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Abstract: Incoherent light-emitting structures are of key interest for many fields in optoelectron-
ics and spontaneous emission is the physical phenomenon underlying their light emission process.
In this paper, we propose a novel full-matrix algebraic framework for modeling spontaneous
emission modification from radiating electric dipoles in layered media. This formalism general-
izes the standard 2× 2 transfer-matrices into a compact 3× 3 framework, which thus allows to
treat dipole radiation directly into the matrix formulation as a source matrix. Its accuracy has
been confirmed by incoherent 3D-FDTD. It has then been extended to complex emitter regions
with both spectral and spatial distributions using incoherent combination. Finally, we applied
this approach to various examples to demonstrate its applicability. Since it only requires modest
computational efforts, we hope that this model can help better understand spontaneous emission
dynamics in layered media and thus pave the way to novel design guidelines for devices in many
fields of optoelectronics.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Incoherent semiconductor light-emitting structures are of major interest for many applications in
the field of optoelectronics, e.g., solid-state lighting, optical communication and displays [1].
The physical principle underlying light emission in those structures is spontaneous emission from
radiating electric dipoles, stemming from electron-hole pairs that spontaneously recombine in
certain regions of the devices [2]. The dynamics of this spontaneous emission mechanism can
be strongly altered by the presence of an optical environment and those so-called cavity effects
tend to get stronger as the devices get thinner [3]. Since more recent incoherent light-emitting
structures such as multiple quantum well (MQW) color converters or ultrathin-film light-emitting
diodes (LEDs) can have thicknesses on the order of magnitude of the wavelength [4,5], it is then
of crucial interest to be able to thoroughly study dipole emission modification in layered media.
Understanding all the related phenomena at play would thus ultimately help improve number of
key performances of the thin-film devices such as light extraction efficiency (LEE), directionality,
brightness, [3] etc.

Several formulations and models have been developed for that matter over the years, but the
most recently used are derived from the work of Benisty et al. [3]. In that work, the authors
unified in a single framework the spontaneous emission theory of Lukosz [6] and the already
widely used transfer-matrix method [7]. Although the aforementioned approach has already been
used for various types of devices, its implementation is often hindered by the 2× 2 nature of
the standard transfer-matrices. Indeed, due to this 2× 2 framework, dipole emission could not
be directly included into the matrix formalism (2× 2 transfer-matrices are passive and cannot
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embed a light source) and had thus to be separately treated as a discontinuity of the field across
the source plane. This often led to complex analytic calculations, which could require additional
computational efforts [8].

In this paper, we propose a novel full-matrix algebraic formalism for modeling dipole emission
modification in layered media, wherein the standard transfer-matrices are generalized into a
compact 3× 3 framework allowing to directly treat dipole radiation as a source matrix. The
paper is organized as follows. Section 2 outlines the plane-wave expansion method for treating
spontaneous emission in an unbounded medium, while the 3× 3 formalism is introduced in
section 3. The generalized transfer-matrix model is then developed in sections 4 and 5 for
stratified media and applied to some incoherent light-emitting structures in section 6.

2. Spontaneous emission in an unbounded medium

As mentioned above, electron-hole recombinations in semiconductor incoherent light-emitting
devices can be modeled as radiating electric dipoles, whose emission rates depend on their
orientation and the polarization of the emitted light. The orientation of the so-formed electric
dipoles (set by their dipole moments) can be decomposed within a basis of mutually-orthogonal
horizontal and vertical orientations. As shown by Lukosz in [6], a convenient way to represent
the resulting dipole field is as a superposition of s- and p-polarized plane and evanescent waves.
The radiation patterns of the emitters can thus be described both in the near- and farfield zones
within this framework.

As shown in Fig. 1, vertical dipoles (denoted v) can only couple to p-polarized light with a
normalized radiation pattern (power per unit solid angle) in an unbounded medium which reads
as [9]:

Fig. 1. Normalized radiation patterns of horizontal dipoles in a) s- and b) p-polarizations
and of c) vertical dipoles in p-polarization, all lying in an unbounded medium.

Π∞
v,p =

3
8π

sin2 (θe) , (1)

Here θe is the off-normal emission angle and subscript e refers to the emitter’s medium.
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On the other hand, horizontal dipoles (denoted h) with arbitrary azimuthal angles can couple to
both s- and p-polarized light. The corresponding normalized radiation patterns can be expressed
as [10]:

Π∞
h,s =

3
16π

, Π∞
h,p =

3
16π

cos2 (θe) . (2)

The factors 3/8π and 3/16π are normalization factors so that the total powers through 4π sr for
vertical dipoles in p-polarization on the one hand and for horizontal dipoles in (s+ p) equal unity:∫ θ=π

θ=0

∫ ϕ=2π

ϕ=0
Π∞

v,psin (θ) dθdφ = 1, (3)

∫ θ=π

θ=0

∫ ϕ=2π

ϕ=0

(︂
Π∞

h,s + Π∞
h,p
)︂

sin (θ) dθdφ =
3
4
+

1
4
= 1. (4)

We can note that for horizontal dipoles in an unbounded medium the ratio between the total
powers in s- and p-polarization is 3:1. The radiation patterns as well as the dipole orientations
and field polarizations are depicted in Fig. 1.

For a completely isotropic light source, those power flows are combined as follows [3]:

Π∞
iso =

1
3
Π∞

v +
2
3
Π∞

h =
1

4π
, (5)

Here:
Π∞

v = Π∞
v,p, Π∞

h = Π∞
h,s + Π∞

h,p. (6)

As expected we end up with a spherical emission as shown by Eq. (5) and in Fig. 2.

Fig. 2. Normalized radiation pattern of an isotropic light source in an unbounded medium.

3. 3×3 formalism in an unbounded medium

In this section, we introduce our generalized 3× 3 transfer-matrix formalism for the simple case
of a dipole in an unbounded medium. Figure 3 (a) depicts a schematics of the dipole source in
an unbounded medium with the different parameters used in this development. We consider an
emitter at a position zp. The normalized source terms for forward- and backward-propagation are
denoted SA and SB, respectively. We also consider two arbitrary positions (z1 and z2) on both
sides of the dipole. The corresponding electric field amplitudes are given in Fig. 3 (b).
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Fig. 3. a) Schematics diagram of a dipole source at a position zp in an unbounded medium.
z1 and z2 are 2 positions at distances of d1 and d2 from the source, respectively. SA and SB
are the amplitudes of the forward- and backward-propagating source terms. b) Expressions
of the electric-field amplitudes on both sides of the dipole.

In this context, we can write the relationship between the electric fields and the source terms
by using the standard 2× 2 transfer matrix formalism:

⎛⎜⎝
E1
+

E1
−

⎞⎟⎠ = ⎛⎜⎝
exp(ikzd1) 0

0 exp(−ikzd1)

⎞⎟⎠ ⎛⎜⎝
Ep
+−SA

Ep
−

⎞⎟⎠ , (7)

⎛⎜⎝
Ep
+

Ep
−

⎞⎟⎠ = ⎛⎜⎝
exp(ikzd2) 0

0 exp(−ikzd2)

⎞⎟⎠ ⎛⎜⎝
E2
+

E2
−+SBexp(ikzd2)

⎞⎟⎠ , (8)

Here kz is the complex z-wave-vector component such as kz/k= cos(θe), e referring to the
emitter medium. Ej represents the electric field amplitude at the position zj. The superscripts+ (-)
designate the forward- (backward-) propagating electric fields.

Considering now a 3× 3 formalism where the electric-field vectors have 3 components instead
of 2 and combining Eq. (7) and Eq. (8), we can write a more generalized formalism as:

⎛⎜⎜⎜⎜⎝
E1
+

E1
−

1

⎞⎟⎟⎟⎟⎠
= Pe(d1)SPe(d2)

⎛⎜⎜⎜⎜⎝
E2
+

E2
−

1

⎞⎟⎟⎟⎟⎠
, (9)

Here Pj(dj) and S account for the propagation matrix in the layer (or medium in this case)
denoted j over a distance dj and the source matrix, respectively. They are expressed as:

Pe(dj) =

⎛⎜⎜⎜⎜⎝
exp(ikzdj) 0 0

0 exp(−ikzdj) 0

0 0 1

⎞⎟⎟⎟⎟⎠
, (10)

S =
⎛⎜⎜⎜⎜⎝

1 0 −SA

0 1 +SB

0 0 1

⎞⎟⎟⎟⎟⎠
. (11)

The main advantage of the herein-developed formalism appears thus clearly, since it eliminates
the need to resort to discontinuity equations for including dipole emission inside the calculations.
It indeed provides (see Eq. (9)) a full-matrix formulation which directly relates the electric fields
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at any positions on both sides of the dipole source. This feature makes it easier to implement
numerically with less analytical calculations and more modest computing efforts. In addition, its
compact nature (one equivalent matrix for the whole system) facilitates the physical interpretations
of the performances of the corresponding devices as we will see later on.

Let us note that in this formalism and contrary to standard implementations of models for dipole
emission modification [3], the sign differences between the forward- and backward-propagating
source terms are already accounted for in Eqs. (7),(8). We can also emphasize that the third
component of the electric field which is set to 1 is merely a mathematical trick to enable the
generalization.

In the following sections, this novel 3× 3 transfer-matrix formulation will be implemented for
dipole emission in stratified media.

4. Spontaneous emission in layered media

In this section, we develop the previous generalized transfer-matrix model for dipole emission
in a multilayer structure. We choose a typical incoherent light-emitting structure made up of a
stack of layers assumed to be homogeneous. All layers in the structure are considered infinite
in xy plane and with a finite thickness (along z). The dipole emitter is represented as a source
plane which lies at a position zext within an emission layer referred to as e, with a thickness of de.
SA and SB represent the normalized forward- and backward-propagating source terms basically
given by the square roots of the radiation patterns provided in Eqs. (1),(2). In our model, since
the sign differences between the forward- and backward-propagating source terms are already
accounted for, we have SA=SB. We will keep SA and SB thereafter for the sake of clarity.

The normalized source terms in the three basic configurations are provided in Table 1.

Table 1. Normalized source terms for horizontal and vertical dipoles

Dipole orientation s-polarized light p-polarized light

Horizontal SA
h,s = SB

h,s =
√︂

3
16π SA

h,p = SB
h,p =

√︂
3

16π cos(θe) =
√︂

3
16π

kz,e
ke

Vertical SA
v,s = SB

v,s = 0 SA
h,p = SB

h,p =
√︂

3
8π sin(θe) =

√︂
3

8π
k//,e
ke

Here kz,e (k//,e) accounts for the z- (in-plane) -wave-vector component inside the emission layer.
We can note that evanescent modes can also be accounted for by letting kz,e run along the imaginary
axis and go from i0 to+ i∞. We can also note that the source terms are dipole-orientation- and
polarization-dependent and so will be all the resulting fields. In the following, the superscripts h,
v, s and p will be dropped for the sake of clarity.

EA(B) represents the electric field on right (left) side of the source plane (source terms modified
by the optical environment). The superscripts +(-) still designate the forward-(backward-)
propagating fields.

The multilayer structure is sandwiched between two semi-infinite ambient media (denoted 1
and 2) where light will be extracted. The refractive indices of the ambient media as well as the
emission layer are denoted n1(2) and ne, respectively. The matrices R and L depict the propagation
from the ambient medium 2 up to the right interface of the emission layer and from the left
interface of the emission layer to ambient medium 1, respectively. Since there are no fields
propagating from the ambient media into the structure, the boundary conditions can be written as
E1
+=E2

−=0.
The multilayer structure and all the corresponding parameters are depicted in Fig. 4.
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Fig. 4. Schematics depicting a multilayer structure enclosed with semi-infinite ambient
media. The emitter is represented as a source plane within the emission layer.

Using the generalized transfer-matrix model described in the previous section (Eq. (9)), we
can now write:

⎛⎜⎜⎜⎜⎝
0

E1
−

1

⎞⎟⎟⎟⎟⎠
= M

⎛⎜⎜⎜⎜⎝
E2
+

0

1

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
M11 M12 M13

M21 M22 M23

0 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

E2
+

0

1

⎞⎟⎟⎟⎟⎠
, (12)

Here M is the equivalent matrix of the whole structure (including dipole emission) and reads
as:

M = LPe(zext)SPe(de − zext)R. (13)

Pe(zext) and Pe(de-zext) are the propagation matrices inside the emission layer over distances of
zext and de-zext as in Eq. (10). S is the source matrix whose expression is provided in Eq. (11).

Let us recall that the source matrix S depends on both dipole orientation and light polarization,
while the propagation (and interface) matrices are only polarization-dependent.

In the following sections, we are going to derive the expressions of the electric fields outside
and inside the structures in order to determine key figure of merits (FoM) of light-emitting
structures such as LEE, directionality through the farfield emission patterns, Purcell factor, etc.

4.1. Determination of the external fields

The implementation of the model starts by considering an angle inside the emission layer θe
ranging from 0 to π/2. Afterwards, once the equivalent matrix M has been calculated using
Eq. (13), one needs to derive the fields in the ambient media (external fields) at all corresponding
external angles θ1(2) including evanescent waves (complex angles).

Using Eq. (12), one can easily find that the external fields are expressed as:

E2
+= −

M13
M11

, E1
+=

M23M11 − M21M13
M11

. (14)

For the physical interpretation of these formulas to become clearer, let us introduce r1 (r2) and
t1 (t2) which designate the complex Fresnel reflection and transmission coefficients for all layers
on the left (right) side combined as depicted in Fig. 4. Using the elements of matrices L and R,



Research Article Vol. 2, No. 1 / 15 Jan 2023 / Optics Continuum 37

these coefficients express as [11]:

r1 = −
L12
L11

, r2 =
R21
R11

,

t1 =
L22L11 − L12L21

L11
, t2 =

1
R11

.

(15)

After detailing the expressions in Eq. (14) using the elements of the equivalent matrix M and
combining them with Eq. (15), one can find new expressions for the external fields as in [8]:

E2
+ =

t2(SAe−ikz,e(de−zext) + r2SBe−ikz,e(de+zext))

1 − r1r2e−ikz,e2de
,

E1
− =

t1(r2SAe−ikz,e(2de−zext) + SBe−ikz,ezext )

1 − r1r2e−ikz,e2de
.

(16)

The physical meaning of these formulas is now clearer. For instance, the outgoing field on the
right (E2

+) stems from the right-going source term propagated into the right side the emission
layer, added to the left-going source term reflected off the left side of the structure, which are
both transmitted through the right side of the structure.

The common denominator in both cases denoted ∆ is intrinsic to the structure and carries its
modal properties. Indeed by definition, a lossless guided wave will satisfy the unity round-trip
condition [3]:

r1r2e−ikz,e2de = 1. (17)

Thus, the denominator ∆ will equal zero at certain discrete angles and the fields in Eq. (16)
will diverge, making it impossible to directly take into account guided modes. The numerical
trick to calculate the evanescent fields whose internal fields correspond to guided modes is to
introduce damping layers, which are ultrathin artificial absorbing layers, at each side of the source
plane as suggested in [3].

Let us note that the propagation matrices into those damping layers have now to be taken into
account in the final expression of the equivalent matrix. Equation (13) turns thus into:

M = LPe(zext)PDL(dDL)SPDL(dDL)Pe(de − zext)R. (18)

Here the superscript DL designates the damping layers and dDL represents their thickness.
Details about the parameters to implement those damping layers will be provided in subsection
6.1.1.

4.2. Derivation of the internal fields and power fluxes

From the external fields, it is possible to determine the electric fields at any position inside the
multilayer structures using the proper propagation and interface matrices. For instance, it can be
of particular interest to calculate the internal fields inside the emissive layer on both sides of
the source plane. Indeed for incoherent light-emitting structures, it can provide the spontaneous
emission distribution among guided modes, which is of major interest to design highly directional
emitters [4].
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Using the propagation matrices of the previous section, the internal fields can be expressed as:

⎛⎜⎜⎜⎜⎝
EA
+

EA
−

1

⎞⎟⎟⎟⎟⎠
= Pe(de − zext)R

⎛⎜⎜⎜⎜⎝
E2
+

0

1

⎞⎟⎟⎟⎟⎠
, (19)

⎛⎜⎜⎜⎜⎝
EB
+

EB
−

1

⎞⎟⎟⎟⎟⎠
= (Pe(zext))

−1L−1
⎛⎜⎜⎜⎜⎝

0

E1
−

1

⎞⎟⎟⎟⎟⎠
. (20)

Following that, one can easily find that the resulting angular distributions of the internal
emission PA and PB on both sides of the source plane depicted in Fig. 4 read as (using the
Poynting vector flux):

ΠA =
dPin

A

dΩin
A =

|︁|︁EA
+
|︁|︁2 − |EA

− |2, (21)

ΠB =
dPin

B

dΩin
B =

|︁|︁EB
+
|︁|︁2 − |EB

− |2. (22)

Spontaneous emission dynamics can be heavily affected by the optical environment as
mentioned above. The Purcell factor denoted FP is thus a key FoM since it represents the
modification (enhancement or inhibition) of the total spontaneous emission rates inside the
structure as compared to dipole emission rates in an unbounded medium. As all the electric
fields are already normalized, the Purcell factor can be directly evaluated as:

FP =

∫ θe=
π
2

θe=0

∫ ϕ=2π

ϕ=0
(ΠA + ΠB) sin (θe) dθedφ. (23)

Last but not least, we can note that Eq. (21) and Eq. (22) are very easy to implement numerically,
but do not picture the physics of the coupling between spontaneous emission and the cavity
modes. As shown in [12], a more convenient way to express the angular internal emission and
better understand each phenomenon at play is as follows (for example on the left side of the
source plane):

ΠB = ξB × AB × Π∞, (24)

The internal emission is thus set by three main factors: the Airy function AB which accounts
for the resonant behavior of the bare Fabry-Pérot (FP) cavity, the antinode factor ξB which
represents the coupling efficiency between spontaneous emission and the cavity modes and
Π∞ which is the dipole radiation in an unbounded medium provided in Eqs. (1),(2). Similar
expressions can be given for PA. In our framework, the Airy function and antinode factor can be
expressed as:

ξB = |1 + r2exp(−ikz,e2(de − zext))|
2 = |1 + r2exp(−iφc)|

2. (25)

AB =
1 − |r1 |

2

|1 − r1r2exp(−ikz,e2de)|
2 =

1 − |r1 |
2

∆2 . (26)

Here the phase shift φc will eventually set the coupling efficiency between dipole emission and
the cavity modes. Furthermore, as we have mentioned in subsection 4.1, the denominator of the
Airy function ∆2 carries the modal properties of the structure. For instance, as we will see later
on, its zeros provide the discrete angular positions of the guided modes supported by the cavity.

More details about those factors will be provided in the application examples of section 6.
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4.3. Farfield emission patterns and light extraction efficiency

Directionality and LEE are key FoM for designing incoherent light-emitting structures [13]. The
former depends on the shape of the radiation pattern in the ambient media, while the latter is set
by the ratio between the total extracted and emitted powers.

To evaluate the farfield patterns in the outside media (ambient 1 and 2), one has to take into
account the change in solid angles when going out of the multilayer structure due to refraction.
By definition, the farfield pattern in the outer ambient media (e.g. Ambient 1) denoted Pout

1

reads as:
Πout

1 =
dPout

1

dΩout
1 =

dPout
1

dPin
B ×

dΩin
B

dΩout
1 ×

dPin
B

dΩin
B , (27)

The first factor is the power transmission coefficient between the emission layer and the outer
medium 1. Using the flux of the Poynting vector as in [8], it can be written:

dPout
1

dPin
B =

S⃗1
out. A⃗1

out

S⃗B
in. A⃗B

in

=
n1 |E1

− |2cos(θ1)
ne(|EB

+ |
2
− |EB

− |2)cos(θe)
, (28)

Here S⃗B
in and S⃗1

out represent the Poynting vectors in the emission layer and the outer ambient
medium 1, respectively. In addition, A⃗B

in and A⃗1
out are unit vectors normal to the surface for the

emission layer and the ambient medium 1, respectively.
The second factor accounts for the change in solid angle due to refraction. After an angular

differential of the Snell-Descartes’ law ne sin(θe) = n1 sin(θ1), one can get [14]:

dΩin
B = sin(θe)dθedφe =

n1
2cos(θ1)

ne2cos(θe)
dΩout

1, (29)

Lastly, the third factor is the internal power flux given in Eq. (22).
Combining Eq. (27–29), we find the expressions for the farfield emission patterns on each side

of the ambient medium:

Πout
1(2) =

dPout
1(2)

dΩout
1(2) =

|︁|︁E1(2)
−
|︁|︁2 n1(2)

3cos2 (︁θ1(2))︁
ne3cos2 (θe)

. (30)

Let us recall that after the external fields have been calculated using Eq. (14), one has to drop
the evanescent waves (complex outside angles) and only consider outside angles θ1(2) ranging
from 0 to π/2. Once the farfield patterns have been calculated, by definition LEE can be written
as:

LEE1(2) =

∫ θ1(2)=
π
2

θ1(2)=0

∫ ϕ=2π
ϕ=0 Πout

1(2)sin
(︁
θ1(2)

)︁
dθ1(2)dφ

FP
. (31)

5. Incoherent combination for extension to complex emitter regions

In the previous section, the generalized transfer-matrix model has been developed for a single
monochromatic dipole source-plane to provide the basic formulas that can be used for its
implementation. Real-life devices often include distributed dipoles, an emission spectrum, etc.
In the following, we provide the formulas taking into account those considerations.

5.1. Completely isotropic dipoles

In a semiconductor light-emitting structure, emitter orientations are set by the dipole moments of
the radiating electric dipoles, which depend on the carrier confinement conditions. The simplest
case is the completely isotropic light source (e.g. bulk semiconductors), where emitters are
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arbitrarily oriented (isotropic distribution). In that case, only one third of the emitted light comes
from the vertical dipoles. Thus, the internal power flow and farfield pattern, here denoted Pint
and Pout for the sake of clarity, are combined using the following weighted averages:

Πint(out)
combined = 1

3Πint(out)
v + 2

3Πint(out)
h,

Πint(out)
v = Πint(out)

v,p,

Πint(out)
h = Πint(out)

h,s + Πint(out)
h,p.

(32)

LEE follows the same procedure, but for horizontal dipoles s- and p-polarized light need to be
averaged taking into account their different radiation dynamics through the Purcell factor (FP).
Thus, LEE expresses as:

LEEcombined = 1
3LEEv + 2

3LEEh,

LEEv = LEEv,p,

LEEh = LEEh,s×FP
h,s+LEEh,p×FP

h,p

FP
h,s+FP

h,P .

(33)

Let us recall (see section 2) that in an unbounded medium, FP
h,s = 3/4 and FP

h,p = 1/4.
More generally, depending on the structure the factors 1/3 and 2/3 might need to be adjusted.

For instance in the case of quantum wells where light is often predominantly in-plane polarized
[15], the contribution of vertical dipoles could be dropped.

5.2. Spatially distributed incoherent dipoles

The spatial distribution of the dipoles has to be considered in cases where the emitters are
embedded within a layer whose dimensions are not negligible compared to the wavelength. In
some structures, there can even be multiple sets of layers embedding the dipoles [16]. To treat
these cases, one has to recall the incoherent nature of the spontaneous emission process. Indeed,
there are not any interferences between light generated by different dipoles in those structures.

Assuming a uniform carrier distribution within the emission layer, the results for each emitter
need then to be incoherently combined and read as:

Πint(out)
combined =

∑︁zext=zext,N
zext=zext,1 Πint(out)(zext)

N .

LEEcombined =

∑︁zext=zext,N
zext=zext,1 LEE(zext)

N

(34)

Here, N is the number of dipole source-planes inside the emission layer and zext,j accounts for
the position of the emitter labelled j (see Fig. 4). Non-uniform carrier distributions can also be
taken into account by weighting those equations by the emitter concentration along z considering
simple models with the diffusion length as in [14].

5.3. Spectral broadening

Real-life incoherent light-emitting structures can have non-negligible full width at half-maximum
(FWHM), thus their emission line shape should be considered in the model. Let us consider the
source intrinsic spectrum denoted Iin, non-zero only between λmin and λmax. By incoherently
combining the results at each wavelength weighted by the intrinsic emission spectrum, the internal



Research Article Vol. 2, No. 1 / 15 Jan 2023 / Optics Continuum 41

emission, farfield patterns and LEE read as:

Πint
combined (θe) =

∫ λ=λmax
λ=λmin

Iin(λ)Πint(λ,θe)dλ∫ λ=λmax
λ=λmin

Iin(λ)dλ
.

Πout
combined (︁

θ1(2)
)︁
=

∫ λ=λmax
λ=λmin

Iin(λ)Πout(λ,θ1(2))dλ∫ λ=λmax
λ=λmin

Iin(λ)dλ
.

LEEcombined =

∫ λ=λmax
λ=λmin

Iin(λ)LEE(λ)dλ∫ λ=λmax
λ=λmin

Iin(λ)dλ
.

(35)

Although the combined farfield patterns are of key interest, they do not always provide a good
insight into the behavior of each wavelength, which can be useful for structures with strong cavity
effects [17]. In that sense, one could resort to the so-called spectrally-resolved farfield (SRF)
where the weight of each wavelength is taken into account but without the sum. It can thus be
written as:

SRF
(︁
λ, θ1(2)

)︁
=

Iin (λ)Πout
(︁
λ, θ1(2)

)︁∫ λi=λmax

λi=λmin
Iin (λi) dλi

, (36)

Last but not least, the output spectrum denoted Iout can subsequently be calculated by integrating
SRF over angles:

Iout(λ) =

∫ θ1(2)=
π
2

θ1(2)=0

∫ ϕ=2π

ϕ=0
SRF(λ, θ1(2)) sin(θ1(2))dθ1(2)dφ. (37)

As we will see in the application examples of section 6, for some structures the outgoing light
can experience a spectral redistribution which can lead to an altered output spectrum compared
to the intrinsic spectrum.

5.4. Summary of the implementation procedure

In Fig. 5, we provide a detailed flow chart summarizing the numerical implementation of the
herein-developed model. The full-matrix formalism helps make it very convenient. We can note
(as mentioned above) that the equivalent matrix M needs to be established for both polarizations.
When one changes the dipole orientation from vertical to horizontal, only the source matrix S will
then need to be changed. In addition, one could easily transform the transfer-matrix formalism
into a scattering-matrix ones using base changes for more stability particularly when simulating
thick absorptive materials.

It is finally worth noticing that all the incoherent combinations given in section 5 can be
considered as post-processing results. Depending on the applications, this model can provide
LEE, farfield emission patterns (and therefore directionality), Purcell factors, photonic weights
(fraction of the guided energy carried by each cavity mode), etc. This makes it a key tool for
designing incoherent light-emitting structures.
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Fig. 5. Detailed flow chart of the implementation procedure.

6. Application examples

In this section, we wish to demonstrate the validity of the herein-developed model and its
applicability to various types of light-emitting structures. For this purpose, we consider a
high-index slab in different configurations. Figure 6 depicts the basic configuration of the
following examples.

Fig. 6. Schematics of the high-index slab surrounded by semi-infinite ambient media (not at
scale). The superscripts b and a designate the positions before and after the damping layers.

A high-index slab with a thickness de and a refractive index ne is surrounded by two ambient
semi-infinite media with refractive indices n1 and n2. We choose ne= 3 for the examples. A
dipole emitter (source plane) is placed at a distance zext from the left interface. As mentioned
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above, the numerical trick to account for guided modes in our calculations is to introduce two
identical damping layers on both sides of the emitter to preserve symmetry. Those damping
layers need to be thin enough (e.g. λ/103) not to modify direct light emission and close enough to
the source (e.g. λ/106) to have the same coupling to guided modes [3]. Their complex refractive
index is denoted nDL = nDL

′ + inDL
′′ , with nDL

′ and nDL
′′ designating the real (nDL

′ = ne) and
imaginary parts (directly related to the absorption coefficient). The imaginary part will be
referred to as the extinction coefficient in the following. This configuration will hold for examples
in subsections 6.1 and 6.2.

6.1. High-index slab placed in vacuum

First, the high-index slab is placed in vacuum (n1= n2= 1). We are going to progressively
implement complexity in this single slab to better understand the physics underlying light
emission in incoherent light-emitting structures.

6.1.1. Convergence study and accuracy

The most basic configuration that can be used for simulating light-emitting structures is the case of
the single monochromatic source-plane. In this section, we consider a horizontal monochromatic
dipole (denoted h) located in the middle of the slab (zext= de/2). The slab thickness is chosen to
be nede/λ=2.1 as in [3] for the sake of comparison.

We first perform a convergence study to determine the extinction coefficient of the damping
layers. Indeed, this can be tricky because it needs to be high enough for the guided power to
couple into the damping layers, but not to start modifying the direct emission.

Figure 7(a) shows fractions of the total s-polarized light that are guided and extracted (on both
sides of the slab). As we can see, when the extinction coefficient is less than ∼10−4, the damping
layers are not sufficiently absorbing to couple the guided modes. Thus all the light is artificially
extracted (LEE∼100%), which provides incorrect results. We can note that guided modes still
exist in this case, but cannot be accounted for due to the low values of the extinction coefficients.
Next, the guided fraction increases with the extinction coefficient until it saturates, which shows
the importance of the convergence study. Convergence is reached for extinction coefficients over
∼10−1, which means that power injected into guided modes goes necessarily into the damping
layers. We can also note that the saturation value of LEE (∼21%) is in agreement with the one
found in [3] for a similar structure but with a different approach.

For the following simulations, the extinction coefficient of the damping layers is set to 10−1.
To further confirm this consideration, we calculated (see Fig. 7(b)) the internal power flux for
s-polarized light before and after the damping layers (denoted by the superscripts a and b in
Fig. 6). As expected from the reduced slab optical thickness, the emitted light outside the
extraction cone (for θe > 20°) couples to two guided modes depicted by two sharp peaks at ∼52.6°
and ∼78.2°. We can see that the damping layers absorb all the power coupled into guided modes
(e.g. peak intensities go from ∼102 to 10−10 before and after the damping layers). It is also
worth noticing that the direct emission (inside the air cone) is not impacted by those damping
layers. Therefore, the imbalance between the power-fluxes at any locations before and after the
damping layers will provide the power injected into guided modes. Curves with similar shapes
are obtained for p-polarized light, albeit with different values.

To verify the accuracy of this generalized transfer-matrix model, we perform rigorous
electromagnetic simulations using incoherent 3D-FDTD from commercially available software
(FullWAVE and LED Utility from the Rsoft Design Suite) [1]. For the FDTD simulations, the
lateral dimensions of the computation domain were fixed at 4µm and surrounded by perfectly
matched layers (PML). In addition, the mesh sizes along all the spatial directions are set to 10nm.

Figure 8 depicts the combined total LEE (on both sides of the structure) and Purcell factor as a
function of the reduced slab thickness for both the model and 3D-FDTD. For this comparison,
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Fig. 7. s-polarized light from a single monochromatic horizontal dipole centered in a
high-index slab. a) Extracted and guided fraction of the total emitted light as a function of
the extinction coefficient of the damping layers. b) Angular internal emission per unit solid
angle before and after the damping layers with an extinction coefficient of 10−1.

results from both s- and p-polarization from a centered horizontal dipole have been combined
using Eqs. (32),(33).

Fig. 8. Single horizontal dipole centered in a high-index slab. s- and p-polarization
combined. a) LEE and b) Purcell factor as a function of the reduced thickness. The blue
dashed line indicates the asymptotic values of LEE and Purcell factor.

Both results are in agreement with each other, which confirms the accuracy of the herein-
developed model. As expected, spontaneous emission dynamics strongly depends on the reduced
slab optical thickness through the Purcell factor and LEE. These variations match very well
those obtained by Benisty et al. in [3]. Indeed, as the optical slab thickness increases, new
guided modes successively exceed their cutoff conditions. As shown in [18], those modes most
efficiently couple the emitted light a little above their cutoff conditions, which causes both LEE
and Purcell factor to oscillate. It is worth noticing that the standardly used formula approximating
LEE as the fraction of solid angles below critical angle (blue dashed lines in Fig. 8) [2] does not
hold for structures with low cavity orders. Indeed, it only holds asymptotically for very high
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reduced thicknesses (nede/λ>20) as shown in [3]. In that particular case, modes would become
so numerous that the aforementioned effect would start to smear out.

It thus appears that when convergence is reached, the herein-developed model is well in
agreement with rigorous electromagnetic simulations, which validates its accuracy.

6.1.2. Monochromatic distributed emitters

In the previous example, we only considered the simplest case of a single centered dipole, which
has been the most used configuration so far when simulating dipole emission in incoherent light-
emitting structures [19]. However, real-life devices often contain multiple emitters embedded
in the so-called active region. Thus in some cases, one might need to account for the spatial
distribution of the dipole source-planes (along z). In this section, we investigate the extent to
which the single-centered-dipole approximation remains valid despite the presence of distributed
emitters inside the structure and highlight some design rules for incoherent light-emitting devices.

For this example, we keep the same architecture as in the previous subsection. However,
instead of a single emitter centered in a slab, we consider a realistic case of five horizontal dipoles
regularly spaced of 10nm (two on every side of the centered dipole) [20]. We assume that the
layer embedding the dipoles has the same refractive index as the slab. Except with the internal
emission, s- and p-polarizations are combined using the equations provided in section 5. In this
example, only light going out in the ambient layer 1 is considered (see Fig. 6).

Figure 9(a) shows the spontaneous emission distribution for s-polarized light as a function
of the effective index for a single centered dipole and for the 5 emitters composing the active
region. For the latter case, the results are incoherently combined using the equations provided in
section 5.2. In the case of a single dipole, only even modes are excited since the dipole is placed
at a node of the odd modes. However, when the whole emitter distribution is accounted for, odd
modes start to couple to spontaneous emission as evidenced by the additional sharp peaks that
occur when the 5 emitters are considered. This can be understood as follows. From Eq. (26–28),
we have seen that among the three factors that set the internal power flux, only the antinode factor
depends on the position of the source. Therefore, changing the source position will induce a
phase shift on the antinode factor and change the coupling conditions between the source and the
cavity modes. To further analyze this point, we calculated in Fig. 9 (b) the photonic weights of
each guided mode in the two cases (fraction of the guided energy they carry [4]). Despite the
additional peaks when considering the whole active region, odd modes only carry negligible
fractions of the guided energy (∼1%). Besides, we can note that the photonic weights of the even
modes remain quasi-constant, which suggests that in those range of thicknesses of the active
region, the coupling conditions only slightly depend on the position of the source.

More generally, by differentiating the phase shift of the antinode factor φc over the source
position (see Eq. (27)), one can easily find that dφc = −πcos(θe) dzext

λ/4ne
. Thus, as a rule of thumb,

we can highlight that as long as the thickness of the active region is small enough compared to
λ/4ne (∼50 nm in this case), the coupling between the source and the guided modes happens as
if we only considered a single emitter centered in the active region. Let us recall that in our
example the thickness of the active region is 40 nm, which is small enough for the single-dipole
approximation to be accurate. We can also note that these considerations match with the standard
design rules used for resonant-cavity light-emitting diodes (RCLEDs), where active regions are
made less than λ/4ne to ensure that all emitters may be positioned at or near the antinode of the
standing electric field inside the cavity [17].

For devices with larger active regions, it is also worth noticing that since the variations of
the antinode factor are cosinus-dependent on the emission angle, the coupling conditions of
low-order guided modes will be less impacted than the ones of high-order modes.

Let us add that the internal emission is only slightly modified in the extraction cone when
considering the whole active region as shown in Fig. 9(a).
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Fig. 9. s-polarized light from horizontal dipoles. Internal emission per unit solid angle as a
function of the effective index and the corresponding photonic weights for a single centered
dipole and combined results over 5 emitters.

It appears from this example that a good insight into the design guidelines of a multilayer
structure, whether it embeds a single dipole emitter or multiple dipoles, could be gained using our
model. We have also pointed out that in structures where the active region is thinner compared
to a quarter-wavelength, the emitting layer can quite accurately be simulated by a single dipole
centered in the active region. On the other hand, for structures with larger active regions,
this particular approximation will only hold for low-order modes. For other more complex
structures, any type of spatial distribution of emitters should be accounted for using the incoherent
combination described in subsection 5.2.

6.1.3. Spectrally broadened single-plane emitters

In this section, we study the impact of the emission line shape on the results of section 6.1.1
where a monochromatic source was considered.

For this example, we keep the same structure as in the previous subsections. We consider a
single polychromatic source plane centered in the slab. The input emission spectrum has a peak
emission wavelength of 640nm and a full width at half-maximum (FWHM) of 20nm as depicted
in Fig. 10(a) and similarly to the devices in [13]. Except with the angular internal emission, s-
and p-polarizations are combined using the equations provided in section 5. In this case, only
light going out in the ambient layer 1 is considered (see Fig. 6).

Figure 10(b) reports the spontaneous emission distribution as a function of the effective index
for a monochromatic source (emitting at the peak emission wavelength) and for a polychromatic
source. For the polychromatic source, the results are incoherently combined over the wavelengths
using the equations provided in section 5.3. The results for the monochromatic source are the
same as in section 6.1.1. Since, the emitter is centered in the slab, only even modes are excited
by spontaneous emission represented by sharp peaks outside the extraction cone. However for
the polychromatic source, the internal emission shape is quite altered. Indeed, for instance the
sharp peaks representing the guided modes are now broadened into Lorentzian-shape functions,
with a broadening that decreases as the order of the guided modes decreases. In addition, the
emission shape inside the extraction cone is also impacted. These changes can be understood as
follows. Both the denominator of the Airy function and antinode factor depend on the wavelength
and will experience a phase shift when the wavelength is modified. The former will lead to
an effective-index shift around the ones of the peak emission wavelength, while the latter will
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Fig. 10. s-polarized light from horizontal dipoles. a) Input emission spectrum. b) Internal
emission per unit solid angle as a function of the effective index for the peak emission
wavelength and for combined results over the input spectrum.

simultaneously decrease the coupling efficiency between the mode and spontaneous emission.
This is the reason why each sharp peak is broadened symmetrically and has a broadening which
thus depends on the FWHM of the source.

It is also worth noticing that by differentiating the phase shift of the antinode factor φc over the
wavelength (see Eq. (27)), one easily finds that:dφc ∝ −

cos(θe)
λ2 dλ. The phase shift of the antinode

factor (and also of the Airy function) is thus cosinus-dependent on the emission angle, which
explains why low-order guided modes were less impacted by the broadening than high-order
ones. Similarly to what we have seen in the previous section, the shape of the internal emission
inside the extraction is also slightly modified.

It thus appears that an additional asset of our model is its ability to account for the emission
line shape of polychromatic light sources using incoherent combinations. This could be very
useful for various incoherent light-emitting devices with emitters having non-negligible FWHM.
It is also worth noticing that in some cases, a polychromatic source can be accurately simulated
by a monochromatic source emitting at its peak emission wavelength. Care should however be
given to the modal analysis, because high-order modes are more affected by this approximation
than low-order ones.

We can finally note that spectrally-spread sources with a spatial distribution can also be
accounted for in this framework by combining the two previous considerations, as described in
the flow chart of Fig. 5.

6.2. High-index slab on a substrate

In the examples of subsection 6.1, the high-index slab was placed in vacuum. In real-life devices,
light-emitting structures often lie in asymmetric optical environments with substrates (native
substrates after epitaxy or receiving substrates after process) and superstrates on either side of
the stack [1]. In this section, we investigate how the presence of a substrate impacts spontaneous
emission distribution among cavity modes. The structural parameters are the same as before. A
single monochromatic dipole is centered inside the cavity. However, our test structure is now
made of a substrate of index n2= 1.45 considered transparent and an air superstrate (n1= 1).

Figure 11 displays the total internal emission (on both sides of the structure) as a function of
the effective index for both s- and p-polarizations.
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Fig. 11. s- and p- polarized light from horizontal dipoles. Internal emission per unit solid
angle as a function of the effective index. E= directly emitted light, S= substrate light,
G= guided light.

As can be seen, the angular distribution of spontaneous emission becomes a bit more intricate.
Indeed, light emitted by the dipole can couple to different types of modes. A fraction of the emitted
light, which is in the air cone (neff < 1), directly radiates in the air. This is the so-called directly
emitted light and amounts to ∼17% of the total emitted light in this case (s- and p-polarized
light combined). Another fraction of the emitted light (∼12%) is propagative in the transparent
substrate but not in air (1< neff < 1.45). This is the so-called substrate light and accounts for
most of the emitted light in a basic mounted LED for lighting applications, where reflectors
are placed on the top side of the structure to favor bottom emission (towards the transparent
substrate) [21]. Finally, most of the emitted light excite the guided modes available in the cavity,
which are represented by sharp peaks outside the air and substrate cone (neff ≥ 1.45). This is the
so-called guided light and amounts to ∼71% of the total emitted light due to the high refractive
index of the slab. In most of LEDs, this light is one of the main efficiency bottlenecks, since it
does not go out and will eventually be lost for instance by non-radiative re-absorption.

It is worth noticing that to devise an adequate strategy for circumventing these efficiency issues,
one needs an accurate evaluation of the amounts of light that couple to the different cavity modes.
This highlights the key importance of the herein-developed model.

A large number of strategies have already been implemented in the literature for that matter.
Some of them rely on light extractors such as photonic-crystals to diffract this guided light out
of the structure [1]. In other cases, the devices are transferred from their native substrates onto
receiving substrates with back reflectors to favor top emission by redistributing spontaneous
emission [17]. This latter strategy will be further investigated in the next example using our
model.

6.3. High-index slab with a distributed Bragg reflector

In this last example, we investigate the possibility of using bottom reflectors for adequately
redistributing spontaneous emission while harnessing the substrate light. This helps favor top
emission and shows the applicability of our model to more complex multilayer structures. The
same high-index slab is thus placed on top of a distributed Bragg reflector (DBR) consisting of 3
pairs of alternate indices of 1.4 and 2. The main design parameter which governs both radiation
distribution and LEE in these structures is the cavity detuning. It evaluates the discrepancy
between the cavity thickness and its optimal value for a Fabry-Pérot (FP) resonance at normal
incidence [22]. The initial cavity thickness is chosen so that the cavity order is nede/λ=1 to
better visualize cavity effects. Subsequently, we interleaved a tuning layer (denoted gap) whose
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thickness is varied to adjust the overall thickness of the cavity and investigate how tuning and
detuning the cavity impacts the performances of these kinds of devices. The corresponding
schematics is displayed in Fig. 12.

Fig. 12. Schematics of the high-index slab with a bottom Distributed Bragg reflector
consisting of 3 pairs of alternate indices 1.45 and 2. The emitter is a horizontal dipole
centered inside the cavity.

6.3.1. Impact of the detuning on LEE and directionality

The light source is a single monochromatic horizontal dipole centered inside the slab. Only light
going out in the ambient medium 1 (denoted “top side”) is considered. Figure 13 displays LEE
and farfield emission pattern as a function of the thickness of the tuning layer (in number of
λ/4ngap). In both cases, s- and p-polarizations are combined using the equations provided in
section 5.

Fig. 13. Horizontal dipole (s- and p-polarizations combined). a) LEE and b) farfield
patterns as a function of the thickness of the tuning layer. Blue and red dashed lines indicate
gaps corresponding to a tuned and detuned cavity, respectively.

We can see that light extraction efficiency is at its lowest value without the tuning layer (∼4%
at dgap= 0). Next, as its thickness is adjusted, LEE reaches its highest value (∼16%) at around
λ/4ngap and then oscillates with a λ/2ngap periodicity and an oscillation amplitude that tends to
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decrease as thickness of the tuning layer increases. Those oscillations eventually start to smear
out for large values of gaps, when the DBR only weakly interacts with the cavity modes. It is
worth noticing that the maxima and minima of LEE are not arbitrarily located, but rather they
regularly occur at around (2p+ 1) λ/4ngap and (2p) λ/4ngap, respectively (with p an integer).

Looking now at the farfield emission pattern in Fig. 13(b), we can observe the common
“boomerang”-shaped lines, which are typical evidences of Fabry-Pérot (FP) interferences inside
the cavity [17]. Without the tuning layer, the farfield is highly directional with a peak angle
around the normal incidence. As the thickness of the tuning layer increases, the farfield shape
oscillates between directional and non-directional patterns, with a peak emission angle that
can reach ∼42°. We can note that the minima of LEE occur at gaps corresponding to highly
directional farfields. However, when the thickness of tuning layer is adjusted to obtain high LEE
at around (2p+ 1) λ/4ngap, the peak angle is shifted from normal incidence to ∼42°, which results
into a non-directional farfield.

We further analyze this latter point by plotting spontaneous emission distribution inside the
cavity (towards the top side of the structure) for the two values of gaps highlighted in Fig. 13
(gaps of 0 and ∼1). As shown in Fig. 14(a), when the gap equals zero (and more generally (2p)
λ/4ngap), the cavity parameters are tuned so that the main FP mode occurs at normal incidence.
As a result, we obtain in the outside medium a highly directional farfield pattern as displayed in
Fig. 14(b), where the radiation patterns are normalized by their maximum values for the sake of
clarity. The corresponding LEE is however at its lowest value (∼4%) because the overall integral
of the internal emission inside the air cone is not optimized. When its thickness is adequately
adjusted to reach maximum LEE (∼16%), the cavity becomes detuned which shifts the main FP
lobe from normal incidence to ∼13°. The resulting farfield radiation pattern, sometimes described
as ‘rabbit’s ears’ because of its appearance, becomes less directional than the previous one (see
Fig. 14(b)). Thus, RCLED-like structures have to be optimized for specific applications, either
by maximizing extraction efficiency with a non-directional emission pattern or by optimizing
brightness (e.g. for coupling to optical systems with limited numerical apertures).

Fig. 14. Horizontal dipole (s- and p-polarizations combined). a) Angular internal emission
distribution within the extraction cone and b) normalized farfield patterns for tuned and
detuned cavity.
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6.3.2. Spectral redistribution due to cavity effects

In the previous example, radiation dynamics was only analyzed for one wavelength. Although,
the combined farfield radiation patterns provided a good insight into the emission distribution,
they failed to depict the behavior per wavelength of the emission spectrum. In this example, we
analyze how the intrinsic emission spectrum is modified due to cavity effects. The multilayer
structure is the same as before with a single polychromatic horizontal dipole lying in the middle
of the slab. Its intrinsic emission spectrum is Gaussian-shaped with a peak emission wavelength
at 640nm and a FWHM of 20nm. We investigate a tuned cavity (gap= 0) and a detuned cavity
(gap= λ/4ngap) as explained before, in this case λ being the peak emission wavelength. In those
two configurations, s- and p-polarizations are combined and only light going out into the top side
of the structure is considered. Figure 15 depicts the normalized spectrally-resolved farfield (SRF)
patterns for the tuned and detuned cavities, calculated using Eq. (36) of section 5.3.

Fig. 15. Horizontal dipole (s- and p-polarizations combined). Normalized spectrally-
resolved farfield patterns for a tuned and detuned cavity.

From those SRF patterns, we calculated the output spectra using Eq. (37) within the full
collection angle (where all the emitted light collected) and within an acceptance angle of 20°.
Those results are shown in Fig. 16. Each of the emission wavelength experiences its own
interference conditions since both antinode factor and Airy function are wavelength-dependent
as seen previously. For the tuned cavity, the maximum extraction efficiency is not reached at the
peak emission wavelength due to the tuning conditions. This yields a spectral redistribution of
spontaneous emission when going out of the cavity. Subsequently, this induced a blue shift of
∼0.8 nm between the input and the output spectrum (with the full collection angle) as depicted
in Fig. 16(a), which is accompanied with an increase of the FWHM of ∼2.4 nm. In addition,
despite the fact that the most intense FP lobe is around the normal incidence, we can observe
the presence of an additional peak in the SRF located at around 80°. This peak stems from the
additional FP mode that is present at the edge of the extraction cone in Fig. 14(a). Although its
intensity is lower, its corresponding solid angle is higher than the one of the main lobe located
at normal incidence. Therefore, both the shape and the distribution of the output spectrum are
angle-dependent. For instance, we can observe a blue shift of ∼2.4 nm and a FWHM which
decreases by ∼2.4 nm between the output spectra collected within angles of 90° and 20°.

For the detuned cavity on the other hand, since the maximum LEE is reached at the peak
emission wavelength, the shift between the input and output spectra is alleviated as displayed in
Fig. 16(b). However, since the main FP mode is extracted at an angle around 42° (see Fig. 15),
the output spectra becomes clearly angle-dependent. The FWHM between the output spectra
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Fig. 16. Input and output emission spectra for a) tuned and b) detuned cavities. The output
spectra within a collection angle of 20° are also added

collected within angles of 90° and 20° remain unchanged; nevertheless, there is a red shift of
∼3.6nm between those two.

The aforementioned cavity effects are all the more visible that the FHWM of the intrinsic
emission spectrum is high and more intricate output emission spectra with many peaks have
already been reported for RCLEDs [22].

We have thus shown in this particular example that the herein-developed model can help gain
a good insight into the radiation dynamics of dipoles embedded in complex multilayer structures
and provide meaningful design guidelines, which are of key interest in optoelectronics.

7. Conclusion

We have proposed a novel full-matrix algebraic framework for modeling dipole emission
modification in layered media. This formalism has the specificity of generalizing the standard
2× 2 transfer-matrices into a compact 3× 3 framework, which thus allowed us to treat dipole
radiation directly into the matrix formulation as a source matrix.

This model has been thoroughly developed for the case of spontaneous emission in stratified
media and all the corresponding equations necessary to evaluate the key figure of merits for
designing incoherent light-emitting structures have been provided. It has also been extended to
configurations with complex emitter regions with both spectral and spatial distributions using
herein-proposed formulas for incoherent combination.

We have found a very good agreement between our model and rigorous electromagnetic
simulations using incoherent 3D-FDTD, which confirms its accuracy. It has then been applied to
various examples to demonstrate its applicability: firstly to polychromatic distributed emitters in
a high-index slab placed in vacuum and then to a high-index slab with DBR mirors to investigate
the impact of the cavity tuning and detuning on device performances.

Since it only requires modest computational efforts, we hope that this model can help better
understand spontaneous emission dynamics in layered media and thus pave the way to novel
design guidelines for devices in many fields of optoelectronics.
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