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Artificial intelligence-enhanced mass spectrometry breath analysis might be of value for
noninvasive, safe, cost-effective, high-throughput screening for COVID-19 in order to halt the
spread of SARS-CoV-2 and provide appropriate care to infected people https://bit.ly/3PAIsLs
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Abstract
Background Although rapid screening for and diagnosis of coronavirus disease 2019 (COVID-19) are still
urgently needed, most current testing methods are long, costly or poorly specific. The objective of the
present study was to determine whether or not artificial-intelligence-enhanced real-time mass spectrometry
breath analysis is a reliable, safe, rapid means of screening ambulatory patients for COVID-19.
Methods In two prospective, open, interventional studies in a single university hospital, we used real-time,
proton transfer reaction time-of-flight mass spectrometry to perform a metabolomic analysis of exhaled
breath from adults requiring screening for COVID-19. Artificial intelligence and machine learning
techniques were used to build mathematical models based on breath analysis data either alone or combined
with patient metadata.
Results We obtained breath samples from 173 participants, of whom 67 had proven COVID-19. After
using machine learning algorithms to process breath analysis data and further enhancing the model using
patient metadata, our method was able to differentiate between COVID-19-positive and -negative
participants with a sensitivity of 98%, a specificity of 74%, a negative predictive value of 98%, a positive
predictive value of 72% and an area under the receiver operating characteristic curve of 0.961. The
predictive performance was similar for asymptomatic, weakly symptomatic and symptomatic participants
and was not biased by COVID-19 vaccination status.
Conclusions Real-time, noninvasive, artificial-intelligence-enhanced mass spectrometry breath analysis
might be a reliable, safe, rapid, cost-effective, high-throughput method for COVID-19 screening.

Introduction
There have been more than 640 million confirmed cases of coronavirus disease 2019 (COVID-19) since
the start of the pandemic [1]. The reference diagnostic testing technique is based on the detection of
genetic material from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in nasopharyngeal
swabs via a reverse transcription (RT)-PCR [2]. This sampling and testing strategy is time-consuming,
requires qualified personnel and involves costly biological consumables. SARS-CoV-2 viruses are shed
from the respiratory tract for ∼10 days after disease onset in patients with mild COVID-19 and 20–40 days
after disease onset in patients with severe COVID-19 [3]. False-negative test results may occur in up to
20–67% of patients, with positive SARS-CoV-2 PCR tests for 93% of bronchoalveolar fluid samples, 72%
of sputum samples, 63% of nasal swabs and 32% of pharyngeal swabs [2, 4]. Rapid antigen detection
(RAD) tests for a SARS-CoV-2 infection have also been developed; they are just as specific as RT-PCR
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assays, but are much less sensitive (∼70%) [5]. Hence, the need for noninvasive, reliable, easy-to-use,
cost-effective, validated diagnostic and screening tests with a rapid turn-around time is still major.

Breath analysis is a noninvasive, real-time, point-of-care technique based on the detection of volatile
organic compounds (VOCs). The thousands of VOCs in human breath identified to date are related to
physiological and pathological processes (e.g. infections and inflammation) [6, 7]. A number of studies
have highlighted the value of breath VOC analysis for the diagnosis of COVID-19, using real-time [8–10]
and offline [11–13] mass spectrometry (MS), ion mobility spectrometry [14, 15], Fourier-transform
infrared spectroscopy [16], surface-enhanced Raman scattering [17], other sensor technologies (electronic
noses) [18–20] and detection dogs sniffing sweat samples [21–24]. Artificial intelligence and machine
learning techniques have been applied frequently to the field of breath analysis in general and the
diagnosis of COVID-19 in particular; support vector machines, principal component analysis, random
forests, artificial neural networks, elastic nets and decision trees have been used to set up predictive models
for diagnosis or disease classification [8, 13, 18–20]. It is known that MS breath analysis provides
high-dimension data. We hypothesised that the additional implementation of clinical metadata in machine
learning models might improve the predictive performance. The objective of the present study was
therefore to determine whether or not artificial-intelligence-enhanced real-time MS breath analysis is a
reliable, safe, rapid means of screening ambulatory patients for COVID-19.

Methods
Study design and participants
We conducted two prospective, open, interventional studies (VOC-COVID-Diag and VOC-SARSCOV-Dep)
in a single university hospital (Foch Hospital, Suresnes, France) and sought to assess the value of VOC
analysis (using either proton transfer reaction (PTR)-MS, electronic noses or detection dogs) in the diagnosis
of COVID-19. The two study protocols were registered (VOC-COVID-Diag: EudraCT 2020-A02682–37;
VOC-SARSCOV-Dep: EudraCT 2021-A00167-34) and approved by an independent ethics committee.
Written, informed consent was obtained from all the participants. The detection dog results have been
published elsewhere [21]; here, we report the results of the real-time MS analysis.

The participants were 1) adults (aged ⩾18 years) who had to be screened for COVID-19 in the emergency
department or 2) healthy adult volunteers (both vaccinated and unvaccinated) free of COVID-19. The main
exclusion criterion was pregnancy. The symptoms frequently associated with COVID-19 were used to
calculate a COVID-19 symptom score on a scale of 0–4, based on the absence (scored as 0) of nonspecific
symptoms (fever, cough, sore throat, malaise, headache, nausea, vomiting, diarrhoea), the presence (scored
as 1) of one of these nonspecific symptoms or the presence of one (scored as 3) or two (scored as 4) of the
most typical, predictive COVID-19 symptoms (myalgia, anosmia, ageusia, dyspnoea or hypoxaemia) [21].

Study measurements and procedures
One breath sample per participant was collected by trained staff wearing surgical gloves and personal
protective equipment. Sampling consisted of a single, deep inhalation and then exhalation through a
single-use mouthpiece fitted with a nonreturn valve into a Tedlar sample bag (SKC, Eighty Four, PA,
USA), which had previously been flushed with ultrapure nitrogen. The bag was then hermetically sealed
for immediate transport to the analysis room. Measurements were made with a proton-transfer-reaction
quadrupole time-of-flight mass spectrometer (Ionicon Analytik, Innsbruck, Austria), with the following
settings: source voltage 120 V, drift tube pressure 3.8 mbar, drift tube temperature 60°C and drift tube
voltage 959 V. The mass spectrum was acquired up to m/z 392, with a time resolution of 1 s. We recorded
medical data, including symptoms frequently associated with COVID-19 (fever, cough, dyspnoea,
anosmia, ageusia, fatigue, etc.), underlying health conditions and medications being taken at the time of
sampling. Each participant’s COVID-19 status was determined with molecular assays (Alinity m
SARS-CoV-2 RT-PCR assay or ID Now COVID-19 assay (Abbott, Issy les Moulineaux, France)) of
nasopharyngeal swabs. The threshold cycle for a positive RT-PCR had to be <40. Any history of a
SARS-CoV-2 infection in the months before the time of sampling was determined by applying serological
assays (COVID-19 BSS; Biosynex, Fribourg, Switzerland).

Data processing and statistical analysis
The MS data were processed with the ptairMS package in R [25]. Room air was analysed before sample
measurement, and breath was differentiated from background air using acetone (m/z 59.049) as a tracer
VOC. Mass calibration was performed every minute, using the peaks at m/z 21.022, m/z 60.053, m/z
203.943 and m/z 330.850. After an alignment step, we selected features 1) present in ⩾60% of the
participants in a given group and 2) with a statistically significant difference in signal intensity between
room air and exhaled breath in ⩾30% of the samples. Missing data were then imputed from the raw data;
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isotopes and saturated ions (m/z 37.028 and 59.049) were removed, as were outlier samples (defined as
those with z-score >5 for ⩾10% of the features). Next, we applied the normalisation method for
metabolomics data using optimal selection of multiple internal standards [26] method using m/z 21.022
(the primary ion isotope), m/z 39.022 (the water cluster isotope) and m/z 55.038 (water trimers) as
normalisation features. Lastly, the data were log-transformed.

A univariate analysis was performed using Wilcoxon’s signed-rank test and p-values adjusted to control
for the false discovery rate [27]. In a multivariate analysis of the data, we applied a principal component
analysis and then a random forest machine learning algorithm with a stratified five-fold cross validation
repeated four times in order to minimise overfitting. In addition, we applied feature selection by backward
recursive feature elimination [28] to reduce dimension, improve accuracy and select the more relevant
feature. This process iteratively ranks features according to their importance and removes the weakest one
until the performance no longer improves from one iteration to the next. Given that the prime objective of
high-throughput breath screening is to determine which patients should then undergo gold-standard testing,
the model’s decision cut-off value was chosen to optimise the sensitivity of patient classification. The
predictive performance was assessed in term of the sensitivity, specificity, negative predictive value (NPV),
positive predictive value (PPV) and area under the curve. Potential confounding covariates linked to
COVID-19 status were investigated by applying Wilcoxon’s test or principal component analysis within
each group, as described previously [9].

Results
The study population
Breath samples from 173 participants (included between 21 October 2020 and 30 June 2022) were
analysed using PTR-MS. One participant was considered to be an outlier and so was excluded from the
analysis. Of the 172 remaining participants, 106 had a negative RT-PCR test and 67 had a positive
RT-PCR test. For the majority of patients, the RT-PCR test was performed on the same day as the breath
analysis (median (interquartile range) time interval: 0 (0–3) days). The negative and positive participants
differed with regard to certain demographic and clinical characteristics (table 1).

Breath analysis
Multivariate analysis
Processing of the real-time PTR-MS data yielded 71 features that were reproducibly detected in the exhaled
breath of the patient cohort (supplementary table S1). In a principal component analysis, a plot of the

TABLE 1 Patient characteristics and treatments

COVID-19− COVID-19+ p-value

Participants 106 67
Sex (male/female) 50/56 31/36 1
Age years 46±18 56±14 <0.001
Patients/volunteers 97/9 67/0
Symptoms present
Fever 15 (14.2) 32 (47.8) <0.001
Cough 12 (11.3) 39 (58.2) <0.001
Dyspnoea 12 (11.3) 34 (50.7) <0.001
Anosmia 3 (2.8) 10 (14.9) 0.003
Ageusia 1 (0.9) 7 (10.4) 0.004
Fatigue 8 (7.5) 30 (44.8) <0.001
Aches 6 (5.7) 17 (25.4) <0.001

Symptom score 0.32±0.66 2.2±1.1 <0.001
Medical history
High blood pressure 12 (11.3) 19 (28.4) 0.008
Asthma 3 (2.8) 9 (13.4) 0.018
Overweight 5 (4.7) 8 (11.9) 0.144
Diabetes 5 (4.7) 7 (10.4) 0.255
Organ transplant 1 (0.9) 4 (6.0) 0.055

Previous COVID-19 infection 12 (11.3) 0 (0)
COVID-19 vaccination 79 (74.6) 13 (19.4) <0.001
Previous treatment with corticosteroids 5 (4.7) 33 (49.3) <0.001

Data are presented as n, mean±SD or n (%), unless otherwise stated. COVID-19: coronavirus disease 2019.
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second and third components suggested that the COVID-19-negative and COVID-19-positive samples were
at least partially segregated (figure 1, and loadings plot in supplementary figure S1). A base model
(consisting of a random forest with 12 features selected from the 71 and a decision cut-off of 0.2)
classified the patients with a sensitivity of 94%, a specificity of 70%, NPV 95% and PPV 67%, with
five-fold cross-validation repeated four times. The following clinical metadata were then included in the
model as explanatory variables: symptom score, prior corticosteroid treatment (as a binary yes/no variable)
and vaccination status (also as a binary variable). The symptom score and corticosteroid treatment were
selected by the algorithm and led to an improved final model with 18 VOC features; it classified
participants with a sensitivity of 98%, a specificity of 74%, NPV 98% and PPV 72% (again with a
decision cut-off of 0.2). The receiver operating characteristic curves and metrics for the models (breath
only or breath plus clinical data) are shown in figure 2.

Univariate analysis
The univariate analysis highlighted two features that were already part of the multivariate model for
differentiating between COVID-19-positive and -negative participants: in COVID-19-positive participants, one
feature (m/z 99.08) was more intense and the other (m/z 63.03) was less intense (figure 3). We then queried
the Human Breathomics Database [29]. Putative annotations for the two compounds are shown in table 2.

Relationship between breath VOCs and disease severity
Firstly, the final model’s predictive performance was similar in asymptomatic or weakly symptomatic
patients (symptom score ⩽1: sensitivity 98.3%, specificity 72%) and symptomatic patients (symptom score
>1: sensitivity 97.1%, specificity 73%). Secondly, in the COVID-19-positive group we explored the
relationship between breath concentrations of the two aforementioned features on one hand and virological
and clinical variables on the other. The breath concentrations were not significantly associated with the
cycle threshold (Ct) in the PCR (median (range) Ct 24 (11–37); r=−0.01 for m/z 99.08 and r=0.2 for m/z
63.03). The symptom score was correlated with the breath concentrations of m/z 99.08 (r=0.32, p=0.009),
but not that of m/z 63.03 (figure 4). Lastly, we assessed VOC expression in between ambulatory
participants from the present cohort versus severely ill, intubated, ventilated patients cared for in the
intensive care unit from our previous study [9]. The breath VOC concentration of m/z 99.08 (but not m/z
63.03) was higher in patients with severe disease than in patients with mild disease (figure 5).

Confounding factors
We sought to rule out potential confounders unrelated to COVID-19, as we had done previously for the
oxygen supply in ventilated patients [9]. In the present cohort, prior corticosteroid treatment and
COVID-19 vaccination were (as expected) associated with the COVID-19 status and so were investigated.
The breath concentration of m/z 99.08 was significantly higher in unvaccinated COVID-19-negative
participants (n=27) than in vaccinated COVID-19-negative participants (supplementary figure S2). In the
former group, 6.5 participants (an average after five-fold cross-validation) would have been incorrectly

4

SARS-CoV-2-negative
SARS-CoV-2-positive

0

P
C

 3
 (

9
%

)

–4

–5 0

PC 2 (13%)

5

FIGURE 1 Multivariate analysis. Principal component (PC) analysis of the breath signature in participants with
a positive or negative PCR test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
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categorised as COVID-19-positive by the final model and so would have been referred for a reference test
for SARS-CoV-2 infection. In all the other groups, there were no confounding effects of COVID-19
vaccination or prior corticosteroid treatment with respect to the concentrations of m/z 99.08 and m/z 63.03
(supplementary figure S2). The absence of a confounding effect was also confirmed for age and sex
(supplementary figure S3).
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Discussion
Our present results show that real-time MS breath analysis enhanced with clinical metadata and machine
learning tools can reliably diagnose COVID-19 in ambulatory subjects. Furthermore, the analysis is
noninvasive and has a rapid turn-around time and a low requirement for consumables. Due to their very high
sensitivity and NPV, this type of breath analysis might be of value for the rapid, high-throughput, ambulatory
identification of COVID-19-negative people; individuals who test positive could be referred for confirmatory
testing with a reference method (e.g. a nucleic acid amplification assay). Since these confirmatory tests are
invasive and time-consuming, and molecular assay consumables are expensive, the implementation of
real-time MS breath analysis would probably have both public health and economic benefits.

With regard to diagnostic performance, the sensitivity of previously reported breath analysis methods for
the diagnosis of COVID-19 ranged from 68% to 100% [8–13, 15, 16, 18–20]. Sensitivities >95% were
only achieved for methods whose sensor technologies could not identify individual VOCs [16, 17, 19]
and/or had analytical runtimes >2 min (and sometimes even 45 min) [13, 16, 17, 19]. For some of these
techniques, the potential confounding effects of comorbidities, COVID-19 vaccination status and prior
therapies have not been studied [16, 17]. When considering the two previous studies of PTR-MS in similar
patient populations, one reported the downregulation of specific VOCs [11] and the other gave a sensitivity
of just 81% [8]. These results suggest that the combination of high-resolution MS systems with dedicated
software (such as the ptairMS package) [25] can markedly improve analytical performance, peak detection
and sample alignment in cohorts of patients. In the aforementioned studies, the specificity ranged from
75% to 100%. Studies of detection dogs sniffing sweat samples or face masks highlighted excellent
diagnostic performances (sensitivities 61–100%, specificities 84–94%) [21–24], and further strengthened

TABLE 2 Suggested volatile organic compound (VOC) annotations, after searching the Human Breathomics Database [29]

VOC (m/z) Suggested molecular
formula

Suggested annotation

99.08 [C6H10O+H]
+ 2-methylpent-2-enal, 3-methylpent-3-en-2-one, 4-methylpent-2-enal, hex-3-en-2-one, hex-4-en-3-one,

2-methylcyclopentan-1-one, 4-methylpent-3-en-2-one, 4-methylpent-3-enal, cyclohexanone,
hex-5-en-2-one

63.03 [C2H6S+H]
+ Ethanethiol, methylsulfanylmethane
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FIGURE 4 Relationship between the symptom score and the expression levels of m/z 99.08 and m/z 63.03, as quantified with Spearman’s
correlation coefficient. The data are expressed as normalised intensities.

https://doi.org/10.1183/23120541.00206-2023 6

ERJ OPEN RESEARCH ORIGINAL RESEARCH ARTICLE | C. ROQUENCOURT ET AL.



arguments in favour of an odorant signature for COVID-19. However, dog-based testing is limited by the
time needed for sweat collection or mask wearing, the need to continuously (re)train the dogs, the presence
of between-animal differences and variability over time, and the inability to identify individual VOCs.

Rapid antigen detection tests can also be used to screen for SARS-CoV-2 infection, although their
sensitivity with nasopharyngeal swabs ranges from 12% to 98% [4, 5, 30–32]. The lowest sensitivity is
observed in asymptomatic or weakly symptomatic patients, which increases the likelihood of false-negative
results [4, 5, 30–32]. Since up to 50% of cases can be attributed to transmission from asymptomatic or
pre-symptomatic patients, the high probability of false-negatives might limit the value of RAD tests for
mass screening [33, 34]. The predictive performance of our real-time MS breath testing was independent
of the viral load and the intensity of the COVID-19 symptoms. RAD tests have a specificity of close to
100% and give few false-positive results; hence, RAD tests are best used to confirm a diagnosis or to
differentiate between highly contagious individuals (with a high SARS-CoV-2 load) and less contagious
individuals. High-throughput COVID-19 screening in healthcare establishments or busy public places
could perhaps be achieved by combining rapid, sensitive, noninvasive, low-consumable-cost, real-time MS
breath testing to quickly identify positive patients for referral to a specific confirmatory RAD test.
Importantly, we found that prior corticosteroid treatment and COVID-19 vaccination did not have a
significant impact on the diagnosis; in contrast, recent vaccination might interfere with other methods (such
as canine olfaction) described in the literature [21].

One important strength of the present breath analysis study was the use of metadata on the patients’
symptoms, vaccination status and medications, all of which can be easily collected at the time of sampling.
Hence, the use of artificial intelligence (machine learning) algorithms to simultaneously process breath
analysis data and patient metadata improved the mathematical model’s diagnostic performance, relative to
models based on breath analysis data alone. Although artificial intelligence tools are now widely used to
find diagnostic biomarkers for COVID-19 in breath metabolomic data [8, 13, 18–20], the present study is
the first to have included both breath data and easy-to-collect clinical metadata.

In order to ensure that features of interest are detected from exhaled breath and are unrelated to environmental
contamination, our study design and data processing workflow included several steps. First, only features with
an expression level that differed from room air were considered for statistical analysis. Ambient air for this
background removal step was taken from the instrument room, as ambient air from the room where patients
stand is contaminated by all VOCs exhaled by the patients. All samples from COVID-19-positive and
-negative patients were then collected in the same place and processed in the same way, with a similar
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hospitalisation status/time and in a random order as the analyses were performed at the time the patients
arrived at the hospital. This ensures that VOCs from environmental air and any contaminants, which have the
same expression level regardless of group, are excluded from the statistical analysis.

With respect to the nature and pathogenic role of VOC biomarkers of COVID-19, the main feature of the
present study (m/z 99.08) had already been identified in our study of intubated, ventilated patient with
COVID-19-related acute respiratory distress syndrome [9]. XUE et al. [13] also reported cyclohexanone as a
candidate COVID-19 VOC biomarker, which m/z for the [M+H]+ ion is 99.08. Our present results showed
that the expression level of m/z 99.08 was independent of the viral load, but not the disease severity. All
the suggested annotations for this feature correspond to ketones and aldehydes. These families have
already been reported as potential markers of disease states in patients with COVID-19 [10, 11, 13, 15],
asthma or COPD [35–38] and after an inhaled endotoxin challenge in healthy volunteers [39]. Although
these VOCs and disease states may be interrelated, the underlying biochemistry has not been fully
characterised. However, the aldehyde VOC octanal was recently found to be an agonist of the olfactory
receptors that are expressed in immune cells (such as macrophages) and are involved in the pathogenesis of
the oxidative stress and inflammatory processes in a murine model of atherosclerosis and in human
monocyte-derived macrophages [40]. Hence, olfactive receptors might be targeted by certain VOCs in the
body and could perhaps be modulated by appropriate pharmacological interventions.

The main limitations of the present study are related to the sample size; our observations will require
confirmation in an external validation cohort. However, overfitting was limited during data analysis by
both feature selection (71 variables were pre-selected from the 173 patients based on their reproducibility
and difference in intensity between exhaled breath and ambient air, and then only 12 where selected by the
final machine learning algorithm) and cross-validation. Validation on external cohort would also constitute
an opportunity to assess the specificity of the COVID-19 signature, relative to other infectious diseases
affecting (or not) the respiratory tract. Although the RT-PCR assay is considered to be the gold-standard
diagnostic technique and was used here as the comparator, it also has limitations: inappropriate sampling
may give false-negative results, whereas a positive result objectifies the presence of viral genetic material
in the airways, but not necessarily intact (virulent) viruses. Lastly, on the basis of our present data, we
were unable to determine the nature or structure of the VOCs of interest; their formal annotation will
require the comprehensive use of additional analytical methods.

The present study had a number of strengths, including the use of high-sensitivity, real-time mass
spectrometry capable of quantifying specific VOCs, the implementation of clinical metadata to improve the
artificial intelligence algorithm, and the good overall diagnostic performance (especially the excellent negative
predictive value). In contrast to classical gas chromatography MS instruments, PTR-MS is easy to implement
in a clinical setting as it only requires a power supply and water. Breath analysis for COVID-19 diagnosis
with PTR-MS analysis may be cost-effective for several reasons, although COVID-19 screening techniques
and strategies (and therefore the associated costs) are highly dependent on the organisational structure
(screening centres, outpatient clinics, other healthcare establishments, etc.). For example, COVID-19 RT-PCR
tests may be carried out on almost fully automated nucleic acid extraction and amplification systems, with up
to 250 runs per day. Such instrument costs approximately EUR 200 000, plus approximately EUR 20 per
sample for consumables and personnel. Conversely, PTR-MS technology is not widely used; in the absence of
economies of scale, the cost of a high-resolution, high-sensitivity instrument may be twice as much, but the
per-test cost of consumables is just a few euro cents and the analysis of a patient’s sample takes 1 min,
making it possible to analyse several tens of patients a day. Hence, if we take the analysis of 10 000 samples
as an example, the analysis cost would be approximately the same for RT-PCR and PTR-MS, but analysis by
PTR-MS would take approximately half that with RT-PCR.

Taken as a whole, our results established a specific breath metabolomic signature which, when combined
with clinical metadata, allowed reliable, noninvasive, high-throughput COVID-19. We now intend to
embed all the hardware control and artificial intelligence tools for breath and online data analysis in a
user-friendly, automated software package so that staff with basic training can screen for COVID-19 in
<1 min per person. This set-up could be used in subsequent validation and extension studies. A
noninvasive breath analysis workflow with low consumable use (disposable mouthpieces only) and a rapid
turn-around time might have health economic advantages over existing methods by rapidly identifying
cases, halting the spread of the virus and enabling the provision of appropriate care to ill people.
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