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2. TIMING WORST CASE1. CONTEXT
The execution time is calculated
in specific cases depending on
the needed application domain,
(e.g, worst case execution for
realtime applications, average
case for compiler optimization).

3. TIMING AVERAGE CASE

Machine learning for 
timing estimation

• ITHEMAL [3] uses 2 stacked LSTMs
layers to estimate the execution
time for a BB in isolation.

• CATREEN [2] improves ITHEMAL to
estimate the execution time of a BB
in its context.
– Instruction == Word.
– Basic block == Sentence.
– Sequence of basic blocks == Paragraph.

4. RESULTS

5. PERSPECTIVE

• Transformers [4] are able to handle sequential
data, but this is done in parallel, which drastically
reduces both training and inference times.
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Benchmark from Microbench
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Challenges of using Machine
Learning for timing estimation :
• Context-awareness (Cache and

Pipline).
• Representativity of training data.
• Reliability of the estimations.

WE-HML [1] (WCET Estimation using an Hybrid
Machine-Learning based technique) estimates
the WCET for processors that have caches.
• Learning phase : Training on Basic Block and WCET.
• Estimation phase : ILP for longest path combined

with ML model.

Figure 7 Absolute Percentage Error on MiBench

for CATREEN, ITHEMAL and MLP regressor

Figure 2 Challenges to estimate the 

execution time of modern processor

Figure 1 Execution time 

estimation classification

Figure 5 Architecture of 

CATREEN

Figure 3 Training/Estimation 

workflow of WE-HML

Figure 4 Unfolding of a LSTM cell of 

the instruction layer on a machine 

instruction
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Figure 6 Estimated WCET WE-HML versus 

Maximum Observed Execution Time (MOET)


