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Abstract. When faced with data corrupted by both noise and outliers
robust estimation algorithms like RanSaC are used, especially in the
field of Multi-View Stereo (MVS) or Structure-from-Motion (SfM). To
find the best model fitting the data, from numerous minimal samples it
evaluates models and rates them according to their number of inliers.
The classification as inlier depends on a user-set threshold that should
be tailored to the noise level of the data. This requires the knowledge of
this level, which is rarely available. The few existing adaptive threshold
algorithms solve this problem by estimating the value of the threshold
while computing the best model. However, it is hard to obtain ground-
truth for MVS and SfM tasks and usually test datasets are based on the
output on some state of the art algorithm, which prevents the objective
evaluation of new algorithms. We propose a new method to generate
artificial datasets based on true data to get realistic and measurable
results. We use this method to benchmark different automatic RanSaC
algorithms and find out how they compare to each other and identify
each algorithm’s strengths and weaknesses. This study reveals uses cases
for each method and the possible tradeoffs between performance and
execution time.

Keywords: Perspective from n Points, Multi-View Stereo, Structure-
From-Motion, RanSaC, Semi-synthetic Dataset, Benchmark

1 Introduction

To fit a model to noisy data in the presence of outliers, a standard regres-
sion method can easily fail and the RANdom SAmple Consensus algorithm
(RanSaC) [9] was proposed as a solution. This algorithm try to discriminate
inliers from outliers and estimate a model simultaneously. To do so, it compares
residuals of datapoints to a user-defined threshold given a model. This model is
estimated from a random minimal sample of data and gets scored based on the
number of inliers it yields, its consensus. The higher this consensus, the most
likely the right model has been selected. However, this method can fail if the
outlier ratio is too high and most importantly, it requires a priori knowledge of
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the noise level of the inliers, or at least a good estimate of this value. Methods
we call adaptive, automatic or threshold-free propose a solution to this issue by
changing the quality criteria of models to some other measure that does not
depend only on the inlier number and can estimate the inlier/outlier threshold.

Our first contribution is a semi-artificial data generation methodology that
creates realistic and controlled data to precisely compare algorithms and see
strengths and weaknesses of each. Usually, novel algorithms test on both real
world data and artificial toy problems. However, in Multi-View Stereo (MVS)
and Structure-from-Motion (SfM) it is expensive to get ground-truth and often
relies on some algorithm that might introduce uncontrolled noise or bias. For
instance, the KITTI [10] and the 7 scenes datasets [33] require calibrating an
active sensor (LiDAR) to the passive one (camera). Another example is [6] that
uses uncorrected matches as inliers. Artificial settings like the one proposed
in [5], a plane estimation in 3D space, or [1], a random homography estimation
between two 2D spaces, lack realism and do not give enough confidence in the
generalization power of these experiments. Our solution presented in Section 5
answers that issue by using artificial matches based on real data.

Our second contribution is an extensive benchmark of different state-of-the-
art adaptive RanSaC methods across different tasks. Through this benchmark we
aim at comparing the different algorithms in a single setting; all algorithm have
been integrated in a common pipeline so that the impact of the implementation
of other elements can be removed. Contrary to previous RanSaC comparative
studies like [4] we focus on adaptive methods and use our novel data generation
technique to get more accurate results. It is also used to test the quality of the
data generation methodology by testing it across multiple source datasets and
comparing change and similarities in behavior depending on the setting.

RanSaC algorithms can be used in a variety of tasks but we focus our ex-
periments around Multi-View Stereo and Structure-From-Motion tasks, namely
homography estimation, fundamental and essential matrix fitting and the Per-
spective from n Points (PnP) problem. Those tasks are the core steps in 3D
reconstruction pipelines, like in [32, 25], and as such our benchmark compares
the performance on these tasks. Improving the RanSaC algorithm should not
only be able to provide a better model, but also better inliers, which are use-
ful for the pipeline overall quality. Finally, datasets like [15] used to train 3D
deep-learning estimators are created using those traditional methods, and thus
improving the quality of them could help improving neural networks training.

This paper is an extension of a conference paper [31]. Compared to the latter,
we introduced a new test case, the PnP problem. As we wrote, extending our
method to this problem is the necessary next step to see whether we can improve
software like ColMap [32] that is still state-of-the-art. We also propose a new
version of Fast-AC-RanSaC, an automatic RanSaC algorithm that was used in
the first paper and deemed unsatisfactory. We added the recent MAGSAC++ [2]
to the benchmark, an improvement over MAGSAC [1] that was included in
the first paper. For both MAGSAC and MAGSAC++, we also integrated their
implementation in the same framework as all others, mainly to use more stable
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model estimators. Indeed, our previous benchmark indicated a high instability in
MAGSAC result, with failure to estimate good models even in some easy cases,
due to the numerical instability of the minimal solvers chosen by the authors.

Section 2 reviews the automatic RanSaC methods and those included in the
benchmark are detailed in Section 3, Section 4 presents the data generation
methodology and how to apply it to the different test cases, Section 5 presents
the benchmark data, parameters, results and analysis and Section 6 concludes.

2 RanSaC Methods

2.1 Notation

Table 1. Notations. This table originates from the original paper [31].

Definition Description
k ∈ N>0 dimension of data points
S = Rk space of data points
P ⊂ S set of input data points
d ∈ N>0 degrees of freedom of a model
Θ ⊂ Rd space of model parameters
θ ∈ Θ parameter vector of a model
s ∈ N>0 data sample size
Sa : 2S → Ss sampling function
F : Ss → Θ fitting function
p : [0, 1]→ [0, 1] proba. of sampling inliers only
D : S ×Θ → R point-model residual function
σ ∈ R inlier threshold
I : Θ × R→ 2P inlier selector function
I = I(θ, σ) ⊂ P set of model inliers
Q : 2P ×Θ → R model quality function

The notations we use are the same as the original paper and are summarized
in Table 1. The input of RanSaC algorithms are datapoint of dimension k, usually
matches between two images where k = 4, or matches between putative 3D
points and an image, where k = 5. We write S = Rk, k > 0, the ambient space
of the points and P ⊂ S the set of available input.
P contains both points originating from the true model, that we call inliers,

even though they might not fit perfectly the model due to noise, and points
that have no relation to the model, called outliers, that the algorithm will try to
discriminate. The unknown proportion of inliers in the dataset is noted ε ∈ [0, 1].

A model can be estimated on a sample of size d, the degree of freedom of the
model, obtained with a sampler Sa that proposes s datapoints. Sa is usually a
uniform sampler in Ps and thus the probability of drawing an uncontaminated
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sample is p(ε) = εs; however some algorithms presented in Section 2.2 do not use
a uniform sampler. This sample is passed to a fitting function, or estimator F ,
which gives a solution in Θ ⊂ Rd, the parameter space. d = 8 for homographies,
7 for fundamental matrices because of rank 2 constraint, 5 for essential matrices,
and 6 for PnP.

For a model θ, it is possible to compute its quality using the function Q. This
function usually depends on the selected inliers of the model I = I(θ), where I is
the selector function, for exampleQ(I, θ) = |I| the number of inliers for standard
RanSaC. The classic selector of RanSaC I(θ, σ) = {P ∈ P : D(P, θ) < σ}
depends on the inlier/outlier threshold σ and the computation of all residuals of
datapoints P ∈ P with error function D(P, θ).

D varies with the model, I varies with the algorithm as the standard defini-
tion increases with σ and as such is not appropriate for an algorithm that would
estimate σ and θ simultaneously. Another usual parameter of the presented al-
gorithms are the confidence they have regarding some errors, like the type II
error—the risk of missing a valid solution because of early termination—for
classic RanSaC.

2.2 History of RanSaC Algorithms

Before presenting novel adaptative algorithms, algorithm 1 presents the pseudo-
code for the generic RanSaC from [9]. Most of the improvements have largely
similar structure and mostly change a combination of Sa, I,Q. A few can propose
widely different methods.

Input: P, Sa, F , p, Q, σ
Input: confidence against type II error β, itmax (or min. inlier rate ε)
Output: Best model parameters and set of inliers
Imax = ∅, qmax = 0

it = 0 (and itmax = ln(1−β)
ln(1−p(ε)) if ε is input)

while it ≤ itmax do
sample = Sa(P), θ = F (sample)
I = I(θ, σ), q = Q(I, θ)
if q > qmax then

qmax = q, θmax = θ, Imax = I
ε = |I|/|P|, itmax = ln(1−β)

ln(1−p(ε))
it = it+ 1

return θmax, Imax
Algorithm 1: RanSaC algorithm. Algorithm originated from [31]

Most authors, when designing a new RanSaC method, need to make as-
sumption about the data or the models. They can be about the distribution
of inliers or outliers, assuming some distribution of the points or their residu-
als, or a cross-model-consistency where patterns repeat across different models
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Table 2. Overview of robust fitting methods with adaptive inlier criteria. Bracketed
terms in the “Consistency assumption” column specify where the assumption is made.

Ref. Consistency assumption Optimized function
[9] Bounded residuals (inliers) Inlier set size
[20] Gaussian residual distribution (inliers) Scale estimate
[35] Gaussian (inliers) Inlier/threshold

Minimal residual density (transition)
[8] Gaussian (inliers) Scale estimate

Residuals correlate (cross-model)
[3] Low parameter variance (cross-model) Variance

[22, 21] Problem specific (outlier) Number of false alarms
[5] Uniform (outliers) Likelihood
[7] Data-driven (outliers) False discovery rate
[1] Uniform (inliers) - Uniform (outliers) Deviation
[2] Uniform (inliers) - Uniform (outliers) Deviation
[28] Problem specific (outliers) Greedy number of false alarms
[12] Graph cuts energy
[34] Residuals correlate (cross-model) Inlier cluster merging cost
[18] Residuals correlate (cross-model) Residual cluster merging cost
[19] Residuals correlate (cross-model) Factorization error of residual matrix

and can be related to detect valid models. Table 2 regroups such methods and
summarizes the assumption and quantity measured by the quality function for
the presented algorithms. For example RanSaC [9] is inlier consistent: all inlier
residuals are counted and the quantity optimized is the number of inliers.

Different hypotheses can be used for the inlier consistent methods. For exam-
ple, MUSE [20] estimates the noise level of all inliers set based on inlier residuals
following a Gaussian distribution. This noise level is used as the quality measure
of the model, smaller being better. [35] works with any unimodal distribution,
though a Gaussian distribution is used in practice. With a threshold on the
residual density, the inlier to inlier-threshold ratio gives the quality of a model.

Outlier consistent methods include A Contrario RanSaC (AC-RanSaC) [21,
22] (first named ORSA in [23]) which assumes a background distribution for
residual if the input is random, and checks the likeliness of getting a model.
To do this, it tests all possible thresholds and ensures that a given model and
threshold are selected only if the probability that they occur by chance is lower
than some user defined confidence. The likelihood-ratio test [5] can also be used
to assess the quality of a model against a uniform distribution of outlier residuals.

MAGSAC [1] and its newest improvement MAGSAC++ [2] make assump-
tions both on the inliers being uniformly distributed and the outliers being uni-
formly distributed on a different space. The quality function is based on the
likelihood of a model given this hypothesis but the main improvement proposed
is a refinement step to weigh the potential inliers instead of using a computed
threshold.
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StarSac [3] introduces cross-model-consistency by estimating multiple mod-
els for a given threshold and ranking the thresholds based on the variance over
the parameters of the models. [8] proposes a mix between inlier and cross-model
assumptions using a scale estimate as quality function. A weighted median ab-
solute deviation is computed by increasing the weight and probability of a point
to be inlier when it validates a sampled model.

In this paper only single model methods are considered; however, many
threshold-free methods exist for such situations. Some still follow previous hy-
potheses, like [28] that uses multiple AC-RanSaC and merges results according to
some criteria. Using cross-model-consistency, J-Linkage [34] and T-Linkage [18]
cluster inliers and models to detect the good set of models. [12] uses graph
cuts on an energy that depends on the total residual and number of models to
compute a valid set of solutions.

3 Adaptative RanSaC Algorithms

We selected for our benchmark eight algorithms among those presented in Sec-
tion 2.2, first RanSaC [9] which will be used as baseline, then MUSE [20],
StaRSaC [3], A-Contrario RanSaC (AC-RanSaC) [22], Likelihood Ratio Test
(LRT) [5], Marginalizing Sample Consensus (MAGSAC) [1] and two supposed
improvements Fast-AC-RanSaC[26] and MAGSAC++ [2]. These algorithms where
chosen as they are threshold-free methods and used for SfM and MVS tasks. We
excluded multi-model specific methods like [12, 34, 18] as we concentrate our
benchmark around the classification performance of the algorithms.

For the baseline, we used the results of RanSaC with a fixed σ in pixel. This
baseline will be evaluated at two different thresholds to present the performance
of non-adaptative methods even when the threshold is somewhat well chosen.
The classic stopping formula to compute the number of iterations itmax of algo-
rithm 1 has been changed to have confidence β that at least n = 5 good samples
have been drawn. The new formula is:

itmax =
log(1− β)

log(1− εs)
+

− log

(∑n−1
i=0

(
epsilons

1−epsilons

)i)
log(1− εs)

(1)

where the first fraction is the usual stopping criteria of RanSaC and the second
one is a positive value that increases the required number of iterations to reach
this new confidence criterion. Its implementation was adapted from [24].

MUSE [20] is an adaptation of Least Median of Squares [14] that uses scale
estimates as objective function to rank models using the standard iterative sam-
pling of minimal samples of RanSaC. The article claims that the new objective
function is more robust to higher outlier ratios. This algorithm does not include a
stopping criteria when confidence β is reached, thus we added the usual RanSaC
one as it adapts seamlessly to the framework. Implementation was adapted from
https://github.com/vxl/vxl.
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Likelihood Ratio Test (LRT) [5] introduces control over both the type I and
type II errors. The type II error confidence β impacts the stopping criteria sim-
ilarly to RanSaC. However, an early bailout strategy is implemented to reduce
the number of residuals to compute when a model might not beat the so-far-the-
best one, which requires a new parameter γ to control the increased risk. This
early bailout strategy shifts the value of the stopping criteria:

itmax =
log(1− β)

log(1− εs × γ)
(2)

where ε is the minimal value of the possible future inlier ratios to find a better
model. The control over the type I error comes from the quality function of a
model which is the likelihood for the dataset to be non-random at proposed σ.

Q = L(ε, σ) = 2|P|
(
ε log

ε

pσ
+ (1− ε) log

1− ε
1− pσ

)
, (3)

with inlier ratio ε = k(σ)/|P| and σ spanning a predefined list {σmin, . . . , σmax}.
We reimplemented this algorithm in [30].

StaRSaC [3] proposes the most intuitive solution to remove thresholds: sim-
ply launch RanSaC at different threshold values and select the best performing
one according to a well chosen quality function Q. Q is defined as the variance
over parameters. It is computed by launching nstarsac RanSaC for each tested
thresholds and computing the variance of the parameters of the estimated mod-
els θi(σ) for this threshold. A threshold that leads to less variance in model
parameters should be an appropriate threshold.

Q(σ) = − 1

nstarsac

(
nstarsac∑
i=0

(
θ̄i(σ)− θi(σ)

)2) (4)

where θ̄i(σ) = 1
nstarsac

∑nstarsac

i=0 θi(σ) is the mean of estimated parameters. To
reduce runtime we reduced the range of tested thresholds σ to a smaller range
around possible values. The selected range and the step size is the same we used
for LRT defined above. We reimplemented this algorithm ourselves.

AC-RanSaC [21, 22] estimates the quality of a given model by considering
all residuals as a potential threshold value. The best model will be the one with
lowest Number of False Alarm (NFA), a measure of the type I Error.

Q = −NFA(θ, σ) ∼
(
|P|
k(σ)

)(
k(σ)

s

)
pk(σ)−sσ , (5)

with k(σ) = |I(θ, σ)| the number of inliers at threshold σ and pσ the relative area
of the image zone defining inliers at σ. To accelerate computation the residuals
are sorted in order to easily compute the NFA for each of them. AC-RanSaC
always reserves the last 10% of the maximum number of iterations to improve
the model by reducing the input dataset P to the so-far-the-best inlier set. The
parameters of this method are σmax, the maximum value of residual for which the
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NFA is computed and the upper bound of the NFA to consider the run successful
NFAmax. However, the first parameter can technically be set to infinity with
little increase in runtime if a good value cannot be guessed and a good value for
the second is NFAmax = 1. Implementation was adapted from [24].

The Fast-AC-RanSaC we used in this paper is an improvement over our pre-
vious attempt in the original paper used in OpenMVG [26]. The main difference
with traditional AC-RanSaC is the use of a histogram to classify errors and thus
remove the need for a sorting step which slows the algorithm as discussed in Sec-
tion 5.4. The residuals are thus just dispatched in nbin in O(n) and the Number
of False Alarms is computed at each value separating those bins Bi, ∀i ∈ [nbin]:

NFA(θ,Bi) ∼
(
|P|
k(Bi)

)(
k(Bi)

s

)
pk(Bi)−s
σ , (6)

Our implementation was adapted from OpenMVG [26].
MAGSAC [1] makes hypotheses about the distribution of inliers and outliers,

that they are uniform, and derives the likelihood of the model given these hy-
potheses as quality function. However, the main contribution of MAGSAC is to
remove the need for an inlier/outlier threshold by introducing the σ-consensus
method. The weights depend on various models estimated for different residual
segmentations. This post-processing weighs a set of pseudo-inliers to fit a model
with more confidence. It still requires parameters for the pseudo-inlier threshold
σmax, a reference threshold σref and the number of segmentations to compute
the weights of pseudo-inliers. The pseudo-inlier threshold σmax has very low
impact on the result. Implementation was adapted from [1].

MAGSAC++ [2] is a modification of the MAGSAC [1] algorithm. The main
idea behind this algorithm is to remove entirely the need for inlier/outlier thresh-
old by estimating a model with a weighted least square estimation. There is a
threshold σmax that determines the maximum residual a point can have to be
considered inlier and thus have a weight in the estimation. MAGSAC++ uses a
reweighted least square instead of multiple least square fittings. The computed
weights are changed compared to the previous MAGSAC as well as the quality
function, but the assumptions made on the inlier distribution and noise distri-
bution are the same. Implementation was adapted from [2].

4 Data generation methodology

4.1 Models and estimators

Four different problems are considered in this benchmark: homography estima-
tion, fundamental matrix and essential matrix estimation, and the PnP prob-
lem. These estimation problems are all core tasks of Structure from Motion and
Multi-View Reconstruction. All models except fundamental and essential matrix
estimation require a different processing but the pipeline remains the same: a fea-
ture extraction and matching, a RanSaC step to select inliers from the matches
and select the best parameters of the model thanks to a minimal estimator, and,
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usually, a refinement step at the end. Thus, to study the pros and cons of differ-
ent threshold-free RanSaC algorithms we can use the same methodology for all
models with little adaptation.

The homography estimation problem consists in estimating the projection
from one image to the other originating from a rotation of the camera or a
any movement around a flat scene. Correspondences are established between the
two images and, as homographies maintain alignment it is possible to compute
the deformation between these points. The fundamental and essential matrix
estimation problems both consist in finding the relative pose of two cameras.
The difference lies with the a priori knowledge of the intrinsic parameters of
the camera for the essential matrix. Similarly to homography estimation, corre-
spondences between the two images are established and then, using the epipolar
constraint, it is possible to find the matrix.

The Perspective from n Points (PnP) problem consists in estimating the
pose of a camera from correspondences between 3D points and their 2D image
projection. From the correspondences, the position and rotation of the camera
is estimated assuming the intrinsic camera parameters are known. This step is
used to iteratively add views to an initial two-view estimation and obtain a
complete reconstruction of a scene. The estimator used to compute the pose is
the EPnPalgorithm [13]. This algorithm proposes an O(n) non-iterative solu-
tion, compared to previous solutions that where either iterative and/or O(n2)
at least. The EPnPalgorithm rewrites the coordinates of the correspondences in
the coordinate system of four control points. These control points are chosen
to form a basis with the center of the data and its principal directions. Then,
from expressing the projection from 2D to 3D in this new coordinate system,
the camera pose can be computed as the right sum of null vectors of a derived
matrix.

4.2 Semi-artificial data generation method

Our proposed benchmark relies on semi-artificial data. Indeed, fully synthetic
data are easy to control and generate but can be unrealistic and highly im-
pacted by the generation choices. On the other hand, using data extracted from
photographs is important to make sure the algorithm will succeed in real-life sce-
narios but it can be hard to compute reliable metrics when the ground-truth is
hard to obtain. Thus it is hard to generalize results obtained on limited datasets
with unknown noise and unknown outliers. Our solution uses real images models
and data extracted from these to initialize our artificial dataset, giving us control
over inlier noise and outlier distribution of synthetic data and the capacity to
compute metrics reliably while retaining a realistic setup.

The pipeline used to generate a semi-artificial dataset can be used on any
available dataset. If the dataset does not provide the matches, those can be com-
puted using an ad-hoc algorithm like SIFT [17]. From the matches, containing
both unknown inliers and outliers, a first model is estimated using a RanSaC
algorithm. We chose AC-RanSaC [21, 22] at arbitrary precision and up to 10 000
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iterations; our early experiments did not show any impact of the chosen algo-
rithm and AC-RanSaC appeared to be the most stable one while its relative
slowness was not an issue for this step of the pipeline. This first step creates an
initial model and an inlier/outlier split. The model is considered “ground-truth”:
it is not the true model associated to the input data but it is realistic and thus
can be used to generate new semi-artificial data. The outliers are discarded and
the inliers are corrected to make “ground-truth” inliers using the “ground-truth”
model.

This step creates a known model which can then be used to generate noisy
inliers and true outliers in a known quantity and controlled distribution. To
create noisy inliers, uniform noise is added to the “ground-truth” inliers. For
matches, it is sufficient to add noise to one of the points, as this gives better
control over the value of and distribution of the noise, for example avoiding
cancelling if the same noise is added on both elements of the match. The choice
of uniform noise for inliers has two reasons: no differences were observed in
the initial tests between Gaussian and uniform noise and it would be extremely
complicated to evaluate the true distribution of noise coming from SIFT matches
or such. Given these noisy inliers, we have the true inlier/outlier threshold, by
simply taking the maximum added noise.

Once our noisy inliers are generated, the outliers can be added. To create
an outlier match, first a point is drawn at random on one side of the matches.
Then, its projection is computed on the other side. This gives us an “inlier region”
associated to the first point. A random point can thus be drawn outside this zone
to generate a true outlier. However, drawing a match uniformly in pixel space
outside the “inlier region” results in a poor distribution of errors as most matches
end up very far from the model and thus do not offer a significant challenge to
the RanSaC algorithms. A better method is to draw uniformly the error of the
match thus giving a good range of errors for the outliers and a realistic behavior
for the RanSaC algorithms. The number of generated outliers varies during the
benchmark in order to obtain a desired outlier ratio. However, to avoid slowing
down the benchmark with situations where it is required to generate 9 times
more outliers than inliers to get a 90% outlier ratio, the maximum number of
matches is thresholded. If need be, inliers and outliers are removed in order to
keep the desired ratio and less than 4000 matches.

The computation of an inlier or of the “inlier region” varies depending of the
studied model. For homography estimation, inlier points in the first image are
mapped into the second using the ground truth homography (figure 1) to create
“ground-truth” inliers. Then inlier noise is added by a uniform 2D perturbation
in [−σnoise, σnoise]2 where the maximum inlier noise σnoise varies during the
benchmark. Once the inliers are drawn, to create outliers, a random point is
drawn in the first image, then its “inlier region” in the second image is defined
by a circle of radius σnoise centered around the projection of the first point. The
matching point is then drawn in a random, uniform, direction at a randomly,
uniformly drawn distance from the “inlier region” (figure 3).
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For fundamental and essential matrices, the inlier points on the second im-
age are simply projected orthogonaly on the epipolar line computed with the
“ground-truth” matrix associated to their matches in the first image to cre-
ate “ground-truth” inliers (figure 2). Then the inlier noise is added in the sec-
ond image perpendicularly to the epipolar line by drawing an uniform noise in
[−σnoise, σnoise]. To compute the “inlier region” in the second image of a point
from the first image to create an outlier, the zone of width 2σnoise around the
epipolar line is defined. Then, a random position is drawn along this line and
from this direction, a random error perpendicular to the line (figure 4).

For the PnP problem, the 3D points are projected on the 2D image to create
the “ground-truth” inliers. The noise is added on the 2D image by a uniform 2D
perturbation in [−σnoise, σnoise]2. To create outliers, a bounding box is defined
around the inlier 3D points as

[raug min
∀i∈[n]

(xi), raug max
∀i∈[n]

(xi)]×

[raug min
∀i∈[n]

(yi), raug max
∀i∈[n]

(yi)]×

[raug min
∀i∈[n]

(zi), raug max
∀i∈[n]

(zi)]

(7)

where raug = 1.1 is a small factor to increase the range of outliers around the
inliers. 3D points are then drawn in this bounding box. Then, following the
same principle as for homographies, the 3D point is projected on the 2D image
to create the “inlier region” and the outlier match is created by a a random,
uniform, direction at a randomly, uniformly drawn distance from this zone.

Fig. 1. From an imperfect match (p1, p2) considered inlier by AC-RanSaC, the “perfect
match” (p1, p′2) is constructed such that p′2 = Hp1 using a realistic homographyH given
by AC-RanSaC. Figure originates from original paper [31]
.

5 Benchmark and Results

5.1 Performance Measures

Thanks to the semi-artificial data generation method, we have access to the la-
bel of the matches and thus can compute precision and recall to evaluate the
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Fig. 2. From an imperfect match (p1, p2) considered inlier by AC-RanSaC, the “perfect
match” (p1, p

′
2) is constructed using p′2 the orthogonal projection of p2 on the epipolar

line L1 = Fp1 where F is a realistic fundamental matrix given by AC-RanSac. This
does not guarantee that p′2 represents the same physical point as p1, but that some 3D
point at possibly different depth projects exactly at p1 and p′2. Figure originates from
original paper [31]
.

Fig. 3. A random point q1 is drawn from the left image. Using the ground truth model
H, its perfect match q′2 = Hq1 is computed. Then a direction and a distance to q′2
are drawn uniformly in order to create q2 so that it remains in the image and out of
the inlier zone (marked in red) defined by the inlier noise level. Figure originates from
original paper [31]
.

performance of the methods. Precision is computed as the number of correctly
classified inliers over the number of detected inliers while recall its the same
number over the true number of inliers. In the first paper we observed that,
baring RanSaC, no algorithms presented compromise between precision and re-
call metrics depending on the dataset parameters. Thus the F1-Score is a good
alternative to observe the results of the algorithms in a synthetic manner.

MAGSAC and MAGSAC++ do not provide an inlier/outlier classification
but a weight on pseudo-inliers. As such, we introduce three metrics: Magsac-P,
Magsac-R and Magsac-W. The first is the highest recall MAGSAC would get to
obtain the same precision as AC-RanSaC. The second is the highest precision
MAGSAC would get tot obtain the same recall as AC-RanSaC. The last is a
weighted version of precision and recall.
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Fig. 4. A random point q1 is drawn from the left image. Using the ground truth model
F , the epipolar line L1 = Fq1 is computed. Then position on this line and a distance
to L1 are drawn uniformly in order to create q2 so that it remains in the image and
out of the inlier zone (marked in red) defined by the inlier noise level. Figure originates
from original paper [31]
.

The metrics are computed over different values of inlier noise levels and out-
liers to observe the classification performance and its evolution for the different
algorithms. We also report runtime to evaluate its evolution across the different
test cases for the different models.

5.2 Parameters

This section details the different elements related to the experiments: the datasets
from which we extracted the input data for the generator, the solvers used for
each task and the parameters of the generator and the different tested algorithms.

Datasets: The images used come from USAC [29] — 10 image pairs for homo-
graphies estimation, 11 for fundamental matrix estimation and 6 for essential
matrix estimation — Multi-H — 24 image pairs for fundamental matrix esti-
mation —, kusvod2 — 16 image pairs for fundamental matrix estimation —,
homogr — 16 image pairs for homographies estimation —1 and megadepth [16]
— 16 images for the PnP problem were used.

Solvers: As minimal solvers F , we use the standard 4-point estimator for ho-
mography and 7-point estimator for fundamental matrix [11], the 5-point es-
timator for essential matrix [27] and the P3P algorithm for the PnP problem.
For non-minimal solvers, least-square evaluation was used for two-view geometry
problems and the EPNP[13] algorithm for PnP. For MAGSAC and MAGSAC++
1 Multi-H, kusvod2 and homogr can be found at
http://cmp.felk.cvut.cz/data/geometry2view/
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weighted version of the non minimal solvers are required and we adapted the
EPNP algorithm to work in a weighted case.

Data generation parameters: To average results across multiple runs we
generate Ngen different datasets with same inlier noise σnoise and outlier ratio
1 − ε parameter for each image pair or 3D-2D matches. Each dataset is then
evaluated Nrun times. Ngen = Nrun = 5 for a total of 25 different runs on which
to compute the metrics. For inlier noise, we chose values in pixels that represent
meaningful values, ranging from no noise (0) to 3 pixels by increments of 0.1.
The outlier noise varied in [0, 0.9] by increments of 0.1.

Algorithms hyperparameters: When possible we extracted the parameters
of the tested algorithms from their original publications, otherwise we chose
value after some initials tests. Those values are summarized in table 3.

Table 3. Hyperparameters of the tested algorithms, see section 3 for definitions.

Parameter name Value Algorithms using it

Success confidence β 0.99
RanSaC, StarSac, MUSE,
LRT, AC-RanSaC, Fast-AC-RanSaC

Inlier search cutoff σmax 16 pixels AC-RanSaC, Fast-AC-RanSaC,
StarSaC and LRT

NFA maximum value NFAmax 1 AC-RanSaC, Fast-AC-RanSaC
Expected type I error α 0.01 LRT
Increase in type II error
from early bailout γ 0.05 LRT

Number of data partitions p 10 MAGSAC, MAGSAC++
Pseudo-inlier threshold σmax 10 MAGSAC, MAGSAC++
Reference threshold σref 1 MAGSAC, MAGSAC++

5.3 Results

We exclude StaRSaC from the presented results as it extremely slow to run, with
runtimes in the minutes for baseline or just above baseline levels of performance.
All other adaptive methods performed better across all metrics and test cases.

The first element we consider is runtime, as its value will impact the possi-
ble uses of the algorithm in real-time applications. It also reveals difference in
behavior between algorithms, like MUSE, Fast-AC-RanSaC, AC-RanSaC and
MAGSAC++ which are mostly not impacted by the noise level, and their speed
depends mainly on the number of points considered whereas other algorithms,
like LRT, RanSaC and MAGSAC can present huge differences of runtime be-
tween low and high noise levels. Regardless of the situation RanSaC, LRT and
MUSE are usually the fastest algorithms except when reaching hard test sce-
narios. In those cases, LRT and RanSaC can have runtimes increase up to five
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Fig. 5. Runtimes over different inlier noise levels and outlier ratios. The fitting problem,
dataset name, and image pair number are in each graph title. Ransac-σ corresponds
to RanSaC with threshold σ.

seconds for a run while MUSE will keep a very low runtime. MAGSAC and
MAGSAC++ have intermediate runtimes, lower for easy settings and higher for
complex settings but with a small range of variations, especially for MAGSAC++
which is usually a bit faster than MAGSAC and with almost no runtime varia-
tion regarding the inlier noise. For two-view tasks they usually fail to terminate
in a reasonable amount of time, and so are interrupted at 2 seconds for a run.
AC-RanSaC usually is the slowest algorithm on easy settings, but, as its run-
time is not impacted by inlier noise but mostly by the number of matches in
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the dataset, it can be competitive on complex algorithms when other algorithms
show huge increase of their runtime. Fast-AC-RanSaC is usually twice as fast as
Ac-RanSaC and is also not impacted by inlier noise. In easy settings its runtime
is higher than most algorithms but it can be one of the fastest for the most
complex settings.

When observing behaviors of algorithms, none of the three two-view geom-
etry tasks presented a different challenge for the algorithms. A specific image
pair or data generation parameter setup might prove more or less difficult but
there was no major difference across homography, fundamental and essential
matrix estimation. On the other hand, some algorithms presented huge change
of performance when faced with the PnP problem.

Figures 6 and 7 illustrate the typical behaviors with low and high outlier
ratios on a variety of estimation problems and datasets.

The two classic RanSaC show the expected behavior with good performance
for easy settings that quickly degrade as the inlier noise and outlier ratio increase.
On the one hand, the one with the lowest threshold has higher precision than
the one with higher threshold with huge drops of performance for high noise
or outlier ratio. On the other hand, concerning recall, the high threshold one
performs better than the other and, moreover, its recall remains high while for
a 3 pixels threshold, it drops significantly.

The MUSE algorithm offers quite poor performance, sometimes even below
baseline in easy settings. However, its precision can remain high even in the
most complex settings with more than 95% of good selections. This is due to
selections of low thresholds by the algorithm, which negatively impacts its recall
compared to other algorithms.

AC-RanSaC shows good performance across the benchmark, almost never
showing significant drops in precision and small drops in recall for the most
complex scenarios lowering the F1-Score.

For LRT, its performance is on par, on just below, the best performing al-
gorithms for easy to medium settings. However, as the benchmark parameter
increase, it gets closer to RanSaC performances with significant drops in F1-
Score.

Fast-AC-RanSaC performs slightly worst than AC-RanSaC for the easiest
settings, with good recall but lesser precision. Its performance is usually quite
similar to that of LRT either slightly better or slightly worse depending on image
pairs. This is due to a usually better recall but not always better precision from
Fast-AC-RanSaC. It is also a bit more unstable with some runs where it fails to
find a good model and stops on too high a threshold or a contaminated sample.

MAGSAC and its newest version MAGSAC++ have quite similar behavior.
For all three methods to compute their precision and recall 5.1, they tend to per-
form better than most algorithms for all settings on two-view geometry tasks.
They are the only algorithm that retain above 90% precision and above 80%
recall even when presented with the highest inlier noise levels and outlier ra-
tios. In those settings, MAGSAC++ obtains comparable or better results than
MAGSAC but the difference between the two is small. However, for the PnP
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Fig. 6. Typical F1-score evolution over inlier noise for low outlier ratios. Estimation
problem, dataset name and image pair number can be found in each graph’s title.
Magsac-P, Magsac-R and Magsac-W correspond to the metrics presented in Section 5.1.

task, MAGSAC fails to produce satisfactory results. MAGSAC++ still performs
slightly better but keeps a lot of failure cases. The precision of both algorithms
remains somewhat stable but their recall can drop to extremely low values and
fail to find any good model, even when lifting the runtime limitations.

5.4 Analysis and comparison

As we observed similar behavior across different datasets, different images, our
data generation methodology seems to be able to reveal intrinsic capacities of
the tested algorithms. Indeed, while specific values might change, the ordering
of algorithms, the drops in performance, the runtime evolution, are consistent
across all test cases and depend on the data generation parameter and not the
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Fig. 7. Typical F1-score evolution over inlier noise for high outlier ratios. Estimation
problem, dataset name and image pair number can be found in each graph’s title.
Magsac-P, Magsac-R and Magsac-W correspond to the metrics presented in Section 5.1.

input task or images. The only difference being MAGSAC and MAGSAC++ for
the PnP problem, as discussed below.

StaRSaC and MUSE offer poor performance compared to other algorithms.
The StaRSaC algorithm is just too slow to justify the small increase in perfor-
mance compared to RanSaC, even when RanSaC’s threshold is poorly chosen.
MUSE performs better, with very high speed and high stability but, when com-
pared to newer methods, it’s classification performance is poorer than almost all
newest methods.

Then, algorithms can be separated in two categories, fast and slow algo-
rithms. This separation makes sense both in term of purpose, as algorithms that
run in less than a tenth of a second can be used for real-time applications, and
in term of performance as most slow algorithms perform better than faster ones.
The runtime of an algorithm is mainly dependent on the computation of residuals
and thus the number of iterations needed to reach a satisfactory model. Indeed,
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for most algorithms, the only two steps at each iteration are the computation of a
model and the estimation of the quality of this model, through its residuals. The
first step is usually very fast, almost instantaneous, while the second represents
the bulk of the runtime. For some algorithms, some post-processing to compute
the model quality might slow down the process. For example, for AC-RanSaC
the sorting step required to compute the NFA at each possible threshold, and
this easily takes as much time as the residual evaluation. It is also impacted
by the reserved number of iterations, as it will always at least do 10% of the
maximum number of allowed iterations. For MAGSAC and MAGSAC++ the
addition of the σ-consensus step impacts runtime as well. However, if better
model are chosen more often, it might speed up the process. For example, LRT
is a fast algorithm in easy settings, as its early bailout strategy helps it skip
useless computation of residuals. But for hard settings, it can be slowed down
by missing too many good models. The new Fast-AC-RanSaC algorithm offers
a good compromise for a fast algorithm as it is usually fast enough to perform
real-time operations and its runtime is very stable across settings.

For fast algorithms LRT performs slightly worse than Fast-AC-RanSaC in a
few cases, and is almost always faster for easy cases. As it is very sensitive to
the complexity of the task, it might be better to use only when the setting is
known and prefer the slowest but more stable Fast-AC-RanSaC when needing a
fast algorithm.

For slow algorithms, AC-RanSaC is one of the slowest but most stable and
consistent solution. Baring the most complex image pairs and generation pa-
rameters it always offers good precision and recall. MAGSAC is almost always
slower or less effective or both than MAGSAC++, which is to be expected as the
second is an improvement on the first one. For two-view geometry, MAGSAC++
performs almost always better than AC-RanSaC, producing good results even
when other algorithms fail. It is also usually faster so it is a very stable and
powerful solution. On the other hand, for the PnP problem, neither MAGSAC
nor MAGSAC++ produce satisfactory results. The σ-consensus step seems to
not adapt well to the EPNP estimator.

As a test conclusion, a user who needs speed should prefer Fast-AC-RanSaC,
a user who needs precision AC-RanSaC and for robustness in two-view geometry
tasks MAGSAC++.

6 Conclusion

In the field of robust estimation, many algorithms were proposed but few reliable
and complete benchmarks were existing in the field of Structure from Motion
and Multi-View Stereo, due to the complexity to get ground-truth. In this paper,
we solve this problem with a semi-artificial generation method that offers a good
referential to compare algorithms to each other and to study the behavior of a
specific algorithms depending on the test case. Thanks to this new method we
were able to improve algorithms like Fast-AC-RanSaC and validate the value of
the improvement compared to other state-of-the-art algorithms.
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RanSaC is known to struggle with high outlier ratios, especially when its
inlier/outlier threshold is poorly chosen. Adaptive methods offer a solution to
this problem, with no method proving superior overall but offering compromises
between robustness, accuracy and speed. Fast-AC-RanSaC proposes a fast and
robust algorithm that will provide good performance for its runtime. LRT is the
most efficient in easy settings but will likely fail when faced with challenging
cases. MAGSAC++ and AC-RanSaC offer good precision and recall across test
cases, with a cost in runtime. For two-view geometry tasks, the first is the most
performing, usually faster and more robust while for the PnP problem, the sec-
ond performs largely better. The ability to reveal the specifics of each RanSaC
algorithm shows that the data-generation method will be able to produce clearer
benchmarks and conclusions when faced with new improvements.

Thanks to such observation, we plan on implementing the best performing
algorithms in a reconstruction pipeline to see the impact of removing the user set
threshold to compute the appropriate value at each step and hopefully improve
the whole reconstruction.
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