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Introduction

The Collatz function is 

T (n) =      3n + 1 2 , if
→ 40 → 20 → 10 → 5 → 8 → 4 → 2 → 1 → 2 → 1 → . . .
The Collatz conjecture posits that every positive integer eventually reaches 1. The conjecture was verified in 2021 for all 1 ≤ n ≤ 10 21 [START_REF] Barina | Convergence verification of the Collatz problem[END_REF], but it has not yet been proven or refuted. The unresolved Weak Collatz conjecture claims that there are no positive integer cycles. (It is called "weak" because it allows for the possibility of a start number that diverges to infinity, never reaching 1.)

We can also consider cycles with rational values. Figure 1 shows all cycles of length k = 8 with x = 5 odd terms. Considering the term 211 13 to be odd (by its numerator), the next term produced by the Collatz process is (3( 211 13 ) + 1)/2 = 323 13 (also odd). For any k and x, the outermost and innermost cycles are of special interest. Let S contain the smallest members of each cycle (here, 211 13 , 227 13 , . . . 319 13 ). The outermost cycle (called the circuit) contains the lowest member in S, while the innermost cycle (called the high cycle) contains the highest member in S.

Steiner [START_REF] Steiner | A theorem on the Syracuse problem[END_REF] showed that no positive integer circuits exist for any k, x (except k = 2, x = 1). The current paper shows likewise that no high cycles of positive integers exist.

Parity vectors

Associated with every cycle member m is a unique parity vector that records the even (0) and odd (1) terms obtained from k iterations of the Collatz function.

Example 2.1 (Cycle member to parity vector). Starting with m = 211 13 , we encounter 5 odd terms followed by 3 even terms, so the corresponding parity vector is 11111000.

Likewise, given a parity vector v, we can compute a cycle member m. Generalizing this idea, Böhm and Sontacchi [START_REF] Böhm | On the existence of cycles of given length in integer sequences like x n+1 = x n /2 when x is even and x n+1 = 3x n + 1 otherwise[END_REF] give the cycle member associated with arbitrary parity vector v as

f (v) = x-1 i=0 2 d i (v) 3 x-i-1 2 k -3 x , (2.1) 
where

d 0 (v) < . . . < d x-1 (v) are the (zero-based) indices of 1s in v.
Since we are only interested in Collatz cycles with positive terms, the denominator must be positive, so k > x log 2 3. The Weak Collatz Conjecture can be restated: "Is there a parity vector v such that f (v) is an integer greater than 2?" It will sometimes be useful to refer to the numerator only:

g(v) = x-1 i=0 2 d i (v) 3 x-i-1 . (2.2)
Note that rotating a parity vector produces another term in the same rational cycle. . Had these been integers, the aperiodic f (11010) would also be an integer.

No integer circuits

The parity vector v c = 1 x 0 k-x is associated with the smallest member of the (k, x)-circuit. Following Equation 2.1,

f (v c ) = x-1 i=0 2 i 3 x-i-1
2 k -3 x . We provide a simple proof that (non-trivial) Collatz circuits do not exist, after three lemmas.

Lemma 3.1. f (v c ) simplifies to 3 x -2 x 2 k -3 x .
Proof. By induction, omitted.

Lemma 3.2. If there is a non-trivial positive integer circuit of length k with x odd terms, then 2

• ( 3 2 ) x ≥ 2 k-x -1.
Proof. This follows from the fact that the putative circuit's smallest member is at least 1.

3 x -2 x 2 k -3 x ≥ 1 3 x -2 x ≥ 2 k -3 x 2 • 3 x ≥ 2 k + 2 x 2 • ( 3 2 ) x ≥ 2 k-x -1.
Lemma 3.3 (Ellison [START_REF] Ellison | On a theorem of S. Sivasankaranarayana Pillai[END_REF]). For integers k and x, with x > 17, we have

2 k -3 x > 2.56 x .
Proof. We start with Ellison's original bound (for k > 27) and use the fact that k > x log 2 3 in positive cycles.

2 k -3 x > 2 k e k/10 > 1.8 k > 1.8 x log 2 3 > 2.56 x , for x > 17.
Theorem 3.4 [START_REF] Steiner | A theorem on the Syracuse problem[END_REF]. Non-trivial Collatz circuits do not exist.

Proof. Assume f (v c ) = 3 x -2 x 2 k -3
x is a positive integer. Then the following are also positive integers:

3 x -2 x 2 k -3 x + 1, 3 x -2 x 2 k -3 x + 2 k -3 x 2 k -3 x , 2 k -2 x 2 k -3 x , 2 x (2 k-x -1)
2 k -3 x , and

2 k-x -1 2 k -3 x .
We can remove the 2 x in the last step without affecting the expression's purported integrality, since the denominator is odd.

However, the last term is actually less than one; we invoke Lemmas 3.3 and 3.2 to show that the denominator outstrips the numerator. For x > 17,

2 k -3 x > 2.56 x > 2 • (1.5) x ≥ 2 k-x -1.
2 k-x -1 = 0 only when k = 2, x = 1; setting aside this case, we obtain the contradiction 0

< 2 k-x -1 2 k -3 x < 1.
Cases of x ≤ 17 are handled by the fact that any non-trivial Collatz cycle must contain many millions of odd terms [START_REF] Eliahou | The 3x + 1 problem: new lower bounds on nontrivial cycle lengths[END_REF].

To date, all no-circuit proofs depend on deep lower bounds for 2 k -3 x , such as Ellison's, which are all derived from Alan Baker's pioneering transcendental number theory work [START_REF] Baker | Transcendental number theory[END_REF]. As Jeffrey Lagarias [START_REF] Lagarias | The 3x+1 problem and its generalizations, The 3x+1 Problem: The Ultimate Challenge[END_REF] remarks, "The most remarkable thing about Theorem [. . . ] is the weakness of its conclusion compared to the strength of the methods used in its proof." 1 

The high cycle

In this section, characterize the Collatz high cycle. Definition 4.1. Let v h be a (k, x)-parity vector with 1s indexed by

d i (v) = k x i , for 0 ≤ i ≤ x -1. Example 4.2. For k = 8, x = 5, v h = 11011010.
1 Note that certain circuits can be ruled out without these deep bounds. For example, if k and x are not co-prime, then we can factor 2 k -3 x . E.g., ( The vector v h is the well-known (upper) Christoffel word [START_REF] Berstel | Combinatorics on words: Christoffel words and repetitions in words[END_REF], constructed so that its 1s are roughly evenly spread among its 0s. The cycle member corresponding to v h is

2 k/2 +3 x/2 )(2 k/2 -3 x/2 ) > 2 k/2 > 2 xlog3/2 > 1.72 x > 2 k-x -1. Or for the case of v c = 1111111100000, it follows that if f (v c ) = 3 8 -
f (v h ) = x-1 i=0 3 x-i-1 2 k x i 2 k -3 x .
Now we list a number of properties of v h . First, f (v h ) is the smallest member of its cycle.

Theorem 4.4 (Halbeisen and Hungerbühler [START_REF] Halbeisen | Optimal bounds for the length of rational Collatz cycles[END_REF]). For every (k, x) parity vector v that is a rotation of v h , we have

f (v h ) ≤ f (v).
Remark 4.5. It is known that a Christoffel word v h is at a lexicographic extreme among all its rotations [START_REF] Berstel | Combinatorics on words: Christoffel words and repetitions in words[END_REF]. However, lexicographic ordering does not always with f -ordering. For example, f (11110010) = 259 13 , f (11100101) = 395 13 , and f (10111100) = 341 13 . Of course, lexicographic ordering correlates roughly with f -ordering, as left-heavy vectors tend to be associated with smaller cycle members. Theorem 4.6. Among all the (k, x) upper Christoffel words, f (v h ) is maximized when k = x log 2 3 .

Proof. Let v h be an upper Christoffel word with k = x log 2 3 . Let u be a longer (k + 1, x)high-cycle parity vector. Replacing k by k + 1 increases the numerator of f (v) by no more than a factor of 2, while increasing the denominator by more than a factor of 2.

f (u) = x-1 i=0 3 x-i-1 2 k+1 x i 2 k+1 -3 x = x-1 i=0 3 x-i-1 2 k x i+ i x 2 k+1 -3 x < x-1 i=0 3 x-i-1 2 k x i +1 2 k+1 -2 • 3 x = 2 • x-1 i=0 3 x-i-1 2 k x i 2(2 k -3 x ) = f (v).
Similar reasoning holds if u is a (k + n, x) upper Christoffel word, for any n ≥ 1.

Next, we confirm the reader's suspicion that f (v h ) is indeed a member of the high cycle. Let S contain the smallest members of each (k, x)-cycle. Theorem 4.7 (Halbeisen and Hungerbühler [START_REF] Halbeisen | Optimal bounds for the length of rational Collatz cycles[END_REF]). Let v be a parity vector associated with the smallest member of any (k, x)-cycle, and let v h be an upper Christoffel word with k =

x log 2 3 . Then, f (v h ) ≥ f (v).
Remark 4.8 (Tangential). This theorem is useful for proving that any Collatz cycle must be long. Just for example, it is easy to verify empirically that f (v h ) < 10 13 for all x < 10, 000, 000, implying that every cycle (not just the high cycle) with fewer than ten million odd terms has some member less than 10 13 . Since no Collatz counter-examples exist among the first 10 20 positive integers [START_REF] Barina | Convergence verification of the Collatz problem[END_REF], a purported Collatz cycle must have more than ten million odd terms. Stronger results have been obtained through analytical means [START_REF] Halbeisen | Optimal bounds for the length of rational Collatz cycles[END_REF]. Of course, f (v h ) will outstrip any finite confirmation, after some x, because O(3 x x) exceeds O(2 k -3 x ).

Recall the cycle member corresponding to v h .

f (v h ) = x-1 i=0 3 x-i-1 2 k x i 2 k -3 x ,
Due to the floor function, we cannot simplify this expression as we did for f (v c ). Its value can only be partially wrangled through upper and lower bounds. Theorem 4.9 (Halbeisen and Hungerbühler [START_REF] Halbeisen | Optimal bounds for the length of rational Collatz cycles[END_REF]).

3 x (x/20) 2 x log 2 3 -3 x < f (v h ) < 3 x (7x/10) 2 x log 2 3 -3 x .
These bounds can be improved from (x/20, 7x/10) to (x/6, x/2); we omit the proof for brevity.

No integer high cycles

In this section, we prove our main result that f (v h ) is never an integer. To do this, we need two more facts about Christoffel words. First, f (v R h ) is a member of the same cycle as f (v h ).

Theorem 5.1 (Cohn [START_REF] Cohn | Markoff forms and primitive words[END_REF]). The reverse v R h of an upper Christoffel word v h is also a rotation of it.

Therefore, f (v h ) and f (v R h ) are in the same cycle. Indeed, f (v R h ) is the largest member of the cycle, though we do not need this fact; also for interest, the left-rotation distance is the multiplicative inverse of x modulo k. Theorem 5.2 (Berstel et al [START_REF] Berstel | Combinatorics on words: Christoffel words and repetitions in words[END_REF]). For aperiodic v h , we have v h = 1u0, and v R h = 0u1.

Example 5.3. v h = 11011010, v R h = 01011011, and u = 101101. Incidentally, u is always a palindrome, though we do not need this fact.

Because v h and v R h are virtually identical, differing only in their first and last components, we expect f (v h ) and f (v R h ) to have similar summands. We express both in terms of u, via Equations 2.1 and 2.2.

f (v h ) = 2g(u) + 3 x-1 2 k -3 x f (v R h ) = 6g(u) + 2 k-1 2 k -3 x
In the first case, we create v h by shifting u one place to the right (doubling every summand) and adding a 1 to the left edge. In the second case, shifting u requires both a doubling (for the same reason) and a tripling (from adding a 1 to the right edge). Proof. We know f (v h ) and f (v R h ) are both members of the high cycle (Theorems 4.7 and 5.1). If they are both integers, then so are

3f (v h ) -f (v R h ) + 1, 3 2g(u) + 3 x-1 2 k -3 x - 6g(u) + 2 k-1 2 k -3 x + 2 k -3 x 2 k -3 x , 2 k -2 k-1 2 k -3 x , and 
2 k-1 2 k -3 x .
However, 2 k-1 is not divisible by any odd number, so we have a contradiction.

Example 5.5. For the (8, 5)-high-cycle, Figure 1 gives f (v h ) = 319 13 and f (v R h ) = 842 13 . Combining gives 3 319 13 -842 13 + 13 13 = 2 7 13 . Note that if we left-rotate v h and v R h by one position each, we obtain an alternate pair of high-loop members (u01 and u10), whose simple difference provides the necessary contradiction. For example, cycle members 485 13 and 421 13 in Figure 1 cannot both be integers, because 485 13 -421 13 = 2 6 13 .

Summary

Notable features of our proof versus the no-circuit proof include:

• Instead of assuming, by way of contradiction, that f (v c ) is an integer, we instead assume that both f (v h ) and f (v R h ) are both integers. • Unlike the no-circuit proof, we do not require deep lower bounds [START_REF] Baker | Transcendental number theory[END_REF][START_REF] Ellison | On a theorem of S. Sivasankaranarayana Pillai[END_REF] on the size of 2 k -3 x .

• We require no closed-form expression for any high cycle member; by contrast, the no-circuit proof relies on the expression f (v c ) = 3 x -2 x 2 k -3 x .
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 1 Figure 1: All of the rational Collatz cycles of length k = 8 with x = 5 odd terms. Of special note are the outermost cycle (the circuit), in light gray, and the innermost cycle (the high cycle), in dark gray.
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