared
control method was proposed in [9] to facilitate the transitions
between manual and autonomous driving modes. However,
these shared control methods require the information about
the driver parameters, which cannot be obtained precisely for
a large class of human drivers with various driving styles [20].
It is important to note that these existing works do not consider
the driver inattention or hypovigilance in the shared control
design. Ansari et al. [17] investigated the impact of different
driving conditions as well as driver behaviors and errors on the
vehicle control performance. To enhance the dependability and
the safety of shared steering control systems, an extended sys-
tem with an adaptive authority allocation model was proposed
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in [21]. Using a model reference adaptive control algorithm,
Wu et al. [22] proposed a method to adjust the steering torque
based on the driver’s behavior and the vehicle dynamics.
Considering the vehicle handling dynamics and the driver’s
driving intention, a shared control method was developed in
[23] based on an inverse vehicle dynamics model. An adaptive
shared control approach was proposed in [24] to mitigate the
risks associated with partial automation failures by enabling
smooth and safe transitions between autonomous and manual
driving modes. Based on a model predictive control (MPC)
technique, a new shared steering controller was designed in
[25] to dynamically optimize the driving authority allocation
between the human driver and the autonomous system. An
indirect shared control method for steer-by-wire vehicles was
developed in [26], where the authors employed a weighted
summation approach to balance the control inputs of the driver
and the automation. Another indirect shared control method,
designed under the framework of non-zero sum differential
game, was proposed in [27]. A safe cooperative driving
approach on curvy roads through coordinated longitudinal and
lateral control strategies was introduced in [28]. A multi-
constraints MPC shared controller was proposed in [29] to
assist drivers in path tracking and collision avoidance, where
driver-data-based performance indices are used to define the
control authority for the steering assistance system. In [30],
an adaptive steering torque coupling framework was proposed,
where the shared steering system is modeled based on a non-
cooperative dynamic game.

Despite great advances, the existing shared control ap-
proaches still face major challenges related to vehicle sta-
bility guarantee and allocation of driving responsibility [16].
Indeed, the well-known weighted summation method, used
to distribute the control authority between the driver and the
automation, has limitations in ensuring the overall stability
of the human-machine vehicle system. Moreover, allocating
the responsibility with human drivers under various driving
scenarios remains a complex issue [6]. To overcome these
challenges, we propose a new human-machine interaction
strategy to allow for a gradual and continuous sharing of the
vehicle control between the driver and the LKS system.

B. Proposed Methodology and Contributions

This paper investigates the human-centered concept for
shared steering control design of a cooperative LKS system.
Using the steering torque input as a control signal, we focus
on minimizing the conflict when both the human driver
and the LKS automation jointly perform driving tasks. The
proposed adaptive human-machine shared control architecture
is illustrated in Fig. 1. To effectively handle the driver-LKS
conflict, we dynamically adjust the objective cost function
used for shared control design. This adaptive cost function
is defined using the real-time driving assistance level to
appropriately assist the driver to perform the driving task. The
assistance level is determined based on the online information
related to the surrounding driving risks, as well as the driving
availability and activity of the human driver. To deal with the
time-varying nature of the vehicle speed and especially the

driving assistance parameter, linear parameter-varying (LPV)
control framework is leveraged together with Lyapunov sta-
bility theory to design a robust shared steering controller. A
preliminary version of this work was presented in [31]. The
new contributions can be summarized as follows.
• We propose a method to characterize the online driver’s

driving activity, depending his/her physical and mental
workloads. Such a characterization is crucial to construct
a multi-objective cost function for shared control design.
Taking into account the real-time information on the
availability and activity of the driver, and the traffic
conditions, this adaptive cost function allows for an
effective driver-LKS conflict management.

• A polytopic LPV control framework is used to take into
account the dynamic variation of not only the vehicle
speed but especially the driving assistance parameter,
involved in the adaptive cost function. The design condi-
tions are expressed in terms of LMI constraints, where the
cost function can be minimized via a convex optimization.

• User-test experiments are performed with the SHERPA
car simulator and human drivers to show the effectiveness
of the proposed shared control method in terms of lane
keeping performance, control robustness with respect to
uncertainties/disturbances, human-machine conflict miti-
gation, and especially driver acceptability.

Fig. 1: Adaptive cost function-based shared control scheme.

Notations. Rm×n denotes the set of m× n matrices with real
elements. I is an identity matrix of appropriate dimensions.
For a matrix X , X> is the transpose of X , X−1 is its inverse,
and He(X) = X + X>. The expression X � Y means that
X − Y is a positive definite matrix. For matrices Y1 and Y2,
diag(Y1, Y2) stands for block diagonal matrix. The symbol ∗
stands for matrix blocks that can be deduced by symmetry.
Let L2[0,+∞] be the set of bounded functions f : R+ → Rm

with respect to the norm ‖f‖2 =
√∫∞

0
f>(t)f(t)dt <∞.

II. VEHICLE MODELING

For shared driving control design, we consider a two
degrees-of-freedom vehicle model depicted in Fig. 2. Under
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standard driving conditions with small angles assumption and
no longitudinal slip, the vehicle dynamics is described as [5]

β̇ = −2 (Cf + Cr)

Mvvx
β +

(
2 (Crlr − Cf lf )

Mvv2x
− 1

)
r

+
2Cf
Mvvx

δ +
1

Mvvx
fw

ṙ =
2 (Crlr − Cf lf )

Iz
β −

2
(
Crl

2
r + Cf l

2
f

)
vxIz

r

+
2Cf lf
Iz

δ +
lw
Iz
fw

(1)

where δ is the steering wheel angle. The dynamics of the
lateral position error yL, and the heading errors ψL at a look-
ahead distance lp can be represented by [5]

ψ̇L = r − ρcvx
ẏL = βvx + lpr + ψLvx

(2)

where ρc is the road curvature. The dynamics of the steering
column system is given by

Jsδ̈d = −Bsδ̇d + Tc − Ts (3)

where Tc = Ta + Td is the combined steering torque. The
self-alignment torque Ts in (3) can be expressed as

Ts =
−2Cfgt
Rs

β +
−2lfCfgt
Rsvx

r +
2Cfgt
R2
s

δ

where gt is the width of the tire contact.

Fig. 2: Schematic of a two degrees-of-freedom vehicle model.

To take into account the properties of the road surfaces, e.g.,
dry, wet or snowy roads, the following uncertain tires model
is used to represent the tire-friction interaction [32]:

Cf = Cf0 + ∆fζ(t), Cr = Cr0 + ∆rζ(t) (4)

where |ζ(t)| ≤ 1, for ∀t ≥ 0, is an unknown parameter, and

Cf0 =
1

2

(
Cf + Cf

)
, Cr0 =

1

2

(
Cr + Cr

)
∆f =

1

2

(
Cf − Cf

)
, ∆r =

1

2

(
Cr − Cr

)
The upper bounds and lower bounds of the front and rear
cornering stiffness coefficients, i.e., Cf ∈

[
Cf , Cf

]
and Cr ∈

[
Cr, Cr

]
, can be determined by exploiting the relationship

between slip angle and lateral tire forces for a class of road
surfaces. Then, the road-vehicle system can be defined from
(1), (2), (3) and (4), as

ẋ = (A(vx) + ∆A(vx))x+Bu+ E(vx)d (5)

where x =
[
β r ψL yL δd δ̇d

]>
is the vehicle state,

u = Tc is the vehicle control input, and d =
[
fw ρc

]>
is the

disturbance vector. The state-space matrices of system (5) are
defined by

A(vx) =


a11 a12 0 0 a15 0
a21 a22 0 0 a25 0
0 1 0 0 0 0
vx ls vx 0 0 0
0 0 0 0 0 1
a61 a62 0 0 a65 a66

 , B =


0
0
0
0
0
b6


E(vx) =

[
e1 e2 0 0 0 0
0 0 0 −vx 0 0

]>
with

a11 = −2(Cf0 + Cr0)

Mvvx
, a12 =

2(Cr0 lr − Cf0 lf )

Mvv2x
− 1

a15 =
2Cf0

RsMvvx
, a21 =

2(Cr0lr − Cf0 lf )

Iz

a22 = −
2(Cr0 l

2
r + Cf0 l

2
f )

vxIz
, a25 =

2lfCf0
RsIz

a61 =
2Cf0gt
RsJs

, a62 =
2Cf0 lfgt
vxRsJs

, b6 =
1

Js

a65 =
−2Cf0gt
R2
sJs

, a66 =
−Bs
Js

, e1 =
1

Mvvx
, e2 =

ld
Iz
.

Note that the nominal parts Cf0 and Cr0 of the cornering stiff-
ness coefficients are included in A(vx), whereas the uncertain
parts ∆fζ(t) and ∆rζ(t) are used to define ∆A(vx) as

∆A(vx) = H(vx)∆(t) (6)

where ∆(t) = ζ(t)I ∈ R6×6. The explicit expression of
H(vx) can be easily obtained following the same line as [32],
[33], which is omitted here for brevity.

III. DRIVER ACTIVITY CHARACTERIZATION AND
DYNAMIC DRIVING ASSISTANCE

This section presents the characterization of the driver
activity and the dynamic driving assistance, which are crucial
for shared control design.

A. Driver Activity Characterization

The driver’s driving capacities strongly depend on his/her
both physiological and psychological states. It has been shown
that the human driver cognitive (physical and mental) work-
load strongly impacts on the capacity to perform certain
driving tasks [34]. In addition, the authors show that there is a
close relationship between the driver fatigue and a monotonous
road environment. Moreover, the level of driving assistance,
required by a driver, should be appropriate to his/her cognitive
driving workload [5]. The relationship between the cognitive
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workload and the driver task performance can be represented
as the U−shape function [10], where the driving workload
can be categorized into three types: under-load, normal-load,
and over-load, as shown in Fig. 3. Most of existing shared
driving control results have focused on the right-half part of
the U−shape function [10], which is related to the active
fatigue due to an overload workload. The left-half part of
the U−shape is concerned with the passive fatigue of the
driver, mainly due to his/her cognitive underload, which can
also significantly decrease the driver’s driving performance
[35]. Indeed, an undemanding task still reduces attentional
resources, which can lead to changes in driver’s performance
characterized by a decrease of vigilance. Many experimental
researches have been performed to study various indicators to
identify the passive and active fatigue of the human driver.
These indicators can be classified into direct and indirect
methods [36], depending on whether they come from mea-
surements carried out on the driver for the mental workload,
e.g., eye blinks, head movements, etc., or on the vehicle for the
physical workload, e.g., steering wheel angle, steering torque,
lateral position on the road, etc. A consensus has gradually
emerged that a reliable diagnosis of the driver’s state should
be based on a combination of these two methods through a
driver and driving data fusion process [37]–[39]. Hereafter, we
characterize the driver’s activity (DA) in function of his/her
cognitive workload, i.e.,

• Under-load DA variable is used to represent the mental
part of the driver.

• Normal-load DA variable is used to represent both the
mental and physical parts of the driver.

• Over-load DA variable is used to represent the mental
and physical driver state, and the risk assessment related
to the driving situation.

Fig. 3: Illustration of driver activity and performance, and the
respective driving assistance level.

1) Under-Load DA Region: To measure the driver’s drowsi-
ness and inattention, a vision-based Continental driver mon-
itoring system is used to evaluate the driver’s gaze and eye
movements, as depicted in Fig. 4. The drowsiness level, which
indicates the vigilance level of the driver, can be categorized
into three distinct classes, i.e., watchful, drowsy and sleepy.

Likewise, the inattention level indicates whether the driver
focuses on the road or not.

Fig. 4: Continental driver monitoring system.

To better represent the driver’s activity in terms of mental
workload, the driver monitoring information has been com-
bined with the detection of the presence of the hands on the
steering wheel. Then, the variable representing the DA in the
under-load region is defined as

DAU = 1− exp−(σ1×DS×HD)σ2 (7)

where DS is the driver state. This information can be di-
rectly obtained from the driver monitoring system. We have
0 ≤ DS ≤ 1, and an increased value of DS denotes a vigilant
and attentive driver. The variable HD ∈ {0, 1} represents the
detection of the driver’s hands on the steering wheel from a
hand detection sensor, i.e., HD = 0 means “hands-off”, and
HD = 1 means “hands-on”. The expression (7) is designed to
identify situations in which the driver might be considered
underloaded or in a scenario where s/he does not require
assistance. This is crucial because not every instance of low
torque input signifies a need for assistance. For instance, when
driving straight on a clear road, minor torque fluctuations
are typical and do not necessarily indicate a lack of driver
awareness. Such a diving situation is not yet well represented
with the DA characterization in [10].

2) Normal-Load DA Region: The physical workload is
quantified by the measured torque of the driver at the steering
wheel. Then, the nonlinear variable representing the DA in the
normal-load region is defined as

DAN = 1− exp−(σ1×TdN×DS×HD)σ2 (8)

where the driver’s physical workload is normalized by the
driver’s torque as TdN =

∣∣∣ Td
Tdmax

∣∣∣. Note that Tdmax is
the driver’s maximum torque required for the steering task,
averaged over different drivers. The expression (8) represents
a typical driving scenario in which driver activity falls within
an expected range. It serves as a baseline for evaluating normal
driving behavior without the necessity of additional assistance.

3) Over-Load DA Region: As mentioned above, the risk
assessment is also considered in the over-load DA region. We
evaluate the risk of the overtaking maneuver and take it into
account the arbitration process of the driving supervisor. In this
context, the risk of a maneuver can be expressed as the risk
of head-on and rear-end collisions with leading and trailing
vehicles, respectively. To evaluate the risk, we consider the
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time-inter-vehicle (TIV) metric from the ego vehicle to the
adjacent vehicle as [40]

Risk =
T IVmax − T IV
T IVmax

T IV =
D
vego

, T IVmax =
Dmax

vego

(9)

where D is the gap between two vehicles, and Dmax is
the maximum possible distance detected by the vehicle’s
perception system. The variable characterizing the DA in the
over-load region can be defined as

DAO = 1− exp−(σ1×DS×HD×Risk)σ2 (10)

The expression (10) is specifically applicable to situations
in which the driver may be overloaded or confronted with
demanding driving conditions. This expression helps identify
when the driver may require assistance due to the increased
workload, such as during emergency maneuvers.

The driver activity function plays a key role for the proposed
driver-automation shared driving controller. This function de-
termines the level of the driver’s involvement in the vehicle
control process with respect to the automation. The use of an
exponential function to model the driver activity in (7), (8) and
(10) avoids abrupt and sudden changes between two discrete
states (0 and 1) that could lead to unstable or inappropriate
system behavior. The tuning parameter σ1 is used to represent
the driver’s involvement in driving tasks, while σ2 represents
the degree of influence of different indicators on the DA
variable. The model parameters σ1 and σ2 are used as in [10].
From (7), (8) and (10), the DA variable representing the driver
activity in the three working regions can be expressed as

DA =
1

3
(DAU +DAN +DAO) (11)

The continuity of the variable DA in (11) is ensured by the
mental load indicators DS and HD, which are common in
the three regions. The driver activity is divided into three
categories: under-load DAU , normal-load DAN , and over-
load DAO. The mental load indicators DS andHD are used to
characterize DAU and DAN . Moreover, the physical indicator
TdN is used to characterize DAN . For the over-load region, the
driver activity is characterized by the mental load indicators
DS and HD, and the risk indicator Risk. The overall driver
activity DA is calculated in (11) as an average of the three
variables DAU , DAN , and DAO. Averaging these DA values
creates a composite metric that accounts for various driving
scenarios and mitigates potential fluctuations or outliers in
individual expression outputs. Table I summarizes the avail-
ability of various DA indicators in the three workload regions.

TABLE I: DA indicators present in the three workload regions.

Driver Activity / Indicators DS HD TdN Risk
DAU X X − −
DAN X X X −
DAO X X − X
DA X X X X

Fig. 5 shows the DA evolution in the three workload regions
for different situations according to different indicators: DS,
HD, TdN and Risk.

• For 0s < t < 10s, the driver is not available DS = 0,
then DA = 0.

• For 10s < t < 20s, the driver is available DS = 1
with the hands on the steering wheel HD = 1. However,
he/she does not apply any steering torque, i.e., TdN = 0.
Then, DA varies within the under-load region.

• For 21s < t < 35s, we have DS = 1 and HD = 1.
Moreover, the driving situation is not risky (Risk = 0)
and there is a physical activity, i.e., TdN 6= 0. Then, DA
varies within the normal-load region.

• For 35s < t < 50s, we have DS = 1 and HD = 1.
Although the driver’s physical activity is non-null, but the
driving situation is risky. Then, the variable DA varies
within the over-load region.
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Fig. 5: Driver activity variation according to mental, physical
workload indicators and risk assessment.

B. Dynamic Driving Assistance

From the DA characterization within three workload re-
gions, the level of assistance or the need of assistance, as
illustrated in Fig. 3, can be evaluated via the time-varying
parameter ρ ∈ [0, 1], defined as

ρ = (λ1 ×DAU × (DA− λ2)2 + λ3) + (1−DAU ) (12)

where λ1, λ2 and λ3 are respectively given by 3.6, 0.5 and
0.1. Note from (12) that the level of assistance is conditioned
by DAU to give the control authority to the LKS if the driver
is out of the driving loop. In the case where the driver is
in the driving loop, the authority is shared between the LKS
and the driver according to the variable DA to minimize the
human-machine conflict, thus the driver’s physical steering
workload. When the driver’s steering action leads to a risky
driving situation, the variable DA is shifted to the over-load
region, then the control authority is given to the LKS.
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IV. LPV SHARED DRIVING CONTROL DESIGN

This section presents the design of an adaptive shared con-
troller. The driver-automation control authority is arbitrated via
a dynamic cost function, which is defined taking into account
the level of assistance provided by the driving supervisor.
To deal with the time-varying parameters, a polytopic LPV
control technique is used for the shared control design.

A. Polytopic LPV Vehicle Modeling
Note that the system matrices A(vx), ∆A(vx) and E(vx)

in (5) explicitly depend on the following speed-related terms:{
vx,

1

vx
,

1

v2x

}
, vmin ≤ vx ≤ vmax. (13)

To reduce the complexity of the polytopic representation of the
LPV vehicle model (5) and the induced design conservatism,
we perform the following variable change and first-order
Taylor approximations [3], [10]:

1

vx
=

1

v0
+

1

v1
α, vx ' v0

(
1− v0

v1
α

)
1

v2x
' 1

v20

(
1 + 2

v0
v1
α

) (14)

with v0 = 2vminvmax

vmin+vmax
and v1 = 2vminvmax

vmin−vmax
. Note that the new

time-varying parameter α ∈ [−1, 1] can be used to describe the
variation of vx, i.e., vx = vmin for α = αmin = −1, and vx =
vmax for α = αmax = 1. Replacing (14) into (5), we obtain a
vehicle model, whose state-space matrices linearly and solely
depend on α. Then, using the sector nonlinearity approach
[41, Chapter 2], we can derive the following polytopic LPV
representation of model (5):

Σα : ẋ =

2∑
i=1

hi(α)((Ai + ∆Ai)x+ Eid) +Bu (15)

where the state-space matrices of the two linear submodels are
given by

Σα1
: A(αmin), B, E(αmin)

Σα2 : A(αmax), B, E(αmax).

It follows from (6) that ∆Ai can be represented as

∆Ai = Hi∆(t), i = 1, 2 (16)

with ∆(t)>∆(t) ≤ I . Furthermore, the membership functions
of the polytopic LPV model (15) are defined as

h1(α) =
1− α

2
, h2(α) = 1− h1(α). (17)

B. LPV Shared Control Design
To take into account the lane-keeping performance, we

define the performance output of system (15) as

z = Cx =
[
β r ψL yL δ̇d

]
. (18)

For shared control purposes, the following cost function is
defined to take into account the dynamic driving assistance,
represented by the time-varying parameter ρ in (12):

J (ρ) =

∞∫
0

(
z>(τ)ρQz(τ) + u>(τ)Ru(τ)

)
dτ (19)

where Q = W>W � 0 and R � 0 are the weighting matrices.
Since ρ ∈ [0, 1], we can perform the decomposition

ρQ =

 2∑
j=1

gj(ρ)Wj

> 2∑
j=1

gj(ρ)Wj

 (20)

with g1(ρ) =
√
ρ, g2(ρ) = 1− g1(ρ), W1 = W and W2 = 0.

Remark 1. Inspired by the well-known principle of an linear
quadratic regulator (LQR), we can see in (19) that when the
control authority is entirely entrusted to the LKS, i.e., ρ = 1,
the control action Tc is designed to achieve the best lane keep-
ing performance by mainly penalizing the lane-keeping related
term z>(τ)ρQz(τ). Conversely, when the control authority is
entirely allocated to the human driver, i.e., ρ = 0, a minimized
control action Tc is designed to minimize J (ρ) by penalizing
the control effort term u>(τ)Ru(τ). Hence, integrating the
time-varying parameter ρ into the cost function J (ρ) allows
to adaptively balance the control authority between the human
driver and the LKS in function of the driving situation and
the specific need of assistance from the driver without a
direct weighting of the control input as in most of existing
related works on driver-automation shared control [16]. This
can contribute to improving driving safety and comfort while
avoiding human-machine conflicts.

We consider the following LPV control law for system (15):

u =

2∑
i=1

2∑
j=1

hi(α)gj(ρ)Kijx (21)

where the control gains with of appropriate dimensions Kij ,
for i, j ∈ {1, 2}, are to be determined. Then, the closed-loop
system can be defined from (15) and (21) as

Σαρ : ẋ =

2∑
i=1

2∑
j=1

hi(α)gj(ρ)((Âi +BKij)x+ Eid) (22)

with Âi = Ai + ∆Ai. For control synthesis, we consider the
Lyapunov function candidate as

V(x) = x>Px (23)

with P � 0. The following theorem provides sufficient LMI-
based conditions to design the LPV controller (21).

Theorem 1. If there exist a positive definite matrix X ,
matrices Nij , for i, j ∈ {1, 2}, of appropriate dimensions,
positive scalars γ and ε such thatΓij εΞi Λ>

∗ −εI 0
∗ ∗ −εI

 ≺ 0, i, j ∈ {1, 2} (24)

with

Γij =


He(AiX +BNij) Ei XC>W>j N>ij

∗ −γI 0 0
∗ ∗ −I 0
∗ ∗ ∗ −R−1


Ξi =

[
H>i 0 0 0

]>
, Λ =

[
X 0 0 0

]
.
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Then, the LPV controller (21) stabilizes the vehicle system
(15), and guarantees an upper-bound for the cost function (19)
under zero-initial condition as

J (ρ) < γ‖d‖22. (25)

Furthermore, the feedback control gains can be computed as

Kij = NijX
−1, i, j ∈ {1, 2}. (26)

Proof. Multiplying (24) with hi(α)gj(ρ) ≥ 0, and summing
up for i, j = 1, 2, we can obtainΓαρ εΞα Λ>

∗ −εI 0
∗ ∗ −εI

 ≺ 0 (27)

with Γαρ =
2∑
i=1

2∑
j=1

hi(α)gj(ρ)Γij and Ξα =
2∑
i=1

hi(α)Ξi. Ap-

plying successively two times the Schur complement lemma
[42], we can show that inequality (27) is equivalent to

Γαρ + εΞαΞ>α + ε−1Λ>Λ ≺ 0. (28)

Using the following matrix property [42]

Ξα∆(t)Λ + Λ>∆(t)Ξ>α ≺ εΞαΞ>α + ε−1Λ>Λ

condition (28) implies that

Γαρ + Ξα∆(t)Λ + Λ>∆(t)Ξ>α ≺ 0. (29)

Using expression (16), inequality (29) can be rewritten as
Σαρ Ei XC>W>j N>ij
∗ −γI 0 0
∗ ∗ −I 0
∗ ∗ ∗ −R−1

 ≺ 0 (30)

with Σαρ =
2∑
i=1

2∑
j=1

hi(α)gj(ρ)He(ÂiX + BNαρ). Applying

again the Schur complement lemma, it follows that inequality
(30) is equivalent to[

Σαρ +N>αρRNαρ +XC>ρQCX Ei
∗ −γI

]
≺ 0. (31)

Let us denote P = X−1 and Nαρ = KαρX . Pre- and post-
multiplying (31) with diag(P, I), it follows that[

Παρ +K>αρRKαρ + C>ρQC PEα
∗ −γI

]
≺ 0 (32)

where Παρ = He(P (Âα+BKαρ)). Pre- and post-multiplying
(32) with

[
x> d>

]>
and its transpose, we can obtain the

following condition after some algebraic manipulations:

V̇(x) + z>ρQz + u>Ru < γd>d (33)

where V̇(x) is the time-derivative of the Lyapunov function
(23) along the trajectory of the closed-loop system (15). From
(33), we distinguish the two following cases.
• Case 1. If d(t) = 0, for ∀t ≥ 0. Then, it follows from (33)
that V̇(x) < 0, for ∀x 6= 0. Hence, the closed-loop-system
(15) is globally exponentially stable.

• Case 2. If d(t) 6= 0, for ∀t ≥ 0. Then, integrating both sides
of (33) from 0 to ∞, it leads to

V(∞)− V(0) + J (ρ) < γ

∞∫
0

d>(t)d(t). (34)

Since V(∞) > 0, under zero initial condition, i.e., V(0) = 0,
it is clear that (34) implies inequality (25). Note also from
(25) that the adaptive cost function J (ρ) can be minimized
by minimizing γ. Then, the proof can be concluded.

Remark 2. The control design conditions in Theorem 1 are
expressed in terms of LMIs, which can be effectively solved
with YALMIP toolbox and SeDuMi solver [43].

V. EXPERIMENTAL VALIDATIONS

This section provides illustrative results to demonstrate the
performance of the proposed shared controller in terms of
conflict reduction and lane-keeping. All the experiments are
performed with the SHERPA dynamic car driving simulator,
depicted in Fig. 6, under highway driving conditions. The val-
ues of the control parameters and the vehicle parameters used
in this paper are shown in Table II. Solving the LMI design
conditions in Theorem 1, the following control feedback gains
can be obtained for real-time experiments:

K11 = −
[
105.44 8.19 131.62 3.38 8.67 0.03

]
K12 =

[
9.29 0.79 12.53 0.32 0.83 0.01

]
K21 = −

[
110.43 8.35 137.59 3.54 9.06 0.03

]
K22 =

[
9.98 0.81 13.65 0.34 0.90 0.01

]
.

Fig. 6: SHERPA dynamic driving simulator.

TABLE II: Control design and vehicle parameters.

Parameter Value Unit Parameter Value Unit
lf 1.3 m Js 0.05 kg.m2

lr 1.6 m Cf0 57000 N/rad
lw 0.4 m Cr0 59000 N/rad
lp 5 m Rs 16 −
Bs 5.73 − vx [8,30] m/s
Rs 0.9 − gt 0.13 m
Iz 2800 kg.m2 Mv 2024 kg
W diag(9,9,5,8,5) − ρ [0,1] −
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A. Robustness Control Performance

We perform three tests to evaluate the robustness per-
formance of the proposed shared controller in self-driving
mode with respect to the time-varying vehicle speed, external
disturbances, and tires stiffness uncertainties.

First, the lane keeping performance results obtained with
a time-varying vehicle speed profile are presented in Fig.
7. With the lane width of 3.5m, we can see that the LKS
ensures a good lane keeping performance, where the max-
imum lateral and heading errors are |yL|max = 0.6m and
|ψL|max = 0.37deg, respectively.
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Fig. 7: Lane keeping performance with a time-varying vehicle
speed profile.

Second, to show the control robustness against external
disturbances, an automatic driving test is performed with a
constant speed of vx = 22m/s and a strong lateral wind
force with a magnitude of 1000N . Observe in Fig. 8 that the
wind disturbance effect can be effectively attenuated since the
maximum lateral and heading errors still remain small during
the test, i.e., |yL|max = 0.98m and |ψL|max = 0.41deg,
respectively.
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Fig. 8: Lane keeping performance under a strong crosswind
disturbance scenario.

Third, to verify the control robustness with respect to
the tires stiffness uncertainties, we use random parametric
variations in the vehicle parameters to consider uncertain

values of Cf and Cr. For comparison purposes, we evaluate
the lane keeping performance obtained with two controllers:
Controller C1 proposed in [31] without considering the stiff-
ness uncertainties, and Controller C2 proposed in this paper.
The comparison results are summarized in Table III. We can
see that the amplitudes of the maximum lateral deviation
and heading errors are more notable for Controller C1 than
Controller C2. Indeed, for 20% of parameter variation, we can
note |yL|max = 0.537m, |ψL|max = 0.388deg for Controller
C2, and |yL|max = 0.647m, |ψL|max = 0.422deg for Con-
troller C1. In addition, it can be seen that the steering effort
provided by Controller C1 is smaller than that of Controller
C2, which confirms the effectiveness of the proposed controller
in handling parametric uncertainties.

TABLE III: Lane keeping control performance with respect to
parametric uncertainties.

Uncertainty Controller |yL|max |ψL|max |Ta|max

5%
C1 0.628 0.391 1.245
C2 0.509 0.377 1.074

10%
C1 0.641 0.404 1.392
C2 0.516 0.382 1.152

20%
C1 0.674 0.422 1.446
C2 0.537 0.388 1.211

B. Adaptive Shared Control with Risk Assessment

This test presents an example on how the proposed shared
controller can ensure a safe driving in a risky situation. To this
end, we consider an overtaking scenario at a constant vehicle
speed, where the human driver jointly controls the vehicle with
the LKS automation, and is instructed to overtake two other
vehicles on the highway. The first overtaking is safe, while the
second one is risky due to the presence of another car on the
left lane, as depicted in Fig. 9. The results of this test scenario
are presented in Fig. 10.
• During the first overtaking (at t = 28s), we can see that

the human driver can easily executes the driving task.
The level of assistance decreases when the DA is in the
normal-load region, i.e., the driving authority is given to
the driver.

• During the second overtaking (at t = 60s), the driver
is guided by the shared controller to stay within the
current lane (yL < 1m) because the driving situation is
risky. Also, the DA shifts to the over-load region, which
means that the driver needs to be assisted to avoid a crash
with the adjacent vehicle. Therefore, the assistance level
increases to 1 to give the authority to the LKS automation.

• When the adjacent vehicle moves forward and the situ-
ation becomes safe, the driver performs the third over-
taking (at t = 65s). We can see that he can easily pass
the second vehicle, and the level of assistance decreases
to allow the driver to control the vehicle since the DA
decreases to the normal-load region.

C. User-Test Experiments

Hereafter, the vehicle control results obtained with user-
test experiments are presented. Both objective and subjective
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Fig. 9: Risky and non-risky lane change scenarios.
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Fig. 10: Shared control performance for risky and non-risky
lane change scenarios.

evaluations are made for an obstacle avoidance scenario to
compare the proposed shared controller with the one in [10],
where there is no adaptive cost function.

Six participants took part in these experiments (4 males and
2 females). The average age is 34 ± 9 years, and an average
annual mileage of 8500km. A short obstacle avoidance sce-
nario was considered. The experiment took place on a straight
two-lane road that extends for 4km. With the instruction to
stay in the lane, the drivers were required to avoid several
stopped obstacles. The participants were asked to change the
lanes to avoid possible collisions, while driving at a fixed
speed of 70km/h. This speed allows to easily compare the
driving behaviors between different participants by avoiding
inter-individual differences in the choice of vehicle speed,
and by assuming also that obstacles are not perceived by the
system. With the same scenario, the participants drove with
three control strategies:
• Manual: manual control strategy
• LKSWOA: lane keeping control strategy with the shared

controller in [10]
• LKSWA: proposed adaptive shared control strategy.

Questionnaires were provided after each test phase to collect
a subjective assessment of the driving experience. The data
analysis is divided into two parts.

1) Objective Evaluation: This evaluation is carried out by
using indicators to evaluate the human-machine interaction
and the shared control quality. The four following metrics are

analyzed for this study as in [20].
• Driver steering effort during the experimental period Tex

StD =

Tex∫
0

T 2
d (τ)dτ (35)

• Controller steering effort during the experimental period

StC =

Tex∫
0

T 2
a (τ)dτ (36)

• Driver-automation conflict during the experimental period

Conflict =

Tex∫
0

|Ta(τ)− Td(τ)| dτ (37)

• Steering workload SW generated when the driver inter-
acts with the automation to jointly perform the driving

SW =

Tex∫
0

∣∣∣Ta(τ) · Td(τ) · δ̇d(τ)
∣∣∣ dτ (38)

As shown in Fig. 11, using the LKSWOA strategy, the effort
required to steer the vehicle and avoid obstacles is very high
when the system is not cooperating when compared to the
manual control strategy. However, the LKSWA strategy leads
to a driver’s driving effort of the same order as under the
manual control condition. It is also clear from Fig. 11 that
using the LKSWA strategy the LKS system significantly
reduces its effort and resistance to the driver compared to the
LKSWOA control condition. The quantitative results strongly
demonstrate that the proposed shared control method is highly
effective in mitigating the driver’s effort and the driver-
automation conflict.

Fig. 11: Objective evaluation of different shared control strate-
gies under an obstacle avoidance scenario.

2) Subjective Evaluation: The questionnaires provided to
the participants allow for an analysis of subjective data. This
consists of five metrics, including driving comfort, feeling
of control and safety, ease of avoiding obstacles, and global
evaluation of the overall driving performance for each test
phase. The first four subjective metrics are reported on a scale
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of 0 to 100 (worst to best). The fifth metric is a simple
choice of one of the three possibilities: Good, Medium or
Bad. As reported in Fig. 12, compared to the other two
control strategies, the LKSWOA strategy allows achieving the
lowest level for the four subjective metrics: Control, Comfort,
Easiness and Safety. We can see clearly via these four metrics
that the feeling of control, the comfort, the ease of obstacle
avoidance and the feeling of security and trust in the LKS
system are rated worse with the LKSWOA strategy, whereas
the LKSWA strategy results in an equivalent or slightly
lower feeling than the Manual strategy. Finally, the subjective
evaluation of the overall driving performance during the test
scenario with the different conditions is shown in Fig. 13.
As expected, the perceived driving performance during the
obstacle avoidance is the worst with the LKSWOA strategy.

Fig. 12: Subjective evaluation of different shared control
strategies under an obstacle avoidance scenario.

Fig. 13: Global driving performance of different shared control
strategies under an obstacle avoidance scenario.

VI. CONCLUSIONS AND FUTURE WORKS

An LPV method has been proposed for shared driving
control while managing the authority between the human
driver and the LKS system. Based on an adaptive cost function
for the control design, the level of assistance is dynamically
adjusted according to the driving conditions as well as the
availability and the driving activity of the driver in real-time.
The LPV control design takes into account the time-varying
nature of the vehicle speed and the driving assistance level,
as well as the uncertainties in the lateral tires forces. Based

on Lyapunov stability theory, the control design conditions are
expressed in terms of LMI constraints, where the adaptive cost
function can be minimized under the disturbance effects. User-
test experiments are performed with the SHERPA dynamic
car simulator. The experimental results show the effectiveness
of the proposed shared control method over related existing
works in terms of control robustness, and especially driver
acceptability with a minimized level of driver-automation
conflict driver effort. For future works, a dynamic impedance
driver model can be integrated into the shared control scheme
to further personalize the cooperative LKS functionalities.
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