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Collatz High Cycles Do Not Exist

Kevin Knight

September 23, 2023

Abstract

The Collatz function takes odd n to (3n + 1)/2 and even n to n/2. Under the
iterated Collatz function, every positive integer is conjectured to end up in the trivial
cycle 1-2-1. Two types of cycles are of special interest. Consider the set S consisting
of the smallest members of all cycles containing the same number of odd terms. The
circuit contains the smallest member of S, while the high cycle contains the largest.
It is known that no circuits of positive integers exist (except 1-2-1); this paper shows
that there are likewise no high cycles of positive integers.

1 Introduction

The Collatz function is

T (n) =


3n + 1

2
, if n is odd;

n

2
, otherwise.

Iterating this function famously yields interesting sequences. For example:

31→ 47→ 71→ 107→ 161→ 242→ 121→ 182→ 91→ 137→ 206

→ 103→ 155→ 233→ 350→ 175→ 263→ 395→ 593→ 890→ 445

→ 668→ 334→ 167→ 251→ 377→ 566→ 283→ 425→ 638→ 319

→ 479→ 719→ 1079→ 1619→ 2429→ 3644→ 1822→ 911→ 1367

→ 2051→ 3077→ 4616→ 2308→ 1154→ 577→ 866→ 433→ 650

→ 325→ 488→ 244→ 122→ 61→ 92→ 46→ 23→ 35→ 53→ 80

→ 40→ 20→ 10→ 5→ 8→ 4→ 2→ 1→ 2→ 1→ . . .

The Collatz conjecture posits that every positive integer eventually reaches 1. The con-
jecture was verified in 2021 for all 1 ≤ n ≤ 1021 [2], but it has not yet been proven or
refuted.
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Figure 1: All of the rational Collatz cycles of length k = 8 with x = 5 odd terms. Of special
note are the outermost cycle (the circuit), in light gray, and the innermost cycle (the high
cycle), in dark gray.

If T i(n) = n for some positive integer n, there is a Collatz cycle of length i whose first
term is n. The only known T -cycle is the trivial one: 1→ 2→ 1.

The unresolved Weak Collatz conjecture claims that there are no positive integer cycles.
(It is called “weak” because it allows for the possibility of a start number that diverges to
infinity, never reaching 1.)

We can also consider cycles with rational values. Figure 1 shows all cycles of length k = 8
with x = 5 odd terms. Considering the term 211

13
to be odd (by its numerator), the next term

produced by the Collatz process is (3(211
13

) + 1)/2 = 323
13

(also odd).
For any k and x, the outermost and innermost cycles are of special interest. Let S contain

the smallest members of each cycle (here, 211
13

, 227
13

, . . . 319
13

). The outermost cycle (called the
circuit) contains the lowest member in S, while the innermost cycle (called the high cycle)
contains the highest member in S.

Steiner [10] showed that no positive integer circuits exist for any k, x (except k = 2, x =
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1). The current paper shows likewise that no high cycles of positive integers exist.

2 Parity vectors

Associated with every cycle member m is a unique parity vector that records the even (0)
and odd (1) terms obtained from k iterations of the Collatz function.

Example 2.1 (Cycle member to parity vector). Starting with m = 211
13

, we encounter 5 odd
terms followed by 3 even terms, so the corresponding parity vector is 11111000.

Likewise, given a parity vector v, we can compute a cycle member m.

Example 2.2 (Parity vector to cycle member). Applying v = 110 to arbitrary start number
n yields [33n+1

2
+1]/2/2 = 9

8
n+ 5

8
. To make a cycle, we set n = 9

8
n+ 5

8
. Solving this equation

yields n = −5, which is part of the −5→ −7→ −10→ −5 cycle.

Generalizing this idea, Böhm and Sontacchi [4] give the cycle member associated with
arbitrary parity vector v as

f(v) =

x−1∑
i=0

2di(v) 3x−i−1

2k − 3x
, (2.1)

where d0(v) < . . . < dx−1(v) are the (zero-based) indices of 1s in v. Since we are only
interested in Collatz cycles with positive terms, the denominator must be positive, so k >
x log2 3.

The Weak Collatz Conjecture can be restated: “Is there a parity vector v such that f(v)
is an integer greater than 2?”

It will sometimes be useful to refer to the numerator only:

g(v) =
x−1∑
i=0

2di(v) 3x−i−1. (2.2)

Note that rotating a parity vector produces another term in the same rational cycle.

Example 2.3 (Rotation). f(100) = 1
5
, f(001) = 4

5
, and f(010) = 2

5
. These are all entry

points into the 1
5
→ 4

5
→ 2

5
→ 1

5
cycle.

Finally, we can restrict ourselves to aperiodic parity vectors. Consider f(1101011010) =
23
5

, which is part of the double cycle 23
5
→ 37

5
→ 58

5
→ 29

5
→ 46

5
→ 23

5
→ 37

5
→ 58

5
→ 29

5
→

46
5
→ 23

5
. Had these been integers, the aperiodic f(11010) would also be an integer.
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3 No integer circuits

The parity vector vc = 1x0k−x is associated with the smallest member of the (k, x)-circuit.
Following Equation 2.1,

f(vc) =

x−1∑
i=0

2i3x−i−1

2k − 3x
.

We provide a simple proof that (non-trivial) Collatz circuits do not exist, after three
lemmas.

Lemma 3.1. f(vc) simplifies to
3x − 2x

2k − 3x
.

Proof. By induction, omitted. �

Lemma 3.2. If there is a non-trivial positive integer circuit of length k with x odd terms,
then 2 · (3

2
)x ≥ 2k−x − 1.

Proof. This follows from the fact that the putative circuit’s smallest member is at least 1.

3x − 2x

2k − 3x
≥ 1

3x − 2x ≥ 2k − 3x

2 · 3x ≥ 2k + 2x

2 · (3

2
)x ≥ 2k−x − 1.

�

Lemma 3.3 (Ellison [7]). For integers k and x, with x > 17, we have 2k − 3x > 2.56x.

Proof. We start with Ellison’s original bound (for k > 27) and use the fact that k > x log2 3
in positive cycles.

2k − 3x >
2k

ek/10
> 1.8k > 1.8x log2 3 > 2.56x, for x > 17. �

Theorem 3.4 (Steiner, 1977). Non-trivial Collatz circuits do not exist.

Proof. Assume f(vc) =
3x − 2x

2k − 3x
is a positive integer. Then the following are also positive

integers:
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3x − 2x

2k − 3x
+ 1,

3x − 2x

2k − 3x
+

2k − 3x

2k − 3x
,

2k − 2x

2k − 3x
,

2x(2k−x − 1)

2k − 3x
, and

2k−x − 1

2k − 3x
.

We can remove the 2x in the last step without affecting the expression’s purported inte-
grality, since the denominator is odd.

However, the last term is actually less than one; we invoke Lemmas 3.3 and 3.2 to show
that the denominator outstrips the numerator. For x > 17,

2k − 3x > 2.56x > 2 · (1.5)x ≥ 2k−x − 1.

2k−x − 1 = 0 only when k = 2, x = 1; setting aside this case, we obtain the contradiction
0 < 2k−x−1

2k−3x < 1. Cases of x ≤ 17 are handled by the fact that any non-trivial Collatz cycle
must contain many millions of odd terms [6]. �

To date, all no-circuit proofs depend on deep lower bounds for 2k − 3x, such as Ellison’s,
which are all derived from Alan Baker’s pioneering transcendental number theory work [1].
As Jeffrey Lagarias [9] remarks, “The most remarkable thing about Theorem [. . . ] is the
weakness of its conclusion compared to the strength of the methods used in its proof.”1

4 The high cycle

In this section, characterize the Collatz high cycle.

Definition 4.1. Let vh be a (k, x)-parity vector with 1s indexed by di(v) = bk
x
ic, for 0 ≤

i ≤ x− 1.

Example 4.2. For k = 8, x = 5, vh = 11011010.

1Note that certain circuits can be ruled out without these deep bounds. For example, if k and x are not
co-prime, then we can factor 2k−3x. E.g., (2k/2+3x/2)(2k/2−3x/2) > 2k/2 > 2xlog3/2 > 1.72x > 2k−x−1. Or

for the case of vc = 1111111100000, it follows that if f(vc) =
38 − 28

213 − 38
is an integer, then so is 31f(vc)+206,

but it happens that 31
38 − 28

213 − 38
+ 206

213 − 38

213 − 38
=

312

213 − 38
, which is not integral.
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Example 4.3. For k = 21, x = 13, vh = 110110101101101011010.

The vector vh is the well-known (upper) Christoffel word [3], constructed so that its 1s
are roughly evenly spread among its 0s. The cycle member corresponding to vh is

f(vh) =

x−1∑
i=0

3x−i−12b
k
x
ic

2k − 3x
.

Now we list a number of properties of vh.
First, f(vh) is the smallest member of its cycle.

Theorem 4.4 (Halbeisen and Hungerbühler [8]). For every (k, x) parity vector v that is a
rotation of vh, we have f(vh) ≤ f(v).

Remark 4.5. It is known that a Christoffel word vh is at a lexicographic extreme among all
its rotations [3]. However, lexicographic ordering does not always coincide with f -ordering.
For example, f(11110010) = 259

13
, f(11100101) = 395

13
, and f(10111100) = 341

13
. Of course,

lexicographic ordering correlates roughly with f -ordering, as left-heavy vectors tend to be
associated with smaller cycle members.

Theorem 4.6. Among all the (k, x) upper Christoffel words, f(vh) is maximized when k =
dx log2 3e.

Proof. Let vh be an upper Christoffel word with k = dx log2 3e. Let u be a longer (k+ 1, x)-
high-cycle parity vector. Replacing k by k + 1 increases the numerator of f(v) by no more
than a factor of 2, while increasing the denominator by more than a factor of 2.

f(u) =

x−1∑
i=0

3x−i−12b
k+1
x

ic

2k+1 − 3x
=

x−1∑
i=0

3x−i−12b
k
x
i+ i

x
c

2k+1 − 3x

<

x−1∑
i=0

3x−i−12b
k
x
ic+1

2k+1 − 2 · 3x
=

2 ·
x−1∑
i=0

3x−i−12b
k
x
ic

2(2k − 3x)
= f(v). �

Similar reasoning holds if u is a (k + n, x) upper Christoffel word, for any n ≥ 1.
Next, we confirm the reader’s suspicion that f(vh) is indeed a member of the high cycle.

Let S contain the smallest members of each (k, x)-cycle.

Theorem 4.7 (Halbeisen and Hungerbühler [8]). Let v be a parity vector associated with
the smallest member of any (k, x)-cycle, and let vh be an upper Christoffel word with k =
dx log2 3e. Then, f(vh) ≥ f(v).
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Remark 4.8 (Tangential). This theorem is useful for proving that any Collatz cycle must
be long. Just for example, it is easy to verify empirically that f(vh) < 1013 for all x <
10, 000, 000, implying that every cycle (not just the high cycle) with fewer than ten million
odd terms has some member less than 1013. Since no Collatz counter-examples exist among
the first 1020 positive integers [2], a purported Collatz cycle must have more than ten million
odd terms. Stronger results have been obtained through analytical means [8]. Of course,
f(vh) will outstrip any finite confirmation, after some x, because O(3xx) exceeds O(2k−3x).

Recall the cycle member corresponding to vh.

f(vh) =

x−1∑
i=0

3x−i−12b
k
x
ic

2k − 3x
,

Due to the floor function, we cannot simplify this expression as we did for f(vc). Its
value can only be partially wrangled through upper and lower bounds.

Theorem 4.9 (Halbeisen and Hungerbühler [8]).

3x(x/20)

2dx log2 3e − 3x
< f(vh) <

3x(7x/10)

2dx log2 3e − 3x
.

These bounds can be improved from (x/20, 7x/10) to (x/6, x/2); we omit the proof for
brevity.

5 No integer high cycles

In this section, we prove our main result that f(vh) is never an integer. To do this, we need
two more facts about Christoffel words. First, f(vR

h ) is a member of the same cycle as f(vh).

Theorem 5.1 (Cohn [5]). The reverse vR
h of an upper Christoffel word vh is also a rotation

of it.

Therefore, f(vh) and f(vR
h ) are in the same cycle. Indeed, f(vR

h ) is the largest member
of the cycle, though we do not need this fact; also for interest, the left-rotation distance is
the multiplicative inverse of x modulo k.

Theorem 5.2 (Berstel et al [3]). For aperiodic vh, we have vh = 1u0, and vR
h = 0u1.

Example 5.3. vh = 11011010, vR
h = 01011011, and u = 101101. Incidentally, u is always

a palindrome, though we do not need this fact.

Because vh and vR
h are virtually identical, differing only in their first and last components,

we expect f(vh) and f(vR
h ) to have similar summands. We express both in terms of u, via

Equations 2.1 and 2.2.
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f(vh) =
2g(u) + 3x−1

2k − 3x

f(vR
h ) =

6g(u) + 2k−1

2k − 3x

In the first case, we create vh by shifting u one place to the right (doubling every
summand) and adding a 1 to the left edge. In the second case, shifting u requires both a
doubling (for the same reason) and a tripling (from adding a 1 to the right edge).

Theorem 5.4 (Main result). No high cycle consists of integers.

Proof. We know f(vh) and f(vR
h ) are both members of the high cycle (Theorems 4.7 and

5.1). If they are both integers, then so are

3f(vh)− f(vR
h ) + 1,

3
2g(u) + 3x−1

2k − 3x
− 6g(u) + 2k−1

2k − 3x
+

2k − 3x

2k − 3x
,

2k − 2k−1

2k − 3x
, and

2k−1

2k − 3x
.

However, 2k−1 is not divisible by any odd number, so we have a contradiction. �

Example 5.5. For the (8, 5)-high-cycle, Figure 1 gives f(vh) = 319
13

and f(vR
h ) = 842

13
.

Combining gives 3319
13
− 842

13
+ 13

13
= 27

13
.

Note that if we left-rotate vh and vR
h by one position each, we obtain an alternate

pair of high-loop members (u01 and u10), whose simple difference provides the necessary
contradiction. For example, cycle members 485

13
and 421

13
in Figure 1 cannot both be integers,

because 485
13
− 421

13
= 26

13
.

6 Summary

Notable features of our proof versus the no-circuit proof include:

• Instead of assuming, by way of contradiction, that f(vc) is an integer, we instead
assume that both f(vh) and f(vR

h ) are both integers.

• Unlike the no-circuit proof, we do not require deep lower bounds [1, 7] on the size of
2k − 3x.

• We require no closed-form expression for any high cycle member; by contrast, the
no-circuit proof relies on the expression f(vc) = 3x−2x

2k−3x .
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