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TABLE I
IEEE FORMATS AND RPFP’S REDUCED-PRECISION FORMATS

Data type Data size Format (bits) Unit
(bits) s:sign, e:exp, m:mantissa roundoff

binary64 (FP64) 64 s(1)+e(11)+m(52) 2−53

FP64in56b (RP56) 32+16+8 s(1)+e(11)+m(44) 2−45

FP64in48b (RP48) 32+16 s(1)+e(11)+m(36) 2−37

FP64in40b (RP40) 32+8 s(1)+e(11)+m(28) 2−29

binary32 (FP32) 32 s(1)+e(8)+m(23) 2−24

FP32in24b (RP24) 16+8 s(1)+e(8)+m(15) 2−16

binary16 (FP16) 16 s(1)+e(5)+m(10) 2−11

FP32in16b (RP16) 16 s(1)+e(8)+m(7) 2−8

FP16in8b (RP8) 8 s(1)+e(5)+m(2) 2−3

Abstract—This study explores the potential for performance
improvement in the adaptive-precision sparse matrix-vector
product (SpMV) (Graillat et al. 2023) by using reduced-precision
formats other than the IEEE standard ones. In addition to
FP32 and FP64, we consider to utilize reduced-precision formats
of 8/16/24/40/48/56-bit length. Our evaluation compares the
performance of four- and nine-precision versions with that of
the existing two-precision only version using FP32 and FP64 and
demonstrates the effectiveness.

Index Terms—sparse matrix-vector product (SpMV), mixed-
precision, adaptive-precision, reduced-precision

I. INTRODUCTION

The adaptive-precision sparse matrix-vector product
(SpMV) [1] is a mixed-precision computation method for
SpMV. It eliminates unnecessary bits on each element of
the input matrix that do not contribute to the computed
result at a target accuracy, and stores only the necessary
bits with a possible minimum precision representation (or
simply the element is dropped if all the bits are unnecessary).
The reduced memory footprint is expected to result in
faster execution time. The performance gain has so far
been demonstrated only using the two-precision levels
of IEEE FP32 and FP64 formats. In this study, through
a reduced-precision memory accessor, we utilize some
reduced-precision formats other than FP32 and FP64, such
as 8/16/24/40/48/56-bit formats. Then, we demonstrate the
performance with four- and nine-precision levels compared
with the two-precision version on many-core CPUs.

Algorithm 1 Adaptive-precision SpMV y = Ax

1: for i = 1 : m do
2: for k = 1 : q do
3: y

(k)
i = 0

4: for j ∈ Bik do
5: y

(k)
i = y

(k)
i + aijxj in precision uk

6: end for
7: end for
8: yi =

∑q
k=1 y

(k)
i in precision u1

9: end for

II. METHODS

A. Adaptive-precision SpMV

The adaptive-precision SpMV decomposes the input matrix
into several low-precision matrices of different precision for-
mats and then computed the sum of the SpMVs for the decom-
posed low-precision matrices. Algorithm 1 shows the adaptive-
precision SpMV computing y = Ax, where A ∈ Rm×n and
x ∈ Rn, with q precision levels u1 < u2 < ... < uq , where uk

(k = 1, ..., q) denotes the unit roundoff of each precision used.
Each row i of A is partitioned into q buckets Bik, which is
determined such that the backward error (see [1] for definition)
is at most in O(ϵ), where ϵ ≥ u1 is a target accuracy, as

Bik = {j ∈ Ji : |aijxj | ∈ (ϵθi/uk+1, ϵθi/uk]},

where Ji is the set of indices of nonzero elements in row i
of A. For θi, θi = ||A|| is used to satisfy the norm-wise error
and θi = |ai|T e, where e = [1, ..., 1]T , is used to satisfy the
component-wise error.

B. Reduced-precision formats

A reduced-precision memory accessor, RpFp [2], enables
one to represent arbitrary precision mantissa in multiple bytes
in C/C++ language by truncating the IEEE formats, as shown
in Table I. For 24/40/48/56-bit formats, a reduced-precision
value is represented as a structure with multiple words, and
when allocating the array of the structure, an array is allocated
for each word separately for efficient memory access (the



1 void ap_csrmv (int n, rpMultiCSR A, double* x, double* y) {
2 #pragma omp parallel for
3 for (int i = 0; i < n; i++) {
4 double tmp = 0.;
5 for (int k = A.ia8[i]; k < A.ia8[i+1]; k++) { // RP8
6 float aij_r = RpArrayToFp(A.a8, k);
7 tmp += (double)(aij_r * x[A.ja8[k]]);
8 }
9 for (int k = A.ia16[i]; k < A.ia16[i+1]; k++) { // RP16

10 float aij_r = RpArrayToFp(A.a16, k);
11 tmp += (double)(aij_r * x[A.ja16[k]]);
12 }
13 ...
14 for (int k = A.ia56[i]; k < A.ia56[i+1]; k++) { // RP56
15 double aij = RpArrayToFp(A.a56, k);
16 tmp += aij * x[A.ja56[k]];
17 }
18 for (int k = A.ia64[i]; k < A.ia64[i+1]; k++) { // FP64
19 double aij = A.a64[k];
20 tmp += aij * x[A.ja64[k]];
21 }
22 y[i] = tmp;
23 }
24 }

Fig. 1. Adaptive-precision SpMV with nine precision levels (a part).
RpArrayToFp converts a reduced-precision format to the IEEE format.

TABLE II
TEST MATRICES (SORTED BY nnz ).

# Matrix n nnz

0 vas stokes 4M 4,382,246 131,577,616
1 Cube Coup dt0 2,164,760 127,206,144
2 Flan 1565 1,564,794 117,406,044
3 Long Coup dt6 1,470,152 87,088,992
4 bone010 986,703 71,666,325
5 vas stokes 2M 2,146,677 65,129,037
6 Hook 1498 1,498,023 60,917,445
7 RM07R 381,689 37,464,962

structure-of-array layout). To obtain an element from the array,
the elements are taken from multiple separate arrays and
concatenated into a value. We note that FP32in16b (RP16)
is equivalent to the bfloat16 (BF16) format and that FP16in8b
(RP8) is equivalent to the FP8 E5M2 format [3].

C. Implementation

We ported the Fortran code used in the paper [1] to the C
language and applied the RpFp implementation for CPUs from
[4] to it. The FP16 and RP8 formats rely on the half library1.
Our implementation assumes that the input matrix fits into the
8-bit exponent range of FP32, but since FP16 and RP8 have
only a 5-bit exponent, they are not used if the element is out of
range. The SpMV adopts the Compressed Row Storage (CRS)
format with 32-bit indexes. It is parallelized with OpenMP: a
matrix row is computed with a thread. Figure 1 presents a
part of the adaptive-precision SpMV code with nine precision
levels, computing y = Ax.

III. EVALUATION

We performed the evaluation on the dual-socket system
of AMD EPYC 7713 (Zen3 architecture). This processor
has the following specifications (given for one CPU): 64
cores, AVX2 (256-bit SIMD), theoretical peak performance
of 2048 GFlops/s in FP64 and 4096 GFlops/s in FP32 (at 2.0
GHz), 256 MB L3 cache, DDR4 memory of 204.8 GB/s. The

1https://sourceforge.net/projects/half/
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Fig. 2. Error obtained from the FP128 uniform precision SpMV

experimental code was compiled using GCC 9.4.0 with -O3
-march=native -fopenmp -lgomp (2 threads/core). It
was executed with numactl --interleave=all. We
collected eight potential matrices from the SuiteSparse Matrix
Collection [5], as presented in Table II (each matrix has
size of n × n with nnz nonzero elements). These matrices
were numbered in nnz descending order. Symmetry is not
considered in SpMV; the matrix is expanded to an asymmetric
matrix before execution. The vector x is set to e = [1, ..., 1]T .
For the results, we reported the shortest execution time out
of 15 executions (SpMV is executed five times in a single
program, and the program is executed three times.).

We evaluated the following cases:
• FPxx: Uniform-precision SpMV with FPxx (xx=32 or

64).
• RPxx: Reduced-precision SpMV with RPxx (xx=8, 16,

24, 40, 48, or 56). The matrix and vectors are stored in
RPxx while the arithmetic operations are performed in
the IEEE type (FP32 or FP64) having the same exponent
range as RPxx.

• AP2: Adaptive-precision SpMV with two precision levels
using FP64 and FP32.

• AP4: Adaptive-precision SpMV with four precision levels
using FP64, FP48, FP32, and RP16.

• AP9: Adaptive-precision SpMV with nine precision lev-
els using FP64, FP56, FP48, FP40, FP32, FP24, FP16,
RP16, and RP8.

Figure 2 presents the backward errors obtained from the
uniform precision SpMV performed in FP128 arithmetic.

Figure 3 presents the relative execution time normalized to
FP64. The constant p determines the target accuracy as ϵ =
2−p, which corresponds to the unit roundoff shown in Table I.
AP4 and AP9 are better than AP2 in many cases. For example,
the maximum speedup of AP4 over AP2 is 47% (matrix #1,
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Fig. 3. Execution time (normalized to the time of the FP64 SpMV)
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Fig. 4. Throughput in GB/s

CW, p=8). However, the difference between AP4 and AP9 is
trivial, or rather AP4 is better in many cases. Still, we observed
the maximum improvement of 9.7% for AP9 over AP4 (matrix
#2, CW, p=16) among the cases where AP4 is faster than
AP2. Figure 4 presents the throughput in GB/s. As the data
size decreases, the throughput can increase due to cache (note
that some exceed the memory bandwidth). Figure 5 shows the
distribution of the formats used in the matrix, which explains
that the performance gains come from the use of dropping
and low-precision formats. The effectiveness is highly matrix-
dependent, but in many cases where the target accuracy is not

corresponding to the IEEE format, the introduction of reduced-
precision formats has led to successful speedups.

IV. CONCLUSION

We have demonstrated the performance of adaptive-
precision SpMV with up to nine-precision levels using
8/16/24/32/40/48/56/64-bit formats. Increasing the number of
precision levels used does not necessarily improve perfor-
mance, and the effectiveness is strongly dependent on the
matrix and target accuracy, but the effect was demonstrated
in several cases.

Below are future work and perspectives.
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Fig. 5. Distribution of formats used in adaptive-precision SpMV. The horizontal axis indicates the matrix number and the vertical axis indicates the percentage
(up to 100%).

• Since the use of low-precision formats does not neces-
sarily lead to better performance, performance-oriented
decisions on which formats to use can be explored (e.g.,
excluding RP56 that is composed of 3 elements).

• New sparse matrix formats suitable for adaptive-precision
SpMV can be explored (e.g., index-compressed format is
effective for low precision.).

• Compression of the exponent part or decomposition of
the matrix according to the range of the exponent can
be explored. Or, one can consider introducing a reduced
format with a smaller exponential part, such as FP16 for
BF16.
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