
HAL Id: hal-04260165
https://hal.science/hal-04260165v2

Submitted on 17 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interplays between variations of arbitrarily partitionable
graphs under minimality constraints
Olivier Baudon, Julien Bensmail, Morgan Boivin

To cite this version:
Olivier Baudon, Julien Bensmail, Morgan Boivin. Interplays between variations of arbitrarily par-
titionable graphs under minimality constraints. Applied Mathematics and Computation, 2024, 475,
pp.128753. �10.1016/j.amc.2024.128753�. �hal-04260165v2�

https://hal.science/hal-04260165v2
https://hal.archives-ouvertes.fr

Interplays between variations of arbitrarily partitionable graphs
under minimality constraints

Olivier Baudona, Julien Bensmailb, Morgan Boivina

aUniv. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France
bUniversité Côte d’Azur, CNRS, Inria, I3S, France

Abstract

An arbitrarily partitionable (AP) graph is a graph that can be partitioned into arbitrarily
many connected graphs with arbitrary orders. Since independent seminal works by Barth,
Baudon, and Puech, and Horňák and Woźniak, AP graphs have been receiving increasing
attention in the literature, dedicated to understanding several of their aspects, including
structural aspects, algorithmic aspects, and their connections with Hamiltonian graphs.
Other aspects of interest cover variants of AP graphs, such as AP graphs that can be
partitioned in an online way (OLAP graphs), AP graphs that can be partitioned in a
recursive way (RAP graphs), and AP graphs that are edge-minimal (minAP graphs).

In the current work, we initiate the study of the latter notion of minimality for OLAP
and RAP graphs. That is, we wonder about OLAP and RAP graphs that are not spanned
by any strictly smaller OLAP or RAP graph, respectively, leading to the notions of mi-
nOLAP and minRAP graphs. We prove that such non-trivial graphs exist, and explore
connections between minAPness, minOLAPness, and minRAPness. In particular, we prove
that some fundamental connections between APness, OLAPness, and RAPness do not gen-
eralise to their minimal counterparts. We also investigate small minOLAP and minRAP
graphs, as well as sufficient conditions guaranteeing an OLAP or RAP graph is not mini-
mal, thereby generalising known results on AP graphs. This work also includes many open
questions and problems for further work on the topic, that are disseminated throughout.

Keywords: arbitrarily partitionable graph; partition into connected subgraphs; online
arbitrarily partitionable graph; recursively arbitrarily partitionable graph; minimality.

1. Introduction

In this work, we investigate connections and properties of several variants of so-called
arbitrarily partitionable graphs, in particular of those being minimal w.r.t. some
metric. Before going into the details, we start by recalling the main notions involved.

Let G be an n-graph, i.e., a graph of order n. A subset S ⊆ V (G) of vertices of G is
said connected if G[S] is indeed a connected graph. Now, an n-partition π = (λ1, . . . , λk) is
a partition of n; that is, n = λ1 + ⋅ ⋅ ⋅ +λk. A realisation of π in G is a partition (V1, . . . , Vk)
of V (G) such that G[Vi] is a connected graph of order λi for every i ∈ {1, . . . , k}. That is,
every Vi is a connected part, and the cardinalities of V1, . . . , Vk meet the values in π. Last,
we say G is arbitrarily partitionable (AP) if every n-partition is realisable in G.

AP graphs were introduced independently by Barth, Baudon, and Puech in [1] and
Horňák and Woźniak in [12] to model a practical network sharing problem. By definition,
AP graphs are part of the more general field of connected partitions of graphs, and, as such,
have received some attention in the literature. In particular, structural and algorithmic

aspects of AP graphs have been studied, as well as their relationship with Hamiltonian
graphs (see below). Since surveying the whole field would be rather lengthy, we instead
refer the reader to the references in [7], for the issues not given in what follows.

Among other aspects of interest, a few variants of AP graphs have also been considered
in the literature. To introduce the first of the two variants to be considered in this work, we
need to define what a picking process is. Let G be an n-graph. In a picking process (in G),
several rounds take place, during each of which a connected subgraph with given order of G
must be picked, so that, eventually, once the process ends (assuming it does end properly),
a realisation of some n-partition is obtained. Formally, each round, denoting by R the
subgraph of G induced by the vertices that have not been picked earlier (R = G in the first
round), an integer λ ∈ {1, . . . , ∣V (R)∣} is given, and one must pick a connected subgraph
of R with order λ. Depending on the λ’s provided each round, and on the connected
parts picked, a picking process might end up properly or not (i.e., at some point, it might
become impossible to pick the requested connected part, for instance if R is not connected
and λ = ∣V (R)∣). In case any picking process, regardless of the successive λ’s, can be led
properly in G, we say G is online arbitrarily partitionable (OLAP).

The second variant of AP graphs to be considered in this work, are the recursive
ones. For an n-graph G and an n-partition π = (λ1, . . . , λk), a RAP-realisation of π in G
is a realisation (V1, . . . , Vk) such that each G[Vi] is not connected only, but also can be
recursively partitioned at will (see below for a thorough definition). We say G is recursively
arbitrarily partitionable (RAP) if every n-partition admits a RAP-realisation in G.

To be more formal, OLAP and RAP graphs can be defined recursively. Namely, as a
base case, the 1-vertex graph is both OLAP and RAP. Now, regarding any n-graph G:

• G is OLAP if and only if, for every λ ∈ {1, . . . , n}, there is a connected part S ⊆ V (G)
of cardinality λ such that G − S is OLAP;

• G is RAP if and only if, for every n-partition π = (λ1, . . . , λk), there is a RAP-
realisation (V1, . . . , Vk) of π in G; that is, every Vi is a RAP part of size λi.

Due to the definitions involved, it is not too hard to see that AP graphs, OLAP graphs, and
RAP graphs are quite related, as every RAP graph is OLAP, and every OLAP graph is AP.
It is worth mentioning, however, that these three variants of AP graphs are rather different,
as there exist OLAP graphs that are not RAP, and similarly there exist AP graphs that are
not OLAP (examples will be provided in Section 2). It is worth mentioning also that AP
graphs, OLAP graphs, and RAP graphs are comprised in between two important classes
of graphs, namely graphs admitting (quasi-) perfect matchings and traceable/Hamiltonian
graphs. Indeed, it can be checked from the definitions that any AP n-graph must admit a
(quasi-) perfect matching (i.e., a set of ⌊n2 ⌋ independent edges), while any traceable graph
(i.e., having a Hamiltonian path, traversing all vertices exactly once) is AP. And, again,
it is not too complicated to come up with examples of AP graphs that are not traceable,
and of graphs admitting (quasi-) perfect matchings that are not AP. Thus, if, for some
n ≥ 1, we denote by PM(n), AP(n), OLAP(n), RAP(n), and Trace(n) the sets of
all n-graphs having a (quasi-) perfect matching, being AP, being OLAP, being RAP, and
being traceable, respectively, then the following holds:

Theorem 1.1 (Baudon, Gilbert, Woźniak [4]). For general values of n,

Trace(n) ⊊ RAP(n) ⊊OLAP(n) ⊊ AP(n) ⊊ PM(n).

Among other properties of interest, it is also worth mentioning that all RAP graphs,
OLAP graphs, and AP graphs are obviously connected. Also, adding edges to a RAP

2

graph, OLAP graph, or AP graph results clearly in a RAP graph, OLAP graph, or AP
graph, respectively. In other words, RAPness, OLAPness, and APness are closed under
adding edges. Towards understanding APness better, quite a lot of the initial efforts were
thus focused on understanding AP trees, as one could legitimately assume that, perhaps,
every AP graph is spanned by an AP tree. This presumption was proved wrong, however,
as Ravaux came up in [20] with an AP 20-graph that is not a tree, and that is not spanned
by any AP graph with fewer edges. This led to the definition of AP graphs that are
minimal, which we call minAP throughout, in the sense that they are not spanned by any
non-trivial AP graph (i.e., by an AP graph with strictly less edges). Later on, Baudon,
Przybyło, and Woźniak, in [5], came up with a construction showing that a minAP n-graph
can have its number of edges being arbitrarily larger than n − 1, the size of a tree on n
vertices. Still, it is believed that minAP n-graphs should be somewhat sparse, meeting a
conjecture of Ravaux from [20] stating they should have linear size (of order O(n)). A few
more properties of minAP graphs have later been investigated by Bensmail in [7], including
their maximum degree and their clique number.

In this work, we initiate the study of the latter notion of minimality for OLAP and
RAP graphs. Generalising minAPness to OLAPness and RAPness in the obvious way, we
say a graph G is minOLAP if G is OLAP and G − e is not OLAP for every edge e of G,
while G is said minRAP if G is RAP and G−e is not RAP for every edge e of G. Obviously,
minOLAP and minRAP graphs exist, as every OLAP tree is clearly minOLAP while every
RAP tree is also minRAP. However, similarly as for minAPness, OLAP and RAP trees
are not that interesting to consider in this context, as their OLAP and RAP minimality
follow trivially from their low connectivity, and not quite from their partition properties.
Mainly for this reason, similarly as for minAPness, our concerns regarding minOLAPness
and minRAPness will mostly focus on graphs that are not trees.

This work is organised as follows. In Section 2, we start by recalling a few facts from the
literature on AP, OLAP, and RAP graphs, and raise a few early observations and remarks
on minOLAP and minRAP ones. In Section 3, we then build upon results of Bensmail
on small minAP graphs from [7], exhibiting minOLAP and minRAP graphs on at most
10 vertices, and establishing some of their properties. Then, in Section 4, we investigate
connections between minAPness, minOLAPness, and minRAPness. In particular, we es-
tablish that there are infinitely many non-tree minOLAP graphs that are not minAP, and
that there are non-tree minRAP graphs that are not minOLAP, thereby showing that the
hierarchy in Theorem 1.1 does not generalise in the obvious way in the context of minAP,
minOLAP, and minRAP graphs. Next, in Section 5, we adapt a proof of a result from
the literature on OLAP graphs to provide a sufficient condition for a graph to be RAP,
and actually RAP but not minRAP. We finish off in Section 6 with open questions and
problems for further work on this topic.

2. Previous results and early observations

We start by recalling some existing results on AP, OLAP, and RAP graphs, which
mainly deal with important classes of graphs in the field.

We consider trees first. It turns out that AP trees are rather restricted, see [2]. In
particular, all AP trees have maximum degree at most 4, can have arbitrarily many degree-3
vertices and degree-4 vertices, and satisfy peculiar structural properties (for instance, every
degree-4 vertex must be adjacent to a leaf). In contrast, the structure of OLAP and RAP
trees is even more restricted. In particular, these trees have maximum degree at most 3
and can have at most one degree-3 vertex, as they are mostly particular caterpillars and

3

a b

2, 4 ≡ 1 mod 2

3 ≡ 1,2 mod 3

5 ∈ {6,7,9,11,14,19}

6 ≡ 1,5 mod 6

7 ∈ {8,9,11,13,15}

8 ∈ {11,19}

9, 10 = 11

11 = 12

(a) OLAP caterpillars

a b

2, 4 ≡ 1 mod 2

3 ≡ 1,2 mod 3

5 ∈ {6,7,9,11,14,19}

6 = 7

7 ∈ {8,9,11,13,15}

(b) RAP caterpillars

Table 1: Exhaustive list of all OLAP (a) and RAP (b) caterpillars Cat(a, b), where a ≤ b.

so-called tripodes. Namely, throughout this work, for any two a, b ≥ 2, we denote by
Cat(a, b) the caterpillar on a + b vertices consisting of a main path v1 . . . va+b−1 and of a
unique pendant vertex outside this path, adjacent to va; and, for any k ≥ 3 and integers
a1, . . . , ak ≥ 1, we denote by Pode(a1, . . . , ak) the k-pode (or more generally multipode)
obtained from a star with k edges by considering each i ∈ {1, . . . , k} and subdividing one
of the original edges ai − 1 times. In other words, Pode(a1, . . . , ak) has one (degree-k)
center vertex to which are attached k pendant paths of length a1, . . . , ak, respectively. Any
caterpillar Cat(a, b) is actually the 3-pode (or tripode) Pode(1, a − 1, b − 1).

As suggested earlier, already in caterpillars (as just defined above), and more generally
in trees, there is a neat difference between APness, OLAPness, and RAPness. In particular:

Theorem 2.1 (Barth, Baudon, Fournier [1], and Horňák, Woźniak [12]). A caterpillar
Cat(a, b) is AP if and only if a and b are coprime.

Theorem 2.2 (Horňák, Tuza, Woźniak [11]). A tree is OLAP if and only if it is a path,
a caterpillar Cat(a, b) with a and b given in Table 1 (a), or the tripode Pode(2,4,6).

Theorem 2.3 (Baudon, Gilbert, Woźniak [4]). A tree is RAP if and only if it is a path,
a caterpillar Cat(a, b) with a and b given in Table 1 (b), or the tripode Pode(2,4,6).

We now turn to cyclic graphs, i.e., graphs having cycles, and more particularly to
unicyclic graphs, i.e., graphs having only one cycle. Following the previous studies on AP,
OLAP, and RAP trees, a few works have then been dedicated to so-called suns, being
unicyclic graphs having a unique cycle dominating degree-1 vertices. More formally, for
any k ≥ 1 and k integers a1, . . . , ak ≥ 0, the k-sun Sun(a1, . . . , ak) is obtained from k
independent edges v0v

′

0, . . . , vk−1v
′

k−1 by considering every i ∈ {0, . . . , k − 1} and joining vi
and v(i+1)mod k by a new path with ai inner vertices (which path thus has length ai + 1).

Some results on AP suns can be found in [15]. In the current work, we are more par-
ticularly interested in OLAP and RAP suns, which have been characterised (Theorems 2.4
and 2.5 below). Note that 1-suns are traceable, and thus AP, OLAP, and RAP.

Theorem 2.4 (Kalinowski, Pilśniak, Woźniak, Zioło [16]).

• A 2-sun Sun(a, b) is OLAP if and only if a and b are as given in Table 2 (a).

• A 3-sun Sun(a, b, c) is OLAP if and only if a, b, and c are as given in Table 2 (b).

4

a b

0 anything

1,3 ≡ 0 mod 2

2 /≡ 3 mod 6, or ∈ {3,9,21}

4 ≡ 2,4 mod 6, or ∈ {4, . . . ,19} ∖ {15}

5 ≡ 2,4 mod 6, or ∈ {6,18}

6 ∈ {6,7,8,10,11,12,14,16}

7 ∈ {8,10,12,14,16}

8 ∈ {8,9,10,11,12}

9 ∈ {10,12}

(a) 2-suns

a b c

0 0 ≡ 1,2 mod 3

0 1 ≡ 0 mod 2

0 2 ≡ 2,4 mod 6, or ∈ {3,6,7,11,18,19}

0 3 ≡ 2,4 mod 6

0 4 ∈ {4,5,6,8,10,11,12,14,16}

0 5 ∈ {6,8,16}

0 6,7 ∈ {8,10}

0 8 ∈ {8,9}

1 2 ≡ 2,4 mod 6, or ∈ {6,18}

2 3 ∈ {4,8,16}

(b) 3-suns

Table 2: Exhaustive list of all OLAP 2-suns Sun(a, b) (a) and 3-suns Sun(a, b, c) (b), where a ≤ b ≤ c.

a b

0 anything

1 ≡ 0 mod 2

2 /≡ 0 mod 3, or ∈ {3,6,9,12,18,21,24,36}

3 ≡ 0 mod 2

4 ≡ 2,4 mod 6 and ∈ {20, . . . ,46}, or ∈ {4, . . . ,19} ∖ {15}

5 ≡ 2,4 mod 6 and ∈ {8, . . . ,32}, or ∈ {6,18}

6 ∈ {6,7,8,10,11,12,14,16}

(a) 2-suns

a b c

0 0 ≡ 1,2 mod 3

0 1 ≡ 0 mod 2

0 2 ∈ {2,3,4,6,7,8,10,11,14,16,18,19}

0 3 ∈ {4,8,10}

0 4 ∈ {4,5,6,8,10,11,12,14,16}

0 5 = 6

1 2 ∈ {2,4,6,8,10,14,16,18}

2 3 = 4

(b) 3-suns

Table 3: Exhaustive list of all RAP 2-suns Sun(a, b) (a) and 3-suns Sun(a, b, c) (b), where a ≤ b ≤ c.

• A 4-sun Sun(a, b, c, d) is OLAP if and only if a = b = 0, c = 1, and d ≡ 2,4 mod 6.

• A k-sun with k ≥ 5 is never OLAP.

Theorem 2.5 (Baudon, Gilbert, Woźniak [3]).

• A 2-sun Sun(a, b) is RAP if and only if a and b are as given in Table 3 (a).

• A 3-sun Sun(a, b, c) is RAP if and only if a, b, and c are as given in Table 3 (b).

• A 4-sun Sun(a, b, c, d) is RAP if and only if (a, b, c, d) ∈ {(0,0,1,2), (0,0,1,4)}.

• A k-sun with k ≥ 5 is never RAP.

We finish off with a few remarks and results on AP, OLAP, and RAP graphs. First,
when it comes to determining whether a given graph is RAP, the next result is handy.

Theorem 2.6 (Baudon, Gilbert, Woźniak [3]). An n-graph G is RAP if and only if, for
every λ ∈ {1, . . . , ⌊n2 ⌋}, there is a subset S ⊂ V (G) of vertices of G such that:

• ∣S∣ = λ,

• G[S] is RAP, and

5

• G − S is RAP.

By all definitions involved, any RAP graph is also OLAP, and any OLAP graph is also
AP (recall Theorem 1.1). Also, adding edges to a RAP, OLAP, or AP graph results in a
RAP, OLAP, or AP graph, respectively. The other way round, we also have:

Observation 2.7. Every OLAP minAP graph is also minOLAP. Likewise, every RAP
minOLAP graph is also minRAP. Conversely, if a RAP graph is not minRAP, then it is
not minOLAP, and if an OLAP graph is not minOLAP, then it is not minAP.

Proof. This is because OLAPness implies APness and RAPness implies OLAPness, by
Theorem 1.1. Thus, if an OLAP minAP graph G is not minOLAP, then G is spanned by
a strictly smaller AP graph, a contradiction. Likewise, if a RAP minOLAP graph G is not
minRAP, then G is spanned by a strictly smaller OLAP graph, another contradiction. The
last part of the statement is the contraposition of the first part.

However, since RAPness is stronger than OLAPness, and OLAPness is stronger than
APness, intuitively it is not clear whether the converse of Observation 2.7 also holds.
Actually, as will be proved later on in Section 4, this is not the case. That is, there exist
minRAP graphs that, although necessarily OLAP, are not minOLAP, and similarly there
exist minOLAP graphs that, although necessarily AP, are not minAP.

3. Small minOLAP and minRAP graphs

In this section, we aim at exhibiting small minOLAP and minRAP graphs, that is, with
at most 10 vertices, so that we can point out some of their properties. For that, we build
upon the work of Bensmail [7], in which was exhibited the exhaustive list of all minAP
graphs with order at most 10. In particular, cyclic minAP graphs have order at least 9.
The only two cyclic minAP 9-graphs are depicted in Figure 2, while the only fourteen cyclic
minAP 10-graphs are given in Figure 11. Caterpillars and paths apart, let us mention that
there also exist other AP 7-trees and AP 9-trees, depicted in Figure 3. However, since such
trees are not OLAP by Theorem 2.2, we do not deal with them in what follows.

We will not go through all graphs in Figures 1 and 2 in what follows as it would be
a bit tedious to the reader (however, for completeness, formal proofs can be found in an
appendix section). Instead, in what follows we illustrate how we can check whether a graph
is OLAP/RAP or not, so that the reader gets an idea of the possible arguments, before
listing the status of all graphs in Figure 1 w.r.t. OLAPness and RAPness.

Observation 3.1. The graph in Figure 2 (a) is not OLAP, and thus not RAP.

Proof. Let G denote the graph in Figure 2 (a). We deal with the vertices of G using the
terminology from the figure. Recall that ∣V (G)∣ = 9. Consider a picking process where,
on the first round, we are asked to pick a connected part S of size 1. The only options,
leaving a connected graph, are to consider the parts {a}, {i}, {h}, and {f}. For S being
either {a} or {i}, it can be noted that G − S admits no perfect matching, and thus, from
the second round, the picking process cannot be led properly if we are repeatedly been
asked to pick connected parts of size 2. Likewise, if, on the first round, we pick any of the

1Be aware that the graph (m) exhibited in [7] is actually not AP, since it admits no perfect matching.
This is due to a drawing flaw, which we have corrected in Figure 1 (m). It can be checked that this
corrected graph is indeed minAP, as desired.

6

a b c d e f g

h i

j

(a)

a b c d e f g h

i

j

(b)

a b c d e f

g h

i j

(c)

a b c d e f g

h i

j

(d)

a b c d e f g h

i j

(e)

a b c d e f g h

i

j

(f)

a b c d e f

g h

i j

(g)

a b c d e f g

h i j

(h)

a b c d e f g

h i

j

(i)

a b c d e f

g h i

j

(j)

a b c d e f

g h i

j

(k)

a b c d e f

g h

i j

(l)

ga b c d e f

h i

j

(m)

a b c d e f

g h i

j

(n)

Figure 1: The fourteen cyclic minAP 10-graphs.

sets {h} and {f} as S, then we note that, from the second round on, G−S is a graph that
admits no realisation of (4,4), and thus the picking process cannot be led properly if we
are repeatedly asked to pick connected parts of size 4. Thus, G is not OLAP (and hence
not RAP by Theorem 1.1).

Observation 3.2. The graph in Figure 2 (b) is RAP, and thus OLAP.

Proof. Let G be the graph depicted in Figure 2 (b). We deal with the elements of G
through the terminology given in the figure. Again, remember that ∣V (G)∣ = 9. Thus,
according to Theorem 2.6, in order to prove that G is RAP it suffices to show that, for
every λ ∈ {1, . . . ,4}, there is a RAP part S of size λ such that G − S is RAP.

• For λ = 1, we consider S = {h}. Then G[S] is the 1-graph, which is RAP, while G−S
is spanned by Cat(3,5), which is RAP by Theorem 2.3.

• For λ = 2, we consider S = {g, i}. Then G[S] is a path, which is RAP, while G−S is
spanned by Cat(2,5), which is RAP by Theorem 2.3.

7

a b c d e f

g h

i

(a)

a b c d e f

g h

i

(b)

Figure 2: The only two cyclic minAP 9-graphs.

(a) (b)

Figure 3: Two AP trees.

• For λ = 3, we consider S = {h, e, f}. Then G[S] is a path, which is RAP, while G−S
is traceable, and thus RAP by Theorem 1.1.

• For λ = 4, we consider S = {a, b, g, i}. Then G[S] is a path, which is RAP, while
G − S is spanned by Cat(2,3), which is RAP by Theorem 2.3.

Thus, G is RAP (and thus OLAP by Theorem 1.1), as claimed.

Repeating such arguments with all graphs in Figure 1, and taking a look at Theo-
rems 2.2 and 2.3, we can refine the exhaustive list from [7] of all minAP graphs on at most
10 vertices to determine their minOLAPness and minRAPness (the interested reader is
referred to the appendix section for thorough details). In particular, recall that a minAP
graph that is OLAP is always minOLAP, and that a minAP graph that is RAP is always
minRAP, by Observation 2.7. Also, keep in mind that every AP tree is minAP, and be
aware that one needs to invoke Observation 3.2 in order to show that the graph in Figure 1
(d) is RAP. Below, for any n ≥ 1, we denote by Pn the path of order n.

Theorem 3.3.

• For every n ∈ {3,4}, the only minAP n-graph is the n-path Pn, which is both minO-
LAP and minRAP.

• For n = 5, the only two minAP n-graphs are the caterpillar Cat(2,3) and the 5-path
P5, which are both minOLAP and minRAP.

• For n = 6, the only minAP n-graph is the 6-path P6, which is both minOLAP and
minRAP.

• For n = 7, there are four minAP n-graphs, being the caterpillar Cat(2,5), the cater-
pillar Cat(3,4), the 7-path P7, and the tree in Figure 3 (a). The former three graphs
are both minOLAP and minRAP, while the latter one is neither OLAP nor RAP.

• For n = 8, the only two minAP n-graphs are the caterpillar Cat(3,5) and the 8-path
P8, which are both minOLAP and minRAP.

• For n = 9, there are six minAP n-graphs, being the caterpillar Cat(2,7), the caterpil-
lar Cat(4,5), the 9-path P9, the tree depicted in Figure 3 (b), and the two 9-graphs
depicted in Figure 2. The former three graphs and the graph in Figure 2 (b) are both
minOLAP and minRAP, while the other two graphs are neither OLAP nor RAP.

8

a b c

d

e f g

h

i j

Figure 4: A minAP 10-graph.

• For n = 10, there are sixteen minAP n-graphs, being the caterpillar Cat(3,7), the
10-path P10, and the fourteen 10-graphs depicted in Figure 1. The former two graphs
are both minOLAP and minRAP, and similarly for all graphs in Figures 1 (a), (b),
(c), (d), (f), (g), (h), (i), (j), (k), (m), and (n). The other two graphs, in Figure 1
(e) and (l), are neither OLAP nor RAP.

Regarding the list in Theorem 3.3, a few things are worth observing. First, the smallest
graph that is AP only (i.e., that is not also OLAP) is the 7-tree depicted in Figure 3 (a).
Second, observe that the smallest cyclic minOLAP and minRAP graphs of the list have
order 9, which meets the minimum order of a cyclic minAP graph. Third, in this sample of
small graphs, every OLAP graph is also RAP, and there is actually an equivalence between
minOLAPness and minRAPness. There also exist minAP graphs that are not OLAP. As
will be established in the upcoming section, this phenomenon is not pathological.

Let us conclude by recalling that, though it perhaps does, we have not established that
the list in Theorem 3.3 contains all minOLAP and minRAP graphs on at most 10 vertices.
Indeed, recall that this list was established from the full list of all minAP graphs on at most
10 vertices, but, as will be seen later on, it is not true that all minOLAP and minRAP
graphs are necessarily minAP. Thus, it would be daring to consider that list exhaustive.

4. Cyclic minAP, minOLAP, and minRAP graphs and their connections

As mentioned earlier, the notions of minAP, minOLAP, and minRAP graphs make
more sense when considered in cyclic graphs. Through Theorem 3.3, we noticed that there
exist small cyclic minAP graphs that are not OLAP, and that, in the restricted universe of
cyclic graphs on at most 10 vertices, minOLAPness and minRAPness might be equivalent
notions. Our goal in this section is to understand these relationships better. A first result
we establish, is that the former phenomenon generalises to arbitrarily large graphs. As a
second result, we then prove that the latter phenomenon is not true in general, since there
exist arbitrarily large cyclic minOLAP graphs that are not RAP.

We then observe two phenomena we could not observe through restricted Theorem 3.3,
focusing on the notions of minimality, that sort of concern the other directions. Namely, we
prove that there exist arbitrarily large cyclic minOLAP graphs that, although necessarily
AP, are not minAP, and that there exist cyclic minRAP graphs that, although necessarily
OLAP, are not minOLAP.

4.1. Non-OLAP minAP graphs, and non-RAP minOLAP graphs
Our first result here is thus:

Theorem 4.1. There exist arbitrarily large cyclic minAP graphs that are not OLAP.

Proof. This follows from a generalisation of the graph H depicted in Figure 4, which was
proved to be minAP in [7] (this graph is actually the one depicted in Figure 1 (e)). In

9

what follows, we deal with the vertices of H, and of part of every graph constructed from
H, using the terminology displayed in the figure.

The generalisation of H is the following. For any k ≥ 0, we denote by Gk the graph
obtained from H by adding a disjoint path v1 . . . v15k of order 15k, and adding the edge
v15ka. In other words, we just prolong the pendant path attached at c so that it contains
15k more vertices. Note that G0 =H, and that every Gi is cyclic.

We claim that any Gi with i ≥ 0 is minAP and not OLAP. To establish this formally,
by all definitions involved we need to prove three things:

• We first prove that any Gi, for some i ≥ 0, is AP. Assume i ≥ 0 is fixed, and set
G = Gi and n = ∣V (G)∣ = 10 + 15i. Note that n ≡ 0 mod 5 and n ≡ 1 mod 3. Consider
now any n-partition π. We need to prove that π is realisable in G, which we do by
considering the possible values λ that π can contain.

– If π contains some value λ ≥ 6, then, as a connected part of size λ, one
can consider the set S containing {j, i, g, h, f, d} and the first λ − 6 vertices
of (e, c, b, a, v15k, . . . , v1). Note that G − S is a path, in which the remaining
connected parts of π can be picked to form, with S, a realisation of π in G.

– If 4 ∈ π, then, as a connected part of size 4, one can consider S = {j, i, g, h}.
Note then that G − S is traceable. Thus, we can pick the remaining connected
parts of π in G − S, so that, together with S, we get a realisation of π in G.

– By the same arguments, if π contains value 2 twice, then one can consider
{j, i} and {g, h} as two connected parts of size 2, and then deduce the rest
of a realisation of π in the rest of the graph. Likewise, if π contains value 1
twice, then one can consider the two connected parts {d} and {h} of size 1,
while, if π contains value 5 twice, then one can consider the two connected
parts {j, i, g, h, f} and {d, e, c, b, a} of size 5.

– Similarly, if 1 ∈ π and 2 ∈ π, then one can consider the two connected parts {d}
and {i, j}, which, when removed from G, yield a traceable graph. Likewise, if
1 ∈ π and 5 ∈ π, then one can consider the connected parts {d} and {j, i, g, h, f}.
Last, if 2 ∈ π and 5 ∈ π, then one can consider {j, i} and {g, h, f, e, d}.

– It remains to consider cases where π does not contain 4 or any value at least 6,
and at most one value of π lies in {1,2,5}. Thus, apart from at most one value
in {1,2,5}, we get to the point where π can be assumed to contain 3’s only (at
least one since n ≥ 10). Actually, since n ≡ 1 mod 3, note that π must be of the
form (1,3, . . . ,3). Then, when removing the connected parts {h} and {j, i, g}
from G, the rest of the graph is traceable and thus we can deduce the other
connected parts of size 3 to get a realisation of π in G.

In all cases, we thus deduce a realisation of π in G, and G is AP.

• We now prove that any Gi with i ≥ 0 is actually minAP. Assume i ≥ 0 is fixed, and
set G = Gi and n = ∣V (G)∣ = 10+ 15i. Recall that n ≡ 0 mod 5 and n ≡ 1 mod 3. Note
that the only four edges which, when removed from G, leave a connected graph, are
cd, ce, df , and ef . Actually, note that G−cd and G−ce are isomorphic, and similarly
for G − df and G − ef . Thus, to prove that G is minimal for APness, it suffices to
show that G − cd and G − df are not AP.

– Regarding G− cd, we claim it admits no realisation of (5, . . . ,5). Indeed, such a
realisation would have to contain the connected part {j, i, g, h, f}, which, when

10

removed from G−cd, contains two connected components, one of which contains
d only. From this, we get that G− cd cannot be partitioned following (5, . . . ,5).

– Regarding G − df , we claim it cannot be partitioned following (1,3, . . . ,3). In-
deed, in a realisation of (1,3, . . . ,3) in G−df , either {j, i, g} and {h} would have
to be connected parts, or {j} and {i, g, h} would have to be connected parts.
Both ways, the rest of the realisation would stand as a realisation of (3, . . . ,3)
in G − df − {j, i, g, h}, which is clearly impossible since, in this graph, removing
the connected part {f, e, c} yields a non-connected graph in which d is isolated.
Thus, G − df admits no realisation of (1,3, . . . ,3).

Thus, removing any edge from G makes it loose its APness, and G is minAP.

• It now remains to prove that any Gi with i ≥ 0 is not OLAP. We prove this by
induction on i. Regarding G0, this follows from the fact that if, during the first
round of a picking process, we are asked to pick a connected part of size 3, then we
must consider connected parts leaving the graph connected (as, otherwise, during the
second round it would be impossible to pick a connected part of size ∣V (G0)∣−3 = 7),
the only option being to pick {a, b, c}. Note that this option yields a tree with two
degree-3 vertices, which is thus not OLAP (by Theorem 2.2). Thus, G0 is not OLAP.

Now assume we have proved Gx is not OLAP for all x ≥ 0 up to some value i−1, and
now consider Gi. By similar arguments as in the base case, note that, if, during the
first five rounds of a picking process, we are asked to pick connected parts of size 3
in Gi, then one must consider {v1, v2, v3}, {v4, v5, v6}, {v7, v8, v9}, {v10, v11, v12}, and
{v13, v14, v15}. Then, at the beginning of the sixth round, what remains of Gi is
necessarily Gi−1, which is not OLAP by the induction hypothesis. Thus, Gi itself is
not OLAP, as claimed.

Thus, any Gi is cyclic, minAP, and not OLAP, as claimed.

Our second result reads as follows:

Theorem 4.2. There exist arbitrarily large cyclic minOLAP graphs that are not RAP.

Proof. Consider the following general construction. Start from H, any (cyclic or not)
OLAP graph that is not RAP (assuming, for now, that such a graph exists). Set n = ∣V (H)∣.
Now add to the graph a new path v1 . . . vn of order n, and join v1 and every vertex of H.
We denote by G the resulting graph of order 2n.

First, we claim that G is not RAP. This follows from the fact that, because v1 is a cut-
vertex whose removal yields a connected component of order n− 1, the only partition of G
into two connected parts of size n is that having parts V (H) and {v1, . . . , vn}. However,
recall that G[V (H)] = H is not RAP, by the properties of H. Thus, by Theorem 2.6, we
get that G admits no RAP-realisation of (n,n), and hence G is not RAP.

On the other hand, we claim that G is OLAP. Indeed, we claim we can lead a picking
process properly from start to finish following the following strategy. Essentially, we pick
connected parts in G[V (H)] the same way we would pick them in H, until we reach the
point where the connected part to be picked exceeds G[V (H)], at which moment we then
repeatedly pick consecutive vertices of (v1, . . . , vn). Formally, at the beginning of a new
round, let us denote by R the subgraph of G[V (H)] induced by the vertices that have not
been picked in connected parts during the previous rounds (initially, R = G[V (H)]). By
the way we lead the picking procedure, we assume R is OLAP. Clearly, this is true at the
beginning of the first round, since, then, R is isomorphic to H, which is OLAP. Assume
now that, in a new round, we are asked to pick a connected part of size λ.

11

• If ∣V (R)∣ > 0 and λ ≥ ∣V (R)∣, then we pick all vertices of R together with the first
λ− ∣V (R)∣ vertices of (v1, . . . , vn), which induce a connected graph (since v1 is joined
to all vertices of R), and leaves a path for the next rounds.

• If ∣V (R)∣ > 0 and λ < ∣V (R)∣, then we pick a connected part of size λ the same way we
would pick it in R, that is, so that what remains of R is OLAP (and thus connected).

• If ∣V (R)∣ = 0, then we pick the first λ remaining vertices in (v1, . . . , vn).

Clearly, these steps allow to lead the process from start to end, regardless of the successive
λ’s, and we deduce that G is indeed OLAP, as claimed.

We now prove that, while G might not be minOLAP itself, it must contain a cyclic
minOLAP subgraph, provided 2n fulfils particular properties. Note that since G is not
RAP, none of its spanning subgraphs can be RAP. If G is minOLAP, then we have our
conclusion, since H is connected and contains at least two vertices (as otherwise H would
be RAP), implying that v1 is contained in at least one cycle. Thus, we can assume now G
is not minOLAP. If G is spanned by a cyclic minOLAP graph, then we have our conclusion
as well. Otherwise, all OLAP spanning subgraphs of G are trees.

Let us analyse any OLAP spanning tree G′ of G. According to Theorem 2.2, G′ is
either a path (meaning G is traceable) or a tripode (caterpillar or not).

• Regarding the former case, if G′ is a path, then G contains a Hamiltonian path P .
Due to the structure of G, in particular the fact that v1 is a cut-vertex, P must start
with the sequence (vn, . . . , v1), which extends to a Hamiltonian path of (a subgraph
of) G[V (H)], implying H is traceable. This is a contradiction, however, to the fact
that H is not RAP. Thus, G′ cannot be a path.

• Let us now focus on the latter case. Paying attention to the list of OLAP tripodes
in Theorem 2.2, it can be observed that if 2n is large enough, then the only options
for G′ are to be a caterpillar of the form Cat(2, a), Cat(4, a), Cat(3, b), or Cat(6, c),
where a ≡ 1 mod 2, b ≡ 1,2 mod 3, and c ≡ 1,5 mod 6. That is, it must be that
2n ≡ 1 mod 2, 2n ≡ 1,2 mod 3, or 2n ≡ 1,5 mod 6. The other way round, this means
that if 2n is large enough, and 2n does not fulfil any of these properties, then G′

cannot be an OLAP tripode.

A consequence of these arguments is that if 2n is large enough, and satisfies some rest
properties modulo 2, 3, and 6, then G cannot be spanned by an OLAP tree, implying that,
if G is not minOLAP, then it is spanned by a cyclic minOLAP graph.

Now, apply the construction above for H = Cat(8,19). By Theorem 2.2, we have
that H is an OLAP tree on 27 vertices, that is not RAP by Theorem 2.3. From this H,
the resulting G thus has order 54, where 54 ≡ 0 mod 2, 54 ≡ 0 mod 3, and 54 ≡ 0 mod 6.
Looking at Theorem 2.2, we thus get that 2n is large enough so that no OLAP tree spans
G. By arguments above, we thus have that G is spanned by a cyclic OLAP graph. By now
iterating the construction from G, we get a series of graphs that are OLAP, not RAP, and,
since their orders are multiples of 2, 3, and 6 (since the construction produces graphs with
order doubled each step), spanned by cyclic minOLAP graphs. Hence, the result holds.

Note that, in the construction provided in the proof of Theorem 4.2, in each step we
can, instead of an n-path (v1, . . . , vn), add a whole clique of order n (what matters is that
the structure we add is traceable, and that the vertex dominating the rest of the graph
is the first vertex of a Hamiltonian path). With this modification, at each step of the

12

a b c

0 2 ≡ 2,4 mod 6 at least 20

0 3 ≡ 2,4 mod 6 at least 14

0 5 ∈ {8,16}

0 6,7 ∈ {8,10}

0 8 ∈ {8,9}

1 2 ≡ 2,4 mod 6 at least 20

2 3 ∈ {8,16}

Table 4: Exhaustive list of all OLAP 3-suns Sun(a, b, c) that are not RAP, where a ≤ b ≤ c.

construction we then get a minOLAP graph Gi that is not RAP, which, compared to the
graph Gi−1 from the previous step, satisfies ∣V (Gi)∣ = 2∣V (Gi−1)∣ and ∣E(Gi)∣ = ∣E(Gi−1)∣+
∣V (Gi−1)∣(∣V (Gi−1)∣−1)

2 + ∣V (Gi−1)∣. Since the initial graph G0 we start the construction with is
Cat(8,19), which has 27 vertices and 26 edges, by iterating the construction eventually we
get graphs with density tending to 1

3 , where, recall, the density of a graph H is defined as
∣E(H)∣

∣E(K∣V (H)∣)∣
(where, for any n ≥ 1, we denote by Kn the complete graph of order n). Thus,

applying the construction with denser graphs as G0 (such exist, see below) would provide
even denser minOLAP graphs that are not RAP.

Theorem 4.2 can also be established by considering suns that are OLAP, not RAP, and
which cannot be spanned by an OLAP tree. Recall indeed that an OLAP unicyclic graph, if
not minOLAP, must be spanned by an OLAP tree, while OLAP trees, in general, are rather
rare (recall Theorem 2.2). To be more precise, we provide in Table 4 the list of all OLAP
3-suns that are not RAP (which can essentially be obtained by comparing Theorems 2.4
and 2.5). For an OLAP 3-sun G = Sun(a, b, c) that is not RAP, by remarks above, the only
way for G to be not minOLAP is to be spanned by an OLAP tripode G′. More precisely, in
order to get G′ from G by removing an edge uv, we must decrease the number of degree-3
vertices from three to one, which is possible only if G has adjacent degree-3 vertices u and
v, which requires that 0 ∈ {a, b, c}. In particular, any 3-sun Sun(a, b, c) with a = 1, b = 2,
and c ≡ 2,4 mod 6 and c ≥ 20 is thus minOLAP and not RAP.

Note that we would get a similar conclusion from 4-suns that are OLAP and not
RAP. Indeed, looking at Theorems 2.4 and 2.5, we get that every 4-sun Sun(a, b, c, d) with
a = b = 0, c = 1, and d ≡ 2,4 mod 6 with d ≥ 8, is OLAP but not RAP, but, in such a 4-sun,
it is not possible to remove an edge to get a connected graph with at most one degree-3
vertex. Thus, such a graph is actually minOLAP and not RAP.

4.2. Non-minAP minOLAP graphs, and non-minOLAP minRAP graphs
We now prove that minimality properties do not have to imply weaker ones. We first

prove that minOLAPness, though it implies APness, does not necessarily imply minAPness.

Theorem 4.3. There exist arbitrarily large cyclic minOLAP graphs that are not minAP.

Proof. This can be seen through any sun Sun(2, a) where a = 6k for some k ≥ 5 with
k /≡ 4 mod 5. Such values of a include, for instance, 30,36,42,48,60, Indeed, for such
a value of a, let G = Sun(2, a). We denote by x and y the two degree-3 vertices of G, by
x′ and y′ their unique degree-1 neighbours, respectively, and by v1v2 and w1 . . .wa the two
paths of G − {x,x′, y, y′}, where v1x, w1x, v2y, and way are edges of G.

According to Theorem 2.4, for the value of a we chose, G is indeed OLAP. Actually,
G is even minOLAP. Indeed, note that removing the edge incident to x′, or the edge

13

incident to y′, disconnects G, and, thus, does not result in an OLAP graph. If we remove
from G any other edge not in {xv1, xw1, yv2, ywa}, then note that we get a tree with two
degree-3 vertices, which cannot be OLAP by Theorem 2.2. Now, regarding the edges in
{xv1, xw1, yv2, ywa}, note that removing xv1 and removing yv2 from G result in isomorphic
graphs, and, similarly, removing xw1 and removing ywa result in isomorphic graphs. Thus
there are only two remaining cases to consider. On the one hand, note that G − xv1 is
Cat(3, a + 3), which is not OLAP by Theorem 2.2 since a + 3 = 6k + 3 ≡ 0 mod 3. On the
other hand, note also that G − xw1 is Cat(5,6k + 1), which is not OLAP by Theorem 2.2
since a+ 1 = 6k + 1 ≥ 31. Thus, no edge can be removed from G without loosing the OLAP
property, and G is minOLAP.

To be done with the proof, it remains to show that G is not minAP. We claim that
G−xw1 is AP. Indeed, note that G−xw1 is Cat(5, a+1), with a+1 = 6k+1. By our choice of
k, it follows that 5 and 6k + 1 are coprime, and by Theorem 2.1 we get our conclusion.

Ideally, we would like to prove a result similar to Theorem 4.3 for minRAPness and
minOLAPness. However, due to how close OLAP and RAP caterpillars and suns are, we
are only able to observe that non-minOLAP cyclic minRAP graphs do exist.

Theorem 4.4. There exist cyclic minRAP graphs that are not minOLAP.

Proof. An example is G = Sun(5,8). According to Theorem 2.5, we have that G is RAP.
Actually, G is even minRAP. Indeed, removing from G any edge of the unique cycle incident
to a degree-3 vertex results either in Cat(6,11) or in Cat(8,9), which are not RAP by
Theorem 2.3; while removing any other edge of G results either in a non-connected graph
or in a tree with two degree-3 vertices (which is not RAP, again by Theorem 2.3). On the
other hand, by Theorem 2.2, Cat(6,11) is OLAP. Thus, G is spanned by an OLAP tree,
and hence G is not minOLAP.

5. A sufficient condition for (non-minimal) RAPness

As mentioned earlier in this work (recall Theorem 1.1), every traceable graph is AP,
OLAP, and RAP, and thus APness, OLAPness, and RAPness can be perceived as a weaker
form of traceability. As such, an interesting thread of research in the literature is weakening
to APness sufficient conditions for traceability. As an example, let us mention one of the
first works on this topic, by Marczyk [17], who provided an Ore-type condition for graphs
to be AP. Namely, Ore proved in [19] that any connected n-graph in which the degree sum
of every two non-adjacent vertices is at least n − 1 is traceable, and Marczyk proved that,
roughly speaking, this metric being only n − 3 is sufficient to guarantee APness. Since
the seminal work of Marczyk, several other works dedicated to this topic appeared in the
literature, see e.g. [8, 9, 10, 14, 18], and established other interesting results in this very
line.

In this section, we build upon a proof scheme of Kalinowski in [13] to derive an Ore-type
sufficient condition for (non-minimal) RAPness from one for OLAPness, which itself was
derived from one for APness due to Marczyk in [18]. So that this sufficient condition can
be expressed properly, we need to recall a few definitions.

For an n-graph G, we define σ2(G) as the minimum degree sum of any two non-adjacent
vertices of G; that is,

σ2(G) =min{d(u) + d(v) ∶ uv /∈ E(G)} .

14

(a) (b)

Figure 5: The two exceptional graphs in Marczyk’s Theorem 5.1.

We also denote by α(G) the size of a maximum independent set of G. Note that a necessary
condition for G to have a (quasi-) perfect matching (and thus to be AP, OLAP, or RAP)
is α(G) ≤ ⌈n2 ⌉.

As mentioned earlier, a well-known result of Ore states that every connected n-graph
G with σ2(G) ≥ n−1 is traceable [19]. This condition was weakened to APness by Marczyk
to the following:

Theorem 5.1 (Marczyk [18]). If G is a connected n-graph with σ2(G) ≥ n− 3 and α(G) ≤
⌈n2 ⌉, then G is AP, unless G is one of the two graphs depicted in Figure 5.

In [13] and [6], Kalinowski and Bednarz et al. adapted the proof of Marczyk’s Theo-
rem 5.1 from AP graphs to OLAP graphs (where the former author considered values of
n with n ≤ 7 or n ≥ 15, while the latter authors considered the remaining values of n).
Namely, they proved the following result and its immediate consequence.

Theorem 5.2 (Kalinowski [13], Bednarz et al. [6]). If G is a connected n-graph with
σ2(G) ≥ n−3 and α(G) ≤ ⌈n2 ⌉, then G is OLAP, unless G is one of the two graphs depicted
in Figure 5.

Corollary 5.3. If G is an n-graph with σ2(G) ≥ n − 3, then G is AP if and only if G is
OLAP.

Another way to perceive Corollary 5.3 is that, in the class of n-graphs G with σ2(G) ≥
n − 3, APness and OLAPness are equivalent notions. Our main goal in our upcoming
result, is to prove that RAPness is equivalent to APness and OLAPness in the same class
of graphs. For transparency, let us mention that our proof mainly follows the lines of the
proof of Theorem 5.2 in [13] (which we refine by a bit), and, thus, to some extent, of
that of Theorem 5.1 in [18]. In our proof, we also consider minRAPness; in particular,
we observe that the class of graphs in question is so dense that, although RAP, they are
never minRAP. It is worth recalling, as seen through Observation 2.7, that this implies
these graphs are neither minAP nor minOLAP, although they are both AP and OLAP.
Let us finally mention that such concerns for minimality have already been considered
by Bensmail in [7]; in particular, he proved that an AP n-graph G with σ2(G) ≥ n − 2
cannot be minAP. So, our next result (for which the condition on n in the statement will
be discussed later) actually goes beyond that one.

Theorem 5.4. If G is a connected n-graph with σ2(G) ≥ n − 3, α(G) ≤ ⌈n2 ⌉, and n ≥ 10,
then G is RAP and not minRAP.

15

Proof. Assume G is connected, σ2(G) ≥ n − 3, α(G) ≤ ⌈n2 ⌉, and n ≥ 10 hold. We consider
two main cases, depending on whether G is 2-connected or not.

• G is 2-connected.

Under this hypothesis, by a well-known result of Bermond and Linial (see [13]),
either G is Hamiltonian, or G contains a cycle of length at least n − 3. If G contains
a Hamiltonian cycle, then we are done, as, then, G has a Hamiltonian path, showing
that G is RAP by Theorem 1.1 and that G is not minRAP. So, from now on, we can
suppose the longest cycle C of G has length in {n− 3, n− 2, n− 1}. Actually, if C has
length n − 1, then, because G is connected, there is actually a Hamiltonian path in
G, implying G is RAP, and that C has an edge which, when removed from G, does
not break RAPness, implying G is not minRAP. So, two cases remain:

– C has length n − 2.
Let u and v denote the two vertices of G not in C. Since G is connected, if
uv ∈ E(G), then G is actually traceable, and it contains a Hamiltonian path
omitting an edge of C; thus, again, G is RAP and not minRAP. So, we can now
assume uv /∈ E(G), and, thus, d(u) + d(v) ≥ σ2(G) ≥ n − 3. Now, since C has
maximum length, note that none of u and v can be adjacent to two consecutive
vertices of C. This implies d(u), d(v) ≤ n−2

2 . Now, since d(u) + d(v) ≥ n − 3 and
d(u), d(v) ≤ n−2

2 , altogether we deduce that d(u), d(v) ≥ n−4
2 .

So, to summarise, n−4
2 ≤ d(u), d(v) ≤

n−2
2 . Now:

∗ If n is odd, then, by the inequalities above, we actually have d(u) = d(v) =
n−3
2 , where, recall, n ≥ 10. Since G is 2-connected, we have δ(G) ≥ 2.

If there is no vertex of C not in N(u)∪N(v), then, denoting x any neighbour
of, say, u on C, we have that u cannot be adjacent to both x− and x+ (the
vertices preceding and succeeding x on C), meaning that v is adjacent to
both x− and x+, and we deduce that uxx+x++ . . . x−v is a Hamiltonian path
of G, thus not traversing x+v, and hence G is RAP but not minRAP.
Now, assume there is a vertex w of C not in N(u) ∪ N(v). Denoting
C = wx1 . . . xn−3w, since d(u) = d(v) = n−3

2 , each of N(u) and N(v) contains
either all xi’s with even index or all xi’s with odd index. Recall both u and
v have at least two neighbours on C each (since δ(G) ≥ 2). If N(u) ≠
N(v), then, again, there must be a vertex x of C such that, say, x ∈ N(u)
and x−, x+ ∈ N(v), and we can deduce a Hamiltonian path of G (and our
conclusions) as earlier. Now, if N(u) = N(v), then, assuming w.l.o.g. that
N(u) and N(v) contain all xi’s with odd index, we deduce that G is spanned
by the 2-sun Sun(1, n − 5), which is RAP by Theorem 2.5. More precisely,
there is such a 2-sun spanning G in which u has degree 1 with unique
neighbour x1, v has degree 1 with unique neighbour x3, and the unique
cycle is C. Thus this 2-sun does not contain ux3, and G is not minRAP.

∗ If n is even, then we have d(u), d(v) ∈ {n−42 , n−22 }, a set of two values, and,
because σ2(G) ≥ n − 3, it must be that one of u and v has degree n−2

2 (as
otherwise we would have d(u)+d(v) = n−4 < σ2(G)). Assume w.l.o.g. that
d(u) = n−2

2 . Since u cannot be adjacent to two consecutive vertices of C,
setting C = x1 . . . xn−2x1, we have, say, that N(u) contains all xi’s with odd
index. For similar reasons as earlier, we would get our conclusions from a
Hamiltonian path of G if v is adjacent to an xi with even i; thus, we can
assume N(v) ⊆ N(u). Note now that if there are two distinct even values

16

i, j such that xixj is an edge, then, again, a Hamiltonian path of G can be
deduced to get the desired conclusions (for instance, assuming i < j, one can
consider the path ux−i x

−−

i . . . x+j xjxix
+

i . . . x
−

j v, that omits x−i xi). Otherwise,
the xi’s with even index are independent, and, with u and v, we have a set
of n−2

2 + 2 =
n
2 + 1 independent vertices, which contradicts that α(G) ≤ ⌈n2 ⌉.

– C has length n − 3.
Let u, v, and w be the three vertices of G not in C. If G[{u, v,w}] is connected,
then, say, uv and vw are edges, and, because G is 2-connected and thus δ(G) ≥ 2,
either u or w has an edge to C, from which we get our conclusions from a
Hamiltonian path of G, or uw is an edge and v has a neighbour in C, from
which we deduce another Hamiltonian path yielding our conclusion.
We can now assume G[{u, v,w}] is not connected; there are two cases:

∗ Assume first that the only edge of G[{u, v,w}] is, say, uv. Again, since C
is a longest cycle of G, it cannot be that w is adjacent to two consecutive
vertices of C, and thus d(w) ≤ n−3

2 . Since u and v are not adjacent to w, we
have d(u)+d(w) ≥ n− 3 and d(v)+d(w) ≥ n− 3 (since σ2(G) ≥ n− 3), from
which we deduce d(u), d(v) ≥ n−3

2 =
n−5
2 + 1. Thus, omitting the edge uv,

each of u and v has n−5
2 neighbours on C. Recall also that each of u and v

cannot be adjacent to two consecutive vertices of C, by the maximality of
C. Similarly, if there is a vertex x of C such that x− ∈ N(u) and x+ ∈ N(v)
then we would deduce that ux−x−− . . . x++x+vu is a cycle of G longer than
C, a contradiction. Of course, we would reach a similar contradiction if
x− ∈ N(v), and also if u is adjacent to some x on C and either x− or
x+ belongs to N(v). From this, we deduce that, for each x of the n−5

2
neighbours of u on C, vertices x+ and x++ cannot belong to N(v). So, u
has n−5

2 neighbours on C, which yields that n−5 vertices of C cannot belong
to N(v). Thus, v has at most n−3− (n−5) = 2 neighbours on C, and since
we observed earlier that v has n−5

2 neighbours on C, we must have n = 9,
which contradicts our initial hypothesis on n.

∗ Assume then that {u, v,w} is an independent set. Because σ2(G) ≥ n − 3,
the two vertices with largest degree in {u, v,w} must have degree at least
n−3
2 . Assume d(u), d(v) ≥ n−3

2 w.l.o.g. Again, since C is a longest cycle
of G, none of u, v, and w can be adjacent to two consecutive vertices of
C, and so d(u), d(v), d(w) ≤ n−3

2 . Thus, we must have d(u) = d(v) = n−3
2 ,

and, now that these degrees are revealed, since σ2(G) ≥ n − 3, we also have
d(w) = n−3

2 . In particular, n is odd. Also, since G is 2-connected, we have
d(u), d(v), d(w) ≥ 2. So, setting C = x1 . . . xn−3x1, we have, say, that each
of N(u), N(v), and N(w) contains either all xi’s with odd index, or all xi’s
with even index. Similarly as in a previous case, we get our conclusions if
any two of N(u), N(v), and N(w) are different. Thus, we can now assume
N(u) = N(v) = N(w), say the three sets contain the xi’s with odd index.
Now, if there are two distinct even values i, j such that xixj is an edge with
i < j, then we can deduce that G is spanned by some caterpillar Cat(2, n−2),
which is RAP by Theorem 2.3 since n is odd and shows G is not minRAP
(for instance, consider the spanning caterpillar where x−i has degree 3, is
adjacent to both u and v which are of degree 1, and the remaining path
attached to x−i is x−i xixjx

−

j . . . x
+

i wx
+

j x
++

j . . . x−−i ; in particular, x−−i x−i is not
part of the caterpillar). Otherwise, if all xi’s with even index are pairwise

17

independent, then, together with u, v, and w, we deduce an independent
set of G of size n−3

2 + 3 =
n+3
2 , which contradicts that α(G) ≤ ⌈n2 ⌉.

• G has a cut-vertex z.

In this case, we use a theorem of Pósa (see [13]), which, since σ2(G) ≥ n−3, says any
longest path P of G has order at least n − 2, i.e., there are at most two vertices not
covered by P . If P is a Hamiltonian path of G with ends u and v, then G is RAP,
and G is not minRAP. Indeed, either uv ∈ E(G) but uv /∈ E(P), or uv /∈ E(G) and
d(u) ≥ 2 or d(v) ≥ 2, due to the fact that σ2(G) ≥ n− 3 and n ≥ 10, implying an edge
incident to u or v does not belong to P . So, we can now assume P covers n − 2 or
n− 1 vertices of G. In what follows, we consider the possible values of q, the number
of connected components of G − z. Recall that q ≥ 2 since z is a cut-vertex of G.

– Assume first that q ≥ 3. In that case, note that P must go through z, as
otherwise there would be at least three vertices not in P , while P contains all
vertices of G but at most two of them. Actually, we must have q = 3. Indeed,
since z is a cut-vertex of G, if q ≥ 5 then clearly there are at least three vertices
not in P , while, if q = 4, then we would deduce that two connected components
of G − z not traversed by P contain exactly one vertex each, each adjacent to
z, and that the degree sum of these two independent vertices would thus be 2,
which since σ2(G) ≥ n− 3 would yield n ≤ 5, a contradiction. Thus, q = 3; let us
denote by C1,C2,C3 the three connected components of G − z.

∗ If P has order n − 1, then P goes through all vertices of G but some v.
Assume v belongs to C3 w.l.o.g. Then v is the sole neighbour of C3. Now,
for every vertex u ∈ V (C1)∪V (C2), note that uv /∈ E(G). Since σ2(G) ≥ n−3
and d(v) = 1, we deduce d(u) ≥ n − 4. Since there is no edge from V (C1)
to V (C2), we deduce, assuming u ∈ V (C2), that ∣V (C1)∣ ≤ 2, and similarly,
assuming u ∈ V (C1), that ∣V (C2)∣ ≤ 2. Altogether, we thus deduce that
n ≤ 6, which contradicts our initial assumption on n.

∗ If P has order n − 2, then let u and v denote the two vertices not in P .
Assuming P goes through C1 and C2, we can assume both u and v are part
of C3. Indeed, if, say, u belongs to C2 while v belongs to C3, then d(v) = 1
again, and we must have d(u) ≥ n−4; but then u is not adjacent to the end of
P in C2, to v, and to any vertex in C1, which would imply that ∣V (C1)∣ = 1,
and by considering the unique vertex of C1 and v we would again deduce
that n ≤ 5. So we can assume V (C3) = {u, v} and uv ∈ E(G) (since q = 3).
Now, every vertex w in V (C1) ∪ V (C2) is not adjacent to any of u and v,
and since d(u), d(v) ≤ 2, we have d(w) ≥ n−5 since σ2(G) ≥ n−2. However,
assuming w ∈ V (Ci) for any i ∈ {1,2}, all neighbours of w lie in V (Ci)∪{z},
and thus d(w) ≤ ∣V (Ci)∣. The other way round, for j ∈ {1,2}∖{i}, we must
thus have ∣V (Cj)∣ ≤ 2. Thus we deduce ∣V (C1)∣ = ∣V (C2)∣ = ∣V (C3)∣ = 2,
and thus n ≤ 7, a contradiction.

– Assume last q = 2. We denote by C1 and C2 the two connected components of
G − z, where we set n1 = ∣V (C1)∣ and n2 = ∣V (C2)∣, and we assume n1 ≤ n2.
Since any two independent vertices u and v of C1 have, in G, their neighbours
in V (C1)∪{z}, then, since σ2(G) ≤ n−3, we have dC1(u)+dC2(v) ≥ n−5. Now,
since n = n1 + n2 + 1 and n1 ≤ n2, we have σ2(C1) ≥ 2n1 − 4, where 2n1 − 4 ≥ n1

when n1 ≥ 4. So, by Ore’s Theorem [19], we deduce that C1 is Hamiltonian
when n1 ≥ 4. Meanwhile, if n1 ≤ 3, then either n1 ≤ 2 and, since G is connected,

18

there is a Hamiltonian path of C1+z with end-vertex z, or n1 = 3 and we get the
same conclusion as otherwise C1 would contain two vertices of degree 1, and we
could repeat previous arguments with another cut-vertex of G whose removal
results in three connected components. To sum up, in any case, C1 + z contains
a Hamiltonian path starting from z.
If n1 = n2, then we get the same conclusion regarding C2 + z, and G is traceable
and thus RAP (and, because n ≥ 10, one of C1 and C2 admits a Hamiltonian
cycle, whose one edge does not have to be traversed by some Hamiltonian path
of G, implying G is not minRAP). So, it remains to consider when n1 < n2. In
this case, for any two vertices u ∈ V (C1) and v ∈ V (C2), we have uv /∈ E(G),
and thus

dC2(v) ≥ σ2(G) − dG(u) − 1 ≥ n − 3 − n1 − 1 = n2 − 3.

In other words, δ(C2) ≥ n2 − 3. If n2 ≥ 6, then C2 is Hamiltonian by Ore’s
Theorem [19], and we get the same conclusions as earlier. Now, if n2 ≤ 5, then,
since n1 < n2, we have n1 ≤ 4 and n ≤ 10. Since n ≥ 10, we must have n2 = 5 and
n1 = 4. In particular, by Ore’s Theorem we have that C2 is traceable. If C2 has
a Hamiltonian path Q starting or ending with a vertex adjacent to z, then we
are done (in particular, a Hamiltonian path of G not traversing an edge of C1

can be deduced, since, because n1 ≥ 4, there is a Hamiltonian cycle in C1; thus
G is not minRAP in this case). Thus, we can assume the two ends of Q are
not adjacent to z, and similarly we can assume these two ends are not adjacent.
Thus, these two ends, in G, have degree at most 3, and their degree sum is at
most 6 < 7 = n − 3. So we get a contradiction to the fact that σ2(G) ≥ n − 3.

We thus get the desired conclusion in all cases.

Corollary 5.5. In the class of n-graphs G with σ2(G) ≥ n − 3 and n ≥ 10, APness,
OLAPness, and RAPness are equivalent notions. Also, no AP, OLAP, or RAP graph in
that class is minAP, minOLAP, or minRAP, respectively; so, minAPness, minOLAPness,
and minRAPness are also equivalent notions in that class.

Note that the condition on n in the statement of Theorem 5.4 is to make the proof less
technical, through avoiding small pathological cases, such as the graphs in Figure 5 which
are necessary for the more general statement to hold (recall Theorems 5.1 and 5.2). These
conditions on n also permit to have the part of the statement on non-minRAPness. For
instance, note indeed that the path P5 on 5 vertices is clearly minRAP, while σ2(P5) = 2 =
∣V (P5)∣− 3 and α(P5) = 3 = ⌈∣V (P5)∣/2⌉. Thus, the statement of Theorem 5.4, in any case,
requires at least n ≥ 6.

6. Conclusion

In this work, we have introduced the notions of minOLAPness and minRAPness, gen-
eralising to OLAP and RAP graphs the notion of minimality, minAPness, that has already
been studied for AP graphs. In Section 3, we mainly exhibited small minOLAP and min-
RAP graphs, already observing discrepancies with minAP graphs. In Section 4, we got
to observe other discrepancies through several graph constructions. In particular, a cyclic
graph that is minimal w.r.t. some partition property neither has to posses the stronger
partition property, nor has to be minimal for the weaker partition property. In Section 5,
we then adapted to RAPness existing sufficient conditions for APness and OLAPness in

19

graphs with large degree sums of independent vertices, and derived a side non-minRAPness
property for the class of graphs considered.

Following our results, there are several aspects which we think could be worth investi-
gating further. For instance:

• We were not able to come up with a general construction so that Theorem 4.4 holds
for arbitrarily large graphs (just as in Theorem 4.3). As explained earlier, this is
mainly because the discrepancies between general trees, caterpillars, and suns under
the OLAP and RAP properties are more shallow than when considering the AP
and OLAP properties. So we would be interested in knowing whether Theorem 4.4
generalises to arbitrarily large graphs.

• As seen through Theorem 3.3, for graphs on up to at most 10 vertices, minOLAP-
ness and minRAPness seem to coincide. As far as we can tell, the smallest known
(minimal) OLAP graph that is not (minimal) RAP is Cat(6,11), which has order 17.
For cyclic graphs, from Table 4, we know there is such a cyclic graph, Sun(0,5,8),
with order 19. An interesting question would thus concern the minimum order of a
(minimal) OLAP graph that is not (minimal) RAP. Recall that, by Theorem 3.3, the
smallest cyclic minOLAP and minRAP graphs seem to have order 9.

• In [5], Baudon, Przybyło, and Woźniak exhibited a construction for a minAP graph
having arbitrarily many cycles, thus being arbitrarily far from trees. We were not able
to exhibit similar constructions for minOLAP and minRAP graphs, and we believe
determining whether such graphs exist would be crucial for this field. Similarly, one
can wonder about other properties of minOLAP and minRAP graphs, inspired by
important ones for minAP graphs. In particular, following [7], it would be interesting
to wonder about their connectivity, their minimum degree, their density, or their
clique number. Especially, it would be interesting to establish significant differences
between minAP graphs, and minOLAP and minRAP graphs.

• Finally, we think it would be interesting to establish more results of the sort of Theo-
rem 2.6 for minAPness, minOLAPness, and minRAPness, or for their absence. That
is, sufficient conditions inspired by ones for Hamiltonicity/traceability, weakened so
that they fit (or not) with these properties. In particular, in light of Corollary 5.5,
we wonder whether there is some metric for which the properties differ by a lot.

References

[1] D. Barth, O. Baudon, and J. Puech. Decomposable trees: a polynomial algorithm for
tripodes. Discrete Appl. Math., 119(3):205–216, 2002.

[2] D. Barth and H. Fournier. A degree bound on decomposable trees. Discrete Mathe-
matics, 306(5):469–477, 2006.

[3] O. Baudon, F. Gilbert, and M. Woźniak. Recursively arbitrarily vertex-decomposable
suns. Opuscula Mathematicae, 31(4):533–547, 2011.

[4] O. Baudon, F. Gilbert, and M. Woźniak. Recursively arbitrarily vertex-decomposable
graphs. Opuscula Mathematicae, 32(4):689–706, 2012.

[5] O. Baudon, J. Przybyło, and M. Woźniak. On minimal arbitrarily partitionable graphs.
Information Processing Letters, 112:697–700, 2012.

20

[6] M. Bednarz, A. Burkot, J. Kwaśny, K. Pawłowski, A. Ryngier. Small dense on-line
arbitrarily partitionable graphs. Applied Mathematics and Computation, 470:128582,
2024.

[7] J. Bensmail. Some Properties of Minimal Arbitrarily Partitionable Graphs. Aus-
tralasian Journal of Combinatorics, 86(1):149–168, 2023.

[8] J. Bensmail. A σ3 condition for arbitrarily partitionable graphs. Discussiones Mathe-
maticae Graph Theory, in press.

[9] J. Bensmail and B. Li. More Aspects of Arbitrarily Partitionable Graphs. Discussiones
Mathematicae Graph Theory, 42(4):1237–1261, 2022.

[10] M. Horňák, A. Marczyk, I. Schiermeyer, and M. Woźniak. Dense arbitrarily vertex
decomposable graphs. Graphs and Combinatorics, 28:807–821, 2012.

[11] M. Horňák, Zs. Tuza, and M. Woźniak. On-line arbitrarily vertex decomposable trees.
Discrete Applied Mathematics, 155:1420–1429, 2007.

[12] M. Horňák and M. Woźniak. On arbitrarily vertex decomposable trees. Discrete Math-
ematics, 308(7):1268–1281, 2008.

[13] R. Kalinowski. Dense on-line arbitrarily partitionable graphs. Discrete Applied Math-
ematics, 226:71–77: 2017.

[14] R. Kalinowski, M. Pilśniak, I. Schiermeyer, and M. Woźniak. Dense arbitrarily parti-
tionable graphs. Discussiones Mathematicae Graph Theory, 36:5–22, 2016.

[15] R. Kalinowski, M. Pilśniak, M. Woźniak, and I. Zioło. Arbitrarily vertex decomposable
suns with few rays. Discrete Mathematics, 309:3726–3732, 2009.

[16] R. Kalinowski, M. Pilśniak, M. Woźniak, and I. Zioło. On-line arbitrarily vertex de-
composable suns. Discrete Mathematics, 309:6328–6336, 2009.

[17] A. Marczyk. A note on arbitrarily vertex decomposable graphs. Opuscula Mathemat-
ica, 26(1):109–118, 2006.

[18] A. Marczyk. An Ore-type condition for arbitrarily vertex decomposable graphs. Dis-
crete Mathematics, 309:3588–3594, 2009.

[19] O. Ore. Note on hamilton circuits. American Mathematical Monthly, 67:55, 1960.

[20] R. Ravaux. Graphes arbitrairement partitionnables : propriétés structurelles et algo-
rithmiques. Ph.D. thesis (in French), Université Versailles Saint-Quentin, 2009.

Appendix: Proof of Theorem 3.3

In this section, we consider all graphs in Figure 1, and prove formally whether they are
RAP (and thus also OLAP) or not OLAP (and thus also not RAP). To prove that a graph
is RAP, we mainly make use of Theorem 2.6, while, to prove that a graph is not OLAP,
we exhibit a picking process that cannot be led properly from start to finish. Recall also
that an AP, OLAP, or RAP graph must be connected, and that traceable graphs are RAP.
Recall also that Theorems 2.2 and 2.3 provide a full list of all OLAP and RAP trees.

In each of the upcoming proofs, we deal with the vertices of a given graph using the
terminology we have given in Figure 1.

21

Observation 6.1. The graph in Figure 1 (a) is RAP, and thus OLAP.

Proof. Let G be the graph depicted in Figure 1 (a). Since ∣V (G)∣ = 10, by Theorem 2.6 it
suffices (here and similarly in the next proofs) to show that, for every λ ∈ {1, . . . ,5}, there
is a RAP part S of size λ such that G − S is RAP.

• λ = 1. Consider S = {i}; then G[S] is the 1-graph, while G−S is spanned by Cat(4,5).

• λ = 2. Consider S = {h, j}; then G[S] is a path, while G − S is Cat(3,5).

• λ = 3. Consider S = {a, b, c}; then G[S] is a path, while G − S is Cat(3,4).

• λ = 4. Consider S = {e, f, g, i}; then G[S] is a path, while G − S is traceable.

• λ = 5. Consider S = {a, b, c, h, j}; then G[S] is a path, while G − S is Cat(2,3).

Observation 6.2. The graph in Figure 1 (b) is RAP, and thus OLAP.

Proof. Let G be the graph depicted in Figure 1 (b).

• λ = 1. Consider S = {j}; then G[S] is the 1-graph, while G − S is traceable.

• λ = 2. Consider S = {i, j}; then G[S] and G − S are paths.

• λ = 3. Consider S = {a, b, c}; then G[S] and G − S are paths.

• λ = 4. Consider S = {e, f, g, h}; then G[S] is a path, while G − S is traceable.

• λ = 5. Consider S = {a, b, c, i, j}; then G[S] and G − S are paths.

Observation 6.3. The graph in Figure 1 (c) is RAP, and thus OLAP.

Proof. Let G be the graph depicted in Figure 1 (c).

• λ = 1. Consider S = {j}; then G[S] is the 1-graph, while G − S is spanned by
Cat(4,5).

• λ = 2. Consider S = {a, b}; then G[S] is a path, while G−S is spanned by Cat(3,5).

• λ = 3. Consider S = {a, b, c}; then G[S] is a path, while G − S is Cat(3,4).

• λ = 4. Consider S = {g, h, i, j}; then G[S] and G − S are paths.

• λ = 5. Consider S = {a, b, c, g, i}; then G[S] and G − S are paths.

Observation 6.4. The graph in Figure 1 (d) is RAP, and thus OLAP.

Proof. Let G be the graph depicted in Figure 1 (d).

• λ = 1. Consider S = {g}; then G[S] is the 1-graph, while G−S is the graph depicted
in Figure 2 (b) (which is RAP by Observation 3.2).

• λ = 2. Consider S = {h, j}; then G[S] is a path, while G − S is Cat(3,5).

• λ = 3. Consider S = {a, b, c}; then G[S] is a path, while G − S is Cat(3,4).

• λ = 4. Consider S = {e, f, g, i}; then G[S] is a path, while G − S is traceable.

• λ = 5. Consider S = {d, e, f, g, i}; then G[S] and G − S are Cat(2,3).

22

Observation 6.5. The graph in Figure 1 (e) is not OLAP, and thus not RAP.

Proof. Let G be the graph depicted in Figure 1 (e). If, during the first round of a picking
process, we are asked to pick a connected part S of size 3, then the only option, leaving
G − S connected, is to consider S = {a, b, c}. But then G − S is a tree with two degree-3
vertices, which is not OLAP by Theorem 2.2. Thus, there are no proper options, implying
G is not OLAP at all.

Observation 6.6. The graph in Figure 1 (f) is RAP, and thus OLAP.

Proof. Let G be the graph depicted in Figure 1 (f).

• λ = 1. Consider S = {j}; then G[S] is the 1-graph, while G − S is spanned by
Cat(4,5).

• λ = 2. Consider S = {a, b}; then G[S] is a path, while G − S is traceable.

• λ = 3. Consider S = {a, b, c}; then G[S] is a path, while G − S is Cat(3,4).

• λ = 4. Consider S = {a, b, c, d}; then G[S] and G − S are paths.

• λ = 5. Consider S = {a, b, c, i, j}; then G[S] and G − S are paths.

Observation 6.7. The graph in Figure 1 (g) is RAP, and thus OLAP.

Proof. Let G be the graph depicted in Figure 1 (g).

• λ = 1. Consider S = {i}; then G[S] is the 1-graph, while G−S is spanned by Cat(4,5).

• λ = 2. Consider S = {h, j}; then G[S] is a path, while G − S is Cat(3,5).

• λ = 3. Consider S = {a, b, c}; then G[S] is a path, while G − S is Cat(3,4).

• λ = 4. Consider S = {g, h, i, j}; then G[S] and G − S are paths.

• λ = 5. Consider S = {d, e, f, h, j}; then G[S] is a path, while G − S is Cat(2,3).

Observation 6.8. The graph in Figure 1 (h) is RAP, and thus OLAP.

Proof. Let G be the graph depicted in Figure 1 (h).

• λ = 1. Consider S = {j}; then G[S] is the 1-graph, while G − S is spanned by
Cat(2,7).

• λ = 2. Consider S = {h, i}; then G[S] is a path, while G − S is Cat(3,5).

• λ = 3. Consider S = {a, b, c}; then G[S] is a path, while G − S is Cat(3,4).

• λ = 4. Consider S = {e, f, g, j}; then G[S] is a path, while G − S is traceable.

• λ = 5. Consider S = {d, e, f, g, j}; then G[S] and G − S are Cat(2,3).

Observation 6.9. The graph in Figure 1 (i) is RAP, and thus OLAP.

Proof. Let G be the graph depicted in Figure 1 (i).

• λ = 1. Consider S = {d}; then G[S] is the 1-graph, while G − S is Cat(4,5).

• λ = 2. Consider S = {f, g}; then G[S] is a path, while G − S is traceable.

23

• λ = 3. Consider S = {h, i, j}; then G[S] and G − S are paths.

• λ = 4. Consider S = {a, b, c, d}; then G[S] and G − S are paths.

• λ = 5. Consider S = {a, b, c, h, j}; then G[S] is a path, while G − S is Cat(2,3).

Observation 6.10. The graph in Figure 1 (j) is RAP, and thus OLAP.

Proof. Let G be the graph depicted in Figure 1 (j).

• λ = 1. Consider S = {j}; then G[S] is the 1-graph, while G − S is traceable.

• λ = 2. Consider S = {e, f}; then G[S] is a path, while G − S is traceable.

• λ = 3. Consider S = {a, b, c}; then G[S] and G − S are paths.

• λ = 4. Consider S = {g, h, i, j}; then G[S] and G − S are paths.

• λ = 5. Consider S = {a, b, c, g, j}; then G[S] and G − S are paths.

Observation 6.11. The graph in Figure 1 (k) is RAP, and thus OLAP.

Proof. Let G be the graph depicted in Figure 1 (k).

• λ = 1. Consider S = {f}; then G[S] is the 1-graph, while G − S is traceable.

• λ = 2. Consider S = {a, b}; then G[S] is a path, while G−S is spanned by Cat(3,5).

• λ = 3. Consider S = {a, b, c}; then G[S] is a path, while G − S is Cat(2,5).

• λ = 4. Consider S = {g, h, i, j}; then G[S] and G − S are paths.

• λ = 5. Consider S = {a, b, c, g, j}; then G[S] is a path, while G − S is Cat(2,3).

Observation 6.12. The graph in Figure 1 (l) is not OLAP, and thus not RAP.

Proof. Let G be the graph depicted in Figure 1 (l). Suppose that, during the first round
of a picking process, we are asked to pick a connected part S of size 3. Then the only
proper options are S = {a, b, c} and S = {d, e, f}, since G−S is not connected for any other
connected part of size 3 as S. However, for both options, G−S is a tree with two degree-3
vertices, which cannot be OLAP by Theorem 2.2. Thus, we cannot pick S as desired, and
G is not OLAP.

Observation 6.13. The graph in Figure 1 (m) is RAP, and thus OLAP.

Proof. Let G be the graph depicted in Figure 1 (m).

• λ = 1. Consider S = {a}; then G[S] is the 1-graph, while G − S is spanned by
Cat(2,7).

• λ = 2. Consider S = {c, d}; then G[S] is a path, while G − S is Cat(3,5).

• λ = 3. Consider S = {h, i, j}; then G[S] and G − S are paths.

• λ = 4. Consider S = {a, b, c, d}; then G[S] and G − S are paths.

• λ = 5. Consider S = {c, d, e, f, g}; then G[S] is a path, while G − S is Cat(2,3).

Observation 6.14. The graph in Figure 1 (n) is RAP, and thus OLAP.

24

Proof. Let G be the graph depicted in Figure 1 (n).

• λ = 1. Consider S = {j}; then G[S] is the 1-graph, while G − S is spanned by
Cat(4,5).

• λ = 2. Consider S = {g, j}; then G[S] is a path, while G − S is Cat(3,5).

• λ = 3. Consider S = {a, b, c}; then G[S] is a path, while G − S is Cat(2,5).

• λ = 4. Consider S = {g, h, i, j}; then G[S] and G − S are paths.

• λ = 5. Consider S = {c, d, e, f, i}; then G[S] and G − S are Cat(2,3).

25

