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Abstract

In computational electromagnetism, the radar signature of a target usually re-
quires solving repeated electromagnetic scattering problems associated to plane
waves illuminating the target with varying frequency and incident angle. When
the problem is large scale, strategies based on repeated solver calls usually lead
to prohibitive computational costs. This is especially the case when the solver
relies on an integral equation discretized using the boundary element method
(BEM), as this amounts to solving numerous complex, unsymmetrical and fully
populated linear systems. In this work, reduced order models (ROMs) are built
in order to rapidly and accurately approximate the solutions for illuminating
waves with frequencies and incident angles within bands of interest. In the con-
text of the BEM, the success of a ROM essentially depends on the ability to
decouple the frequency from the Green kernels of the underlying integral equa-
tion. In this work, we present a methodology for achieving such decoupling that
combines the Empirical Interpolation Method (EIM) with the notion of local
adaptivity. We use our approximation of the frequency-dependent BEM oper-
ator in a locally adaptive non-intrusive reduced basis method. The proposed
strategy is fully non-intrusive, in the sense that it only requires the ability to
perform matrix-vector products with standard BEM operators. We illustrate
our methodology on real-life electromagnetic scattering problems solved by the
Combined Field Integral Equation (CFIE) and with matrix-vector products ac-
celerated with the fast-multipole method (FMM).
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1. Introduction

The Boundary Element Method (BEM) is a well-established numerical me-
thod for solving acoustic or electromagnetic scattering problems using integral
formulations [1, 2]. Although dedicated methods such as the Fast-Multiple-
Method (FMM) [3], Adaptive Cross Approximation (ACA) [4], H-matrices [5]5

or more recently tensor methods [6] perform well on large problems, reduc-
ing the computational cost related to construction and resolution of the BEM
linear system, frequency sweep analysis with the BEM is still a highly time
and memory-consuming task. This is due to the fact that the BEM system is
frequency-dependent and must be re-constructed and solved for each value of10

the frequency in the band of interest.
Building an efficient reduced order model (ROM) for the BEM is essentially

finding a low-dimensional approximation space onto which to project the BEM
system. The dimension of the projected system is small compared to the number
of degrees of freedom in the BEM. Consequently, the computational burden can15

be relieved by solving the projected system, rather than the BEM system, at all
the desired frequencies and incident angles. The key to the success of ROMs is
that the solution of the projected system, despite being small and very efficient
to solve, can be (provided that the ROM is adequately built) a very accurate
approximation for the much more costly solution of the BEM system [7, 8, 9].20

An approach that has shown great success is constructing low-dimensional
approximation spaces as Krylov subspaces, iteratively enriched via the Arnoldi
or Lanczos process [10, 11, 12]. A very popular alternative for building ROMs
is the proper orthogonal decomposition (POD) as in reported in [13]. The POD
consists in computing a large number of BEM solutions at different frequencies25

and incident angles during a so-called exploration phase and then performing a
singular value decomposition (SVD), retaining only the most dominant modes.
A variant is the greedy approach [14, 9, 15], which iteratively builds a so-called
reduced basis (RB) made of a few BEM solutions that span a low-dimensional
approximation subspace. The greedy variant aims at keeping the reduced basis30

as small as possible, thus minimizing the computational costs, while maintaining
a strict control over the error of the ROM via residual-based error estimators.

In order to achieve significant speed-ups with ROMs, it is necessary to be
able to decompose the overall computational effort into the so-called offline and
online phases [7, 8]. The offline phase essentially consists in constructing the35

low-dimensional approximation space and building the ROM. In practice, this
phase represents most of the overall computational effort. The online phase
consists in evaluating the ROM at all the desired parameter values (i.e., solv-
ing the projected system all the desired frequencies and incident angles). This
phase is not computationally expensive, because the projected system has a40

small size, typically less than a hundred. Solving such a small system, even
numerous times at all the desired values of the parameters, can be done very
efficiently using direct solvers. Unfortunately, the ability to decompose the
computational effort into an offline and an online phase is absolutely non-trivial
with parametrized integral equations discretized using the BEM. In order to45
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obtain an efficient offline/online decomposition, it is necessary to approximate
the frequency-dependent kernels of the integral equation using kernels which are
independent from the frequency. To address this challenge, series expansion of
the Green kernels have been proposed [16, 17]. This yields an approximation of
the BEM frequency-dependent matrix expressed as the weighted sum of a few50

frequency-independent matrix terms, with frequency-dependent weighs known
analytically, usually under the form of polynomials in the frequency. The draw-
back of this method is that the series expansion is only valid in the neighborhood
of the expansion point. An alternative is to apply the Empirical Interpolation
Method (EIM) [18] to the Green kernels, which recovers a similar approximation55

for the BEM frequency-dependent matrix, with frequency-dependent weighs ob-
tained though imposing some interpolation constraints [9, 19].

All these methods have similar drawbacks: (i) due to the non-trivial depen-
dency in the frequency, the number of frequency-independent matrix terms can
be quite large, which can compromise the overall performance of the ROM and60

(ii) the frequency-independent matrix terms do not coincide with standard inte-
gral operators, thus new dedicated assembly or matrix-vector product routines
must be implemented in order to handle these non-standard operators, which
may represent a significant human investment. Some effort has been made to
overcome these drawbacks. An attempt to control the number of frequency-65

independent matrix terms by means of an hp-type approach is reported in [9],
while an original method for approximating each frequency-independent matrix
term as a known integral operator is presented in [20].

In this work, we introduce a local approximation for the BEM frequency-
dependent operator, in which the number Q of frequency-independent terms is70

decided by the user. In opposition to the hp-type approach proposed in [9],
we achieve this goal relying on a locally adaptive approach introduced in Ref.
[21]. Each frequency-independent matrix term is a standard integral opera-
tor in the fashion of [20], thus our method is non-intrusive, in the sense that
there is no need to implement new assembly or matrix-vector product routines.75

More specifically, our method constructs a decomposition of the frequency win-
dow of interest into sub-windows. The BEM frequency-dependent operator is
approximated over each sub-window by a so-called non-intrusive local affine
approximation. Each non-intrusive local affine approximation is a fact a linear
combination of Q standard integral operators, thus the two issues (i) and (ii)80

previously mentioned are simultaneously addressed.
The paper is structured as follows. First, in Section 2, we introduce our

model electromagnetic scattering problem, solved by the Combined Field In-
tegral Equation (CFIE) and approximated using the BEM. In Section 3, we
review the Galerkin reduced basis method, relying on the EIM to decouple the85

frequency from the Green kernels. This detailed review serves to highlight the
two announced issues; namely, (i) a large number of frequency-independent
terms to deal with and (ii) the fact that these terms are non-standard integral
operators. Section 4 introduces the novel non-intrusive local affine approxima-
tions and explains how they overcome our two issues. Next, in Section 5, we90

propose a revisited version of the reduced basis method, specifically tailored for
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frequency sweep analysis with the BEM. Finally, Section 6 is devoted to some
numerical illustrations on a real-life electromagnetic scattering problem solved
with the CFIE.

2. The CFIE for electromagnetic scattering problems95

In this work, we consider an plane electromagnetic wave propagating in
the direction d̂ ∈ R3 with polarization p̂ ∈ R3 and frequency f (the hats
indicate that the vectors are unitary). The direction depends on the incident
angle. More precisely, the direction is expressed in spherical coordinates as
d̂ = (sin θ cosϕ, sin θ sinϕ, cos θ), with θ the polar angle and ϕ the azimuthal100

angle. In order to remember this dependency, we shall denote the direction
d̂(ν), where ν = (θ, ϕ) shall be abusively designated as the incident angle.
Introducing the wavenumber µ = 2πf

c , where c ≈ 3 × 108m/s is the speed of
light in free space, the plane electric and magnetic waves are respectively given
for all x ∈ R3 by105

einc(x;µ, ν) = p̂eiµx·d̂(ν), hinc(x;µ, ν) = (d̂(ν)× p̂)eiµx·d̂(ν). (1)

Let Ω ⊂ R3 be an bounded domain representing the target (i.e., the scatter-
ing object) and denote Γ its boundary. We assume that Γ is smooth enough for
the exterior normal n̂ to be well-defined. Due to the presence of the scattering
object, there exists a scattered electromagnetic field (esca,hsca), such that the
total electromagnetic field (e,h) made up of the incident and scattered fields110

following e = einc+esca and h = hinc+hsca satisfies the time-harmonic Maxwell
equations with Silver-Muller radiation condition at infinity given by

curl e− iµh = 0 in R3 \ Ω,
curlh+ iµe = 0 in R3 \ Ω,
lim

|x|→∞
(h(x)× x− |x|e(x)) = 0.

(2)

In this work, we shall assume that the scattering object is perfectly conducting
thus the tangential component of the total electric field vanishes, yielding the
boundary condition esca × n̂ = −einc × n̂ on Γ.115

In order to numerically solve the electromagnetic scattering problem, we
use the BEM to discretize the weak form associated to two well-known integral
equations; namely the Electric Field Integral Equation (EFIE) and the Magnetic
Field Integral Equation (MFIE) [2]. First, the surface Γ is meshed with triangle
elements. We denote Th the set of all triangles in the mesh. Given a triangle E ∈120

Th, we define the zero-th order local Raviart-Thomas space of complex-valued
functions defined on E as RT 0(E) = {v : x ∈ E 7→ α+ βx | α ∈ C2, β ∈ C}.
Following the standard BEM, we choose as boundary element approximation
space the global Raviart-Thomas space defined by

V h = {v ∈H0
div(Γ) | v|E ∈ RT 0(E), ∀E ∈ Th}, (3)
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where H0
div(Γ) = {v ∈ L2

t (Γ) | divΓ v ∈ L2(Γ)} with L2(Γ) the Sobolev space of125

square-integrable complex-valued functions defined on Γ and L2
t (Γ) the classical

Sobolev space comprised of complex-valued functions v ∈ L2(Γ) = [L2(Γ)]3 that
are tangential to Γ, i.e., such that v · n̂|Γ = 0. Note that the boundary element
approximation space V h is finite dimensional. We shall denote Nh its dimension
(equal to the number of triangles in the mesh).130

In a Galerkin context, the discrete EFIE operator T (µ) is expressed as

∀v,w ∈ V h, ⟨T (µ)v,w⟩ = iµ

∫
Γ

w(x) ·
∫
Γ

G(x,y;µ)v(y)dΓydΓx

− i
µ

∫
Γ

divΓ,x w(x)

∫
Γ

G(x,y;µ)divΓ,y v(y)dΓydΓx,

(4)

where G(x,y;µ) = eiµ|x−y|

4π|x−y| , x ̸= y, denotes the outgoing fundamental solution

at the wavenumber µ and | · | denotes the euclidian norm in R3. The associated
right-hand side (RHS) is bE(µ, ν) given by

∀w ∈ V h, ⟨bE(µ, ν),w⟩ =
∫
Γ

einc(µ, ν) ·wdΓ. (5)

Notice that from the expression (1) of the incident electric field, the RHS de-135

pends on both the wavenumber and incident angle.
Still in the Galerkin context, the discrete MFIE operator 1

2I+K(µ) is given
by

∀v,w ∈ V h, ⟨
(
1

2
I +K(µ)

)
v,w⟩ = 1

2

∫
Γ

w(x) · v(x)dΓx

+

∫
Γ

w(x) ·
(
n̂(y)×

∫
Γ

∂n̂(y)G(x,y;µ)× v(y)dΓy

)
dΓx.

(6)

The associated RHS is bM(µ, ν) given by

∀w ∈ V h, ⟨bM(µ, ν),w⟩ =
∫
Γ

n̂× hinc(µ, ν) ·wdΓ. (7)

This being set the discrete CFIE operator is given by A(µ) = (1− c)T (µ)+140

c( 12I +K(µ)) with c ∈]0, 1[ and the associated right-hand side is expressed as

b(µ, ν) = (1 − c)bE(µ, ν) + cbM (µ, ν). In this work, we set c = 0.5. Given a
basis {ϕj}1≤j≤Nh

for V h the discrete CFIE problem writes as the linear system
of equations

A(µ)u(µ, ν) = f(µ, ν), (8)

where A(µ) ∈ CNh×Nh is the fully-populated, non-hermitian and wavenumber-145

dependent matrix with coefficients ⟨A(µ)ϕj ,ϕi⟩ for 1 ≤ i, j ≤ Nh and f(µ, ν) ∈
CNh is the RHS vector with coefficients ⟨b(µ, ν),ϕj⟩ for 1 ≤ j ≤ Nh.

Thanks to the Stratton-Chu integral representation formulas [1], the solution
vector u(µ, ν) ∈ CNh can be used to recover an approximation for the total
electromagnetic fields anywhere in the exterior domain R3 \ Ω. In particular,150

the radar cross section (RCS) can be derived from the amplitude of the electric
field infinitely far away from the target.
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3. Review of the RB method

Under the paradigm of direct solvers, solving Eq.(8) requires O(N 2
h ) oper-

ations to assemble the matrix, O(N 3
h ) operations to compute the LU -decom-155

position and finally O(N 2
h ) to perform a forward-backward triangular process

for obtaining the solution. Noticing that the same LU -decomposition can be
used to solve multiple right-hand sides, the overall complexity for solving ℓ
incident angles at a fixed value of the wavenumber is O(N 3

h + ℓN 2
h ). In the

frequency sweep context, a new assembly phase and a new LU -decomposition160

is required for each and every value of µ over the range of interest [µmin, µmax],
which may represents a time and memory-consuming task. This discussion re-
mains valid under the paradigm of iterative solvers, because repeated calls to
iterative solvers quickly lead to prohibitive computational costs. In this work,
we turn to model order reduction techniques [22, 7, 8] in view of reducing the165

overall costs of such simulation campaigns.

3.1. RB approximation

First, let us choose a norm in which to measure the solutions to Eq. (8).
Namely, this norm will be denoted ∥·∥H and be given by ∥u∥H =

√
u∗Hu where

the superscript ∗ designates the conjugate transpose operation andH ∈ CNh×Nh
170

is a user-defined hermitian, positive-definite matrix. For instance, H could be
the identity matrix, in which case ∥ · ∥H is the standard the euclidian norm.
Another relevant choice for H is the mass matrix with coefficients

∫
Γ
ϕj · ϕidΓ

for 1 ≤ i, j ≤ Nh, in which case the ∥ · ∥H norm is the L2(Γ) norm.
The reduced basis (RB) method [23, 24] consists in computing few, say N ≪175

Nh, solutions to Eq. (8) atN chosen points (µ(1), ν(1)), . . . , (µ(N), ν(N)). Using a
standard Gram-Schmidt procedure, the solutions u(µ(1), ν(1)), . . . ,u(µ(N), ν(N))
are H-orthonormalized and concatenated in a matrix P ∈ CNh×N such that

Colspan(P) = Span{u(µ(1), ν(1)), . . . ,u(µ(N), ν(N))} and P∗HP = I. (9)

For all wavenumber µ and incident angle ν, a RB approximation uN (µ, ν) ∈ CNh

is defined as180

uN (µ, ν) = PxN (µ, ν), (10)

where xN (µ, ν) ∈ CN is the solution to the following projected problem

P∗A(µ)PxN (µ, ν) = P∗f(µ, ν). (11)

The projected problem Eq. (11) is of size N × N . Recalling that N ≪ Nh,
this is a major reduction compared to the BEM linear system Eq. (8), which
is Nh × Nh. However, at this stage, the solution xN (µ, ν) ∈ CN of the pro-
jected problem cannot be computed with a complexity independent from the185

number of degrees of freedom Nh, because assembling the projected system ma-
trix P∗A(µ)P requires having computed the N matrix-vector products A(µ)P.
Similarly, assembling the projected RHS P∗f(µ, ν) requires having assembled
the RHS f(µ, ν) beforehand.
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The computational advantage of the RB method becomes clear in the situa-190

tion where the matrix and RHS are affine with respect to the varying parameters
[25, 26], that is

A(µ) =

Qa∑
q=1

θaq (µ)Aq, f(µ) =

Qf∑
q=1

θfq (µ, ν)fq, (12)

where the Aq’s are Q
a wavenumber-independent Nh×Nh matrices; the fq’s are

Qf Nh-dimensional vectors independent from µ and from ν; the θaq and θfq ’s are
respectively µ-dependent and (µ, ν)-dependent complex coefficients. Indeed, in195

this situation the projected system matrix and RHS write

P∗A(µ)P =

Qa∑
q=1

θaq (µ) P
∗AqP , P∗f(µ, ν) =

Qf∑
q=1

θfq (µ, ν) P
∗fq . (13)

The boxed quantities are independent from µ and from ν; thus they can be
computed once and for all during the so-called offline phase. Next, the projected
linear system Eq. (11) can be assembled for any value of µ and ν withO(N2Qa+
NQf ) operations during the so-called online phase. With this offline/online200

strategy, the reduced linear system Eq. (11) can be efficiently assembled and
solved during the online stage with an operation count completely independent
from the number of degrees of freedom Nh.

3.2. The need for non-intrusive local affine approximations

Inspection of Eqs. (4) and (6) reveals that the discrete EFIE and MFIE205

operators are non-affine because the Green kernel couples the spatial variables
and the wavenumber. A well-known strategy consists in recovering affine ap-
proximations by applying the EIM to the wavenumber-dependent kernel [9, 19].
Observe that

G(x,y;µ) = eiµr − 1

4πr
+

1

4πr
, r = |x− y|. (14)

We successively apply the EIM to the two functions gns1 (r;µ) = iµ eiµr−1
4πr and210

gns2 (r;µ) = −i
µ

eiµr−1
4πr . For ease of notation, we now use the notation ⋆ = 1, 2.

The EIM yields M⋆ ≥ 1 so-called EIM basisfunctions hg⋆1 , . . . , h
g⋆
M⋆

defined on
[0, rmax], interpolation points {rg⋆m }1≤m≤M⋆

and a lower triangular interpolation
matrix Bg⋆ ∈ CM⋆×M⋆ with unity diagonal, see [18]. The EIM interpolant is
given by215

gns⋆ (r;µ) ≈ g̃ns⋆ (r;µ) =

M⋆∑
m=1

ςg⋆m (µ)hg⋆m (r), (15)

with complex coefficients ςg⋆(µ) = (ςg⋆1 (µ), . . . , ςg⋆M⋆
(µ))T ∈ CM⋆ solution to the

M⋆ ×M⋆ linear system
Bg⋆ςg⋆(µ) = lg⋆(µ), (16)
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where lg⋆(µ) = (gns⋆ (rg⋆1 ;µ), · · · , gns⋆ (rg⋆M⋆
;µ))T ∈ CM⋆ . Replacing gns⋆ by its EIM

approximation g̃ns⋆ for ⋆ = 1, 2 in the expression of the EFIE operator Eq. (4)

yields an affine approximation T̃ (µ) for the EFIE operator given by220

⟨T̃ (µ)v,w⟩ =
M1∑
m=1

ςg1m (µ)

∫
Γ

w(x) ·
∫
Γ

hg1m (|x− y|)v(y)dΓydΓx

+ iµ

∫
Γ

w(x) ·
∫
Γ

1

4π|x− y|
v(y)dΓydΓx

+

M2∑
m=1

ςg2m (µ)

∫
Γ

divΓ,x w(x)

∫
Γ

hg2m (|x− y|)divΓ,y v(y)dΓydΓx

− i

µ

∫
Γ

divΓ,x w(x)

∫
Γ

1

4π|x− y|
divΓ,y v(y)dΓydΓx.

(17)

Remarking that all the integrated terms are independent from the wavenumber;
it is clear that T̃ (µ) is affine with (M1 +M2 + 2) terms. We can address the
MFIE operator in a similar way, by observing that

∂n̂(y)G(x,y;µ) = (ψns(|x− y|;µ) + ψs(|x− y|)) (y − x) · n(y)
|x− y|

, (18)

with ψns(·;µ) and ψs defined by

ψns(r;µ) = iµ
eiµr − 1

4πr
− eiµr − 1− iµr

4πr2
, ψs(r) = − 1

4πr2
. (19)

An affine approximation for the MFIE operator defined by Eq. (6) can be225

straightforwardly obtained from applying a third EIM to the function gns3 = ψns.
With this strategy, we obtain an affine approximation for the MFIE operator
with M3 + 2 terms. Thus, we obtain an affine approximation for the CFIE
operator with Qa = (M1 +M2 +M3 + 4) terms under the form

Ã(µ) =

Qa∑
q=1

σq(µ)Aq (20)

with complex coefficients σ(µ) = (σ1(µ), . . . , σQa(µ)) ∈ CQa

solution to the230

linear system Bσ(µ) = l(µ), where

B =



Bg1

1
Bg2

1
Bg3

1
1


, l(µ) =



lg1(µ)
iµ

lg2(µ)
−i
µ

lg3(µ)
1
1
2


. (21)
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Notice that B ∈ CQa×Qa

is lower triangular with unity diagonal. Remark also
that the last row of the system is associated to the mass term in the MFIE
operator. At this stage, two main issues arise:

� Intrusivity issue: the wavenumber-independent operator terms Aq, 1 ≤235

q ≤ Qa in the affine decomposition Eq. (20) are non-standard integral
operators (this is clear in Eq. (17)). As reported in [20], it is usually
necessary to implement new routines within the computational code for
performing matrix-vector products with these non-standard integral oper-
ators. Implementation of the matrix-vector product routines is a difficult240

task, because special treatment is required to adequately integrate the
singular kernels.

� Bandwidth issue: the number of affine terms Qa grows with the frequency
band of interest and can be quite large, which can compromise the overall
efficiency of the RB method, as reported in [9].245

In the rest of this work, we circumvent the intrusivity issue by proposing a non-
intrusive approach and we address the bandwidth issue by constructing multiple
local affine approximations, each valid over a specific sub-window following the
locally adaptive paradigm introduced in [21].

4. Non-intrusive local affine approximations250

In the locally adaptive method [21], a number of terms Q ≥ 2 is prescribed
by the user. A set of J ≥ Q wavenumbers µ̂1 ≤ · · · ≤ µ̂J inside a given window
of interest [µmin, µmax] is selected (the selection procedure will be described
shortly). Upon these J wavenumbers, one defines the K = J −Q+ 1 sets

Tk = {µ̂k, . . . , µ̂k+Q−1}, k ∈ {1, . . . ,K}, (22)

each of cardinality Q. The indicator function I : [µmin, µmax] → {1, . . . ,K}255

maps each wavenumber µ to the index k such that Tk is the set of the Q points
among the µ̂j ’s that are closest to µ.

This being set, we introduce for all k ∈ {1, . . . ,K} the kth non-intrusive
local affine approximation as

Ak(µ) =

Q∑
q=1

θkq (µ)A(µ̂k+q−1), (23)

where the θkq ’s are wavenumber-dependent coefficients. As we shall see, Ak(µ)260

will only be a good affine approximation for A(µ) locally for values of µ in the
sub-window Dk = I−1(k) = {µ | I(µ) = k}. We now explain the construction
process in detail.
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4.1. The wavenumber-dependent coefficients

First, we explain how the wavenumber-dependent coefficients θkq in Eq. (23)265

are defined given J available wavenumbers µ̂1 ≤ · · · ≤ µ̂J . For this purpose, let
µ ∈ [µmin, µmax] and denote k = I(µ). Then θk(µ) = (θk1 (µ), . . . , θ

k
Q(µ))

T ∈ CQ

is defined by

θk(µ) = argmin
θ∈CQ

∥∥∥∥∥σ(µ)−
Q∑

q=1

θqσ(µ̂k+q−1)

∥∥∥∥∥
2

, (24)

with ∥ · ∥2 denoting the euclidian norm in CQa

. Equivalently, the wavenumber-
dependent coefficients satisfy270

PTk
[σ(µ)] =

Q∑
q=1

θkq (µ)σ(µ̂k+q−1), (25)

where PTk
[·] denotes orthogonal projection from CQa

onto the Q-dimensional
subspace spanned by the Q vectors {σ(µ̂), µ̂ ∈ Tk}.

4.2. Construction using a localization procedure

The locally adaptive method provides an automatic procedure for selecting
the wavenumbers µ̂1 ≤ · · · ≤ µ̂J . There are two phases [21] : phase 1 selects275

Q + 1 wavenumbers using a classical greedy strategy and phase 2 selects more
wavenumbers following a locally adaptive strategy until a prescribed tolerance
is reached on the worst projection error. We review each phase in detail.

Phase 1. The first phase selecting Q + 1 wavenumber following by a classical
greedy procedure driven by the projection error. Namely, at iteration J ≥ 1 a280

set CJ of J wavenumbers is available. Thus, the vector σ(µ) and its orthogonal
projection PCJ

[σ(µ)] onto the J-dimensional subspace ColSpan{σ(µ̂), µ̂ ∈ CJ}
can be computed for all µ ∈ Ξ (where Ξ ⊂ [µmin, µmin] is a discrete set). There-
fore, the maximizer of the projection error ∥σ(µ) − PCJ

[σ(µ)] ∥2 can be easily
found by enumeration. The set CJ is then enriched by adding the maximizer285

wavenumber µ̂⋆ ∈ Ξ. This greedy selection procedure continues until Q + 1
wavenumbers are selected. This procedure is summarized by Alg. 1.

Algorithm 1 Classical greedy (phase 1 of localization procedure)

1: Choose a prescribed number of term Q and a discrete set Ξ ⊂ [µmin, µmax]
2: Pick a random µ̂⋆ ∈ Ξ
3: Set C1 = {µ̂⋆}
4: for J = 1, . . . Q do
5: Find µ̂⋆ = argmax

µ∈Ξ
∥σ(µ)− PCJ

[σ(µ)] ∥2

6: Enrich CJ+1 = CJ ∪ {µ̂⋆}
7: end for

10



Phase 2. At the start of the second phase, Q + 1 wavenumbers are available
from the first phase. Thus, Eq. (22) defines two sets Tk, k = 1, 2. In this
context, the indicator function maps each µ to the integer k = I(µ) such that290

the projection of σ(µ) must be performed onto the Q-dimensional subspace
ColSpan{σ(µ̂), µ̂ ∈ Tk}. Thus, for any value of µ, the local projection error is
given by ∥σ(µ) − PTk

[σ(µ)] ∥2, with k = I(µ). The locally adaptive strategy,
summarized by Alg. 2, consists in selecting the wavenumbers that maximize
the local projection error until a prescribed tolerance is reached on the maximal295

local projection error.

Algorithm 2 Locally adaptive strategy (phase 2 of localization procedure)

1: Choose a prescribed tolerance tol > 0
2: Obtain a set CJ = {µ̂j}1≤j≤J with J = Q+ 1 by Alg. 1
3: Set K = 2 and find µ⋆ = argmax

µ∈Ξ
∥σ(µ)− PTk

[σ(µ)] ∥2, where k = I(µ)

4: Compute ϵ = ∥σ(µ⋆)− PTk⋆ [σ(µ
⋆)] ∥2, where k⋆ = I(µ⋆)

5: while ϵ > tol do
6: Enrich CJ+1 = CJ ∪ {µ̂⋆}
7: Update J ← J + 1 and K ← K + 1
8: Find µ⋆ = argmax

µ∈Ξ
∥σ(µ)− PTk

[σ(µ)] ∥2, where k = I(µ)

9: Compute ϵ = ∥σ(µ⋆)− PTk⋆ [σ(µ
⋆)] ∥2, where k⋆ = I(µ⋆)

10: end while

4.3. Discussion

We have explained how local affine approximations in the form of Eq. (23)
could be constructed following an automatic procedure, which is essentially the
locally adaptive procedure described in [21]. At this point it is worth noticing300

that the proposed construction only requires the ability to evaluate µ 7→ σ(µ),
which, recalling Eq. (21), exclusively relies on the knowledge of the functions
gns⋆ , ⋆ = 1, 2, 3 and associated EIM interpolation matrices and interpolation
points. Thus, the proposed construction is completely independent from the
BEM discretization with Nh degrees of freedom.305

The rationale behind the proposed construction is the following: at the end
of Alg. 2, for any µ ∈ [µmin, µmax], the vector σ(µ) ∈ CQa

can be approximated
by its orthogonal projection PTk

[σ(µ)] with k = I(µ) with an error smaller
than the prescribed tolerance tol. Replacing σ(µ) by PTk

[σ(µ)] in the affine

approximation for the CFIE operator Ã(µ) given by Eq. (20) and recalling the310

expression Eq. (25) for PTk
[σ(µ)], we get

Ã(µ) =

Qa∑
q=1

σq(µ)Aq ≈
Qa∑
q=1

Q∑
p=1

θkp(µ)σq(µ̂k+p−1)Aq. (26)

11



Swapping the summations we obtain

Ã(µ) ≈
Q∑

p=1

θkp(µ)

Qa∑
q=1

σq(µ̂k+p−1)Aq =

Q∑
p=1

θkp(µ)Ã(µ̂k+p−1). (27)

Omitting the tilde in the RHS of Eq. (27) yields the non-intrusive local ap-

proximation proposed in Eq. (23). The tilde can indeed be omitted, since Ã
is by design a good approximation for A. Ultimately, we obtain that A(µ) ≈315 ∑Q

p=1 θ
k
p(µ)A(µ̂k+p−1) which corresponds to our initial non-intrusive local affine

approximation statement Eq. (23).

5. Locally adaptive non-intrusive block RB method

We now revisit the classical RB method reviewed in Section 3, adapting it
to the use of non-intrusive local affine approximations.320

5.1. Block approach

Following the classical RB method presented in Section 3, the construction
of a RB of size N requires N repeated solves of the BEM linear system (8)
at parameter points (µ(1), ν(1)), . . . , (µ(N), ν(N)). Here, we propose a different
approach, the so-called block approach, that consists in choosing Nf wavenum-325

ber values denoted µ(1), . . . , µ(Nf ) and, for each wavenumber value µ(n), an

associated set of I(n) ≥ 1 incident angles {ν(n)i }1≤i≤I(n) . For convenience,
let us assume that the Nf chosen wavenumbers are in increasing order, i.e.,
µ(1) ≤ · · · ≤ µ(Nf ) and for all 1 ≤ n ≤ Nf we introduce the notation

u
(n)
i = u(µ(n), ν

(n)
i ), 1 ≤ i ≤ I(n). (28)

With the block approach, the overall number of computed BEM solutions330

is N = I(1) + · · · + I(Nf ). In opposition to the classical approach, computing
these N BEM solutions relies on only Nf ≤ N linear solves with multiple right-
hand sides. Under the paradigm of direct solvers, recalling that the same LU -
decomposition can be used to solve multiple right-hand sides, the block approach
requires O(NfN 3

h +NN 2
h ) operations to compute all the BEM solutions, which335

is more advantageous than the O(NN 3
h + NN 2

h ) operations required by the
classical approach. Furthermore, we note that the block approach becomes
increasingly advantageous as the number of incident angles per wavenumber
increases. This feature of the block approach can be maintained under the
paradigm of iterative solvers provided that adequate block Krylov recycling340

strategies are used to efficiently solve multiple right-hand sides with the same
matrix [27].
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5.2. Locally adaptive approach

The classical RB approach consists in projecting the BEM system in a global
RB of size N spanned by all N computed BEM solutions, as outlined in Section345

3. In order to benefit from an efficient offline/online strategy and following stan-
dard practice [26], the matrix that is projected is not the BEM system matrix
A(µ) but the local affine approximation Ak(µ) with k = I(µ). Thus, the N×N
matrix involved in the projected system matrix is P∗Ak(µ)P. Given the affine
expression (23) of Ak(µ), the online complexity for assembling the projected350

system matrix is O(QN2). However, the success of the online phase requires
that the J matrices P∗A(µ̂j)P, µ̂j ∈ CJ (each matrix of size N ×N) have been
pre-computed offline. These offline computations require performing N matrix-
vector products with each BEM matrix A(µ̂j), thus JN BEM matrix-vector
products overall. In practice, these numerous BEM matrix-vector products can355

represent a significant computational effort, with the potential to compromise
the overall efficiency of the RB method. In the following, we propose a locally
adaptive approach that reduces the number of matrix-vector products required
during the offline phase.

Following the locally adaptive approach, we let the user choose a number360

N loc
f ≤ Nf . Let us define R = Nf −N loc

f + 1 and the discrete sets

T (r) = {µ(r), . . . , µ(r+N loc
f −1)}, r ∈ {1, . . . , R}, (29)

each of cardinality N loc
f . We define the indicator function J : [µmin, µmax] →

{1, . . . , R} mapping each wavenumber µ to the index r such that T (r) is the set
of the N loc

f points among the µ(n)’s that are closest to µ.

This being set, we introduce for all r ∈ {1, . . . , R} the rth local RB as365

Pr ∈ CNh×Nr given by

Colspan(Pr) = Span{u(ϱ)
i , 1 ≤ i ≤ I(ϱ), r ≤ ϱ ≤ r +N loc

f − 1}, (30)

such that P∗
rHPr = I. In other words, the rth local RB is the span of the

BEM solutions at all the chosen incident angles associated to the wavenumbers

ranging from µ(r) to µ(r+N loc
f −1). The size Nr of the rth local RB is given by

Nr = I(r) + · · ·+ I(r+N loc
f −1). (31)

As we shall see in the following, the rth local RB will serve to build approxima-370

tion of the BEM solution for values of µ in the sub-window D(r) = J−1(r) =
{µ | J (µ) = r}.

Indeed, for all wavenumber µ and all incident angle ν, we define the RB
approximation urb(µ, ν) ∈ CNh as

urb(µ, ν) = Prx(µ, ν), r = J (µ), (32)

where x(µ, ν) ∈ CNr is the solution to the following projected problem375

P∗
rAk(µ)Prx(µ, ν) = P∗

r f̃(µ, ν), k = I(µ), r = J (µ), (33)
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where Ak(µ) is our non-intrusive local affine approximation given by Eq. (23)

and f̃(µ, ν) is an affine approximation of f(µ, ν) with Qf terms, obtained by
applying the EIM to the plane wave Eq. (1). The projected problem Eq. (33)
is of size Nr×Nr and can be assembled in O(QN2

r ) operations following an ad-
equate offline/online strategy. The next section provides a detailed description380

of the quantities which must be computed during the offline phase.

5.3. The offline phase in detail

In this section, we describe the offline phase in detail. We shall proceed in
two steps: first, we detail the reduced matrices that need to be pre-computed
and then we detail the necessary BEM matrix-vector operations that need to385

be performed when pre-computing these reduced matrices.

The reduced matrices that need to be pre-computed. Let us consider a fixed index

r ∈ {1, . . . , R}. Let k
(r)
min (resp. k

(r)
max) denote the smallest (resp. largest) index

k ∈ {1, . . . ,K} such that
D(r) ∩ Dk ̸= ∅ (34)

and set ℓ(r) = k
(r)
max−k(r)min. This being set, we find that it suffises to pre-compute390

the Q+ ℓ(r) reduced matrices P∗
rA(µ̂j)Pr for j ∈ {k(r)min, . . . , k

(r)
min+Q+ ℓ(r)−1}

in order to be able to efficiently assemble for any µ ∈ D(r) the projected system
matrix P∗

rAk(µ)Pr with k = I(µ).
We conclude from these considerations that the overall number of reduced

matrices that need to be precomputed offline is RQ+
∑R

r=1 ℓ
(r). An illustration395

is provided on figure 1.

D1 D2 D3D4D5 D6

D(1)

D(2)

D(3)

D(4)

Figure 1: Schematic view of a case K = 6, R = 4. For all r = 1, . . . , R and all

k = 1, . . . ,K, non-empty sets D(r) ∩ Dk are colored. In this situation : k
(1)
min = 1, k

(2)
min =

2, k
(3)
min = 3, k

(4)
min = 5 and ℓ(1) = 1, ℓ(2) = 1, ℓ(3) = 2, ℓ(4) = 1. Thus one needs to

pre-compute: for r = 1, the Q + 1 reduced matrices P∗
1A(µ̂1)P1, . . . ,P∗

1A(µ̂Q+1)P1, for
r = 2 the Q + 1 reduced matrices P∗

2A(µ̂2)P2, . . . ,P∗
2A(µ̂Q+2)P2, for r = 3 the Q + 2 re-

duced matrices P∗
3A(µ̂3)P3, . . . ,P∗

3A(µ̂Q+4)P3 and for r = 4 the Q + 1 reduced matrices
P∗

3A(µ̂5)P3, . . . ,P∗
3A(µ̂Q+5)P3. It is worth noting that J = K + Q − 1 = Q + 5. In this

situation : rmin
1 = rmin

2 = · · · = rmin
Q+1 = 1, rmin

Q+2 = 2, rmin
Q+3 = 3, rmin

Q+4 = 3, rmin
Q+5 = 4.
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The BEM matrix-vector products that need to be performed. We now determine
the number of BEM matrix-vector products that need to be performed when
pre-computing the reduced matrices. To this end, let us now consider a fixed
index j ∈ {1, . . . , J}. Clearly, µ̂j is a member of all the sets Tk for all k ∈400

{max(1, j − Q + 1), . . . ,min(K, j)}. Let rmin
j (resp. rmax

j ) denote the smallest
(resp. largest) index r ∈ {1, . . . , R} such that

D(r) ∩

 ⋃
max(1,j−Q+1)≤k≤min(K,j)

Dk

 ̸= ∅. (35)

and set sj = rmax
j −rmin

j . Thus, we find that the BEM matrix A(µ̂j) is involved

in the sj+1 reduced matrices P∗
rA(µ̂j)Pr for all r ∈ {rmin

j , . . . , rmax
j }. A logical

way to proceed would be to successively compute the matrix-vector products405

A(µ̂j)Pr for r ∈ {rmin
j , . . . , rmax

j }. Given that each local RB Pr hasNr columns,
the number of matrix-vector products required with the BEM matrix A(µ̂j)

would be
∑rmax

j

r=rmin
j

Nr under this approach.

We now propose an alternative way to proceed that reduces the number of

matrix-vector products required with the BEM matrix A(µ̂j) to I
(rmin

j ) + · · ·+410

I(r
max
j +N loc

f −1).
Let us introduce for rmin ∈ {1, . . . , R} and rmax ≥ rmin the notationUrmin:rmax

for the matrix that concatenates the BEM solutions at all chosen incident angles

associated to the wavenumbers ranging from µ(rmin) to µ(rmax+N loc
f −1)

Urmin:rmax =
[
u
(rmin)
1 | · · · |u(rmin)

I(rmin)
| · · · |u(rmax+Nf−1)

1 | · · · |u(rmax+Nf−1)

I(rmax+Nf−1)

]
. (36)

Notice that Urmin:rmax has I(r
min) + · · ·+ I(r

max+N loc
f −1) columns. In particular,415

for rmax = rmin = r we shall use the shortcut notation Ur:r = Ur. It is worth
noticing that Ur has Nr columns, with Nr defined by (31). Furthermore, the
columns of Ur and the columns of Pr span the same subspace (compare Eqs.
(30) and (36)). Indeed, it is clear that

PrRr = Ur, (37)

with Rr = P∗
rHUr an invertible Nr × Nr matrix (this matrix is further up-420

per triangular following the standard Gram-Schmidt procedure or the QR-
decomposition). Rather than successively computing the matrix-vector prod-
ucts A(µ̂j)Pr for r ∈ {rmin

j , . . . , rmax
j }, we can equivalently compute the matrix-

vector products A(µ̂j)Urmin
j :rmax

j
and recover the quantities A(µ̂j)Pr for r ∈

{rmin
j , . . . , rmax

j } by the formula425

A(µ̂j)Pr = A(µ̂j)UrR
−1
r . (38)

Thus, the number of matrix-vector products required with the BEM matrix

A(µ̂j) is reduced to I(r
min
j ) + · · · + I(r

max
j +N loc

f −1) as announced above. This
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Figure 2: Surface currents on the target of the fighter aircraft test case for the illuminating
wave with frequency f = 650MHz, polar angle θ = 90◦ (which corresponds to the xy plane
of the wings) azimuthal angle ϕ = 160◦ for the two polarizations p̂ = êθ (left) and p̂ = êϕ
(right).

number of matrix-vector products is ≤ N (with equality only in the case rmin
j =

1, rmax
j = R), therefore the use of local affine approximations combined with a

locally adaptive RB strategy leads to a reduction in overall number of matrix-430

vector products compared to the classical RB approach.

6. Numerical illustration

6.1. The fighter aircraft test case

In the section, we present numerical results obtained on a target with the
geometry of a simplified fighter aircraft. From nose to tail the length of the435

aircraft is about 15m while the wings span about 8m. This target is meshed with
Nh = 145, 000 degrees of freedom. Following the well-known rule of letting 8
degrees of freedom per wavelength, this mesh is fit for frequencies up to 650MHz.
Figure 6.1 shows the surface currents solved with the BEM on this mesh at the
frequency 650MHz for two illuminating waves with the same direction but two440

different polarization. In this section, we propose to solve the scattering problem
for frequencies ranging from 350MHz to 650MHz, a fixed polar angle θ = 90◦

(which corresponds to the plane of the wings), the azimuthal angle ϕ ranging
from 160◦ to 200◦ and a fixed polarizations.

6.1.1. Preliminary step: the non-intrusive local affine approximations445

The preliminary step for building an efficient ROM for this parametrized
problem is constructing the non-intrusive local affine approximations. For this
purpose, we first apply the EIM [18] to the three functions gns1 , g

ns
2 and gns3
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defined in §3.2. Given the size of the target, we let rmax = 15m. We draw
attention to the fact that rmax is the only information that is needed on the450

target. In particular, the mesh of the target with Nh degrees of freedom is not
used at this point. Prescribing a tolerance 10−6 on the EIM approximation
error, we find M1 = 31,M2 = 28 and M3 = 30. Thus, we have obtained an
affine approximation for the CFIE operator in the form of Eq. (20) withQa = 93
terms. As anticipated in §3.2, Qa is quite large.455

Next, we apply the locally adaptive procedure explained in §4 to transform
the global and intrusive affine approximation with Qa terms (global in the sense
that it is valid over 350MHz to 650MHz) into K local and non-intrusive affine
approximations. To this end, we prescribe a number of terms Q and a tolerance
tol and let the algorithms 1 and 2 automatically build the K sub-windows460

and associated local non-intrusive affine approximations. For now, we choose
Q = 8, tol = 10−1, but we shall discuss the choice of Q later in §6.1.3. With
these choices, the locally adaptive procedure terminates with K = 24, which
means that a set J = 31 wavenumbers have been selected. Figure 3 shows the
projection error with respect to the frequency at a few selected iterations of the465

greedy or locally adaptive procedures.
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Figure 3: The projection error µ 7→ ∥σ(µ)−PCJ
[σ(µ)] ∥ for selected values of J , plotted with

respect to the frequency f = cµ
2π

in Hz. The convergence to the prescribed tolerance tol = 0.1
occurs at J = 24.

6.1.2. Construction of the ROM

Following the block approach described in §5.1, we need to choose Nf ≥ 1
wavenumbers µ(1) ≤ · · · ≤ µ(Nf ) and, for each wavenumber µ(n), we need to

choose a set of I(n) ≥ 1 associated incident angles {ν(n)i }1≤i≤I(n) . In the present470

test case the polar angle is fixed to θ = 90◦, thus we only need to choose for

each n the set of azimuthal angles {ϕ(n)i }1≤i≤I(n) . We propose to choose the
number of frequencies Nf following

Nf =

⌈
Cf (fmax − fmin)

δf

⌉
, δf =

c

2L
(39)

where ⌈·⌉ denotes the ceiling operation, Cf is a constant, fmax = 650MHz is
the maximal and fmin = 350MHz is the minimum frequency, c ≈ 3× 108m/s is475
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Figure 4: Adaptive grid (left) and uniform grid (right) for the fighter aircraft test case.

the speed of light and L = 15m is the characteristic size of the target. While
Shannon’s sampling criterion [28] corresponds to the choice of constant Cf = 1.
Based on our experience, we advocate using Cf = 3

2 .
Regarding the choice of incident angles, we explore two possible strategies:

� The adaptive grid strategy. This approach is motivated by the observations480

made in [9]. The number of associated incident angles increases with the
frequency. In detail, I(n) is an increasing function of n. We propose to
define number I(n) as

I(n) =

⌈
Cϕ(ϕmax − ϕmin)

δϕ(n)

⌉
, δϕ(n) =

c

2Lf (n)
, (40)

where Cϕ is a constant, f (n) = µ(n)c
2π is the nth frequency. The choice

Cϕ = 1 corresponds to Shannon’s sampling criterion at the frequency485

f (n), but based on some numerical tests, we advocate using Cϕ = 3.

� The uniform grid strategy. For simplicity, the set of associated incident
angles is the same for all Nf wavenumbers, in other words I(1) = · · · =
I(Nf ) ≡ I and ϕ

(1)
i = · · · = ϕ

(Nf )
i for all 1 ≤ i ≤ I. The number I is cho-

sen using the formula (40), where δϕ(n) is replaced by the n-independent490

quantity δϕ = c
2Lfmax

.

For the present aircraft test, Eq. (40) gives Nf = 24. Figure 4 shows the
adaptive and uniform grids.

The last ingredient for building the locally adaptive non-intrusive ROM is
the choice of a local number of frequencies N loc

f . For now, we set N loc
f =495

10. The choice of N loc
f will be discussed later in §6.1.3. In this situation,

the elapsed time for building the ROM is 2h38min with the adaptive grid and
3h04min with the uniform grid. These elapsed times take into account : (i) the
preliminary step (three EIMs and the locally adaptive procedure), (ii) the Nf

calls to the BEM linear solver for computing the BEM solutions following the500

block approach described in §5.1 and (iii) the computation of all the necessary
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reduced matrices with the strategy explained in §5.3. For solving the BEM,
we use a multiple right-hand-side Generalized Conjugate Residual method [29].
We use the Multi-Level Fast-Multipole Method (MLFMM) for performing all
matrix-vector operations [30]. Let us emphasize that the MLFMM is not only505

used within the iterative solver for performing matrix-vector operations at each
iteration, it is also used for performing all matrix-vector operations listed in §5.3
which are required for the offline phase. All the computations run in parallel
on 8 CPUs.

The ROM being built, it is now possible to compute very efficient approxi-510

mation for the BEM solution for any frequency within 350− 650MHz and any
azimuthal angle within 160−200◦. We compute the monostatic RCS on a carte-
sian grid with 121 frequencies and 161 azimuthal angles in 53min elapsed time
with adaptive grid strategy and 58min elapsed time with the caratesian grid
strategy. Notice that these online elapsed times include : (i) computing the re-515

duced solutions, (ii) expressing the reduced solutions as Nh-dimensional vectors
to obtain the approximate surface currents and (iii) radiating the approximate
surface currents to compute the RCS. Step (i) is fully Nh-independent and thus
very efficient, while steps (ii) and (iii) have a complexity dependent on Nh. This
dependency in Nh still allows online performance, because radiating the surface520

currents is a simple post-processing task which is not time-consuming compared
to solving the BEM, for instance. Indeed, for comparison, it takes 7h13min to
compute the RCS on the same 121 × 161 cartesian grid when resolving the
surface currents by solving the BEM rather than the ROM.

For assessing the accuracy of the ROM, we compare the RCS obtained with525

the ROM and the RCS obtained with the BEM on grid 51× 81 cartesian grid,
see fig. 5. Given a frequency f and an azimuthal angle ϕ, let RCS(f, ϕ) be the
reference RCS obtained from the surface currents resolved with the BEM and
let R̃CS(f, ϕ) denote the approximate RCS obtained from the surface currents
resolved with the ROM. On fig. 5 (right), we have plotted the quantity (f, ϕ) 7→530

20 log10 ∆(f, ϕ), where ∆(f, ϕ) is the relative error given by

∆(f, ϕ) =
|RCS(f, ϕ)− R̃CS(f, ϕ)|

|RCS(f, ϕ)|
. (41)

The logarithm provides a measure of the error of the ROM in dB, which is the
usual unit for radarists. We find that this error never exceeds −20dB, which
confirms the excellent accuracy of the ROM.

6.1.3. Different choices for Q and N loc
f535

So far, we have successfully built two ROMs, with the adaptive and cartesian
grid strategies using the fixed parameters Q = 8, N loc

f = 10. In this section, we

now explore the choice of the two parameters Q and N loc
f in more detail.

We start by applying the locally adaptive procedure prescribing different
number of termsQ = 6, 8, 10, 12. The procedure terminates withK = 34, 24, 19, 15540

sub-windows respectively, which means that Algs. 1 and 2 have selected J =
39, 31, 28, 26 frequencies respectively. In the present case, it is to be observed
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Figure 5: Monostatic RCS in the (f, ϕ) plane for the aircraft test case on a cartesian grid with
51 frequencies and 81 azimuthal angles. From left to right: reference, approximation (with
Q = 8, N loc

f = 10, adaptive grid strategy) and the error in dB.

that dividing the prescribed number of terms by two (from 12 to 6) does roughly
multiply the number of sub-windows by a factor 2, while the number of selected
frequencies is multiplied by a factor 3

2 . This shows that even though the lo-545

cally adaptive procedure builds many sub-windows, yet the number of selected
frequencies does not grow too fast.

We now explore different choices for N loc
f , namely N loc

f = 6, 8, 10, 12. For

each combination of Q and N loc
f , two domain-decompositions of the frequency

window co-exist: the domain-decomposition in K sub-windows Dk, 1 ≤ k ≤ K,550

which is exclusively due to the choice of Q and the domain-decomposition in
R sub-windows D(r), 1 ≤ r ≤ R, which is uniquely determined by the choice
of N loc

f . As explained in §5.3, the complexity of the offline phase essentially

involves the (k, r)-couples for which the intersection Dk ∩D(r) is non-empty. In
order to illustrate this, we have plotted on fig. 6 what we shall call the domain-555

decomposition skeleton. This consists in the K×R grid where the (k, r)-couples
for which the set Dk ∩D(r) is non-empty are marked by a black tile. As can be
seen on fig. 6, the domain-decomposition skeleton always takes the form of an
approximate diagonal.

We draw attention to two typical situations. The first corresponds to a sit-560

uation where the domain-decomposition in K sub-windows is relatively more
refined than the domain-decomposition in R sub-windows. Thus, for a fixed r,
there may be plenty of different values of k such that Dk ∩ D(r) is non-empty,
resulting in a horizontal line in the domain-decomposition skeleton as can be
observed for instance for Q = 6, N loc

f = 12 (top right of fig. 6). The sec-565

ond typical situation corresponds to a domain-decomposition in R sub-windows
relatively more refined than the domain-decomposition in K sub-windows. In
this case, for a fixed k, there may be plenty of different values of r such that
Dk ∩D(r) is non-empty, resulting in a vertical line in the domain-decomposition
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Figure 6: Domain-decomposition skeletons for the adaptive grid, Q = 6, 8, 10, 12 and N loc
f =

6, 8, 12. Each row corresponds to a constant Q and each column to a constant N loc
f . For each

domain decomposition skeleton, the tile (k, r) is black when the sets Dk and D(r) have a non
empty intersection (see text).

skeleton. The case Q = 12, N loc
f = 6 (bottom left of fig. 6) nicely illustrates570

this situation. We conclude that exploring the different choices Q = 6, 8, 10, 12
and N loc

f = 6, 8, 10, 12 is a good sampling of the various possible situations.

For each combination of Q and N loc
f , a different ROM is built. Table 1

consigns the number of matrix-vector products performed during each of the
different offline phases. It is to be observed that for a fixed Q the number of575

matrix-vector products increases with N loc
f . This means that the number of

matrix-vector products performed with each matrix A(µ̂j), 1 ≤ j ≤ J increases
with N loc

f (the number J of matrices is constant for a fixed Q). Table 1 also
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shows that for a fixed N loc
f the overall number of matrix-vector products first

decreases with Q until some threshold value of Q after which the number of580

matrix-vector products increases again. The existence of this threshold value of
Q is related to the fact that, under a decreasing Q, the number J of different
matrices increases while the number of matrix-vector products required with
each matrix A(µ̂j), 1 ≤ j ≤ J decreases (because each sj = rmax

j − rmin
j

decreases, see §5.3). In the present test case, the threshold value of Q is found585

to be around 6 or 8 depending on N loc
f .

Adaptive grid Uniform grid
Q\N loc

f 6 8 10 12 6 8 10 12

6 4959 5917 6876 7834 6156 7344 8532 9720
8 4789 5457 6126 6794 5940 6768 7596 8424
10 5048 5571 6093 6616 6264 6912 7560 8208
12 5406 5816 6226 6636 6696 7200 7704 8208

Table 1: Number of matrix-vector products performed during the offline phase for different
values of Q and N loc

f using the adaptive and uniform grid strategies.

Adaptive grid Uniform grid
Q\N loc

f 6 8 10 12 6 8 10 12

6 2:08 2:19 2:33 2:44 2:20 2:39 2:56 3:15
8 2:03 2:16 2:25 2:37 2:19 2:34 2:53 3:07
10 2:03 2:17 2:27 2:37 2:27 2:38 2:52 3:09
12 2:07 2:19 2:30 2:40 2:23 2:39 2:56 3:22

Table 2: Elapsed times (h :mm, with h the number of hours and mm the number of minutes)
for the offline phase with different values of Q and N loc

f using the adaptive and uniform grid
strategies.

Table 2 shows the elapsed times for the different offline phases. A quick
comparison with Table 1 confirms that the offline phase is more time-consuming
if there are more matrix-vector products to perform, which is the expected
behavior. However, a close comparison reveals the that the elapsed times are590

not always exactly correlated to the overall number of matrix-vector products
presented in Table 1. For instance, the situation with the uniform grid Q =
10, N loc

f = 6 which requires 6264 matrix-vector products is surprisingly more

time-consuming than the situation with Q = 12, N loc
f = 6 which yet requires

more (6696) matrix-vector products. We believe that this can be explained595

by our computational strategy for performing the matrix-vector operations in
practice. Rather than computing the n matrix-vector products Av1,. . . ,Avn

successively with the same matrix A, we prefer computing a single matrix-
matrix product AV, where V is the matrix whose n columns correspond to the
n vectors v1,. . . ,vn. This strategy favors the cases where the number of matrix-600

vector products required with each matrix A(µ̂j), 1 ≤ j ≤ J is large, i.e., these

22



are the cases that exhibit long horizontal lines in their domain decomposition
skeleton.

Table 3 shows the maximum relative error for the each of the constructed
ROMs. These results show that the error decreases with increasing N loc

f . This is605

related to the fact that larger values of N loc
f are associated with richer approx-

imation spaces with better approximation properties [21]. Moreover, we find
that the error is only slightly smaller with the uniform than with the adaptive
grid strategy. Indeed, it is to be observed that the two strategies provide very
similar results in terms of errors. Given that the adaptive grid strategy is able610

to recover these results much faster (see Table 2), this strategy is more compet-
itive than the uniform grid strategy in practice. Finally, Table 3 confirms that
the ROM approximation error does not depend on Q as announced.

Adaptive grid Uniform grid
Q\N loc

f 6 8 10 12 6 8 10 12

6 0.78 0.68 0.66 0.61 0.72 0.63 0.62 0.57
8 0.78 0.68 0.66 0.61 0.71 0.62 0.61 0.56
10 0.79 0.68 0.66 0.61 0.72 0.63 0.62 0.57
12 0.79 0.69 0.67 0.62 0.72 0.64 0.63 0.59

Table 3: Maximum relative error max∆(f, ϕ) in % over a 121 × 161 grid for different values
of Q and N loc

f using the adaptive and uniform grid strategies.

6.2. The UAV test case

We present numerical results on a target with the geometry of a UAV. Com-615

pared to the fighter aircraft test case, this taget is much smaller (about 3.2m
long and 2.9m wingspan). This target is meshed with about Nh = 290, 000
degrees of freedom following the rule of letting 8 degrees of freedom per wave-
length. The frequency interval of interest for this target is 2.5− 4GHz and the
range of interest for the azimuthal angle ϕ is −15 to +15◦. The surface currents620

on the UAV target for an arbitrary point (f, ϕ) within these bounds is shown
on fig. 8. Notice the presence of feature on the right wing that is absent on the
left wing that breaks the symmetry of the target.

We build the local non-intrusive affine approximations of the CFIE operator
using Q = 8 and prescribing the tolerance tol = 10−1 in the locally adaptive625

procedure. The procedure stops with a set of J = 57 selected wavenumbers (i.e.,
K = 50 sub-windows). For constructing the ROM, we choose Nf = 30, which is
the number of frequencies stemming from the Shannon criterion Eq. (39) with
fmin = 2.5GHz, fmax = 4GHz and the advocated constant Cf = 3

2 . The number
of incident angles to be considered for each frequency value is chosen following630

the adaptive grid strategy Eq. (40) with the advocated constant Cϕ = 3. The
grid that is used for constructing the ROM is shown on fig. 7.

Finally, we choose the local number of frequencies N loc
f = 8. Based on

our previous study, this is a rather low value for N loc
f , that is expected to
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Figure 7: For the UAV test case : adaptive grid (left) and skeleton obtained with the choice
Q = 8, N loc

f = 8.

favor performance over quality of approximation. This choices yields a domain-635

decomposition into R = 30 sub-windows. The domain-decomposition skeleton
is shown on fig. 7. It is to be observed that the domain-decomposition skeleton
is slightly more refined horizontally than vertically which, as already mentioned,
is an advantage when matrix-vector operations with the same matrix are per-
formed using blocks of vectors.640

Table 4 consigns the elapsed times for two different polarizations of the
incident plane wave (T-T and P-P). The offline elapsed time is the elapsed time
for constructing the ROM, while the online elapsed time is the elapsed time for
computing the reduced solutions on a cartesian grid with 101 frequencies and
121 incident angles and post-processing these reduced solutions for obtaining645

the RCS. First, let us notice that the BEM takes slightly longer to solve for the
T-T than for the P-P polarization. This is reflected in both the offline elapsed
times and the BEM RCS recovery times consigned in Table 4. However, it is to
be observed that once the ROMs are built, the online RCS recovery times are
the same for both the T-T and P-P polarization. This illustrates the fact that650

the online complexities are indeed strictly identical for both polarizations.

Polarization Offline Online (101× 121) BEM (101× 121)
T-T 11h08 1h07 26h43
P-P 10h09 1h08 23h04

Table 4: Elapsed times for the UAV test case : Q = 8, N loc
f = 8.

Let us now consider the instantaneous speed-up, defined as the the ratio be-
tween the elapsed time for recovering the RCS without the ROM (i.e., with the
BEM) and with the ROM. The instantaneous speed-up is the usual measure
of speed-up [9, 19, 31], but let us emphasize that the instantaneous speed-up655

does not take the offline elapsed time into account. In fact, the instantaneous
speed-up must be interpreted as a measure of the speed-up once the ROM is
constructed and readily available. In the present case, we find an instantaneous
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speed-up of about 24 for the T-T polarization and about 20 for the P-P polar-
ization. Interestingly, the instantaneous speed-up is better for the T-T than for660

the P-P polarization, despite the T-T polarization being slightly more costly to
solve with the BEM.

In terms of quality of approximation, we find the maximum of the relative
error ∆(f, ϕ) (see by eq. (41)) over the 101 × 121 (f, ϕ) cartesian grid to be
2.95% for the T-T polarization (3.95% for the P-P polarization). Figure 8 shows665

the difference between the BEM surface currents and the ROM surface currents
on the target at an arbitrary point (f, ϕ). In this example, the error in the
surface currents is relatively well distributed on the target with no particular
hot spots and the magnitude of the error is observed to be below 1%.

Figure 8: Surface currents computed with the BEM on the UAV target (left) and difference
between BEM and ROM surface currents (right). The frequency is f = 2.515GHz and the
azimuthal angle ϕ = +0.5◦ (this (f, ϕ) couple does not coincide with any point in the grid
shown on fig. 7).

Such levels of error may seem high (they are compared to our previous670

test case), but they are more than acceptable, for example in the context of
holographic imaging. An holographic image is obtained by post-processing the
RCS. Figure 9 shows two holographic images, the one on the left obtained using
the BEM only and the the one on the right using the ROM. Clearly, these two
images cannot be distinguished, yet the ROM allows a faster recovery by a factor675

more than two overall (taking both offline and online phases into account).

7. Conclusions and perspectives

In this paper, we have presented an non-intrusive method for construct-
ing efficient reduced order models for parametrized electromagnetic scattering
problems solved using surface integral equations.680
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Figure 9: Holographic images in the UAV test case : computed using the BEM (left) and
using the ROM (right).

Our main contribution is to propose non-intrusive local affine approxima-
tions for approximating the parametrized integral operator. We have chosen to
present our approach on the CFIE integral operator in electromagnetic scatter-
ing, but of course our approach is general and could be applied on any other
integral operator arising in electromagnetism or acoustics. The original method685

proposed in this paper is especially thought for, but not limited to, combined
formulations, for which multiple kernels need to be dealt with. In this con-
text, the standard reduced basis approach reviewed in section 3, fails to provide
an efficient affine approximation, because the number of affine terms is usually
very large [9]. Combining the ideas found in Ref. [20] to achieve non-intrusivity690

and the locally adaptive concept found in Ref. [21] naturally yields the non-
intrusive local affine approximations. An efficient construction procedure has
been proposed in section 4. In section 5, the classical reduced basis method
has been adapted to use the non-intrusive local affine approximations. Our
proposition was to use local reduced basis approximation spaces, rather than a695

single reduced basis approximation space following [21]. We have shown that the
combining the non-intrusive local affine approximations with local reduced basis
approximation spaces enabled a potential reduction in the number of matrix-
vector products that need to be performed during the offline phase, as well as
a reduction in the memory requirements, with potentially less reduced matrices700

making up the reduced order model.
We have illustrated our approach in section 6, on two industrially relevant

test cases. On the fighter aircraft test case, we have explored the influence of the
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two user-defined parameters Q (the number of affine terms in each non-intrusive
local affine approximation) and N loc

f (the number of different frequencies to be705

considered in each local reduced basis approximation space). We have shown
the quality of the ROM strongly depended on N loc

f but not at all on Q. Our
numerical experiment illustrate that a good choice of Q can indeed minimize
the number of matrix-vector products that need to be performed offline and
help reduce the computational costs. For constructing the reduced basis ap-710

proximation spaces, we have proposed and compared two different strategies :
the uniform grid strategy (constant number of incident angles per frequency)
and the adaptive grid strategy (number of incident angles increasing with the
frequency). We have further proposed to rely on Shannon’s criterion to de-
termine the number of frequencies and incident angles to be used. Numerical715

results have confirmed the soundness of this choice and the relative superior-
ity of the adaptive versus the uniform grid strategy (already observed in [9])
which shows a more interesting balance between performance and the quality
of approximation.

Finally, we have shown our method in action on the UAV test case, which720

is a test case of industrial size and interest. We have shown significant speed-
ups with our method and have confirmed that the approximation errors were
sufficiently low for the reconstructed holographic image to be indistinguishable
from the reference holographic image.
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