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The propagation of two-dimensional cellular gaseous detonation bounded by an inert

layer is examined via computational simulations. The analysis is based on the high-

order integration of the reactive Euler equations with a one-step irreversible reaction.

To assess whether the cellular instabilities have a significant influence on a detona-

tion yielding confinement, we achieved numerical simulations for several mixtures

from very stable to mildly unstable. The cell regularity was controlled through the

value of the activation energy, while keeping constant the ideal Zel’dovich - von Neu-

mann - Döring (ZND) half-reaction length. For stable detonations, the detonation

velocity deficit and structure are in accordance with the generalized ZND model,

which incorporates the losses due to the front curvature. The deviation with this

laminar solution is clear as the activation energy is more significant, increasing the

flow field complexity, the variations of the detonation velocity and the transverse

wave strength. The chemical length scale gets thicker, as well as the hydrodynamic

thickness. The sonic location is delayed due to the presence of hydrodynamic fluc-

tuations, of which the intensity increased with the activation energy as well as with

the losses to a lesser extent. The flow field has been studied through numerical soot

foils, detonation velocities and 2D detonation front profiles, which are consistent

with experimental findings. The velocity deficit increases with the cell irregularity.

Moreover, the relation between the detonation limits obtained numerically and in

detonation experiments with losses is discussed.
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I. INTRODUCTION

A gaseous detonation consists of an exothermic chemical reaction coupled to a supersonic

shock wave that propagates through a detonable medium. The very rapid energy conver-

sion leads to consider the detonation as an alternative to the more classical combustion in

the aeronautical engines. However, many issues arise from its potential use for propulsion

applications1. As for the rotating detonation engine, the combustion chamber is usually an

annular ring composed of the walls of two coaxial cylinders. Subsequently to the injection

at the bottom-end, detonation fronts propagate circumferentially into the fresh mixture.

The expansion of the detonation products through the engine top-end creates a continuous

thrust. Prior to the arrival of the detonation, the burned gases generated by the previous

front confine the freshly injected reactive material. Thus, the flow field within the com-

bustion chamber highlights a complex shock/detonation structure and, most of the time,

a deficit of the detonation velocity2,3. A better understanding of the underlying physical

phenomena is needed in order to ensure the design of this new propulsion device4,5.

The velocity at which a detonation is propagating through the reactive material is an es-

sential data. The simple theory developed by Chapman and Jouguet (CJ) at the beginning

of the latter century states that the steady detonation velocity is the minimum velocity com-

patible with the conservation laws6. This model provides very accurate results in predicting

the detonation velocity in the knowledge that only the initial state and thermodynamic prop-

erties were required to perform the calculations. Moreover, no assumption on the kinetics

mechanism is needed as the products are in thermochemical equilibrium and the reaction

is considered to occur instantaneously. Consequently, the influence of boundary conditions

such as walls or confinements cannot be taken into account. For this reason, models have

to include a reaction zone of finite thickness. In his initial work, Zel’dovitch7 attempted to

incorporate the effects of heat and momentum losses into the Zeldovich - von Neumann -

Döring (ZND) model. However, the wall forces distribution was incorrectly represented and

led to inaccurate results. Fay8 focused on the influence of the boundary layer which develops

in tubes downstream of the leading shock. He treated the induced negative displacement

layer as a flow divergence, leading to a curved detonation. The friction induced by the walls

are thus analogous to the effects produced by the lateral expansion of the detonation prod-

ucts towards the yielding confinement. This is responsible for the front curvature9. See the
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monograph from Lee10 for a review on the effect of boundary conditions on the detonation

dynamics.

The very early steady models for 2D detonations were proposed by Jones11 and Eyring et

al.12 They established a relationship between the detonation velocity in cylindrical explosives

and the radius of the charge. Wood and Kirkwood13 (WK) developed a quasi-1D model by

restraining the analysis of the two-dimensional Euler equations on the central streamline.

Assuming that the radius of curvature is large relatively to the reaction-zone thickness,

they put forward a link between the velocity deficit of the detonation and the shock front

curvature. Bdzil14 generalized the WK model in two dimensions. He supposed that the

streamline deflection angle remains small, which can be justified in the case of high-density

explosives.

The first experiments on gaseous detonation confined by a compressible layer were per-

formed by Sommers15, Sommers and Morrison16, Dabora17 and Dabora et al18. They aimed

to study the influence of the condensed explosives confinement by analogy with the prop-

agation of a gaseous detonation bounded by an inert gas layer. The resulting Schlieren

photographs showed the main features of this configuration: the front curvature, the at-

tached oblique shock wave and the interface between burned gases and inert gases. Similar

experiments were also performed by Adams19,20, Murray and Lee21 and Vasil’ev and Zak22.

In the context of hydrogen safety, a recent resurgence of interest in the weak confinement

of detonations led to the development of new experiments. Rudy et al.23–25 and Grune et

al.26 investigated the critical layer thickness enabling the propagation of detonations in a

partially confined channel, and corroborated the values obtained by Dabora et al.18

Oran and Gamezo27 achieved numerical simulations of detonations bounded by an inert

medium, confirming Bdzil’s findings14. More recently, Li et al.28 performed computational

simulations in two different geometries (cylindrical tube and two-dimensional slab) and made

meaningful comparisons of the detonation curvature with ad hoc models. The latter authors

also investigated the influence of confinement with various acoustic impedance ratios. They

concluded that the model based on Eyring12 and Wood and Kirkwood13 theories achieved

a remarkably good evaluation of the detonation velocity as a function of the curvature of

the leading front. However, the reaction rate used in the aforementioned paper is only

pressure-dependent, thus preventing the development of cellular instabilities. In another

study Li et al.29 studied the influence of spatial heterogeneities on the propagation limits of
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a bounded detonation. Sinusoidal ripples of density were created upstream of the laminar

detonation wave and were shown to enhance the resistance to failure. However, the nature

of the heterogeneities prevents from building generalized conclusions about the behaviour

of gaseous cellular detonations. Thus, the behavior of detonations yielding confinement and

the accuracy of the models as far as intrinsic instabilities are concerned, remains an issue.

Experimental and numerical researches in the last sixty years have both attested to the

unsteady and three-dimensional nature of gaseous detonations10. Two-dimensional detona-

tion fronts, as they can be observed in rectangular tubes with a large aspect ratio, consist

of an alternation of strong Mach stems and weaker incident shocks. They intersect with the

transverse waves at the triple points, whose the trajectories form the cellular structure of

the detonation. This cellular pattern of varying degree of regularity may be classified from

excellent to irregular30,31 as a function of the initial pressure and the level of dilution of the

fresh gases.

In order to form a better view on the role played by transverse waves interaction on the

propagation of irregular detonations, Radulescu and Lee32 performed well-diagnosed experi-

ments in porous walls and investigated whether the failure was caused by the damping of the

transverse waves rather than the flow leaking into the porous walls. They concluded that

the ignition by the leading shock was responsible of the propagation of stable detonations

in argon-diluted mixtures. In highly unstable mixtures characterized by very irregular cel-

lular patterns, the propagation mechanism was noticeably different and closely linked to the

ability of generating a sufficient number of transverse waves to counterbalance the losses.

To assess whether those instabilities have a significant influence on a detonation yielding

confinement, we achieved numerical simulations of detonations bounded by an inert gas

layer for several mixtures from very stable to mildly unstable. The regularity of the mixture

was directly controlled through the value of the activation energy, while the length scale

of the ideal ZND model was kept constant. The flow field structure was analyzed through

the investigation of numerical soot foil plates. Furthermore, we evaluated the dependency

between the detonation frontal curvature and its velocity deficit, and we compared the

results with those obtained from a model based on the WK theory. This paper addresses

the role of the cellular structure on the detonation propagation and failure, as losses are due

to the weak confinement and also to the fluctuations which develop through the subsonic

reaction zone and which can act as an energy withdrawal. The governing equations are
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presented in §2. Section 3 describes the numerical solver employed, presents the physical

configuration and the analytical model used. Section 4 presents the numerical simulations

and their analysis. Finally, we conclude this paper in §5 with further discussions on the

results obtained throughout this study.

II. GOVERNING EQUATIONS

In this study, the flow is regarded as a compressible reactive ideal gas governed by the

two-dimensional system of Euler equations:

∂U

∂t
+
∂F (U)

∂x
+
∂G(U)

∂y
= S(U) (1)

The conserved variable vector U , the directional convective flux vectors F and G and the

chemical source term vector S are given by

U =




ρ

ρu

ρv

ρE

ρY




, F =




ρu

ρu2 + p

ρuv

(ρE + p)u

ρY u




, G =




ρv

ρuv

ρv2 + p

(ρE + p)v

ρY v




, S =




0

0

0

0

−ρω̇




Here, ρ, p, u, v and Y are the density, the pressure, the velocities and the reaction progress

variable, respectively. Y = 1 when the gases are completely burned. Assuming a calorically

perfect ideal gas, the total energy E is expressed as

E = e+
u2 + v2

2
− Y q, with e =

p

(γ − 1)ρ
(2)

q is the heat release and γ is the ratio of specific heats. A one-step global irreversible

reaction of the form R → P is used to model the chemical process by which the reactants

are transformed into the products. The chemical source term follows the standard Arrhenius

law,

ω̇ = k(1− Y )exp

(−Ea

RT

)
(3)

where k, Ea and R are the pre-exponential factor, the activation energy and the gas constant,

respectively. The reaction was artificially inhibited when the mass fraction reaches the value
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of ε = 10−3 in order to ensure that the reaction length remained finite. Additionally, a

pressure threshold was implemented so as to prevent the reaction to occur prior to the

leading shock. Single-step chemistry is widely used to simulate detonations and exhibits

a good agreement with the experiments33. Even characteristic features of very unstable

mixtures, such as methane – air, are correctly retrieved34. However, several effects such as

the double cellular detonation structure cannot be described by this model35. These effects

are not present in the present study, as the highest action energy corresponds to a mildly

unstable mixture. Moreover, the implementation of a detailed chemical kinetics does not

give more accurate results than reduced models. Taylor et al.36argue that thermodynamic

non-equilibrium has to be taken into account for the mixtures at atmospheric pressure. The

aim of this work is to highlight the flow features of the detonation confined by an inert layer.

Four different values of the reduced activation energy Ea/RT0 were employed in this study

to control the detonation stability: 10, 20, 30 and 38.23. The last one corresponds to a single-

step mechanism calibrated using data for detonations of a stoichiometric hydrogen/oxygen

mixture at the initial pressure of 1 atm and at the initial temperature of 295 K. The three

others model a fictive mixture of lower sensitivity with the same thermodynamic parameters.

These thermodynamic parameters were chosen to be approximately those of a stoichiometric

hydrogen/oxygen mixture at the initial pressure of 1 atm and the initial temperature of

295 K. The ratio of specific heats and the heat release are given by γ = 1.333 and q =

4.867 MJ/kg, i.e. q/RT0 = 23.81, respectively37,38. Corresponding CJ and von Neumann

(vN) parameters are DCJ = 2845 m/s, PCJ = 17.5 bar, TCJ = 3007 K, PvN = 34.0 bar and

TvN = 1707 K. The Mach number is then MCJ = 5.53. The numerical simulations presented

in §4 were performed for different values of the reduced activation energy Ea/RT0. For

each value of Ea/RT0, the pre-exponential factor of the Arrhenius law was adjusted so as

to keep the half-reaction length l1/2 constant. The half-reaction length is defined as the

distance between the incident shock and the position where Y = 1/2 in the ideal ZND

model without losses. This led to a cell size roughly constant for the different activation

energies, which greatly facilitates the flow field analysis. Thus, the calibrations were made

so that the simulated cell size of a detonation without losses propagating in a wide channel

was typical of a stoichiometric hydrogen/oxygen mixture in those conditions of pressure and

temperature, i.e. Ea/RT0 = 38.23 and λ ≈ 2 mm39. The half-reaction length obtained for

these parameters via an ideal ZND calculation is l1/2 = 90.79 µm.
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Figure 1: Schematic of the numerical configuration. A detonation wave propagates from

the left to the right into a reactive medium bounded by an inert gas.

III. NUMERICAL METHOD

A. Numerical solver

In this work, we employed a classical time-operator splitting method in order to couple

the hydrodynamics to the chemistry and to accommodate the stiffness due to the wide range

of time scales. A directional splitting is also used. The characteristic variables were recon-

structed on the cell boundaries using a ninth-order Monotonicity Preserving interpolation40.

High-order numerical schemes are advocated, since they lead to a reduced dissipation and a

better accuracy, even in the presence of strong shocks41,42.The fluxes through the interfaces

were computed by solving the Riemann problem by means of the approximate Harten - Lax -

van Leer (HLLC) solver”43. The temporal-integration was accomplished using a third-order

Total Variation Diminishing (TVD) explicit Runge-Kutta method. The parallelization of

the code was achieved through a domain decomposition method. The communications be-

tween the different processors were held by the Messaging Passing Interface (MPI) standard.

The largest simulations were performed on 400 processors with a typical cost of ∼ 60,000

CPU scalar hours.
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B. Problem statement

The physical configuration associated with the numerical simulations is depicted on the

Figure 1. The detonation travels from left to right in the positive x direction and propagates

into a medium at rest composed of a gaseous reactive layer bounded by an inert gas. Slip

boundary conditions were used on the lower wall and outflow conditions were employed on

the other boundaries. At time t = 0, the domain was entirely filled with fresh reactive

mixture. The detonation was initiated by setting an area at the von Neumann state. This

region was located in the middle of the domain in the x direction and was as high as the

reactive layer. Then, the flow gradually evolved from the initial vN-region to an overdriven

combined wave and ultimately reached a quasi-steady propagation state independent from

the ignition and the initial conditions. The front curvature increased progressively as the

high-pressure products expanded toward the upper compressible layer. Kelvin-Helmholtz

instabilities appeared on the interface between the burned gases and the inert gas. The

oblique shock leaned over in the inert gas until it reached its final slope. Depending on the

reactive layer height, transverse instabilities arose and gave birth to the cellular structure

of the detonation.

A specific recycling procedure has been implemented to limit the calculation length.

During the course of the simulation when the leading shock reached the right boundary of

the computational domain, a new region was appended to the right of the computational

domain and another was discarded on the opposite side. As the removal occurred beyond the

characteristic line delimiting the sonic locus in the steady case, this process does not have

any influence on the detonation propagation44. In front of the detonation wave, the new

area was implemented with the upstream conditions: the lower layer was filled with fresh

mixture and the upper layer with an inert gas. This process arose periodically during the

computation of the detonation propagation and enabled the calculation to be performed on

smaller computational domains, thus allowing a higher numerical resolution. This recycling

process has been successfully used to simulate the propagation of detonations by Sow45

and Li et al28,29. Further, the detonation front mainly evolves in a restricted area close

to the right boundary. Consequently, a static mesh refinement method based on the MPI

topology was implemented, as illustrated in Fig. 2. Finer meshes were used at the vicinity

of the detonation front whereas the spatial resolution decreased by a factor of two as the
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Figure 2: Schematic of the static mesh refinement method. In this example two levels of

refinement are employed.

computational cells were more distant from the detonation wave. The numerical resolution

in finest grid consisted of N1/2 = 30 points per half-reaction length except for the mixture

with Ea/RT0 = 38.23 where the size of the computational domain needs to be enlarged

and thus prevents from using such a resolution. For this case, N1/2 was lowered to ten

points per half-reaction length. Although this resolution seems low for such mildly unstable

detonations, the average quantities calculated in simulations with N1/2 = 15 and 20 agree

well with each other. The mean pressure and the averaged local Mach number are plotted

for different resolutions in the Figure 3. The conclusions of this study are thus not called

into question relatively to this issue.

The overall size of the domain was chosen according to the reactive layer height h, which

depends on the activation energy. The simulations reveal that as Ea/RT0 increased, the

critical height allowing the self-sustained propagation of the combined wave increased as

well. As a consequence, the number of computational cells N also augmented. This trend

will be addressed in the next Section. As far as the cellular structure of the detonation (i.e.

2D instabilities) is concerned, we observed the development of transverse waves in most

cases. For the simulations computed with Ea/RT0 = 10 and Ea/RT0 = 20, detonation cells

began to appear starting from h = 5.0 mm. For higher values of the reduced activation

energy, i.e. Ea/RT0 = 30 and 38.23, the cellular structure was present regardless of the

reactive layer height. The cell size λ for each activation energy was measured on numerical

soot plates by averaging the value on more than 50 detonation cells. The parameters used
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(a) (b)

Figure 3: Influence of the numerical resolution on the average pressure normalized by p0

(a) and on the mean local Mach number (b) for a mixture with Ea/RT0 = 38.23 and

h = 45 mm = 496 l1/2.

Ea/RT0 Ea/RTvN l1/2 (µm) N1/2 N (×106) λ (mm) k1/2 = λ/l1/2

10 1.73 90.79 30 2.0 - 4.2 1.3 14

20 3.46 90.79 30 2.5 - 4.2 1.7 19

30 5.18 90.79 30 30 - 45 2.1 23

38.23 6.61 90.79 10 27 1.9 21

Table I: Summary of the numerical parameters. l1/2 is the half-reaction zone, N1/2 the

number of points per l1/2, N the total number of cells, λ the cell size in the ideal case and

k1/2 the ratio of the cell size in the ideal case to the half-reaction length.

in our calculations are summarized in the Table I. The length of the domain was chosen to

incorporate the sonic line and was also function of the domain height because of the front

curvature. These constraints led to a computational domain that was 3 times the cell size

long and 5 times the cell size high for the lowest activation energy. For the highest activation

energy, the domain was 20 times the cell sizes long and 30 times the cell size high.

Numerical simulations have shown that one-dimensional detonations exhibit an unstable
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behavior depending on the kinetics and thermodynamics properties of the mixture46,47. It

has been demonstrated that for other parameters fixed, it exists a critical value of the

activation energy beyond which the ideal ZND steady solution acquires a pulsating nature48.

Then, with the increase of the activation energy, the instabilities evolve from a simple cyclic

mode to a complex and chaotic character, following a period-doubling pattern49. For our

thermodynamics parameters, one-dimensional simulations reveal that these instabilities are

absent with the exception of Ea/RT0 = 38.23 where these longitudinal oscillations are

present.

C. Model

The flow divergence due to the inert layer can be incorporated into the one-dimensional

ZND model. Following the approach of Wood and Kirkwood13, the flow is assumed to

be compressible, non-dissipative, adiabatic and reactive. In addition, the detonation is

supposed to propagate in a steady and laminar state. Thus, the Euler equations Eqs. 1

can be rewritten in the shock coordinates ū = D − u. The bar is omitted in the following

equations for clarity.




∂ρu

∂x
+
∂ρv

∂y
= 0

∂(ρu2 + p)

∂x
+
∂ρuv

∂y
= 0

∂ρuv

∂x
+
∂(ρv2 + p)

∂y
= 0

∂(ρE + p)u

∂x
+
∂(ρE + p)v

∂y
= 0

∂ρuY

∂x
+
∂ρvY

∂y
= −ρω̇

(4)

The analysis is restrained to the bottom wall streamline y = 0, which implies that the

spanwise velocity v is null. Consequently, the system of Eqs. 4 can be rewritten as follows

in the shock coordinates: 



du

dx
= −(γ − 1)qω̇ − c2ωr

c2 − u2
dρ

dx
= −ρ

u

(
du

dx
+ ωr

)

dp

dx
= −ρudu

dx
dY

dx
= − ω̇

u

(5)
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ωr =
∂v

∂y
(y = 0) denotes the curvature term. The determination of the velocity divergence

on the wall streamline can be determined via a geometrical analysis6:

ωr =
D − uvN
R (6)

Through an asymptotic analysis, Klein and Stewart50 showed that:

ωr =
D − u(x)

R (7)

The latter closure term was preferred rather than Eq. 6 as it showed a better accuracy.

Given the post-shock state as initial conditions, the Eqs. 5 can be integrated until the

generalized CJ conditions are satisfied, i.e. until ū = c (sonic condition) and (γ−1)qω̇ = c2ωr

(thermicity condition). By repeating this process for several radius of curvature, we obtained

the classical ”backwards C” curve51 which depicts the detonation velocity as a function of

the losses encountered.

IV. RESULTS

A. Detonation velocity deficit

During each simulation, the averaged detonation velocity D̄ and the averaged front curva-

ture R were calculated. The position of the leading shock at the bottom wall was obtained

from the detection of the first pressure change in the initial medium (0.1% of the initial

value). After interpolation using the Savitzky-Golay algorithm52, which consists in fitting

successive subsets of adjacent data with a polynomial fit by a linear least square method,

the derivative of the initial signal was then evaluated leading to the detonation velocity as a

function of time, from which the average velocity D̄ could be calculated. The interpolation

used in the Savitzky-Golay algorithm uses a 10th order polynomial on a stencil of 10 points.

The mean curvature of the detonation front was computed from the averaged shape of

the combined wave. At each time step, the position of every point constituting the leading

shock was also detected by means of a pressure threshold and then averaged during the

simulation by the following discrete mean procedure53. Consider the temporal mean ψ̄ of a

given variable ψ

ψ̄ = lim
T →∞

1

T

∫ t

t0
ψdt (8)
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Figure 4: Instantaneous velocity of the detonation front normalized by DCJ as a function

of the distance elapsed from the initial pressure burst (black line) and average velocity (red

line) with Ea/RT0 = 30 and h = 17 mm.

where T = t− t0 is the sampling period. First-order integration gives

ψ̄ = lim
n→∞

ψ̄n with ψ̄n =
1

tn − t0
n∑

i=n0

ψi(ti+1 − ti) (9)

This can be expressed as a numerical sequence

ψ̄n+1 = ψ̄n − ∆tn+1

tn+1 − t0 (ψ̄n − ψn+1) (10)

The value of t0 was set at the end of the calculation initialization to ensure that the results

remain independent of initial conditions. The mean position of the shock-detonation com-

bined wave was then symmetrically extended beyond the horizontal axis and a fourth-order

polynomial was fitted with the detonation front. The knowledge of the polynomial equation

thus led to the mean curvature R at the bottom wall.

Prior to the averaging process, we ensure that the detonation has travelled about 2,000

l1/2 (' 20λ), ensuring independence from initial conditions. This criterion is based on the

instantaneous velocity of the detonation as a function of the distance elapsed from the initial

high-pressure burst. During the first transient phase of the simulation, the detonation is

clearly overdriven as a result of this initiation process (see Fig. 4). The quasi-static state of

propagation is then reached between 1,000 and 2,000 half-reaction lengths. The evolution
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(a) (b)

Figure 5: Mean velocity deficit of the detonation front as a function of the averaged radius

of curvature normalized by the half-reaction length from the numerical simulations

(symbols) and comparison with the results from the WK model ( lines). The Figure (b) is

an enlargement of the Figure (a)

.

of the mean detonation velocity is depicted by the red curve and it has been estimated with

running average with a sample of 30,000 points, approximately 970 half-reaction lengths. It

should be also remarked that 2,000 half-reaction length is the propagation length necessary

to ensure independence from the initial conditions, but that much more distance has to be

travelled in order to build the averages profiles on the wall (y = 0).

The detonation velocity dependence on the front curvature as obtained from both the WK

model and the bidimensional simulations are shown in the Figure 5. The velocity deficits

D̄/DCJ are plotted as a function of l1/2/R for the different reduced activation energies

Ea/RT0. The lines depict the generalized ZND solutions obtained by the WK model and

demarcate the theoretically existence domain of stable detonations subject to losses. The

velocity deficit of the detonation front increases proportionally to the averaged curvature

until a turning point is reached beyond which the WK model does not provide any solution.

This may be interpreted as a limit below which the velocity deficit cannot be endured by
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Figure 6: Mean velocity deficit of the detonation front as a function of the height of the

reactive layer normalized by the half-reaction length, from the numerical simulations

.

the detonation anymore and thus leads to its quenching54.

The symbols represent the results obtained as the outcome of the bidimensional simu-

lations for the different values of Ea/RT0. Each data set of the same color corresponds

to a single value of the activation energy. By varying the height of the reactive layer up-

stream of the front, we influenced directly the losses encountered by the detonation and

therefore its velocity deficit. Each distinct point relates to one simulation in which the re-

active layer height is constant. The WK model appropriately retrieves the velocity deficit

for Ea/RT0 = 10 and Ea/RT0 = 20. However, the points derived from the numerical simu-

lations performed with Ea/RT0 = 30 and Ea/RT0 = 38.23 clearly follow a different trend.

For the same radius of curvature, the velocity deficit obtained in the unsteady simulations

is more important than predicted by the model. In the Figure 6, the velocity deficit of the

detonation is plotted as a function of this height.

This discrepancy may be linked to the presence of one-dimensional longitudinal insta-

bilities. One-dimensional calculations have demonstrated the absence of these instabilities

for Ea/RT0 = 10, 20 and 30. The threshold demarcating their appearance in the ideal case

hence lies between Ea/RT0 = 30 and Ea/RT0 = 38.23. Nevertheless, Dionne et al.55 have

shown that the wall friction increases the effective activation energy and renders the detona-
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tion more unstable. Later, Watt and Sharpe56 reported that the neutral stability boundary

of the detonation is lowered by the curvature effects. In other words, they argued that

the detonation experiencing losses in its reaction zone may be unstable even if the corre-

sponding planar detonation is stable in the one-dimensional sense. In our case, this means

that the neutral stability boundary may be lower than Ea/RT0 = 30, and thus that the

one-dimensional instabilities can be at the root of the discrepancy between the numerical

simulations and the WK model. These results are consistent with the numerical results

of Sow et al.57 who found that the velocity deficit due to both the presence of pulsating

dynamics and 1D momentum and heat losses was under-predicted by the analytical model.

On the other hand, we reported the presence of transverse waves for simulations with

Ea/RT0 = 10 and 20 as well as for higher values of Ea/RT0. Consequently, the differences

between the WK model and the numerical results for activation energies higher than 30

cannot be uniquely and directly due to the existence or absence of the cellular structure.

Rather, it may be related to the nature of the cellular structure. As it will be addressed

in the next subsections, the transverse waves range from simple ’acoustic’ perturbations to

much stronger waves essential to the detonation propagation.

If the height of the reactive layer is smaller than a critical value hlim, the detonation fails

to reach its autonomous state of propagation, and quenches. This critical height depends

on the reduced activation energy, as it can be observed in the Table II. As expected, the

critical velocity deficit Dlim increases with the activation energy for both the WK model and

the bi-dimensional results. In addition, regardless of the value of Ea/RT0, the WK model

under predicts the critical velocity deficit of the detonation compared to the values from

the numerical simulations. The present results are in accordance with the recent numerical

results of Borzou and Radulescu58 on weakly unstable detonations, who have studied the

behavior of detonations subject to a constant geometric mean flow divergence.

These initial results demonstrate the existence of two distinct behaviors. The first one

corresponds to the physics described by the WK model and to the mixtures with a low

activation energy. The second one is related to the more unstable mixtures for which the

hypotheses of the steady model and laminar Eqs. 5 are unsatisfactory.
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hlim/l1/2 hlim/λ Dlim/DCJ (Dlim/DCJ)WK

Ea/RT0 = 10 14.5 1.01 0.78 0.56

Ea/RT0 = 20 34.1 1.82 0.86 0.74

Ea/RT0 = 30 149 6.44 0.91 0.85

Ea/RT0 = 38.23 462 20.0 0.96 0.88

Table II: Summary of the data about the limit of the detonation propagation obtained

from the bi-dimensional simulations and the WK model.

B. Global features

This subsection is devoted to the study of the instantaneous features of the flow field

in order to address the differences obtained previously between the different mixtures and

shown in Section IV A.

1. Ea/RT0 = 20

The two snapshots shown in the Figure 7 illustrate the propagation of the detonation-

shock combined wave with a velocity deficit of 4%. The mixture is characterized by a reduced

activation energy Ea/RT0 = 20 and the reactive layer height is h = 82.6 l1/2. The detonation

has travelled about 2,000 l1/2 (' 20λ), ensuring independence from initial conditions. During

the first transients, the detonation is overdriven as a result of the initiation process, which

consists of an high-pressure burst. The detonation then relaxes to the quasi-static state

of propagation. The Figures 7(a) and 7(b) display the temperature field T normalized by

T0 and the mass fraction field Y , respectively. The Figure 7(a) allows the identification

of the main features of the combined wave: the detonation front, the oblique shock wave

and the interface between the burned gases and the inert gas. This picture also attests to

the presence of transverse waves, moving back-and-forth in a transverse manner. Therefore,

the detonation front presents irregularities due to the alternation between the Mach stems

and the incident shocks. The velocity disparities between these two shocks lead to local

variations of the curvature. The trajectory of the triple points as they move upward beyond

the reactive layer is responsible for the saw-tooth shape of the interface between the burned

gases and the inert gases. The triple point collisions produce two jets of hot gases oriented
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(a) Temperature T/T0 (-) (b) Mass fraction Y (-)

Figure 7: Propagation of a detonation-shock combined wave in a mixture with

q/rT0 = 23.81, Ea/RT0 = 20 and γ = 1.333. The reactive layer width is h = 7.5 mm, i.e.

h = 82.6 l1/2. The spatial dimensions are normalized by l1/2.

upstream and downstream, which can be seen on the temperature field. Each of these jets

generates a vortex roll on both sides of their axis. Picture (b) also indicates that a small

amount of unburned gases is still persistent downstream of the detonation wave. These gas

pockets are created along the detonation front when the triple points collide into each other

or escape the reactive layer toward the inert medium. The pockets formed along the front

are consumed in less than a cell size. The structure of the front is locally similar to the OH

fluorescence images obtained by Pintgen et al.59 for a diluted H2-O2 mixture.

The triple points trajectories form the cellular structure of the detonation, as depicted

by the Figure 8. These numerical soot plates were obtained by saving the maximum value

of pressure in cells of the most refined part of the computational domain. The upper plate

relates to a detonation in a channel where the boundaries are solid walls. In this case, the

cell size is small compared to the width channel to ensure that there is no acoustic coupling

with the channel. The lower plate illustrates the cellular structure of the detonation-shock

combined wave with a reactive layer height h = 82.6 l1/2. The comparison of the two figures

indicates that the irregularity of the cellular structure increases as the detonation experiences
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(a)

(b)

Figure 8: Maximum pressure field illustrating the cellular structure for Ea/RT0 = 20. Top:

Field (a) depicts the cellular structure of a detonation propagation in a channel. Bottom:

Field (b) represents the cellular structure of the combined wave with h = 7.5 mm, i.e.

h = 82.6 l1/2. The spatial dimensions are normalized by l1/2 and the pressure is given in

MPa.

losses. The detonation cells are enlarged by a factor of 1.5 relatively to the size obtained in

the channel with solid walls. A similar behavior was reported in both experimental32 and

numerical60 studies on the propagation of gaseous detonation in channels with porous walls.

The cell axis is also deviated toward the upper part. Moreover, the Figure 8(b) reveals that

the evolution of the cell size follows a cyclic pattern. During the detonation propagation, the

transverse waves propagate through the interface between the reactive layer and the inert

layer without any reflection. Therefore in the absence of generation of new triple points,

the transverse wave number decreases and the cell size increases. The formation of new

triple points only occurs when the decoupling between the incident shock and the reaction
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Figure 9: (a) Left: Profile of the detonation-shock combined wave at different time-steps

(blue) and averaged profile (red). (b) Right: Instantaneous (black) and averaged (red)

velocity of the detonation measured at the bottom wall. (b) The coordinates are

normalized by the half-reaction length l1/2. The reduced activation energy is 20. The

interface is located at 82.6 l1/2.

zone appears to be imminent. At this time the detonation velocity is well short of DCJ.

This seems to indicate that even though the mixture is characterized by a regular cellular

structure, the generation of new transverse waves is affected by the losses.

The Figure 9 (a) presents the position of each point constituting the detonation-shock

combined wave at different time steps of the simulation. 250 profiles xs(y, t), extracted every

1,000 iterations, are superimposed on each other. The mean profile was calculated during the

simulation by means of the averaging method introduced previously and is displayed in red.

In order to facilitate the analysis, each curve xs(y, t) was plotted in the coordinates of the

instantaneous position of the shock at the bottom wall, x′s(y, t) = xs(y, t)−xs(0, t). Because

of the dynamics of the front, i.e. the cellular structure of the detonation, the instantaneous

profiles are located on either sides of the mean curve. Due to the Prandtl-Meyer expansion

centered at the intersection between the leading shock and the interface between the inert

and reactive gases, the average detonation front exhibits a global curvature due to the losses.
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The Figure 9 (b) also emphasizes this variability. The local velocity of the detonation

measured at the bottom wall y = 0 and normalized by the CJ velocity is shown as a function

of the distance traveled by the front. These fluctuations are ranging from 0.8 D to 1.4 D

and can be correlated to the quasi-periodic impacts of the triple points against the wall.

The velocity reaches a maximum during the triple point collision, then decays as the Mach

stem and evolves to an incident shock. This is due to local gradients of the reactivity and to

the curvature. The averaged velocity of the detonation is plotted in red and shows a deficit

as compared to the CJ value.

2. Ea/RT0 = 30

A greater activation energy increases the mixture sensitivity to temperature fluctuations.

The reaction rate variations are wider than for stable mixtures with a lower activation energy.

Thus, the flow field exhibits a more complicated structure as attested by the Figure 10. The

four pictures feature a detonation propagating in a reactive layer with h = 170.7 l1/2. The

velocity deficit is 7% as compared to the CJ velocity. As in the preceding section, the same

global features can be retrieved: main curved detonation front, oblique shock front and the

interface between the burned gas and the inert gas. However, these elements are much more

irregular than previously observed on the combined wave with Ea/RT0 = 20. The curvature

variations of the front increase locally and the interface shape loses in regularity. Because of

the reaction rate sensitivity to these local perturbations, the induction length between the

incident shock and the onset of the exothermic reaction grows larger. Consequently, fresh

gases accumulate behind the incident shock and along the shear layer, as attested by the

mass fraction field. These unburnt gas pockets, which are convected downstream of the front

result from the collision of triple points. The unburnt pockets are larger, more numerous

and remain longer than for lower activation energies. Even if most of the unreacted material

seems to be consumed within the distance of a cell size, some pockets persist throughout

the end of the domain. In that case, the energy released after the characteristic line i.e.

the sonic line does not contribute to the detonation propagation and therefore increases the

velocity deficit. These pockets of fresh gases, of which boundaries are prone to increase due

to the hydrodynamic instabilities, burn along their interfaces with the surrounding hotter

gases and also consume in volume. These phenomena are responsible of the chaotic aspect
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(a) Temperature T/T0 (b) Mass fraction Y

(c) Pressure P/P0 (d) Density schlieren S

Figure 10: Propagation of a detonation-shock combined wave in mixture with

q/rT0 = 23.81, Ea/RT0 = 30 and γ = 1.333. The reactive layer width is h = 15.5 mm i.e.

h = 170.7 l1/2. The spatial dimensions are normalized by l1/2.
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(a)

(b)

Figure 11: Maximum pressure field illustrating the cellular structure for Ea/RT0 = 30.

Field (a) depicts the cellular structure of a detonation propagation in a channel. Field (b)

represents the cellular structure of the combined wave with h = 15.5 mm, i.e.

h = 170.7 l1/2. The spatial dimensions are normalized by l1/2 and the pressure is given in

MPa.

of the flow field as it can be seen in the Figure 10 (d).

The Figure 11 shows the maximum pressure field of the detonation-shock combined wave

and illustrates the cellular structure. As it was noted for a mixture with Ea/RT0 = 20,

the degree of irregularity of the detonation cells is increased by the presence of the inert

layer, as compared to the case without loss. However, unlike the aforementioned case with

a lower reduced activation energy, the average cell size does not enlarge, even if a much
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Figure 12: Profiles of the detonation-shock combined wave at different time-steps (blue)

and averaged profile (red). (a) Instantaneous (black) and averaged (red) velocity of the

detonation measured at the bottom wall. (b) The coordinates are normalized by the

half-reaction length. The reduced activation energy is 30. The interface is positioned at

170.7 l1/2.

wider cell size spectrum can be seen. The detonation locally failed on a large part of the

reactive layer, as it can be seen through the deformed and enlarged detonation cells in the

lower part of the domain between the abscissa of 8050 and 8300. Nevertheless the detonation

continues its propagation because of the re-initiation of new triple points on either side of the

quenching area. This demonstrates the significance of the transverse waves in the sustained

propagation of the detonation in an unstable mixture.

The front dynamics is illustrated in the Figure 12. The different profiles of the leading

fronts are plotted in Figure 12a. As compared to the case Ea/RT0 = 20, the envelope of the

2D profiles is larger. They are much more scattered around the mean value. Outside of the

central core where the majority of the profiles are located, one may remark the presence of

isolated profiles. They denote the existence of rare events of strong amplitude (up to two cell

size) such as explosions and local failures. These profiles exhibit abrupt variations and large

cusps at the triple point locations. Moreover, the detonation velocity fluctuations on Figure
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12b are much higher: 0.6 ∼ 1.8D̄. One can foresee local failure at 2.9× 10−3x/l1/2 and this

can be correlated to the most distant profile from the mean. These two figures illustrate the

key role played by the regeneration of triple points and the associated transverse waves. The

analysis of the flow field and its characterization through numerical soot plates, detonation

velocity on the wall and the evolution of the detonation profiles confirm the contrast between

the two families of detonation. The role played by the transverse waves differ, leading to

differences in the propagation mechanism. Consequently, the effects induced by the weak

confinement are different.

C. Averaged Structure

The results presented in the two previous sections highlight the prevalence of transverse

wave interactions and triple point regeneration over the laminar detonation structure in the

unstable mixtures. In order to quantify these discrepancies with the generalized ZND theory

and to analyze the influence of the gaseous confinement, the Favre61 averaged profiles of the

detonation along the bottom wall were calculated. The Favre average of any variable φ is

then given by

φ̃ =
ρ̄φ

ρ̄
(11)

As previously mentioned, the front localization occurred via the detection of the first pressure

rise. The time averaging process took place in the instantaneous leading shock frame of

reference, and was achieved through the method described in the Section IV A.

The averaged profiles of the pressure ratio p̄/p0 are displayed in the Figure 13 for

Ea/RT0 = 20, Ea/RT0 = 30 and Ea/RT0 = 38.23, for different values of the deficit en-

dured by the detonation. As for the mixture with the low reduced activation energy of

20, the profiles obtained as an outcome of the bidimentional simulations are close to the

respective WK solutions whatever the velocity deficit endured by the detonation. Hence the

effects of the weak confinement for such a stable detonation are faithfully modeled by the

steady model. The residual differences between the model and the bidimensional simula-

tions are thus only induced by the inviscid cellular structure. As the height of the reactive

layer decreases, inducing more losses, the pressure field downstream of the detonation front

is damped.
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Figure 13: Average pressure profiles (solid lines) obtained for Ea/RT0 = 20 (a),

Ea/RT0 = 30 (b) and Ea/RT0 = 38.23 (c). Comparison with the WK model (broken lines).

As for the mixtures with Ea/RT0 = 30 and 38.23, the differences as the losses are increased

are less marked. Moreover, no similarities were obtained between the WK model and the

unsteady simulations. The pressure profiles seem to have been stretched as the activation
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energy is increased.

The Figure 14 shows the Favre-averaged mass fraction Ỹ as a function of the distance

downstream of the detonation front for different values of the activation energy and velocity

deficits. Once again, very few differences exist between the unsteady results and the WK

model for the mixture with Ea/RT0 = 20, confirming previous findings. The weak confine-

ment increases the distance required to perform the chemical reaction, which is consistent

with the reduction of the mean pressure observed in the Figure 13. Once again, the dif-

ferences increase for higher activation energies and losses. The chemical length scale has

increased by a factor of almost three as compared to the one inferred by the ZND model and

is lower than the cell size. The fluctuations remove part of the sensitivity of the mixture

reactivity, feature highlighted by Radulescu et al.62 for unstable detonations and by Sow et

al.57 for 1D mildly unstable detonation with losses.

The reaction zone complexity in irregular detonations challenges the validity of the length

scale based on the ZND model, such as the half-reaction length. This issue led to several

attempts to define new length scales that can take into account the hydrodynamic fluctua-

tions of the reaction zone. Soloukhin63 was the first to address this topic and to introduce

the concept of hydrodynamic thickness, which differs from the classical shock reaction zone.

It was defined as the distance after the leading shock beyond which the non-steady gas dy-

namics no longer affect the chemical and hydrodynamic processes sustaining the detonation

propagation. More recently, Lee and Radulescu64 considered the averaged position of the

sonic surface as the hydrodynamic thickness boundary. By definition, in the shock coordi-

nates, this surface propagates at c̃, which ensures that any perturbation arising behind it

cannot affect the reaction zone44.We aim to investigate the evolution of this quantity along

the bottom wall with the variations of the activation energy and of the reactive layer height.

The Figure 15 displays the evolution of the Favre-averaged Mach number ũ/(γp̄/ρ̄)1/2 as

a function of distance from the front along with the results obtained via the WK model.

For the case with Ea/RT0 = 20, the length of the hydrodynamic thickness calculated with

the steady model does not depart significantly from the unsteady results. The values ob-

tained are of the same order of magnitude as those experimentally measured for the diluted

mixtures65 (up to one cell size). The increase of the velocity deficit leads to a slight reduction

of the hydrodynamic thickness. Unstable detonations react in an opposite way to the weak

confinement. For this type of mixture, the hydrodynamic thickness increases with the veloc-

27



0 5 10 15 20
x/ l1/2

10−3

10−2

10−1

100
Ỹ
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Figure 14: Average mass fraction profiles (solid lines) obtained for Ea/RT0 = 20 (a),

Ea/RT0 = 30 (b) and Ea/RT0 = 38.23 (c). Comparison with the WK model (broken lines).

ity deficit. The Table III synthesizes these results. The instabilities in irregular detonations

tend to delay the position of the sonic plane. We observe an increase of the hydrodynamic

thickness of one up to three times the cell size for the mildly unstable case studied here.
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Figure 15: Average Mach number profiles (solid lines) obtained Ea/RT0 = 20 (a) and

Ea/RT0 = 30 (b) and Ea/RT0 = 38.23 (c). Comparison with the WK model (broken lines).

This trend is consistent with experimental measurements of the hydrodynamic thickness64,66.

The increase of xHT is thus mainly due to the increase of the activation energy.

In order to quantify the magnitude of these fluctuations, the Favre-average energy dis-
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Figure 16: Average energy repartition obtained for Ea/RT0 = 20 (a), Ea/RT0 = 30 (b) and

Ea/RT0 = 38.23 (c). Internal energy (curve 1), chemical energy (curve 2), kinetic energy

(curve 3) and energy of the mechanical fluctuations (curve 4). The latter have been

normalized by the total energy.
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D/DCJ Ea/RT0 = 20 Ea/RT0 = 30 Ea/RT0 = 38.23

Dlim/DCJ 0.45 1.77 3.3

Table III: Values of the normalized hydrodynamic thickness xTH/λ obtained for the critical

velocity deficit and different activation energies from unsteady simulations.

tributions presented in the Figure 16 describe the relative contribution of each term of the

energy conservation equation following the approach of Radulescu et al.62. The internal

energy is ẽ, the chemical energy Ỹ q, the kinetic energy is (ũ2 + ṽ2)/2, which simplifies to

ũ2/2 on the wall. The energy of the mechanical fluctuations refers here to k = (ũ”2+ ṽ”2)/2,

which is equal to ũ”2/2 on the wall, as the spanwise velocity is zero on the wall. The latter

k is computed as Ẽ − ũ2/2 − ẽ − Ỹ q. The kinetic energy continues to grow as the Mach

number of the mean flow increases. The chemical length related to the completion of the

reaction increases with the activation energy and varies from 0.2 λ to 0.7 λ. The energy

carried by the fluctuations grows through the subsonic zone, and remains stable after the

sonic locus. According to the mixture stability, the relative part of the fluctuations rises

from 1% to 4.5% to the detriment of the kinetic and internal energies.

These findings corroborate the existence of a distinct propagation mechanism for the

more unstable mixtures. As the mixture gains in instability, the hydrodynamic thickness as

well as the reaction length increase. Moreover, the influence of the weak confinement leads

to different effects according to the regularity of the cellular structure. In particular, the

hydrodynamic thickness is reduced by the weak confinement in the case of stable detonations

whereas for unstable mixtures this distance increases slightly. One may also remark that

despite the intensity of hydrodynamic fluctuations at the center of the cell, the energy of

the mechanical fluctuations remains relatively weak behind the shock.

D. Failure mechanisms

We further analyzed the flow fields to study the mechanisms accounting for the detonation

failure when the reactive layer height is suddenly decreased below the critical value hlim. In

order to catch this transient phenomenon, the detonation propagated first in a gaseous layer

slightly larger than the critical height. Then, when a mean detonation velocity was reached,
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the reactive layer height was reduced under the critical value hlim. From that moment on,

the detonation quenched more or less quickly depending on the detonation stability.

As for the mixtures characterized by Ea/RT0 = 10 and 20, the flow field is fully laminar

for reactive layer heights close to the critical value and the cellular structure is absent. Thus,

the flow divergence coming from the interactions with the inert layer only acts on the frontal

curvature. When the reactive layer height becomes too small, the curvature progressively

increases until a global decoupling of the reaction zone from the leading shock occurs. The

simulation was performed with reactive layer heights from h = 3.5 mm to h = 2.5 mm for

Ea/RT0 = 20.
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(g) (h)

Figure 17: Propagation and failure of a detonation-shock combined wave in a mixture with

q/rT0 = 23.81, Ea/RT0 = 30 and γ = 1.333. Fields of density normalized by ρ0 (left,

logarithmic scale) and mass fraction (right). The reactive layer width is initially

h = 13.5 mm i.e. h = 148.7 l1/2 and is reduced to h = 12.5 mm i.e. h = 137.6 l1/2 . The

spatial dimensions are normalized by l1/2

For higher activation energies (i.e. Ea/RT0 = 30 and 38.23), transverse waves are present

whatever the reactive layer height. The divergence losses influence not only the overall

curvature of the front, but also the irregular cellular structure of the detonation. We carried

out with a simulation with reactive layer height decreasing from h = 13.5 mm to h = 12.5 mm

for Ea/RT0 = 30. The Figure 17 presents the evolution of the detonation-shock combined

wave as the failure occurs. The two first frames depict the detonation propagating in the

reactive layer before the height reduction. As the reactive layer height is suddenly decreased,

the cell size increases as well as the distance between the incident shock and the reaction

zone. Consequently, a larger amount of gas is torn off from the front during the triple

point collisions. Then the number of non-reacted gas pockets, their size and their depth of

penetration increase progressively. As most of the pocket burning process occurs beyond

the sonic line, their combustion does not contribute anymore to the detonation propagation.

Ultimately, there is a local decoupling and the transverse waves are not able to initiate the

detonation on one part of the front, as it can be seen in the Figure 17 (h). In this frame the

lower part of the detonation is quenched, whereas the upper part continues its propagation.

Finally, the failure extends on the whole front. The cellular structure associated to this

sequence is shown in the Figure 18. Once the reactive layer height is decreased below
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Figure 18: Maximum pressure field illustrating the cellular structure of a detonation

undergoing failure for Ea/RT0 = 30. The spatial dimensions are normalized by l1/2 and the

pressure is given in MPa. The position of the interface (dotted line) is initially

h = 13.5 mm i.e. h = 148.7 l1/2 and is reduced to h = 12.5 mm i.e. h = 137.6 l1/2. Each

field corresponds to a different instant.

hlim, the rate of generation of new triple points slowly decays, leading to the failure of the

detonation. The cellular structure disappears over a distance of approximately 20 λ. This

length seems to be of the same order than the back-and-forth trajectory followed by the

transverse waves starting from the interface toward the bottom wall. This could indicate

that the information about the height of the reactive layer, and thus about the failure, is

propagated by means of the transverse waves.

The study of the failure process occurring when the losses become too strong confirms

the significance of the transverse waves for the unstable mixtures. Our simulations shows

that in this case, as the height of the reactive layer became smaller, the generation rate of

new triple point was insufficient to prevail over the detonation quenching. Radulescu and

Lee32 supported this observation through the analysis of open shutter photographs. For the
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argon diluted mixture, they associated the detonation failure to the progressive increase of

the front curvature whereas for the unstable mixture the elimination of transverse waves

was at the root of the quenching process.

V. DISCUSSION

The simulation of detonations confined by an inert gas layer for several activation energies

has confirmed the existence of two different behaviors concerning the detonation propagation.

In our study, the results obtained from the WK model and from the numerical simulations

greatly differ according to the stability of the mixture. While keeping the half-reaction

length constant, the irregularity of the cellular structure was controlled through the value

of the activation energy. Moen et al.67 were among the first to put in doubt the universality

of the detonation behavior. They performed velocity measurement for detonations propa-

gating in tubes of various diameters. The results obtained for argon-diluted mixtures were

remarkably predicted by Fay’s theory unlike non-diluted mixtures. Comparable studies68–70

led to similar results, as well as experimental investigations related to the detonation propa-

gation in tubes with porous walls32. The consistency of the models for the diluted mixtures

with a regular cellular pattern indicates that a shock compression followed by an exothermic

reaction adequately describes the propagation mechanism in this case.

The adequacy between the WK model and the numerical results for low activation energy

confirms this propagation mechanism. For low activation energy - very regular and weakly

unstable detonations - all the curves match the WK model (see Figure 5). As the activation

energy is increased, more modes of longitudinal instabilities are activated and the depar-

ture from the WK model is then clear. When losses are present, we can notice that as the

velocity deficit increases, the cell irregularity grows. This is consistent with experimental

findings concerning detonations subjected to losses via porous walls32. Moreover, the scaling

-detonation velocity vs. curvature breaks down even if the half-reaction length and the cell

sizes are roughly the same for the two mildly unstable cases investigated here.

As for the hydrodynamic thickness, the values derived from the numerical simulations

are in line with experiments65,71. They increase with the cell irregularity, as well as with

the losses, which is also coherent with experimental findings. The numerical results also

show that their variation is more pronounced with the increase of the cell irregularity than
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with losses. Indeed, the presence of the mechanical and thermal fluctuations delayed the

averaged sonic boundary far from the end of the main heat-release reaction zone. The end

of the mean subsonic reaction zone thus corresponds to the stabilization of the production

of these fluctuations and the presence of a small heat-release zone. We have also shown from

the mean profiles along the bottom wall, that the subsonic zone has been lengthened as

compared to the WK model. Moreover, the chemical length gets thicker. This suggests that

the fluctuations have removed part of the sensitivity of the mixture reactivity to temperature.

However, the increase of the cell size due to losses is not as stringent as in the recent

experiments of Jarsalé et al.72, even if the losses were volumetric and induced by the presence

of a spray of fine water droplets.

The detonation front presents a global curvature coming from the Prandtl-Meyer expan-

sion, which depends on the height of the reactive layer. The detonation front consists of many

sections which are locally convex towards the upstream flow30. They are deviated towards

the averaged leading curved detonation front. As Ea is increased, rare events of stronger

amplitude appear. The leading front is composed of fewer sections of larger convexity. The

propagation of unstable detonations is a succession of local failures and pointwise explosions

(see Figure 12). Indeed, the reaction zone progressively draws away from the shock, until a

transverse wave reinitiates the exothermic reaction. Regeneration of new triple points and

transverse waves can be correlated with the greater bulbs and more pronounced cusps of

the detonation profiles as well as the greater excursions from the mean of the detonation

velocity. The amplitude of these events, as well as their regularity are directly linked to the

activation energy and to the losses to a smaller extent.

The importance of these transverse waves has also been highlighted in §IV D. The decay

of the detonation front up to failure seems to be diffusion-like for detonations with low

activation energy73, as the decay occurs in a very progressive manner. In this case, the

failure is uniquely due to the front curvature. In the case of unstable detonations, the

quenching arises more suddenly as the information of the expansion from the top layer was

brought by discrete transverse wave collisions down to the bottom wall.

In the present study, the minimal height of the reactive layer allowing the successful

propagation of the detonation increases with the activation energy. However, various results

from experimental investigations suggest that as the losses endured rise, unstable detona-

tions are more robust than regular ones. For instance, it has been shown that successful
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transmission of the detonation in an unconfined space depends on the mixture regularity10.

The argon-diluted mixtures follow a dc/λ ' 20 ∼ 30 correlation whereas the unstable ones

behave according to a dc/λ ' 13 correlation. Experimental study with porous wall effects

by Radulescu and Lee are also in line with this conclusion. They obtained a critical channel

height smaller for unstable mixtures than for diluted-regular ones. A similar trend was no-

ticed in studies addressing the influence of the boundary layer on a detonation propagating

in small diameter tubes68–70. However, the critical height (20λ) obtained in our simulations

for the most unstable mixture approaches the upper limit of the sizing rule recommended

by Bykovskii et al2. They stated that the minimal height of fresh mixture in a rotating

detonation engine must range between (12± 5)λ to ensure the propagation of a detonation

wave. Although most of the other experimental studies15,18,21,23–26,74,75 concerning detona-

tions bounded by an inert layer indicated a much lower limit, the experimental conditions

such as the nature of the inert boundary, the geometry of the experiment or the presence

of a film at the interface might affect the results. If the thickness of the film separating

the reactive and inert layers is too large, it partially acts as a rigid interface of which the

inertia cannot be neglected in the detonation dynamics76,77. Experimental results of the

same order of magnitude than in our study were obtained for free columns of reactive gases

without any film22,76,78. The rate of gasdynamic expansion also depends on the experimental

apparatus: the losses are more important in the case of a cylindrical free charge without any

solid boundary than for a rectangular channel with three solid walls and one free boundary.

All these differences between the experiments make it difficult to comprehend the predictive

quality of the simulation results.

As for the different trends between stable and unstable mixtures, most numerical inves-

tigations on this topic reach the same conclusions as our numerical results. Sow et al.57

performed one-dimensional simulations of mildly unstable detonation with friction losses.

They showed that as the diameter of the tube decreases, pulsating detonations are more

subject to failure than the stable ones. The critical diameter under which quenching was

observed increased with the activation energy. A similar behavior has been encountered by

Mazaheri et al.60 in their numerical study of detonations propagating in a porous tube. In

an argon-diluted mixture, the failure occurred with one detonation cell present within the

flow field whereas for non-diluted mixtures the quenching arose with the presence of several

transverse waves. One exception is that of Li et al.29, where the detonation resilience to
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failure was enhanced with the presence of upstream initial heterogeneities, even though the

chosen kinetics and thermodynamic parameters did not ensure the intrinsic development of

the cellular structure.

In our study, Ea/RT0 was the sole parameter which controls the level of the cell irreg-

ularity. From the classification of Strehlow30, we can say that it ranges from the excellent

to the poor cases. There are great similarities between the phenomenology brought about

the numerical results and experimental findings, even if experiments also referred to more

irregular mixtures with substructures, which are more sensitive to temperature fluctuations.

In our simulations, the velocity deficit increases with the activation energy, as illustrated in

the Figure 6. Moreover, elements relative to the near-limit behavior are not reproduced, in

particular the robustness of unstable detonation in comparison with stable ones. As Ea is

increased, the cell size remains roughly constant, but the irregularity increased with a wider

spectrum of cell sizes. This means that the reservoir of hot spots is increased. Nevertheless,

this is not sufficient to balance the losses and to prevent quenching. Indeed, the discrete

transverse wave collisions transport efficiently the losses coming from the top layer expan-

sion. However, the corresponding hot spots are not energetic enough and not sufficiently

sensitive to the temperature fluctuations, as overall the pressure waves which run through

the subsonic zone and hydrodynamic fluctuations also act to remove part of the thermal sen-

sitivity of the mixture. The transverse waves are here inefficient to reinitiate the detonation.

The difficulties to retrieve the behavior at detonation limits in the case of unstable detona-

tions, can be due to the shortcomings of the model employed58. Three-dimensional effects

can be expected, as this can enhance the occurrence of hot spots and thus the probability

of reinitiating the detonation. This is a critical issue for the proper comparison with the

experiments in rectangular channels, in which transverse waves are propagating in the third

dimension. Another probable reason could be due to the burning mechanism. Althought

the most irregular mixture of the study is only mildly unstable, it has been shown that

the losses play a destabilizing role in the dynamics of detonation55,79. Unstable detonation

feature layers, ligaments of fresh gases which burn as shock-compressed pockets of gases

detached from the leading shock via nonequilibrium reactive compressible turbulence80,81,

shock-shock and shock-vortex interactions. These phenomena are amplified near the limits

of propagation.

The existence of these pockets was reported in numerous experimental investigations.
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Subbotin82 was the very first to observe islands of unburnt gases behind the detonation

front. This was confirmed through the study of Austin et al83, who visualized the pockets

by the means of OH fluorescence images. They were seen to be consumed within the dis-

tance of one cell size62. Kiyanda et al.80 performed high-speed Schlieren and self-emitted

light photographs in highly irregular mixtures and demonstrated that 40% of the fresh gases

engulfed in pockets of unburned gases, are consumed via turbulent mixing between hot and

cold gases. This is enhanced by the presence of hydrodynamic instabilities (Richtmyer-

Meshkov, Rayleigh-Taylor, Kelvin-Helmholtz)62,84,85. This analysis questions the suitability

of the Euler equations concerning the simulations of very highly unstable detonations. The

unburnt pockets combustion exclusively occurs via the numerical diffusion, and hence de-

pends on the calculation resolution as well as the order of the scheme used. The role played

by the diffusion in the detonation propagation was addressed in several papers86–88. The

large-scale coherent structures, small-scale elements and the mixture sensibility may influ-

ence the burning delay of the unreacted pockets and therefore the propagation limits of

the detonation. However, the implementation of the Navier-Stokes equations in order to

get more physical results is not straightforward. Indeed, it has been shown that a very

high resolution in needed in order to fully resolve the scales present within the flow field62.

Less than 300 points per half reaction length lead to results similar to the Euler equations

outcome86. Such a resolution, which is one order of magnitude larger than the one employed

in the present manuscript, is beyond our computational capabilities and would prevent from

performing this parametric study.

As far as the cell structure is not highly irregular, the reactive Euler equations can be

used. Indeed, mean quantities such as the detonation velocity, the global curvature, the

pressure and the Mach number profiles are barely affected.

VI. CONCLUSION

This numerical study takes an interest in the role played by a gaseous boundary on the

detonation propagation. Mixtures of various activation energies were investigated from a

very regular to a mildly unstable which corresponds to a stoichiometric hydrogen—oxygen

mixture at one atm. The detonation evolved in reactive layers of different heights to vary

the losses endured by the front. The influence of the inert confinement differs according to
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the mixture sensitivity. The WK model is relevant in the case of low activation energies but

not for the weakly unstable ones. Major discrepancies in the propagation mechanism are at

the root of these differences. In unstable mixtures, the generation of new triple points is the

keystone allowing the propagation of self-sustained detonations. Moreover, non-negligible

amount of unburnt gases are convected downstream of the front, enhancing the flow field

complexity in the course of their combustion. These intrinsic features of mildly unstable

detonations were satisfactorily simulated in the numerical results. The analysis of the flow

field and the Favre averaged quantities along the bottom wall are in accordance with the

experimental findings: the velocity deficit increases with the cellular structure irregularity

and the values of the hydrodynamic thickness are in agreement with the ones derived from

experiments. The critical height of propagation is found to be in line with the criterion

calculated by Bykovskii et al.2. However, the discussion in relation to other detonation

experiments with losses questions the specificity of this configuration, how the regeneration

of transverse waves can enhance the detonation resistance to failure, as well as the models

employed in the case of highly unstable mixtures.
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