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Anselmi,4, 2 Clément Nizak,5 Andrea Pagnani,6, 2, 7 and Olivier Rivoire3, 8

1Laboratoire de physique de l’Ecole normale supérieure,

CNRS, PSL University, Sorbonne Université,
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Université PSL, F-75005 Paris, France

4Department of Life Sciences and Systems Biology

& Molecular Biotechnology Center - MBC,
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Abstract

Exquisite binding specificity is essential for many protein functions but is difficult to engineer.

Many biotechnological or biomedical applications require the discrimination of very similar ligands,

which poses the challenge of designing protein sequences with highly specific binding profiles. Cur-

rent methods for generating specific binders rely on in vitro selection experiments, but these have

limitations in terms of library size and control over specificity profiles. We present a multi-stage

approach that overcomes these limitations by combining high-throughput sequencing of phage

display experiments with machine learning and biophysical modeling. Our models predict the

binding profiles of antibodies against multiple ligands and generate antibody sequences with de-

sired specificity profiles. The approach involves the identification of different binding modes, each

associated with a particular ligand against which the antibodies are either selected or not. We

demonstrate that the model successfully disentangles these modes, even when they are associated

with chemically very similar ligands. Additionally, we demonstrate and validate experimentally the

computational design of antibodies with customized specificity profiles, either with specific high

affinity for a particular target ligand, or with cross-specificity for multiple target ligands. Overall,

our results showcase the potential of leveraging a biophysical model learned from selections against

multiple ligands to design proteins with tailored specificity, with applications to protein engineering

extending beyond the design of antibodies.

INTRODUCTION

Proteins often exhibit a delicate balance of multiple physical properties. A prominent

example is binding specificity, where some ligand interactions are advantageous while oth-

ers are detrimental. Examples include transcription factors, which recognize specific DNA

motifs among a myriad of alternatives [1], enzymes with a strong preference for their sub-

strate over many similar molecules [2, 3], and immune receptors capable of distinguishing

a pathogenic molecule from many others, in particular self molecules [4]. Due to the close

chemical similarity between favorable and unfavorable ligands, and/or the dissimilarities

between favorable ligands, the engineering of such proteins poses formidable challenges. For
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instance, in the particular case of therapeutic antibodies, the desired specificity profile typ-

ically consists of strong binding affinity to the target antigen while retaining low binding

affinity to human self antigens to avoid auto-immune reactions. Additionally, when the

target antigen is a human protein, e.g. a tumor marker, antibody cross-specific binding to

the human and the cyno and/or murine homologous antigens is often desired to ease drug

development [5].

Presently, methods for obtaining specific binders essentially rely on in vitro selection

experiments [6]. Phage or ribosome display [7, 8] with one immobilized targeted ligand in the

presence of soluble non-targeted ligands allows screening for specific binding to the targeted

ligand [9]. Yeast display combined with fluorescent-activated cell sorting [10] additionally

offers the unique possibility to control precisely specificity selection criteria (including cross-

specificity) upfront during the screening process by monitoring fluorescence associated with

the targeted and non-targeted ligands in different channels [11], albeit with a maximum

library size that is several orders of magnitude smaller. High-throughput selection can

be combined with high-throughput sequencing read-out to identify binders beyond the top

hits [12–14], but all experimental approaches are limited by the maximal library size, ranging

from typically 108 (yeast), 1010 (phage) to 1015 (ribosome). As large as these numbers may

appear, they represent a negligible fraction of the combinatorially large space of possible

sequences. Moreover, experimental screening for specificity requires the targeted and non-

targeted ligands to be physically separable, which may be complicated if not impossible in

some cases, for instance when considering distinct epitopes on the same molecule. Finally, in

experiments, non-targeted ligands are inevitably present, since targeted ligands are typically

attached to a cell, a tube/plate, or a magnetic bead.

Recently, works combining high-throughput sequencing and machine learning have

demonstrated the possibility of making predictions beyond the scope of experimentally

observed sequences [15, 16]. While past works predominantly focused on a single protein

property (binding, stability, or catalysis) directly linked to the selection criterion [17], a

few studies have shown the feasibility of inferring multiple physical properties, including

quantities that are not directly measured [18]. Notable successful examples include pre-

dicting thermal stability from binding affinity measurements [19], and inferring specificity

profiles of transcription factors from the selective enrichment of DNA sequences [20, 21].

Several recent works have started to apply this type of approach to predict and design
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antibody specificities [22–25] but, to our knowledge, none have addressed the critical but

most challenging problem of designing antibody sequences that discriminate closely related

ligands.

Here, we introduce a biophysics-informed approach that tackles this task. Trained on

a set of experimentally selected antibodies, our model associates to each potential ligand

a distinct binding mode, which enables the prediction and generation of specific variants

beyond those observed in the experiments. To showcase this approach, we conducted a series

of phage display experiments involving antibody selection against diverse combinations of

closely related ligands. First, we demonstrate the model’s predictive power by using data

from one ligand combination to predict outcomes for another. Second, we show its generative

capabilities by using it to generate antibody variants not present in the initial library that are

specific to a given combination of ligands. Our results highlight the potential of biophysical-

informed models to identify and disentangle multiple binding modes associated with specific

ligands. This approach has applications in designing antibodies with both specific and

cross-specific properties and in mitigating experimental artifacts and biases in selection

experiments.

RESULTS

We designed phage display experiments for the selection of antibody libraries and per-

formed two distinct experimental campaigns: in the first, we selected antibodies against

various combinations of ligands. This provided us with multiple training and test sets,

which we used to build and assess our computational model. In the second, we tested vari-

ants predicted by our model but not present in the training set to assess the model’s capacity

to propose novel antibody sequences with customized specificity profiles.

Experimental selection

Following our previously established protocols [13, 14], we carried out phage-display ex-

periments with a minimal antibody library based on a single näıve human VH domain in

which four consecutive positions of the third complementary determining region (CDR3)

are systematically varied to a large fraction of the 204 = 1.6 105 combinations of amino
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A B

FIG. 1. A. In a phage display experiment, an initial library containing ∼ 105 variants, each in

∼ 106 copies (here illustrated with 3 variants in 2 copies) is incubated in the presence of DNA

hairpins (in black) coupled to magnetic beads (in orange). Antibodies are selected in proportion

to their binding probability. The input and output populations are sampled and sequenced to

provide data-sets of ∼ 105 sequences each. B. We selected the same initial library against four

different combinations of ligands: two different DNA hairpins coupled to magnetic beads, presented

either alone or in combination, and naked magnetic beads. We refer to these four combinations

as “Black”, “Blue”, “Mix” and “Beads” complexes. For the Black, Blue, and Mix complexes, we

made two successive rounds of selection. The 10 boxes at the tip of the arrows indicate the 10

sequencing datasets thus produced to feed our model, in addition to the sequencing dataset from

the initial library.

acids (“Germline library” [14]). This library is small enough to allow a high-coverage of its

composition by high-throughput sequencing. Out of the 204 potential variants, 48% are ob-

served by sequencing, while we consider the remaining ones to be absent or unobserved. We

previously showed that this library contains antibodies that bind specifically to a diversity

of ligands, including proteins, DNA hairpins, and synthetic polymers [13, 14].

Here, we perform selections against complexes comprising two types of ligands, DNA

hairpin loops and the surface of streptavidin-coated magnetic beads on which the DNA

hairpins are immobilized. We performed independent selections against two such complexes,

referred to as “Black” for one DNA hairpin on beads, and “Blue” for another DNA hairpin

on beads, as well as selections against mixtures of Black and Blue complexes (“Mix”).

Following standard protocols, we performed two rounds of selection with an amplification

step in between, where each selection is preceded by an incubation of the phages with naked
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beads to (partly) deplete the antibody library of bead binders (see Fig. 4). These pre-

selections provided us with data with a fourth selective pressure where naked beads are the

only ligand (“Bead”). Importantly, we systematically rescued phages by infection of E. coli

bacteria at each step of the protocol to closely monitor the antibody library composition.

Input phages, phages bound to naked beads during the pre-selection step, and output phages

bound to DNA target-coupled beads during the selection step were thus rescued in bacteria

and extracted plasmids used as a template for high-throughput sequencing (see Fig. 4). The

relationships between the 8 selection experiments are represented in Figure 1, together with

the sequencing data that we collected.

For each experimental selection round t, empirical enrichments were computed for each

sequence s as εst = Rst′/Rst, where Rst and Rst′ , denote respectively the sequencing counts

before and after selection. Enrichments against the Black and Blue complexes are observed

to be very correlated, consistent with their close chemical similarities (Fig. 7). Enrichments

against one complex and the beads alone are less correlated, indicating both that the beads

are not dominant epitopes when coupled to DNA hairpins, and that they are chemically

more dissimilar from these hairpins (Fig. 14).

A model for multiple-specific selection

We built a computational model where the probability pst for an antibody sequence s

to be selected in a particular experiment t is expressed in terms of selected and unselected

modes. Each mode w is mathematically described by two quantities: µwt that depends only

on the experiment t, and Ews that depends on the sequence, such that

pst =

∑
w∈St e

µwt−Ews∑
w∈St e

µwt−Ews +
∑

w∈Nt
eµwt−Ews

, (1)

where St and Nt represent, respectively, sets of selected and not-selected modes available in

experiment t. (1) is rooted in the thermodynamics of binding at thermal equilibrium [26]: if

a molecule can be in one of the selected (St) and unselected (Nt) thermodynamical states,

its probability to be selected is given by (1), which corresponds to a Boltzmann law with

Ews = ∆Fws/RT , where ∆Fws represents the free energy of s in state w, R the universal

gas constant and T the temperature. A selected state can represent binding to a targeted

ligand w, in which case µwt = ln[w], where [w] is the relative concentration of free ligand
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w in the experiment t (up to a scaling factor). The formula further includes an unselected

unbound mode, to account for the possibility that the molecule remains in solution instead

of binding any ligand.

Given that our experiments include three types of ligand – two DNA hairpins and mag-

netic beads – our model comprises four binding modes in total. A bead-bound mode is

always selected, the DNA hairpin-bound modes are either selected or absent depending on

the ligand present in the experiment, and the unbound mode is always unselected (Fig. 6).

In addition to these physical modes associated with the thermodynamics of binding, our

model can incorporate extra pseudo modes not related to binding, to account for biases that

may occur during phage production and antibody expression stages (Materials and Meth-

ods for details). For each mode w, Ews is parametrized by a shallow dense neural network

(Materials and Methods). During training, the model parameters are optimized globally

to capture the evolution of antibody populations across several experiments. Through this

optimization process, the initial library abundances are also inferred (Materials and Meth-

ods). Once the model is trained, it can be used to simulate experiments with a custom set of

selected/unselected modes, enabling the prediction of the expected probability of selection

of variant reads, which can be compared to empirically observed enrichments of sequence

counts in actual experiments.

Furthermore, we verified that introducing more complexity into the model along two

different directions had a negligible impact. First, sequences recovered after one round

of selection must be amplified before undergoing another round of selection, which occurs

through phage infection and may be subject to biases. We collected sequencing data right

before and after amplification and verified that no significant amplification bias was present

(Fig. 9). Second, our model considers antibody sequences at the amino-acid level but

selection can potentially occur at a nucleotidic level as well. We analyzed the data at

this level and confirmed that no significant codon bias was observed in our experiments,

consistent with an interpretation of the selection modes as arising primarily from ligand

binding (Fig. 10).
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FIG. 2. The model predicts accurately the evolution of sequence variants abundances in response

to multiple selective pressures. We considered different tasks of increasing difficulty, depending

on the training set used: A. Model trained on the experiments with Black, Blue complexes, and

empty Beads, and prediction evaluated with a mixture of the Black and Blue complexes; B. Model

trained on experiments with a mix of Black and Blue complexes, Blue complexes only, and naked

Beads, with predictions evaluated on the experiment with Black complexes only; C. Model trained

on experiments with Blue complexes only, and predictions evaluated on experiments with naked

Beads; D. Model trained on experiments with mix of of Black and Blue complexes and naked Beads,

and predictions evaluated on experiments with Black complexes only. The panels show scatter plots

of the the observed (x-axis) vs. predicted sequence frequencies (y-axis), with the initial library

abundances shown in gray for comparison. The correlation between empirical selectivities and the

model-predicted selectivities for each task are given in Table I.

The model disentangles the effect of mixed ligands

To assess the model’s ability to disentangle the contribution to the selection of the dif-

ferent ligands, we conducted two types of validation.

Predicting selection against unseen mixtures of ligands

In the first validation, we trained the model using selection experiments against the

Black and Blue complexes consisting of DNA hairpins attached to magnetic beads, and

used the inferred model to predict the outcomes of experiments where these two complexes

are mixed in equal proportions, which defines the Mix complex (Fig. 1). To assess the
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model’s performance, we compared the read counts of variants in the validation set with

the abundances predicted by the model (Fig. 2A), and estimated the correlation between

predicted probabilities of selection pst and experimentally determined enrichments εst against

Mix (Table I). The results validate the model’s capacity to integrate different selection

experiments to predict the results of selection experiments with unseen combinations and

proportions of ligands. As a control, selectivities predicted using only one mode result in

significantly lower correlations, confirming that both Black and Blue modes are necessary

to model selection in the Mix experiment (Table I).

Predicting selection against hidden ligands

In the second validation phase, we trained the model to predict selections against unseen

subsets of ligand combinations. We considered three scenarios of increasing complexity: (i)

using the data from the Mix, Beads, and Blue selections to disentangle the Black mode

and predict the experiment with the Black complex (Fig. 2B), (ii) disentangle the effect

of Beads using Blue data exclusively and predict the Beads selection (Fig. 2C), and (iii)

disentangle the Black ligand effect from Mix and Beads selections and predict the Black

selection experiment (Fig. 2D). The second task is more challenging than the first because

the beads in the Blue complex are subdominant epitopes (Fig. 14), and the third task is

more challenging than the other two because the two hairpins are very similar (Fig. 7) and

not seen independently.

As previously, we compared in each case predicted selectivities to empirical enrichments

from experiments and obtained very good correlations (Fig. 2 and Table I). Altogether, these

results validate the model’s capacity to disentangle the contributions of different ligands, and

effectively “subtract” the contribution of some ligands to predict the contribution of others.

Generation and validation of antibodies with custom specificity profiles

In addition to predicting the outcome of experiments involving new combinations of lig-

ands, our model can be employed to design novel antibody sequences with predefined binding

profiles. These profiles can be either cross-specific, allowing interaction with several distinct

ligands, or specific, enabling interaction with a single ligand while excluding others. The
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generation of new sequences relies on optimizing over s the energy functions Esw associated

with each mode w in (1). To obtain cross-specific sequences, we jointly minimize the func-

tions Esw associated with the desired ligand. On the contrary, to obtain specific sequences,

we minimize Esw associated with the desired ligand w and maximize the ones associated

with undesired ligands.

Panel A of Figure 3 illustrates the distribution of sequences in the energy plane defined by

the modes associated with the two DNA hairpins, as inferred when using all available data.

Among all possible sequences, we select those not present in the initial library (thus not

included in the training set) and predicted to possess specific binding profiles: sequences in

blue are predicted to bind strongly to the Blue DNA hairpin while exhibiting weak binding

to the Black DNA hairpin, and reciprocally for those in black, while those in purple are

predicted to bind both hairpins.

We validated experimentally these predictions by phage display selection of a library

composed of these ∼ 2000 computationally designed sequences and ∼ 10 control sequences

for binding to either Black or Blue complexes. Panel B of Figure 3 provides a summary

of the results. The enrichments of variants in the two experiments are displayed, with

variants above two predefined thresholds (see Fig. 11 for details) considered as binders.

The four regions represent specific binders for Black and Blue DNA hairpins, cross-specific

binders, and non-binding variants. Percentages of the designed antibodies that fall within

the respective regions (true positives) are reported, along with the fraction of the total

number of points for comparison. Additionally, the composition of variants within the region

segmented by designed specificity is presented. Taken together, these results demonstrate

the capacity of the model to propose multiple sequences with desired specificities. Not all

designed antibodies have the desired properties, but it must be stressed that the results

of Figure 3 address the case of two very similar ligands with the further constraint that

the initial library already covers half of the potential diversity, which leaves a relatively

small novel design space. In contrast, designing binders to a single ligand regardless of their

affinity to the others is comparatively easier (Fig. 12).
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FIG. 3. Design and validation of antibodies with prescribed specificity. A. Model-based energy plot

where each sequence s is represented as a circle with coordinates (Esw1 , Esw2), with w1 represent-

ing the binding mode associated with the Black hairpin and w2 with the Blue hairpin. Sequences

predicted to be specific to the Blue hairpin, specific to the Black hairpin, or cross-specific to the

two hairpins are respectively highlighted in blue, black, and purple. We selected for experimental

validation all the colored sequences that are not present in the training set. B. Experiment-based

enrichment plot of the selected sequences where each sequence s is represented as a circle with

coordinates (log εsw1 , log εsw2), with εsw1 representing the enrichment against the Black complex

and w2 against the Blue complex. Sequences with high enrichment in one experiment and low

enrichment in the other are ligand-specific, those with high enrichment in both are cross-specific,

and low-enrichment sequences are non-binders (false positives). We assess our computational ap-

proach’s effectiveness by calculating the percentage of designed sequences falling within the correct

region. Thresholds are set based on the average enrichment of all sequences in the experiment

including the control sequences (see Fig. 11 for more details). Cross-specific designed antibodies

achieve a 45% true positive rate, while Black and Blue-specific binders yield lower percentages (19%

and 8%, respectively), reflecting the capacity of our approach to design antibodies with desired

properties despite the challenges arising from the close similarity of the two ligands.
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DISCUSSION

In this study, we propose a multi-stage method that combines high-throughput sequencing

of coordinated phage-display experiments, with a machine-learning approach that trains a

biophysical model. This model is designed to capture statistical patterns associated with

different aspects of the selective pressures to which antibodies are experimentally subjected.

By disentangling the different factors influencing selection, we can design sequences with

novel combinations of physical properties, making the most of the wealth of information

contained in high-throughput sequencing data from selection experiments.

Over the past three years, several machine learning approaches have been developed with

the aim of analyzing antibody selection experiments to propose new antibody variants with

improved binding affinities for a prescribed target, given particular constraints. These con-

straints include parameters such as viscosity, clearance, solubility and immunogenicity [23],

which are important for drug development, or non-specific binding [24], to eliminate an-

tibodies that tend to bind indiscriminately to a large number of antigens. Some of these

works are based on experimental data similar to ours, combining selections against multiple

targets with a similar aim of extracting target-specific features [22].

Our work differs from these studies in the difficulty of the task we are tackling. We focus

indeed on inferring and designing high levels of binding specificity, which involves discrim-

inating between molecular targets with significant structural and chemical similarity. To

provide a clear proof of concept, we considered two targets that are not of direct biomedical

interest but whose similarity is well characterized. Our two 24-nucleotide hairpins thus differ

only by 7 nucleotides in their loop. This difference is comparable to the difference between

DNA sequences recognized by transcription factors or restriction enzymes, some of the most

specific proteins found naturally. Generating data and developing a model from which to

design sequences that discriminate between these two targets is a very rigorous test.

A practical application of our approach is the design of new protein candidates with pre-

scribed specificity profiles. The minimal breadth of our initial library reduces the possibility

of testing entirely new variants, but our approach is also applicable to libraries of greater

breadth. As these libraries are necessarily much more undersampled, the potential for dis-

covering better variants is greater, although undersampling can also lead to less accurate

models. Finally, although not all the variants proposed by our model proved experimentally
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to have the desired properties, a significant fraction did, which is enough to provide several

alternative sequences at the typical scale of ∼100 variants that can be tested experimentally.

There are several avenues for extending the scope of our work. One is to increase the

diversity of the initial library, which also allows the incorporation of additional physical

modes associated, for example, with thermal stability. Another is to generate and integrate

data from experiments in which ligand libraries are selected to bind to one, or several,

binders. Beyond practical applications, these extensions have the potential to provide a

general approach to deducing the multiple physical properties encoded in protein sequences.

MATERIALS AND METHODS

Phage display selection

Phage display selections were performed essentially as in our previous study [14]. Our

’Germline’ VH library [14] and the library of designed sequences are both cloned in the

pIT2 phagemid vector. M13KO7 (Invitrogen) was used as a helper phage, and TG1 E.

coli as a host. M280 streptavidin-coated magnetic beads (Dynal) were used for DNA target

immobilization. DNA targets are single-stranded DNA oligonucleotides biotinylated at their

5’ end (IDT). For the selection against Mix, beads coupled to the Black DNA hairpin target

were mixed 50-50 with beads coupled to the Blue DNA hairpin target.

Phage display experiments included a pre-selection step with naked beads followed by

a selection step with DNA target-coupled beads. Specific to the present study, we rescued

phages at three steps of the selection process (see Fig. 4), namely (i) input phages, (ii)

output phages bound to naked beads during pre-selection, (iii) output phages bound to

DNA target-coupled beads during selection. The exact same washing and elution procedures

were applied to naked beads and DNA target-coupled beads prior to phage rescue in TG1

cells. Consistent with efficient selection for DNA target-binding, we typically observed a 10

to 100-fold higher phage titer in elutions from beads coupled to DNA targets (106 to 107

phages) than from naked beads (105 phages).
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Sequencing read-out

For each phage sample to be sequenced, an amplicon encompassing the 4 randomized

CDR3 sites flanked with Illumina adapters bearing sample-specific indices was produced by

PCR on DNA purified from TG1 cells following phage rescue. The number of PCR cycles

was kept as low as possible to avoid distortion due to amplification biases, which we checked

specifically.

The ’Germline’ library selection was sequenced on the Illumina™ NextSeq 500 platform,

producing 76 bp reads. The in-silico designed library selection was sequenced on the Illu-

mina™ NextSeq 1000 producing 60+60 bp (paired ends) reads.

Model training

The model is trained by maximizing the likelihood of the observed sequencing read counts

of each sequence s in an experiment t, that we denote by Rst, and which are modeled as a

multinomial distribution:

P({Rst}|{Nst}) ∝
∏
s

NRst
st (2)

where Nst is the estimated abundance of this variant in the experiment. The abundances

evolve from one experiment t to the next t′, according to Nst′ ∝ pstNst, where pst are the

selectivities in (1). Iterating this relation, we can express Nst as a function of the abundances

in the initial library, Ns0. Since the Ns0 are not directly observed, they are also inferred by

maximum likelihood. The Mathematical Supplement contains more details about the model

and its implementation.

An L2 squared norm regularization is added to penalize large fields (in the independent-

site model), or the neural network weights. Training is substantially accelerated by splitting

the sequences into mini-batches. In practice, we form random batches of 128 sequences,

which are re-shuffled at each epoch. Further details are given in Supplementary Materials.

Processing of the data

Sequences containing stop codons are discarded. They are either sequencing errors or

can be enriched during amplification since the expression of the antibody is costly for the
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bacteria. To further reduce sequencing errors, we sequences where the flanking constant

regions of the CDR3 do not coincide with the designed framework sequence are also fitered

out.

Data and Software Availability

All sequencing data generated from our selection experiments will be shared on the Se-

quence Read Archive (SRA), the primary NIH-funded archive for high throughput datasets.

This data received the accession code BioProject ID PRJNA1028404 and can be accessed at

http://www.ncbi.nlm.nih.gov/bioproject/1028404. The code to reproduce the results

in this paper is available at https://github.com/2023ab4/ab4.
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Appendix A: Detailed experimental methods

Phage display selection

Phage display selections were performed essentially as in our previous study [14] with

our ’Germline’ VH library [14] or the library of designed sequences, both cloned in the

pIT2 phagemid vector. M13KO7 (Invitrogen) was used as a helper phage, and TG1 E.

coli (Agilent) as a host. Beads coupled to DNA were prepared by adding 10µL of 400µM

biotinylated ssDNA target (IDT) incubated for 15mn with 50µL M280 streptavidin-coated

magnetic beads (Dynal) that had been washed prior according to the manufacturer’s in-

structions, followed by two additional washing steps. The Black biotinylated ssDNA target

sequence is biotin-AAAAGACCCCATAGCGGTCTGCGT. The Blue biotinylated ssDNA

target sequence is biotin-AAAAGACTTGGTAATAGTCTGCGT. Both ssDNA targets form

a hairpin sharing a common stem and bearing different loops. For the selection against Mix,

beads coupled to the Black DNA hairpin target were mixed 50-50 with beads coupled to the

Blue DNA hairpin target.

The general scheme of our phage display experiments is described in Fig. 4. Experiments

included a pre-selection step with naked beads followed by a selection step with DNA target-

coupled beads. Specific to the present study, we rescued phages at three steps of the selection

process, namely (i) input phages, (ii) output phages bound to naked beads during pre-

selection, (iii) output phages bound to DNA target-coupled beads during selection. The

exact same washing and elution procedures were applied to naked beads and DNA target-

coupled beads prior to phage rescue in TG1 cells.

Input phages were produced for 7h at 30◦C following infection with a 20-fold excess of

helper phages, and the culture supernatant used as is (no phage precipitation to avoid phage

clusters). Our libraries were screened by pre-selection of 1011 input phages in 1mL against

50µL naked magnetic beads for 90mn, followed by selection of phages that were not bound

to naked beads against biotinylated target DNA hairpins immobilized on 50µL magnetic

beads for 90mn. Ten washing steps were performed with 8mL 0.1% Tween20 (Sigma) prior

to elution with 1mL 100mM triethylamine (Sigma) for 20mn and neutralization with 0.5

mL Tris 1M pH=7.4 (Sigma), both on naked beads to recover bead binders and on DNA

target-coupled beads to recover DNA target binders via phage rescue by infection of an
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excess of TG1 cells. Input phages were also rescued in TG1 cells by adding 500µL TG1 to

500µL of a 100-fold dilution of the input phage stock.

Consistent with efficient selection for DNA target-binding, we typically observed a 10

to 100-fold higher phage titer in elutions from beads coupled to DNA targets (106 to 107

phages) than from naked beads (105 phages).

Cloning of designed sequences

The library of ≈ 2000 designed sequences was constructed by PCR-amplification with

the Q5 High-fidelity 2x Master mix (New England Biolabs) of a 120bp oligo pool (Twist

Bioscience), the sequence of which encompasses the 4 randomized CDR3 sites, followed by

homology-based assembly (HiFi NEBuilder, New England Biolabs) cloning into the same

pIT2 vector as our ’Germline’ VH library.

Sequencing read-out

TG1 cells used for phage rescue (input, output from naked beads, output from DNA

target-coupled beads), grown on solid plates overnight, were scraped and DNA extracted

using a miniprep kit (Macherey-Nagel). A 200bp amplicon encompassing the 4 randomized

CDR3 sites flanked with Illumina adapters bearing sample-specific indices was produced in

2 PCR steps. A first PCR uses purified pIT2 plasmid from TG1 cells as a template and

staggering oligonucleotides (to favor clustering, as the upstream and downstream flanking

sequences of CDR3 sites are constant) to add half of the Illumina adapters without indices.

A specific pair of staggering oligonucleotides is used for every subsample to be sequenced

(input, output with target or without target). A second PCR uses the product of the first

PCR step as template and adds the indices and the remaining part of Illumina adapters.

Both PCR steps were carried out with the Q5 High-fidelity 2x Master mix (New England

Biolabs) for 15 cycles to avoid distortion due to amplification biases, which we checked

specifically.

The ’Germline’ library selection was sequenced on the Illumina™ NextSeq 500 platform,

producing 76 bp reads. The in-silico designed library selection was sequenced on the Illu-

mina™ NextSeq 1000 producing 60+60 bp (paired ends) reads.
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Appendix B: Analysis of empirical enrichments

For each experimental selection t, empirical enrichments were computed for each sequence

s as

εst = Rst′/Rst (B1)

where Rst and Rst′ , denote respectively the sequencing counts before and after selection.

Since the empirical estimate (B1) is susceptible to sampling noise, and can be undefined if

Rst vanishes, in practice εst is computed only for sequences s for which both Rst′ and Rst

are larger than a minimum threshold count. As the diversity of the population decreases

between the first and second rounds of selection, it is expected that these enrichments are

best estimated at the second round of selection, although for a smaller set of sequences that

are more represented.

Fig. 7 compares the enrichments obtained in different experiments, where selection cor-

responds to binding different targets. Fig. 8 plots the Pearson correlations between these

enrichments, as a function of the minimum count threshold imposed in the numerator and

denominator of (B1). Empirical enrichment against the Blue, Black, and Mix complexes

show significant correlations (Fig. 8), consistent with the structural and chemical similarity

of the two DNA hairpins. This feature reflects our choice to study closely related ligands that

are challenging to differentiate. In contrast, empirical enrichments from selection against

the Beads are appreciably more distinct from the other ones (bottom rows of Figures 7 and

8).

For variants with more than 50 counts before and after selection, we compute their

empirical enrichment and compared this to the model predicted selectivity. Results are

shown in Table I. We did this for each of the computational predictions in Fig. 2, and

report here the resulting correlations in each case. As a control the last column of Table I

reports the correlation if the mode Blue is used to predict the enrichments, instead of the

correct one.

18

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2023. ; https://doi.org/10.1101/2023.10.23.563570doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.23.563570
http://creativecommons.org/licenses/by-nc/4.0/


Appendix C: Mathematical supplement

Biophysical model of selection

Let Nst be the total number of phages carrying sequence s in a library at round t, before

selection. In one experimental round, phages are selected by some phenotypic criteria (e.g.

binding to a target). In our model, we consider each sequence to be in one of several possible

thermodynamic states w (target bound, unfolded, in solution, etc.). Each thermodynamic

state w is populated by a number of particles nswt, and we have
∑

w nswt = Nst. Also, each

thermodynamic state is described by a sequence-dependent energy function Esw, related to

the propensity of a sequence to be found in this state (in the following we describe some

possible parametrization of this function). We denote by µwt the chemical potentials for

each state at a particular round, we can then model the abundances nswt as follows,

nswt
Nst

=
eµwt−Esw∑
w′ eµw′t−Esw′

(C1)

In the case of a thermodynamic state corresponding to binding a target, the chemical po-

tentials µwt are proportional to the logarithmic concentration of the available target to bind.

Next, we define the selectivity of a sequence s in the experimental round t, as:

pst =

∑
w∈St e

µwt−Esw∑
w∈St e

µwt−Esw +
∑

w∈Nt
eµwt−Esw

(C2)

Here, we consider a subset of states St which are selected in the current experiment (e.g.

bound to target), and a set of states Nt which are depleted (e.g., washed in solution).

Together, St ∪ Nt defines the set of feasible thermodynamic states in the experimental

conditions of round t. Particles that adopt states w ∈ St, are selected and result in an

enrichment of the corresponding sequence. The remaining (1− pst)Nst particles of sequence

s are washed away.

Amplification

After the selection step, there is an amplification step when the overall population size

is restored. Assuming that the abundances are normalized,
∑

sNst = 1 and denoting by

Ns,t+1 the phage abundances prepared for the next round, we have:

Ns,t+1 =
pstNst∑
σ pσtNσt

(C3)
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Here, (
∑

σ pσtNσt)
−1 is the amplification factor necessary to restore the original population

size after selection in round t.

Multiple rounds

When dealing with multiple selection experiments, the output of a selection round can

be used as the input of another selection round. We consider the selection experiments to

be arranged into a rooted tree, such as the one depicted in (Fig. 1). The nodes represent

phage populations at a specific time with the root representing the initial sequence library.

The edges represent a selection and amplification process that modifies the population in

the parent node to the descendant node. In each branch, the node’s generations are denoted

by t, with t = 0 being the root. In particular, Ns0 represents the initial library abundances.

The parent of a non-root node, t > 0, is denoted by a(t). Starting from a node t, we can

traverse back to its ancestors until we reach the root of the tree. We define by:

A(t) = {t, a(t), a(a(t)), . . . , 0} (C4)

the set of ancestors encountered during this traversal (note that A(t) includes t itself, for

convenience). In particular, for the root node A(0) = {0}. For t > 0, we have that pst

denotes the selectivity of sequence s, in the round of selection that brings the population

from a(t) to node t. It follows that we can write:

Nst =
pstNsa(t)∑
σ pσtNσa(t)

=
Ns0P

t
s

Zt
(C5)

for t > 0, by induction, where P t
s =

∏
τ∈A(t) psτ and Zt =

∑
sNs0P

t
s . For the root nodes it

is convenient to set ps0 = 1, Ps0 = 1, Z0 = 1, and a(0) = 0. Then these formulas remain

valid at the root. Given the selectivities pst and the initial abundances Ns0, we can use these

expressions to determine all future populations of the tree.

Training the model

The data are the counts of sequence reads taken at each sequenced round (that could

be a subset of all nodes in the experiment tree), {Rst}. As the result of a sampling and

sequencing procedure, the counts are related to the actual abundances by a multinomial
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distribution:

P({Rst}|{Nst}) =
(
∑

sRst)!∏
sRst!

∏
s

NRst
st (C6)

The abundances of all populations {Nst} are determined by the initial abundances {Ns0} and

the selectivities, {pst}. Therefore, we can write P({Rst}|{Nst}) = P({Rst}|{pst}, {Ns0}).

Since the initial abundances {Ns0} are usually unknown, we can train our model by max-

imizing P({Rst}|{pst}, {Ns0}) with respect to the parameters determining the selectivities

{pst} (to be specified below) and the initial abundances {Ns0}, subject to Ns0 ≥ 0 and∑
sNs0 = 1. To carry out the maximization over {Ns0} we can introduce a Lagrangian,

L = lnP({Rst}|{Ns0}, {pst}) + λ
∑
s

Ns0 (C7)

where we used the Lagrange multiplier λ for the constraint
∑

sNs0 = 1. Differentiating with

respect to Ns0 and setting the derivative to zero, gives the equation:∑
τ

Rsτ −
∑
τ

Rτ

Zτ
Ns0P

τ
s + λNs0 = 0 (C8)

where Rτ =
∑

σ Rστ , and Rτ/Zτ is the sampling coverage at round τ . Note that:∑
s

Ns0
∂L
∂Ns0

=
∑
s

Ns0 = λ (C9)

Therefore the stationarity conditions ∂L
∂Ns0

= 0 imply λ = 0. This is also intuitively expected,

because L depends only on the relative ratios among the Ns0, and would be insensitive to a

global increase of the total
∑

sNs0 while preserving those ratios. Therefore L has no gradient

orthogonal to the constraint
∑

sNs0 = 1, making the Lagrange multiplier unnecessary. Now

solving for Ns0, we obtain:

Ns0 =

∑
τ Rsτ∑

τ P
τ
s (Rτ/Zτ )

(C10)

which gives Ns0 as functions of Zt and the selectivities pst. In particular note that Ns0 =

0 for unobserved sequences (those for which Rst = 0 for all t in the tree). There are

two contributions to the initial abundances: the different sampling coverage at different

rounds and the effect of selection. In absence of selection, the formula above becomes more

intuitive. Then Pst/Zt is a constant independent of s, t, which must be one by normalization.

Then, Ns0 =
∑

τ Rsτ/
∑

στ Rστ is also independent of t, and we just aggregate all the read

samples to make an inference of the underlying abundances. The factors PsτRτ/Zτ in the

denominator of (C10), then serve to account for the effect of selection.
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By using Equation (C10) we can consider Zt as free parameters, in place of the initial

abundances Ns0. Obtaining the following learning gradient:

∂L
∂Zt

=
Rt

Zt

(∑
s

Nst − 1

)
(C11)

Notice that L as a function of {P t
s , Zt} depends only on the ratios Zt/Zt′ and is invariant

to a multiplication of all the Zt by a common factor. Therefore we can set Z0 = 1 to break

this degeneracy, consistent with the previous definitions. The stationary conditions ∂L
∂Zt

= 0

reproduce the normalization constraints
∑

sNst = 1. It follows that if we treat the Zt as

free parameters, at a stationary point of L these constraints will be satisfied automatically.

Low-selectivity regime (or rare binding approximation)

A further simplification can be obtained by assuming a low-selectivity regime, where

pst � 1 for all sequences in all rounds. We can then approximate:

pst ≈
pst

1− pst
=

∑
w∈St e

µwt−Esw∑
w∈Nt

eµwt−Esw
(C12)

We call this the rare binding approximation (RBA) [16].

Sequence to energy mapping

The selectivities pst are given by Equation (C2). In turn, a mapping giving the energies

Esw for each sequence must be parameterized. We here considered two models. In the

simplest case, all the sites of the sequence are independent, which leads to an additive

model,

EIS
sw = −

L∑
i=1

hwi(si) (C13)

that we call the independent-site model (IS), and where the local fields hwi are learned

during model training. This assumption fails to consider epistatic effects between pairs of

sites within a mode. To account for these, a possibility is to introduce a Potts-like model

with two-body interactions, as typically done in DCA-like approaches [27, 28]. However this

results in a large number of coupling parameters (∼ 202L2). More generally, we can consider

any functions Esw = Ew(s) assigning energies to sequences in different thermodynamic
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states. We here considered a feed-forward neural network, taking as input a one-hot encoded

sequence, and producing as output the energy, ENN
sw = ENN

w (s). The parameters of the neural

network (NN) are then learned during model training. Epistatic interactions arise as non-

trivial correlations induced by the non-linearities of the network. We report the details of

our architectural choices below.

Gauge invariance in the rare-binding approximation (RBA)

In the low-selectivity regime, a new gauge invariance appears. We make the following

change of variables:

µ′wt =

µwt + at w ∈ St

µwt + bt w ∈ Nt
, (C14)

ln z′t = ln zt + at − bt (C15)

Then, under the RBA regime,

p′st
z′t

=

∑
w∈St e

µwt+at−Esw∑
w∈Nt

eµwt+bt−Esw
e− ln zt−at+bt =

pst
zt

(C16)

Thus, the amplification factors become indistinguishable from the chemical potentials. In

other words: we cannot infer the amplification factors.

From the previous section recall that we imposed the gauge
∑

w µwt = 0. This means

that at, bt are not completely free, but rather they must satisfy |St|at + |Nt|bt = 0. The

remaining degree of freedom can be exploited to enforce
∑

w∈St µwt =
∑

w∈Nt
µwt = 0, which

is stronger than the condition
∑

w µwt = 0 from the previous section. More precisely, given

chemical potentials µwt, we can choose:

at = − 1

|St|
∑
w∈St

µwt, (C17)

bt = − 1

|Nt|
∑
w∈Nt

µwt (C18)

which satisfy |St|at + |Nt|bt = 0, and for which:∑
w∈St

µ′wt =
∑
w∈St

µwt + |St|at = 0, (C19)

∑
w∈Nt

µ′wt =
∑
w∈Nt

µwt + |Nt|bt = 0 (C20)
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while the amplification factors transform as:

ln z′t = ln zt −
1

|St|
∑
w∈St

µwt +
1

|Nt|
∑
w∈Nt

µwt (C21)

When the chemical potentials satisfy
∑

w∈St µwt =
∑

w∈Nt
µwt = 0, we will say that we are

in the rare binding gauge.

This change of variables shows how one can absorb the amplification factors into the

chemical potentials. Alternatively, we can exploit this new gauge invariance to impose that

ζt = 0, by choosing at = − |Nt|ζt
|St|+|Nt| and bt = |St|ζt

|St|+|Nt| .

Architecture of feed-forward neural network

For each state considered, the architecture consists of 3 layers, with 20 and 5 hidden

units, with a SeLU nonlinearity [29] in each.

Regularization

For the independent-site model, the regularization penalty has the form:

λL2
∑
ai

hi(a)2 (C22)

while for the NN model the sum extends over all weight parameters in the network. The

coefficient λL2 was panned over a range between 10−4 and 10. The optimal choice in terms

log-likelihood of a withheld dataset was chosen, resulting in λL2 = 0.01.
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Appendix D: Supplementary Figures

input library in E. coli

1011 input phages

input phages

not bound to naked beads


(~1011)

output phages

bound to DNA-coupled beads


(~106 to 107)

output phages

bound to naked beads


(~105)

phages E. coli plasmids data

phage production

pre-selection on 
naked beads

selection on 
DNA-coupled beads

phage rescue and 
amplification in E.coli

phage 
rescue

DNA 
extraction

PCR and 
sequencing

phage display experiment scheme

sequencing readout

FIG. 4. Phage display experiment scheme. Input phages are produced from E. coli bacteria

and first pre-selected against naked beads. Phages that did not bind naked beads are then selected

for binding to DNA target-coupled beads. Phages bound to DNA-coupled beads are rescued by

infection of E. coli bacteria for the next cycle. Sequencing readout. Input phages, output

phages bound to naked beads and output phages bound to DNA-coupled beads are rescued by

infection in E. coli bacteria. Plasmid DNA is extracted from bacteria to serve as a template for

high-throughput sequencing of a PCR amplicon encompassing the 4 randomized antibody CDR3

sites.
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phage-displayed
antibodies in

solution

bound to black DNA bound to blue DNA

bead

bound to beads
amplification

FIG. 5. The figure illustrates the modes integrated into the model, each associated with distinct

states: The first mode corresponds to an unselected, unbound state, and it is a common element

in every selection round. The other modes are linked to the binding of either the Black and Blue

ligand or the Beads, where they are immobilized. An additional mode exists in the model, which

isn’t directly related to the physical binding to specific ligands, instead it accounts for the broader

process of amplification and the potential biases introduced within the phage population. The

selection or exclusion of these modes depends on the specific selection round, as visually depicted

in Fig. 6.

Training data Prediction Correlation Control (Blue)

Beads (1,2), Black (1,2), Blue (1,2) Mix (2) 0.63 0.61

Beads (1,2), Blue (1,2), Mix (1,2) Black (2) 0.70 0.54

Blue (1,2) Beads (2) 0.54 0.12

Mix (1,2), Beads (1,2) Black (2) 0.71 0.46

TABLE I. Correlations between predicted and empirical enrichments. A model trained on the data

from the first column is used to predict enrichments of the experiment in the second column. The

correlations between empirical log-enrichments and model log-selectivities are given in the third

column. To demonstrate that the inferred modes have a meaningful correspondence to the physical

modes, the last column shows (as a control) how the correlation decreases if only the Blue mode

is used to predict the selectivity.
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FIG. 6. Training the model: selected set of modes. The selected modes incorporated in the model

vary with each specific round. This adaptability enables comprehensive training using all available

data. In the figure, the tree structure of the experiment (as presented in Figure 1 of the main text)

is reported with the annotations of the selected mode for each branch or selection round. The four

modes model distinct physical processes depicted in Fig. 5: binding the black hairpin, binding

the blue hairpin, binding the supporting bead, and the bias introduced during the amplification

process.
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FIG. 7. Comparison of empirical enrichments of each sequence in different experiments. The first

and second row compare enrichments in the first and second rounds of selection (first and second

row), against the Black, Blue, and Mix complexes. In each panel, the x-axis is the enrichment

against a ligand (Black, Blue, or Mix), and the y-axis is the enrichment of the same sequence

against a different ligand. The bottom row compares the enrichments against the Beads vs. the

enrichments against the Black, Blue, and Mix ligands. See (B1) for the definition of enrichment.

Sequences with counts lower than a given threshold are filtered out, as indicated in the legend at

the top-right: all sequences with at least one read before and after selection are shown in gray,

while sequences with more than 50 (200) reads before and after selection are shown in black (red).

The Pearson correlations corresponding to each panel are shown in Fig. 8.
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FIG. 8. Pearson correlations between log-enrichments (log(εst), where εst is defined in (B1)) in

different experiments. Each panel shows the correlations between log(εst) and log(εst′) for different

experiments t, t′, indicated in the panel title. The correlations are computed after filtering out

sequences with counts lower than a given threshold (indicated in the x-axis) before and after

selection. Panels are in correspondence to Fig. 7.
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FIG. 9. Sequencing reads are collected before and after amplification, after the first round of

selection is finished and before starting the second round of selections. This was done for each

branch of the experiment tree (see Fig. 1 in the main text): Black branch, Blue branch, and Mix

branch. The top panels show a scatter of the normalized counts before (x-axis) and after (y-axis)

amplification. The Pearson correlation coefficients are: 0.97 (for Black branch), 0.98 (for Blue

branch), and 0.97 (for Mix branch). The bottom panels show histograms of the corresponding

enrichment ratios (see (B1)), after filtering out sequences with counts below a threshold (indicated

in the legend). The histograms concentrate around 1, indicating no selection.
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FIG. 10. Each amino-acid sequence can correspond to many nucleotide variants due to codon

degeneracy. The plots show a comparison of empirical enrichments ((B1)) for codon-sequences vs.

the equivalent amino-acid sequences. Each panel corresponds to one experiment. Effects due to

codon bias would be revealed by strong systematic dispersion in this plot. Sequences with less

than 50 copies (at nucleotide or amino-acid level) are filtered out.
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FIG. 11. Experimental enrichment of model-designed sequences and controls. This figure illustrates

the experimental enrichment results for model-generated sequences, marked in gray, and a selection

of control sequences that serve as references and provide a sanity check for the experimental

data. Among the selected sequences are the best specific binders, cross-specific binders, and two

negatively selected sequences based on previous experiments. The horizontal lines represent the two

predefined thresholds used to evaluate the generative performance, as detailed in Figure 3 of the

main text. These thresholds correspond to the mean values of the two experimental enrichments.

Notably, the negative and cross-specific control sequences align correctly with these thresholds.

However, a majority of the specific sequences (blue and black triangles) fall outside the expected

range. While more sophisticated methods for performance assessment exist, such as threshold

selection based on blue-black enrichment ratios, we opted for a simpler approach in this instance.

The primary goal here was to illustrate the model’s generative capacity, and a comprehensive

definition of specificity falls outside the scope of this study.
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FIG. 12. Validation of high-affinity antibodies generated via single-mode optimization. Designing

high-affinity binders for a specific ligand, regardless of their affinity to other ligands, is a relatively

easier task compared to selecting a specificity profile, as it involves no additional constraints on

the optimization of single-model energies. In panels (a) and (b), the histograms depict the energies

of designed sequences. Those in black and blue represent sequences predicted to exhibit high

affinity for their respective ligands, while those in red are predicted to have low affinity. Red lines

correspond to negative controls (see Fig. 11). Below these panels, two histograms illustrate the

enrichment of these same sequences in validation experiments. Panel (e) showcases ROC curves

for binder prediction using the model. Sequences above the threshold, denoted by the gray lines in

panels (c) and (d), are considered binders. This threshold is set as the average of the enrichments

plus one standard deviation. The model energy ranks these sequences, and the ROC curves are

computed for both the black and blue ligand experiments. The Area Under the Curve (AUC)

values are 0.92 for black and 0.79 for blue.
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FIG. 13. Number of reads of the initial library. Variants are displayed in descending order (from

the most numerous variant to the less numerous one). The distribution is strongly non-uniform

(note the log-scale on the y-axis).
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FIG. 14. Histograms of Esw−µwt. The plots show the number of sequences s with a given value of

Esw−µwt. The first column corresponds to experiments carried out with the Black target, and w is

either the Black-bound mode (black line) or the Beads-bound mode (in brown). The right column

corresponds to experiments carried out with the Blue target, and w is either the BLue-bound mode

blue line) or the Beads-bound mode (in brown). The first and second rows correspond to the first

and second rounds of selection. The binding energies to the Black and Blue targets are generally

lower than the Beads binding energies.
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