N

N

FAUST Multiplatform toolbox for Body Brain Digital
Musical Instruments
David Fierro, Alain Bonardi, Atau Tanaka

» To cite this version:

David Fierro, Alain Bonardi, Atau Tanaka. FAUST Multiplatform toolbox for Body Brain Digital Mu-
sical Instruments. NIME 2023 - New Interfaces for Musical Expression 2023, Universidad Auténoma
Metropolitana Mexico, May 2023, Mexico, Mexico. hal-04261224

HAL Id: hal-04261224
https://hal.science/hal-04261224
Submitted on 26 Oct 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-04261224
https://hal.archives-ouvertes.fr

FAUST Multiplatform toolbox for
Body Brain Digital Musical Instruments

David Fierro
CICM-MUSIDANSE
Paris 8 University
david.fierro@mshparisnord.fr

ABSTRACT

This article presents new tools developed in the FAUST
language to create musical interactions using
electrophysiological signals as input. The tools
developed are centered around signal processing and
simulation of electrophysiological signals. These
techniques are used to clean and process biosignals and
subsequently provide real-time interactions to feed the
control of sonic processes. The system provides modules
that are musically expressive especially in the domain of
spatial sound.

These tools also allow to set up a testing environment
by replacing the need of electrophysiological capture
devices.

The findings of this research provide a better
understanding of how the FAUST language can be used
in conjunction with physiological signals and brings to
light interesting opportunities to explore further
possibilities in music creation in an open source
environment with the possibility of multitarget
compilation, allowing our modules to be used either in
such softwares as Max[10] or embedded in
microcontrollers.

Author Keywords

FAUST, signal processing, sound synthesis, simulation,
electroencephalogram (EEG), electromyogram (EMGQG),
digital musical instruments (DMIs)

CCS Concepts

¢ Human-centered computing — Human computer
interaction (HCI) — Interactive systems and tools —
User interface toolkits; * Applied computing — Arts
and humanities — Sound and music computing;

1. INTRODUCTION

In recent years, advances in technology have enabled
researchers to develop new tools for electrophysiological
signal processing and simulation. Although these tools
are available and many are proposed as Open Source,
there is a limitation while using electrophysiological
signals on Digital Musical instruments that use brain
electroencephalogram (EEG) and muscle
electromyogram (EMG). Together these signals of the
body can be called “ExG”. Problems like the need of
external devices and the format of electrophysiological

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
BY remains with the author(s).

NIME’ 23, May 31-June, 2023, Mexico City, Mexico.

Alain Bonardi
CICM-MUSIDANSE
Paris 8 University
alain.bonardi@univ-paris8.fr

Atau Tanaka
Embodied Audiovisual
Interaction Group
Goldsmiths University
a.tanaka@gold.ac.u

recordings not being suitable for DAW'’s may prevent
musicians from exploring the creation of music using
ExG signals.

This paper discusses the development of new tools for
electrophysiological signal processing, signal simulation
and sound synthesis developed in the FAUST[5]
programming language. It presents the advantages of
using FAUST for this purpose, and the challenges that
must be addressed in order to make the tools more
effective.

Every module discussed in this article can be
downloaded from our Gitlab repository:
https:/gitlab.huma-num.ft mi mi

1.1. Context

The developed tools were created as part of a research
project called BBDMI®. This research project explores
the potential of using electrophysiological signals to
create digital musical instruments. It explores the
potential implications of using electrophysiological
signals for musical expression, and the challenges
associated with designing and creating such devices. The
overall goals of the project are already described in [7].

To achieve the goal of building digital instruments
specifically for EMG and EEG sonification, the proposed
tools were developed thinking in different parts of the
electroacoustic chain. They can be divided into 3 main
groups: signal preprocessing, signal simulation and
sound treatments. The first section is focused on the
preprocessing of electrophysiological signals to prepare
them for further use as control signals. Signal simulation
modules generate signals that can be used to replace real
EMG and EEG capture devices. Sound treatment
modules contain a set of objects made for sound
synthesis and audio effects.

1.1.1. Sound spatialisation

Sound synthesis processes were developed with the
intention of being compatible with the developments on
the ambisonic field of the laboratory[1]. Research and
teaching of ambisonic spatialisation for musical
composition and sound design has been at the center of
our work for years with such developments as the HOA®
library and now the ABCLIB* library that takes over in
FAUST. Thanks to this language, this work can be used
on several devices.

! Digital Audio Workstation

2 https://bbdmi.nakala.fr/

3 https://faustlibraries.grame. fi/libs/hoa/
* https://github.com/alainbonardi/abclib

https://www.zotero.org/google-docs/?CdjNIO
https://www.zotero.org/google-docs/?svtDWS
https://gitlab.huma-num.fr/bbdmi/bbdmi
https://www.zotero.org/google-docs/?vM7LyL
https://www.zotero.org/google-docs/?y3LeqN

1.1.2. ExG music hardware

We have developed music hardware to capture EMG and
EEG signals[2]. The board is a micro-controller based
signal processing running the OWL signal processing
framework [8]. This framework cross-compiles common
computer music languages such as Pure Data, Max gen~,
and FAUST to low level micro-controller executables.
The board is designed as a class compliant audio and
MIDI device, allowing it to be used as a music interface
with a host system without the need for special drivers.
This board combines biosignals and audio signal in a
single signal processing chain and is capable of
streaming the recorded information by MIDI or raw
audio making it an efficient interface for body signals for
digital musical instrument applications. A new ExG
update to the board will be demoed elsewhere in this
conference.

1.2. The choice of FAUST

The software is written in FAUST (Functional Audio
Stream) an open source functional language for signal
processing with multiple compilation targets including
Max, Pure Data’, or VST on various platforms:
computers, mobile devices, web browsers, and
microcontroller based devices.

In addition to creating sound synthesis engines, FAUST
allows users to create signal processing algorithms for
treating control signals. Our library contains objects to
clean and extract features from electrophysiological
signals.

2. TOOLBOX ARCHITECTURE

The toolbox was developed using a modular logic
separating primitive functions from more complex ones.
Having a modular system allows us to design a toolbox
that can be adapted to many user cases. Code for the
modules are found in the “bbdmi.lib” library and every
object makes a call to it.

In order to create the modules as compile ready objects,
we created basic methods accessible from our library.
Complex modules use these primitive methods. Final
modules have a Graphical User Interface that allows
users to control internal parameters.

As functions were separated into basic and simple
types, some methods do not have a GUI but can be easily
compiled to any platform by following the same logic we
use for the complex objects.

Methods on our library offer the possibility to be
compiled using multiple channels. For some objects,
every channel has the same sound process while others
make use of ambisonic encoding and decoding of signals
to create musical effects by modifying independently
every spheric harmonic generated by the ambisonic
encoding process.

3. FAUST IN MAX

Here, we present the Max wrapper objects created to
interact with our compiled FAUST primitives.

Objects in the Max library expose parameters for every
channel allowing different output signals on every voice.

* https://puredata.info/

Figure 1 shows the “bpatcher” created for our proposed

EMG simulator granting the user access to parameters on
every channel.

Max objects developed in our project can also be
downloaded from our main repository.

emG sivuLaTor~ Bl

onoff taget
attack [rand |
decay gain
release pulse

M Al ik

Figure 1. EMG simulator object on Max

4. FAUST FOR
ELECTROPHYSIOLOGICAL
SIGNAL PROCESSING

Signal preprocessing is an essential step in the analysis of
any electrophysiological signal. Preprocessing includes
filtering, segmentation and feature extraction, which
reduce noise, detect relevant features and improve signal
quality. Preprocessing also helps to identify useful data
points for further analysis.

This preprocessing step is essential for obtaining
accurate and meaningful signals from the capture device
especially if the input source is contaminated with
instrumental noises.

4.1. Noise filtering, envelope following
Preprocessing and noise filtering is also important in
order to use biosignals as control. These processes can
help to reduce noise and artifacts, improve
signal-to-noise ratio, and reduce computational
complexity. Additionally, preprocessing and noise
filtering can help to make the signal more interpretable
and easier to analyze, which can make it more suitable
for use as a control.

Our toolbox includes a set of preprocessing objects that
will do 50/60Hz notch filtering, DC-blocking, envelope
following and RMS calculations. By using a single
module capable of filtering and giving a usable signal for
control parameters, this module offers an easy and fast
way to start working with noisy electrophysiological
signals.

4.2. Simulation of electrical noises

Every simulator developed in our project tries to emulate
the real signal captured with EEG or EMG devices
without instrumental noises. In order to be able to use the
generated signal as a real one, we developed an electrical
noise simulator. This 50 or 60 Hz generator adds some
harmonics to the signal, simulating specific noises
induced in the electric lines by devices connected to the
network.

® Encapsulating technique allowing GUI to be exposed as
an interface within a Max patch.

https://www.zotero.org/google-docs/?ErJ6RR
https://www.zotero.org/google-docs/?ZHmRsk

Figure 2 shows the Faust code generating the
fundamental frequency with 5 harmonics added to the
noise to simulate electronic devices connected to the
network:

bbdmi_electric_noise(f) = 0.95 *

Figure 2. Faust code of the electric noise simulator

5. SIMULATION OF EEG AND EMG
ELECTROPHYSIOLOGICAL
SIGNALS

Working with electrophysiological signals implies having
an external device capable of capturing these signals
from the human body or having a recording that could be
used on a DAW. There are many situations where
musicians or researchers need to test their tools and
neither have an ExG device nor a recorded signal that
can be used in their preferred DAW. Recordings of
electrophysiological are generally made using tools made
for laboratory testing.

The LSL’ protocol is mostly used in laboratory
environments because of its precision in time as it works
on timestamps. It also offers the possibility of having
multiple streams that can also be recorded into an XDF®
file. Although LSL and XDF files are a standard in the
world of laboratory tests, musicians have a hard time
trying to sonify these signals or even trying to extract
features from them. In order to make the process of
working with electrophysiological signals easier, we
propose a set of tools to simulate EMG and EEG signals.
These signals can be used directly on the desired DAW
and recorded as audio files allowing musicians and
researchers to work on new platforms.

5.1. EMG simulation

Our proposed EMG simulator allows musicians and
developers to quickly and accurately test their software
tools without the need for expensive and time-consuming
experiments. This could lead to a better understanding of
how EMG signals can be used to create music, and could
also lead to the development of new and improved
musical software tools.

Before defining the spectrum and dynamics of the
generated signal, a decision had to be made between
which type of EMG signal would be simulated as there
are mainly two types of techniques[9], surface
electro-myography (SEMG) and intramuscular
electromyography (IMG). Surface EMG uses electrodes
placed on the surface of the skin to measure the electrical
activity at that particular site. IMG, on the other hand,
uses fine-needle electrodes that are directly inserted into
the muscle to measure the electrical activity more
accurately. Furthermore, IMG is often used in research
and clinical settings, while SEMG is most widely used in
musical performances, sports science and rehabilitation.

The simulated signal will simulate an sSEMG like signal
taking into account the spatial filtering of the skin, the
size of the electrodes and instrumental noises and
filtering. The simulator offers the possibility to modify
the envelope of the signal while the spectrum stays the
same to guarantee an EMGQ like signal. The included GUI
allows the user to modify the intensity of the signal over
time, as well as the attack, decay and release times of the

7 LabStreamLayer explanation link
8 XDF files explanation

envelope, enabling the simulation of different types of
muscular efforts.

Figure 3 shows the spectrum and the time
representation of the simulated EMG signals.

|
Madhe, bt

| 1 X
e At b 0 M Mkt)
LAt "rl(v\‘ TR n;v\,‘(:f;

" o,
R T Ayt
“'t\L‘, YRy i

W

OHz 1Mz Mz 1Mz 2Hz HzdMz GMz 1OMz 20Hz 30Hz SOHz 100Hz 200Mz 400Hz 10Kz 1000M

Figure 3. Simulated EMG signal

5.2. EEG simulation

As part of our toolbox, we propose an EEG simulator
that generates a signal similar to the real captured signal.
Many different recordings were used as examples
including our own recordings made with a “Gtec
Unicorn™ and a “Mentalab™® device using gel
electrodes. Brainwaves are very complex and although
we don’t claim to simulate any cognitive state, we
consider it useful to have a tool that allows us to control
the alpha (7.5Hz - 12.5Hz) and the beta (16.5 - 20 Hz)
band powers.

The spectrum of the EEG signal depends on many
factors. For the same person the spectrum of the captured
signal will vary depending on where the electrodes are
placed, cognitive state of the person and many other
different factors. Depending on the objective of the EEG
analysis the most important frequency bands will change,
the proposed EEG simulator focuses on two specific
brainwave bands, alpha and beta.

This simulator is a simple model that does not offer the
possibility to work with complex BCI (Brain Computer
Interfaces)[6] paradigms like motor lateralization.
However, it is still a useful tool for understanding the
effects of alpha waves on the tools that musicians and
researchers are using. The simulator is able to accurately
generate alpha waves in the frequency range of 8-12 Hz
with a controllable envelope.

Figures number 4 and 5 show the comparison between
the simulated signal and the one recorded with our own
devices. The generated and simulated EEG signals have
many properties that resemble the real EEG signals. The
frequency range of the simulated EEG signals typically
falls within the range of 1-30 Hz, and although it may not
capture all of the nuances of a real EEG signal, it
generally embodies the same key characteristics of the
original signal.

*https://www.unicorn-bi.com/fr/brain-interface-technolog
y/

'We thank Mentalab (Mentalab GmbH, Munich) for
providing us with their Explore EEG system for testing.

https://www.zotero.org/google-docs/?iMZX6b
https://www.zotero.org/google-docs/?ZYtPZk

Figure 4. EEG Simulator

IR R R

Figure 5. Simulated EEG vs real EEG

The amplitude of the simulated EEG signal is generally
similar to the recorded data, and it contains features such
as alpha waves and beta waves which are representative
of real EEG signals. Additionally, the simulated alpha
band power can be fine-tuned to match the behavior of
the real EEG signal in terms of magnitude and envelope
control.

5.3. Limited band pulse generator
Although electrophysiological signals are limited in
spectrum and have specific dynamics, sometimes it
comes to need a broader generator with controllable
spectrum and dynamics. The “band pulse” generator
creates a limited band of noise with a controllable
envelope.

The envelope control (ADSR) determines the length,
attack, decay, sustain, and release of each “burst”, while
the limited bandwidth filter determines the frequency
range that the sound will focus on. The frequency band
of the produced signal can be modified by adjusting the
depth and width of the filter. This allows users to create
specific band limited signals. Additionally, the ADSR
envelope can be manipulated to create more complex
signals with interesting dynamic movements.

This pulse generator is available on our BBDMI
FAUST library and it has been tested on the Max
platform by adding some visual components to the
controls. Figure 6 shows the compiled Max object.

BAND_PULSE~

channels targetvoice

attack decay release pulseSpacing

fre

q bw

22KHz

Figure 6. Compiled Faust object for Max

6. SPECTRAL AND
SYNTHESIS AND FX

The ability to use electrophysiological signals to control
music can open up a new world of possibilities for
musicians and performers. Despite the fact that these
signals have a highly expressive potential, we found
ourselves often with very few input channels to work
with. In general, connecting each EMG and EEG
capturing devices demands not only time and preparation
but also having all the required equipment. This
limitation orients most electrophysiological music
performances[3] to be done with few input control
signals. Therefore it is imperative to create a sound
engine that is very expressive and can be highly
configurable even with few input control signals.

In order to give musicians the possibility to be highly
expressive while creating sounds, we develop our
modules leaving every minimal detail of the sound
synthesis engine open for input control signals. So even
when many variables stay constant, it is still possible to
achieve a wide range of musical transformations just by
modifying a few variables. Selecting, or ‘“curating”
parameters to be exposed to the musician in performance
is a crucial part of the instrument design process.

SPATIAL

6.1. Setting sound in space

In our research team, we have been working for more
than ten years on the use of ambisonic spatialization
techniques to enable the setting of sound in space, that is
a deep intrication between sound processing or synthesis
and its diffusion using the various spheric harmonics.

With the methods included in our own BBDMI library

and our partners, we are able to provide a set of tools for
ambisonic musical sound processes.
In addition to improving the realism and sense of
immersion in virtual environments that can be achieved
by ambisonic transformations of sound, these techniques
can also be used to enhance soundscapes for creative and
artistic applications and more specifically in our case,
musical transformations.

The development of our “Live Granulator” is an
example of the use of ambisonic treatments to achieve
musical results. By setting a global factor parameter
driving the individual parameters of the encoded
ambisonic signal on each spheric harmonic, we create
specific sound changes that will be interpreted by the
decoder. A common transformation used in our
laboratory is sound decorrelation[4], it is a technique
used to create a diffuse sound field in sound
spatialisation, particularly in an ambisonic context. The
variations of the factor of decorrelation provide high
musical expressivity in an efficient way for musical
composition based on spatial processing of sound.

6.2. Live granulator

The live granulator works on live input signals and
transforms them by applying a highly configurable
envelope to each grain. The construction of the
granulator comes as a proposition of a single object
capable of doing many different sound processes to the
sound. Having a single object capable of creating
different sound textures allows us to use the processed
electrophysiological signals in a very expressive way.

https://www.zotero.org/google-docs/?oHzNDc
https://www.zotero.org/google-docs/?yb9s4M

The live granulator has an internal buffer that allows
the use of delayed signals on the input phase as well as at
the final output section. Information on the audio buffers
can be reinjected to the original input by changing the
variable feedback. The variable variability will apply a
randomness level to some of the internal parameters of
the granulator making it more stochastic.

The specificity of the proposed granulator relies on the
highly configurable envelopes, the distribution of internal
parameters by each instantiated channel and the way the
feedback loops are placed.

6.2.1. Ambisonic distributions

The live granulator was designed as a multichannel
object in order to be able to work with the ambisonic
spatialisation models developed in our laboratory. This
approach allows us to modify some of the internal
parameters of each channel following the logic of
ambisonic effects. Each channel of the live granulator
will modify one independent spheric harmonic generated
by the ambisonic encoding phase. By changing variables
like the delays applied to the sound or the frequency of
the filters and modulating signals, we can achieve
interesting sound effects like spatial decorrelation.

There are infinite possibilities of how the internal
parameters of the granulator can be distributed from high
level control parameters to each spheric harmonic. This
distribution will modify the variables depending on the
number of the harmonic. The relationship could be linear,
by augmenting the value of every parameter by the
number of the harmonic but we could also think of more
complex distributions.

The variable indexdistr allows the user to choose from
many different distributions using the transfer functions
proposed by Alain Bonardi and Paul Goutman in the
HOA library. Figure 7 shows the possible distributions as
mathematical functions.

X
xA2 composite1 %5

sin x*3 1-(1-x)*5
log(1+x) 1-(1-x)"3 composite4
sqrt(x) composite2 25(10(x-1))
1-cos(Pl/2*x) xM composite5
(1-cos(PI*x))i2 1-{1-x}"4 1-sqrt(1-x"2)

1-(1-x)2 composite3 sqri(1-(x-1)*2)

Figure 7. Functions for the ambisonic distribution

6.2.2. Feedback loops

There are two main feedback loops implemented on the
granulator. They are both controlled by the feedback,
maxdelay and variability variables. The feedback
variable will control the amount of feedback applied
while maxdelay and variability will control the amount
of time delay applied to the input sound and to each
grain.

The first feedback loop mixes the input signal with
itself before being granulated. This allows the control of
which sounds are being used to create the grains.

The second feedback loop is placed at the end of the
granulation chain and serves as a mixer of grains. Every
created grain will enter this feedback loop creating a
sound texture composed with many different grains of
size and texture.

Before entering the final loop, the transpgrain variable
permits the pitch shift of each grain differently, that way
the grains collected on the final feedback loop will be
also different in tonality.

Finally, the last process applied to the sound is another
pitch shift controlled by the variable transpout. This part
of the module will allow the transposition of all the
grains being produced.

6.2.3. Filtering

Variables hpffreq and Ipffieq allow the user to filter the
input signal before it enters the first feedback loop. This
filtering phase will modify the spectrum of each grain
and can be modified in real time.

6.2.4. Grain size and spacing

The size of each grain is calculated by adding the
grainsize with a percentage of the grainoffset variable.
The offset for each grain is a value between zero and the
grainoffset multiplied by the variability. The distance
between grains is configured with the spacing variable.

6.2.5. Grain envelope morphing

The granulator offers the possibility of changing the form
of the envelope main signal. This can be achieved by
tuning the variable grainenvmorph. This variable will
morph the main envelope between a signal with an
exponential behavior and one with a gaussian
distribution. Although the change in the sound is very
subtle it provides a sensitive variable to play with while
creating each grain. The resulting envelope will be a
morphed signal between the two main envelopes shown
on Figure 8.

Figure 8. Envelope design

6.2.6. Envelope amplitude modulation

After each grain is created the module allows the user to
apply an amplitude modulation effect to each grain using
the variable modfactor. Figure 9 shows the envelope of a
grain without modulation and another with 100%
modulation.

By modulating the amplitude of the grains, it is
possible to create subtle changes in the texture of a
sound. This can be used to create a range of interesting
effects, such as a pulsing or warbling sound.

Figure 9: Envelope amplitude modulation

Note that the waveform used for the frequency
modulation of each grain starts every time a grain is
created. When the same signal is used to modulate every
grain, it is possible to hear the frequency as a stationary
tone over the generated sound, not a very interesting
sound effect as it can be similar to a simple additive

synthesis process. To avoid stationary waves to set in, the
phase of the envelope signals starts at zero every time a
grain is created. The result of restarting the phase of the
waveform every time a grain is created, is that it is
almost impossible to have an exact spacing time between
grains that will create a correlation between the
modulating signals. Most of the time the result will be a
superposition of grains with decorrelated modulating
envelopes. By decorrelating the modulating signals from
each grain we avoid the presence of a single tone and we
obtain a more complex effect giving the sound many
possible textures.

6.2.7. Modulated frequency of the amplitude

modulation

In addition to modulating the amplitude of the envelope
of each grain, the object also provides a variable called
modfreqgmod that will control the level of modulation of
the amplitude modulation of the envelope. Figure 10
shows in yellow the control signal for the frequency
modulation, the red signal is the resulting waveform of
the envelope. This transformation generates an envelope
with an amplitude modulation that can start at a high
frequency and finish at a low frequency and vice versa.
All this happens every time a grain is created.

UWU".’U‘WMM,W L
Figure 10. Modulated frequency of the amplitude
modulation

Sound implications of modulating the frequency of an
amplitude modulation can be quite complex. When the
frequency of an amplitude modulation is changed, it can
affect the timbre, or tone, of the sound. This is because
the frequency of the modulation affects the harmonic
content of the sound. For example, if the frequency of the
modulation is increased, the sound will become
“brighter” and more complex harmonically. Conversely,
if the frequency of the modulation is decreased, the
sound will become “darker”.

In addition to affecting the timbre of the sound,
modulating the frequency of an amplitude modulation
can also affect the dynamics of the sound. When the
frequency of the modulation is increased, the sound will
become more dynamic and have more of a “punch” to it.
Conversely, when the frequency of the modulation is
decreased, the sound will become more mellow and less
dynamic.

6.2.8. Morphing of the amplitude modulation

The ability to morph the waveform of the modulating
signal in an amplitude modulation (AM) system can have
a significant impact on the sound of the resulting signal.
For example, a square wave modulating signal can create
a bright, aggressive sound, while a sine wave modulating
signal can create a smoother, more mellow sound.
Additionally, the use of a modulating signal with a more
complex waveform, such as a sawtooth or triangle wave,
can create a unique sound that is not possible with
simpler waveforms.

The variable modmorph of the granulator works as an
interpolator controller between 4 signals: sinusoid,

sawtooth, square and sinusoid again. Figure 11 shows the
envelopes generated by different values of the modmorph
variable. It is important to notice that integer values
provide pure waves while decimal values will create a
morphed shape between the two pure waveforms.

Having a sinusoid signal at the beginning and the end
allows the user to create any possible morphing between
the 3 basic waveforms.

Figure 11. Morphing of the amplitude modulation

Morphing the waveform of the modulating signal can
also be used to create interesting effects. By morphing
between shapes at fast or slow speeds it is possible to
achieve gradual transitions between sound textures. This
can be used to create a range of interesting and unique
sounds, from subtle changes to more dramatic shifts.

6.3. Lagrange and Bezier curves for

sound synthesis
Lagrange and Bezier curves are a powerful and versatile
tool for sound synthesis. They are used to generate
smooth and continuous curves, which can be used to
create synthesized sounds, from simple pitch variations
to complex sound timbres. Additionally, the highly
detailed curves allow for high-fidelity sound synthesis.
As part of our toolbox, we are developing a synthesis
module using Lagrange and Bezier curves. We found that
in order to achieve a complex and dynamic sound it is
necessary to manipulate the waveform on a very short
timescale. If the waveform takes too much time to
change, the result will be a complex waveform with a
sound similar to effects like ring modulation or FM
synthesis.

6.3.1. Limitations of the Lagrange curve

synthesis

Working with this type of synthesis is not without
drawbacks. One of the main issues is that depending on
the position of the points used to define the curve, the
signal may explode, resulting in distorted or unusable
sound. This is due to the fact that the curve is defined by
a series of polynomials, and when the points are too close
together, the polynomials can become unstable and cause
the signal to explode.

To prevent this from happening, it is important to
choose points that are well-spaced, so that the
polynomials remain stable. Finally, it is important to
ensure that the points are chosen in such a way that the
resulting curve is smooth and does not contain any sharp
corners. Something hard to achieve when working with
Bezier curves for sound synthesis. Figure 12 shows an
example of a simple Lagrange curve created with our
synthesizer.

Figure 12. Lagrange curve synthesis

6.3.2. Limitations of the Bezier curve synthesis

Working with Bezier curves for sound synthesis can be
problematic due to the fact that the first derivative of the
resulting signal is not continuous when two waveforms
are put together. This can lead to the generation of
undesirable harmonics, which can lead to a distorted or
otherwise unpleasant sound. To avoid this, it is important
to ensure that the Bezier curve has a smooth transition
while joining one curve to the next. Additionally, it is
important to ensure that the control points used to define
the curve are well-spaced, as this can help to reduce the
amount of distortion caused by the discontinuous first
derivative. Figure 13 shows an example of a simple
Bezier curve created with our synthesizer.

Figure 13. Bezier curve synthesis

6.3.3. Max object

Although the FAUST code of the live granulator already
includes a GUI allowing the control of every internal
parameter of the granulator, it is not exposed when the
object is used in softwares like Max. As part of our
project we propose a Max “bpatcher” that enhances the
experience of musical composition by permitting the
generation of random configurations and then the
dumping of that configuration for further use.

Figure 14 shows the live granulator “bpatcher” for Max.

GRANULATOR~

A4 indexdistr

grainenvmorph

N
=]

H

20000. [LICE]

2000. maxdelay
grainsize
grainoffset
spacing
modfactor
500.

2
H

3
-
3
°
3
=

modfregmod

IR v
variability

gain

1|
EER reedback
po. |

Figure 14. The Livegranulator object compiled for

Max
7. MICROCONTROLLER
EMBEDDED FAUST

We used the FAUST language on the EAVI board
(reported elsewhere in this conference) to perform signal
processing on electrophysiological signals. The FAUST
code embedded on the microcontroller was used to do
noise filtering, DC-blocking, envelope following and
RMS (root-mean-squared). Doing this process directly on
the board reduces the amount of work that needs to be
done on the sound engine modules as the output signal
can already be used as a control signal.

Noise filtering is done to remove some types of
instrumental noise from the signal like 50/60Hz noise
and its harmonics, while DC-blocking ensures that any
DC drifts in the signal are decreased. Envelope following
is performed to create an envelope around the signal so
that the shapes of the signals can be determined. Finally,
RMS is used to measure the power of the signals giving
us a control signal that can be directly used on a sound
engine.

Figure 15. EAVI board running FAUST codes

Figure 15 shows the EAVI board being used as a HCI
(Human Computer Interface) to control sound processes
modifying the sound of a guitar.

8. EVALUATION

Part of our research project includes the analysis of user
study cases on body and brain musical digital musical
interfaces. In that context, we’ve had the opportunity to
test our tools on live performances! and workshops'
giving us valuable feedback from users and the public.

8.1. Signal processing
Having clean electrophysiological signals as an input
proved to be very useful especially when fine tuning the
system to use it as a musical instrument. Undesired
noises may break the experience of the musician and
reduce the musical expression capabilities of the system.
The possibility of getting the envelope and RMS of the
input signal directly from the capturing device facilitated
the interaction between the user and the sound engine as
no more processing was needed to use it as a control
signal.

8.2. Signal simulation

The proposed simulators were used in different
circumstances mostly in testing environments. These
tools allowed us to test our system without the need of
any external devices which is a big reliever if an
installation is needed every time.

It is important to notice that specifically for our EEG
simulator more work needs to be done in order to achieve
a signal that can be similarly complex as the real EEG
signals.

8.3. Musical expression

By using sensors attached to the body, our system is able
to capture the subtle nuances of a person's movement and
use that data to create music. Our users manifested that
using the body as an interface enabled them to express
themselves musically in a more natural and intuitive way.

8.4. Musical possibilities

Objects discussed in this paper were useful in the process
of creating new interfaces for musical expression using
physiological signals. Having the opportunity to
configure every single part of our synthesis modules
allowed us to transform the generated sound in many
different ways. The resulting sounds can be very
different from each other, allowing immense musical
possibilities.

9. CONCLUSION AND FUTURE

WORK
As part of the ongoing BBDMI project, the BBDMI
Faust library proved to be useful in the creation of new
musical interfaces for electrophysiological signals.
Sound engines created with our system offered
musicians an expressive and highly configurable system.
It is part of our plan to port our modules into the EAVI
board itself, taking advantage of its potential and the
FAUST cross-platform language.
Our sets of tools are still in development and further
progress will be uploaded to our main repository.

"https://www.mshparisnord.fr/event/concert-du-projet-bb
dmi/
https://www.mshparisnord.fr/event/journees-europeenn
es-du-patrimoine-a-la-msh-paris-nord-2022/

10. ETHICAL STANDARDS

The research presented in this paper has been supported
by the French national research agency
(ANR-21-CE38-0018). As part of the signing of the grant
agreement, the project has been approved to conform
with research ethics regulations of the Centre National de
la Recherche Scientifique (CNRS). The user facing
research in the project has obtained informed consent of
participants.

We recognise expertise brought to the project by
synthesizer designer Martin Klang of Rebel Technologies
for the EAVI EMG hardware design (Horizon 2020 ERC
789825), and external advisor Robert Oostenveld.

11. REFERENCES

[1] Composer I’espace sonore:
https://revues.mshparisnord.fr/rfim/index.php?id=6
24. Accessed: 2023-01-30.

[2] Di Donato, B. et al. 2019. EAVI EMG board. (Porto
Alegre, Brazil, Jun. 2019).

[3] Donnarumma, M. 2012. Biotechnological
Performance Practice. Canadian Electroacoustic
Community eContact!. 14,2 (2012).

[4] Goutmann, P. and Bonardi, A. 2022. Approaching
Spatial Audio Processing by Means of
Decorrelation and Ring Modulation in
Ambisonics-Sound 2. (2022).

[5] Orlarey, Y. et al. 2009. FAUST : an Efficient
Functional Approach to DSP Programming. New
Computational Paradigms For Computer Music.
Editions DELATOUR. 65-96.

[6] Rao, R.P.N. 2013. Brain-computer interfacing: an
introduction. Cambridge University Press.

[7] Tanaka, A. et al. in review. Brain-Body Digital
Musical Instrument Work-in-Progress. ISEA2023
(in review).

[8] Webster, T. et al. 2014. The OWL Programmable
Stage Effects Pedal: Revising the Concept of the
Onstage Computer for Live Music Performance.
NIME 2014 (2014), 4.

[91 Zheng, M. et al. Surface Electromyography as a
Natural Human-Machine Interface: A Review. 31.

[10] Zicarelli, D. 2002. How I Learned to Love a
Program That Does Nothing. Computer Music
Journal. 26, 4 (2002), 44-51.

https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao
https://www.zotero.org/google-docs/?uEU7ao

