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Two-layer elastic models for single-yeast compressibility with flat microlevers.†

L. Delmarre,a E. Harté,a A. Devin,b P. Argoul c,d and F. Argoul∗a

Unicellular organisms such as yeast can survive in very different environments thanks to a polysaccharide wall that reinforces
their extracellular membrane. This wall is not a static structure, as it is expected to be dynamically remodeled according to
growth stage, division cycle, environmental osmotic pressure and ageing. It is therefore of great interest to study the mechanics
of these organisms, but they are more difficult to study than other mammalian cells, in particular because of their small size
(radius of a few microns) and their lack of an adhesion machinery. Using flat cantilevers, we perform compression experiments
on single yeast cells (S. cerevisiae) on poly-L-lysine-coated grooved glass plates, in the limit of small deformation using an
atomic force microscope (AFM). Thanks to a careful decomposition of force-displacement curves, we extract local scaling
exponents that highlight the non-stationary characteristic of the yeast behavior upon compression. Our multi-scale nonlinear
analysis of the AFM force-displacement curves provides evidence for non-stationary scaling laws. We propose to model these
phenomena based on a two-component elastic system, where each layer follows a different scaling law.

1 Introduction
Among natural kingdoms, plants, fungi and unicellular microor-
ganisms (yeasts, bacteria, algae ...) differ from multicellular an-
imals by their intracellular structure and a rigid wall that re-
inforces the extracellular membrane and can sustain quite high
turgor pressure (from 0.5 MPa in exponential growth phase to
1.5 MPa in the stationary phase for yeast)1. These cells regu-
late their volume, depending on the drop of pressure between
the intracellular (Πi) and the extracellular media (Πe), the differ-
ence ∆P = Πi−Πe is defined as the turgor pressure. Even if yeast
cells have rather simple geometries, their mechanical behavior
integrates different mechanical forces; compressive (or tensile)
and shear forces from their environment with turgor pressure de-
rived forces. Saccharomyces cerevisiae, also called the budding
yeast, that is investigated here, has often been approximated by
spherical shells. Actually its shape is more elliptic than spherical,
leading to a preferential position (polarization) of its bud which
is driven by turgor pressure during mitosis2. Thanks to its β -
glucan and titin cross-linked chains3, the yeast cell wall (YCW)
primary role is to compensate the tensional stress generated by
turgor pressure. Assuming that the YCW thickness is negligible
versus the cell radius, for a typical cell radius R of 2.5 µm, the
tension T created by a turgor pressure of ∆P = 1MPa would be4

T = PR/2 = 1.25N/m. The YCW tension appears therefore as a
compromise for both cell division and survival. Compression ex-
periments that exceed this wall tension may lead to cascades of
local ruptures or unbinding of the wall glucan chains and finally
a global disruption5. Cascades of local fracture events observed
in living cell fiber networks were described with one-dimensional
catastrophe models following lognormal statistics6–8.

Since the early nineties, the atomic force microscope (AFM)
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emerged as a powerful tool because of its ability to probe bioma-
terials from nanometre scales (biomolecules) up to several tens of
micron scales (subcellular organelles, cells, multicellular organ-
isms) with forces in the range of tens to hundreds of nanoNew-
tons, under near physiological conditions9. The enthusiasm of
the scientific community for this technique never faded away, and
it is now a gold standard for cellular imaging and viscoelastic-
ity measurements at molecular and cellular scales10,11. Whereas
AFM was immediately and predominantly used as a surface imag-
ing technique for micro-organisms (see chapter 3 of10 and12),
different imaging protocols were tested with liquid or with dried
samples, facilitated by the robustness of these microorganisms
thanks to their wall. Measuring and interpreting the short and
long range forces involved in AFM indentation on microorgan-
isms such as bacteria was not straightforward13, as it required
taking into account both surface interaction forces and submolec-
ular mechanical responses (viscoelasticity, hyperelasticity, dam-
age) of the cells to external stresses or strains. The discrepancy
between sharp indentation experiments (small deformations) and
micromanipulations (large deformations) remained a source of
confusion. AFM indentation on microorganisms, such as bacte-
ria, was not straightforward13, as it required taking into account
both surface interaction forces and submolecular mechanical (vis-
coelasticity, hyperelasticity, damage) responses of the cells to ex-
ternal stresses or strains. However, some publications were able
to combine the two approaches and propose original ideas about
the double layer structure of the S. cerevisae wall14.

Mathematical models for plant cells with walls should include
not only the features of yeast, such as turgor pressure, wall ten-
sion15, but also the possibility of dynamic reorganisation of the
wall chain network (poroelasticity) and/or water flowing through
it. This could mean taking into account the complex and hetero-
geneous macromolecular structure of the wall with intertwined
glucan fibrils. Although many computational models have been
developed to describe the intricate fibre networks of planar cell
walls16,17, the dynamic reorientation of the fibres under strain
has rarely been considered in living small unicellular organisms
such as yeast. Original models for the mechanics of microcapsules
and shells that considered them as elastic membranes provided a
theoretical basis for the identification of mechanical parameters
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from single cell experiments on yeast18.

As these early models did not include the effect of turgor pres-
sure, they were not suitable for analysing large deformations19.
More recently, turgor pressure has also been introduced into such
models20–22 and compared with single cell compression on yeast
cells.

In this work, we combine plane-plane AFM compression exper-
iments of single yeast cells with a refined non-linear analysis of
force-indentation curves, based on a multiscale methodology. In
section 2 we describe the experimental methods, the AFM force
curves calibration, their filtering and correction for further analy-
sis. The force versus displacement curves were corrected by can-
tilever stiffness, filtered, and derivated to extract different char-
acteristics such as scaling law exponents, effective tension, dis-
sipative loss. This study required a quite large number of force
curves to reach a statistical relevance of the mechanical param-
eters that were extracted from them. Comparing different com-
pression velocities, we conclude that for the depth of compres-
sion performed in this study (limit of small deformations), these
cells behave essentially as elastic shells20. The strength and the
originality of our approach relies on a careful computation of the
force-displacement curve derivatives, described in section 2.4.

Thanks to a multi-scale analysis of the force curves, we demon-
strate that the force curves do not follow simple power laws
since the force curve scaling exponent αeq is not constant but fol-
lows a non-monotonous function with the compression distance.
Interestingly, this exponent crosses a maximum value at a spe-
cific distance which can be compared to a characteristic scale of
the cell wall sub-layers. Inspired from the different models pro-
posed in the literature for elastic spheres and shells, we generalize
Bonilla and co-authors approach23 by considering in section 3 the
possibility of non-integer scaling laws for the force-displacement
curves and we propose simple bi-component elastic models that
reproduce fairly well the experimental behavior. The compression
experiments were performed at different scan velocities simulta-
neously to the proliferation of yeasts, keeping the same culture
medium, we have selected for illustration here those performed in
lactate based synthetic medium. In the last section 4, we discuss
our experimental results under the light of the bi-component elas-
tic models introduced in section 3, in particular those including
a self-cancelling sub-layer, suggesting not only that the fibrillar
structure of the wall could produce its soft-glassy or power-law
behavior (nonlinear elasticity)24 but also that one of the compo-
nent of the wall (presumably the mannoprotein outer layer) could
be completely compressed to reveal the mechanical stiffness of
the underlying glucan-chitin network.

2 Materials and Methods

2.1 Yeast cell cultures and growth survey

The Saccharomyces cerevisiae strain BY4742 (WT) ((MATα;
his3∆1; leu2∆0; lys2∆0; ura3∆0)25 (Euroscarf) was used in
this study. Cells were grown aerobically at 23 oC in a syn-
thetic minimum medium (SMM): yeast nitrogen base 0.175%
(BD Difco SKU 233520) without amino-acids26, KH2PO4 0.1%
(WMR), (NH4)2SO4 0.5% (WMR), Casein hydrolysate 0.2%
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Fig. 1 (a) Plot of the biomass versus time N(t). (b) Derivative dN/dt
of the biomass. (c) log(N(t)). (d) dN(t)/N(t) = d log(N(t))/dt. Culture
medium: SMMLAC. I. Latence phase. II. Growth phase. III. Transition
phase. IV. Stationary phase.

(Merk) with sodium-L-lactate 2% (Sigma-Aldrich) and Bactopep-
tone 1% (Difco) (noted here SMMLAC medium). The choice of
synthetic media was guided by our tests in enriched media, such
as yeast extract-peptone-dextrose with lactate where we observed
a drastic reduction of the adhesion of yeast cells on poly-L-lysine
treated surfaces, probably due to the saturation of the positive
charges of this layer by negatively charged polypeptidic chains
dispersed in the culture media. The culture medium was system-
atically sterilized by autoclaving at 120oC with 1 bar pressure for
20 minutes. Three amino acids (adenine, uracil and tryptophan)
filtered at 0.2 µm were added to SSM after autoclaving.

Growth was recorded continuously with a home-designed opto-
fluidic (600 nm wavelength) batch reactor27,28. This opto-fluidic
system was calibrated at the same wavelength (600 nm) with a
Shimadzu UV-300 spectrophotometer with both 1 mm and 10 mm
cuvettes at each stage of the preparation of the yeast sample (two
precultures followed by the real time culture recording in the
batch reactor). The two precultures were respectively (i) a first
growth on solid agar gel in a petri dish, containing YPD (rich glu-
cose medium: KH2PO4 0.1% (WMR), (NH4)2SO4 0.12% (WMR),
yeast extract 1% (Difco), glucose 2% (Sigma-Aldrich) and (ii) an
incubation for 12 to 24 hours at 30oC under constant stirring of
two CFUs sampled from the first preculture (i), diluted in 4 mL
of the selected culture medium (SMMLAC). Prior to each spec-
trophotometric measure of absorbance before and after cultures,
the solution was homogenized (vortexed) for 30 s at 2100 rpm.

A typical proliferation curve recorded with the opto-fludic
batch reactor in SMMLAC is reported in Fig. 1. The different
growth phases can be distinguished from the different represen-
tations of N(t). The inflexion point of the curve N(t), corresponds
to the maximum of dN/dt (red dot in Fig. 1) marks the transition
from the growth phase II to the transition phase III. The Bound-
ary line between the phase I and II is estimated from the residues
of a linear fit of log(N(t)) versus t. The yeast samples which have
been used here were selected in the growth phase II exclusively.

2.2 Coverslip roughening and poly-L-lysine coating
Because walled cells such as yeast are non motile and do not
have an adhesion machinery equivalent to mammal cells, ad-
hesive or structured surfaces have been proposed to facilitate
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Fig. 2 (a) Schematic of a tipless AFM cantilever in contact with a sphere
(lateral view). Given the cantilever tilt angle (θ = 10◦), good yeast cell
candidates for AFM are selected close enough (typically < 28µm) to the
cantilever edge. (b) Force curves on a flat glass surface. Red lines:
loading scans, green lines: unloading scans. Scan velocity: 1 µm/s.
(c) Image of the tipless AFM cantilever with yeast cells immobilized
on a roughened glass plate coated with a poly-L-Lysine layer. (scale bar:
20µm). (d) zoom of (c) highlighting in red a round yeast cell underneath
the cantilever.

their immobilization, such as filter membrane pores29, negatively
charged groups (imide, lysine, silanes)30, microstructured PDMS
stamps31 or glycoproteins (concanavaline (ConA)32,33).

The aim of our surface treatment protocol was twofold. In a
first step the glass was grooved to prevent lateral sliding of the
yeasts with small trenches. Then the grooved glass surface was
coated with poly-L-lysine to fix the yeasts to the surface.

Glass grinding Round coverslips (diam. 18 mm, Marienfeld ref:
0111580) were first ground with a Buehler EcoMet 250 grinding
machine. A grinding disc (grit 360) was magnetically maintained
on the rotating platen. The grinding operation consisted in ap-
plying on each coverslip with thickness 1.3 to 1.6 mm, a constant
and gentle force with a finger tip for 5 minutes at 120 RPM un-
der a constant lubricating water flow. Then the coverslips were
rinsed with ultrapure water flow for several seconds, then with
ethanol. Finally, the coverslip was let to bathe in a 2% Hellmanex
(Hellma) solution overnight and rinsed in ultrapure water then
ethanol the next day.

Coverslip coating with poly-L-lysine The grooved coverslip was
plasma treated for 20 minutes to ensure the hydrophilicity of its
surface. It was positioned on the bottom glass of a 35 mm di-
ameter petridish (Fluorodish FD35-100). A drop of poly-L-Lysine
(0.01% in water - Sigma-Aldrich 25988-63-0) was deposited on
its surface to cover it almost entirely (approx. 50 µL). The sys-
tem petri+glass was incubated for at least 1h at 37◦C. All the
following steps were performed at room temperature (23◦C). The
coverslip was rinsed with a PBS solution and placed in another
petri dish filled with 3 mL of SMMLAC with the yeast cells for
AFM compression experiments.

2.3 AFM operation
AFM experiments were performed on a JPK CellHesion 200 (now
commercialised by Bruker Corp. MA - USA). Tipless HQ-NSC36
cantilevers (MikroMasch - Estonia, commercialised by Nanoand-

more) with Au/Cr coating (30-20 nm layers) were used. From
the three cantilevers (width 32.5µm, thickness 1 ± 0.5 µm), the
middle and stiffer one (B) was used for this study with nomi-
nal spring constant k=2 N/m ± (0.2 - 9 N/m), length L=90µm
and resonance frequency in air: fR = 130± 90 kHz. Flat micro-
cantilevers were chosen for several reasons: (i) to avoid twisting,
sliding or torsional effects as the cantilever surface approaches
the yeast surface, (ii) to limit off-centre shearing effects that oc-
cur when the indenter tip size is smaller than the cell size, as this
off-centre shearing produces additional shearing effects on the
cell.

AFM calibration

The calibration of the AFM tips was performed in two steps: (i)
a sensitivity and (ii) a spring constant calibration34. The sen-
sitivity step (i) was estimated by performing loading-unloading
force curves on a clean glass surface. Typical sensitivity values
were estimated for HQ-NSC36 cantilevers of 18 ± 0.5 nm/V. The
thermal noise measurement method (step (ii)) was based on the
equipartition theorem and the dynamic spring constants were cor-
rected as described in35,36 to obtain the static spring constants
(correction factor chosen for rectangular cantilevers: 0.819737).
Mean spring constants estimated in air for NSC36 flat cantilevers
were 5 N/m for tips B and 5.5± 1 N/m in liquid. Calibration of
the cantilever was repeated before each experimental sequence
(approximately 2 hours in length). The difficulty of focusing
the AFM diode laser at the edge of this smaller cantilever with
reproducibility required that the calibration be double-checked
each time. Interestingly, although the cantilever was deliberately
aimed at individual yeast cells to collect force curves, some of
them escaped the zone and instead left a measurement on the
glass surface. This provided us a few force curves on glass for
each cantilever, from which we checked and corrected, if neces-
sary, the cantilever spring constant (static spring constant).

Yeast cell imaging under the AFM cantilever

The JPK CellHesion 200 scanner head was coupled to an in-
verted microscope (Olympus IX71). Two imaging modes were
implemented on this device, a transmission mode and a reflexion
mode38. We notice in Fig. 2(c,d) that the cantilever looks as if it
were transparent, which is not true. Surprisingly, we can also dis-
tinguish the yeast bodies below the tip of the cantilever, although
with less contrast. In our setup, the light reflected from the bot-
tom of the cantilever serves as a secondary light source from
which we recover the image of the yeast cell under the cantilever
(indicated by a red arrow in Fig. 2(d)). Most correlative imaging
studies for AFM-based cell mechanics have focused on fluores-
cence microscopy39. However, the labelling of cellular compo-
nents with fluorophores often leads to artefacts, such as insta-
bility and temporal decay of the staining due to photobleaching,
limitation of the labelling to specific fractions (targeted proteins,
membrane elements, DNA...) of the cells or tissues, laser degra-
dation for longer investigations. Fluorescent staining may also
have a potential impact on the energetic metabolism of cells and
consequently on cell mechanics, which consume large amounts
of ATP40. In contrast, in this study, the cells’ state is preserved
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as much as possible during their transfert to AFM for mechanical
testing.

AFM force curve collection from living yeast samples

A sample volume of between 20 and 80 µL was pipetted from
the yeast batch reactor and diluted in a 3 mL volume of SMMLAC
culture medium to give, on average, a single yeast under the AFM
cantilever probe surface (30x30 =900 um2). This corresponds to
approximately 106 yeasts on the 9 cm2 surface of the glass cov-
erslip. It is important to note that during the growth phase most
of the cells are budding and therefore appear as doublets under
the microscope. The solution was gently stirred by pipetting
back and forth a few times before being transferred to the AFM
reservoir. The yeasts were allowed to sediment and adhere to
the coverslip surface for 10 minutes. We avoided vortexing the
cell samples for transfer to the AFM in order to keep them in a
similar environment (growth phase) as they were in the batch re-
actor, we can also note in Fig 2 small groups of cells (two doublets
could also appear under the microscope) suggesting that mother
and daughter cells remained close or in interaction for one or two
cycles.

Constant velocity Z ramps were performed with AFM, for both
loading (red line) and unloading (green line) curves without de-
lay interval (Figs 2 and 3). Note that for simplicity we will use
the term force curve in place of force-displacement curve. Six
scan velocities were used for each cell : 0.1µm/s (2), 0.5µm/s
(5), 1µm/s (5), 5µm/s (5), 10µm/s (5) and 16µm/s (5), giv-
ing a total of 27 force curves. Three separated samples were
collected from the growth phase (see Fig. 1)) giving a total of
3*13 cells, with the same velocity ramps protocol for each, that
is 3*13*27= 1053 force curves in the growth phase. This ex-
periment in SMMLAC was repeated four times, giving a total of
4*1053=4212 force curves that were corrected, filtered and anal-
ysed in this study. The sampling frequency of the force curves
was adjusted for each velocity to keep δZ close to 0.1 nm± 0.003.
This required therefore a greater sampling frequency for larger
scan velocities, from 1 kHz (0.1 µm/s) to 160 kHz (16 µm/s).
This choice was done to keep the same spatial resolution for the
force curves for the computation of their derivatives dF/dZ and
d2F/dZ2.

2.4 Force curves derivatives

The continuous wavelet transform (CWT) is a mathematical tech-
nique introduced in signal analysis in the 1980s41,42 and since
then applied in many contexts, from sound and vibrations in
physics and engineering, economics, finance, earthquakes to
music or physiological signals. With the norm L 1, the one-
dimensional wavelet transform of a signal F(x) reads:

Wψ [F ](b,s) =
1
s

∫ +∞

−∞

F(x)ψ∗
(

x−b
s

)
dx, (1)

with b the position and s (> 0) the scale parameter, ψ the
analysing wavelet, x is a dummy variable representing Z or δ ac-
cording to our interests. In the frequency domain, the expression
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Fig. 3 (a) Force curves F(Z) recorded on a yeast cell with a tipless
cantilever. (b) dF/dZ: Derivative of the force curves shown in (a). (c)
d2F/dZ2: Second order derivative of the force curves shown in (a). The
derivatives in (b) and (c) were computed from wavelet transforms of F(Z),
using different Gaussian mother wavelet widths wo (see text): 14nm for
the first derivative, 24.8nm for the second derivative. Red lines: loading
scans, green lines: unloading scans. The color and black dots correspond
to contact (Zc red), end (Ze green) and unload (Zu black) points. Scan
velocity: 1µm/s. Black lines: loading scans on glass.

of the CWT reads:

Wψ [F ](b,s) =
∫ +∞

−∞

F̂( f )ψ̂(s f )e2iπ f bd f . (2)

We compute the derivatives from the formula:

Wψ [
dF
dx

](b,s) =
1
s
Wψ ′ [F ](b,s) , (3)

Wψ [
d2F
dx2 ](b,s) =

1
s2 Wψ ′′ [F ](b,s) , (4)

We choose here the Gaussian function and its derivative for this
analysis42–44. The interest of this wavelet transform is to per-
form simultaneously the derivation of F and a filtering with a
smooth function (the mother wavelet). The wavelet analysing
window size wo is chosen properly to limit the noise introduced
by the derivation. Examples of force curve derivatives are shown
in Figs. 3 and 4.

2.5 Force curves correction with the cantilever stiffness
When the stiffness of the cantilever is not much larger that the
rigidity of the tested material, its bending also contributes to the
displacement, and it is therefore necessary to perform a correc-
tion of the force curves. Eq. (5) shown below was proposed in
previous literature pieces45 and we also provide here original
analytical expressions for the corrected force curve derivatives
(first and second derivatives). The black force curve shown in
Fig. 3(a) was recorded on glass (stiff, non deformable surface)
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with a scan velocity of 1µm/s. Except on the very first nanome-
ters after tip-surface contact, this curve is linear (the derivative of
this curve shown in Fig. 3(b) is constant). This means that the
force-deflection relation follows the Hooke’s law: Fd = k(d− d0),
where k is the spring constant of the cantilever and d−d0 its de-
flection. We keep d0 6= 0, since there may be a residual flexion of
the cantilever. The indentation or deformation δ of a soft sam-
ple upon compression with the AFM tip reads as the difference
between the cantilever displacement Z−Z0 and the relative de-
flection of the cantilever d−d0:

δ = Z−Z0− (d−d0) = Z−Z0−
F
k
. (5)

Z0 correspond to the contact point where F = 0 and δ = 0. Ex-
cept when F(Z) is linear in Z, the new coordinate δ is a nonlinear
function of Z and the transformation of F(Z) to F(δ ) is also non-
linear. Taking the derivative of Eq. (5) with F , the corrected first
derivative of F: dF/dδ is obtained:

dF
dδ

=
1

(dF/dZ)−1−1/k
. (6)

The second order derivatives d2F/dδ 2 can also be computed,

d2F
dδ 2 =

d2F/dZ2[
((dF/dZ)−1−1/k). dF

dZ

]2 . (7)

dF/dZ and d2F/dZ2 are first estimated from the experimental
force curves with the wavelet transform (section 3) choosing a
wavelet width large enough to limit the local fluctuations.

A set of uncorrected (red) and corrected (blue) force curves are
shown in Fig. 4. To limit the noise amplification due to a second
derivation, the inverse of ((dF/dZ)−1−1/k)2 was computed with
a larger analyzing window width w0 ∼ 30 nm, i.e. one fifth of the
total yeast deformation δ (∼ 150 nm) (Fig. 4(e) and (f)).

After correction, the force curves and their increase rate may
change drastically if the force derivative values become too close
to the cantilever stiffness, hence some bias can be introduced by
the correction itself. Using stiffer cantilevers implies also a loss of
sensitivity, since the cantilever deflection (range of its deforma-
tion) is inversely proportional to its stiffness. These curves were
captured on two different cells with the same cantilever (with the
same ‘static’ stiffness estimated from glass substrate ∼ 6.4 N/m).
We will further discuss the peculiarities of these force curves and
their derivatives in section 3.

3 Results

3.1 Evidence of yeast elasticity

Loading and unloading force curves collected from soft glassy ma-
terials (including living materials) are rarely superimposed, re-
flecting that a fraction of the loading (input) work W` is lost and
not recovered in the unloading (output) work Wu. The dissipation
of mechanical work can be written as the ratio11,46:

Dl =
W`−Wu

W`
(8)
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Fig. 4 Illustration of the correction of the force curves with the cantilever
deflection. Two examples of force curves collected on two different cells
of the same batch are shown in the two column panels. (a,d) F(Z) (red
line) and its correction F(δ ) (blue line). (b,e) dF(Z)/dZ (red line) and
its correction dF(δ )/dδ (blue line). (c,f) d2F(Z)/dZ2 (red line) and its
correction d2F(δ )/dδ 2 (blue line). Black lines: cantilever reference force
curves recorded on glass. d2F(Z)/dZ2 maxima are marked with filled
disks. Scan velocity: 5µm/s.
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with
W` =

∫ e

c
F̀ (δ )dδ and Wu =

∫ u

e
Fu(δ )dδ , (9)

c, e and u are the contact (red), end (black) and unloading
(green) points, marked with color dots in Fig. 3. The integrals
Wu and W`−Wu are color shaded in green and red respectively
in Fig. 5(a). Four yeast samples have been analyzed for the re-
construction of the PDF Fig.5, on the same yeast culture in SMM-
LAC collected in the growth phase. Five velocities are shown in
Fig.5(b), corresponding to different sets of force curves: 70 for
v = 0.1µm/s, 189 for v = 0.5µm/s, 187 for v = 1.0µ/s, 182 for
v = 5.0µm/s, 179 for v = 10µm/s. Note that the broader distri-
bution of Dl for the smaller velocities (0.1µm/s) is due not only
to a smaller statistics, but also because this small velocity scans
(performed first in the velocity series) are more prone to cells in-
stabilities or rearrangements when the cantilever moves toward
the cells.

The coefficient Dl measures the reversibility of the force curves;
when Dl is close to zero, the load-unload curves can be considered
as superimposed and the system behaves as symmetric. As Dl

approaches 1, all the input work is transferred to the sample and
not recovered on unloading, the process is fully asymmetric. For
mammalian cells, typical values of Dl are > 0.3 for pre-stressed
cells with high stiffness stress fibres, for less adherent unwalled
cells larger values of Dl have been estimated11. If dissipation or
loss of mechanical work is involved, the coefficient Dl is expected
to increase with scanning speed. The fact that Dl values remain
limited to 0.1 and that Dl changes little with scanning speed (see
Fig.5(b)) is strong evidence that in the small deformation regime
yeast cells behave as quasi-reversible systems with little loss of
mechanical work. This conclusion validates our choice of multi-
component elastic models in the next sections.

3.2 Litterature models for yeast compression

The force curves, collected from yeast cells with typical diameter
4-6µm, are quite different from those observed on larger eukary-
ote cells, not simply because they have a wall driven by internal
turgescence but also because they do not use focal adhesion ma-
chineries and are more sensitive to solutes and metabolites inter-
cell exchanges47. We have shown that their response to compres-
sion is quasi-elastic, for shallow deformation. Interestingly, the
ability of yeast cells to adapt to osmotic or mechanical stress is
also dependent on the available source of carbon48. A careful ex-
amination of the force curve derivatives in Fig. 4(b-f) shows that
they do not follow simple power-laws and that standard pressur-
ized shell models (including or not turgescence) would not be ef-
ficient for their fitting. Such difficulties were originally discussed
by Oliver and Pharr49 and more recently reported in23 with illus-
trations on AFM indentations of Lolium multiflorum cells (walled
plant cells) and PDMS layers.

However, even if previous theoretical models proposed so far
for spherical shape organisms compression do not reproduce
what we have observed, they nevertheless bring a theoretical
framework that guide our experiment interpretation. We report
here rapidly those which seem to us the most relevant. If the
yeast cells were made of plain and homogeneous material, the

compression force would be expressed from the Hertz theory as:

F(δ ) =
4E

3(1−ν2)

√
R0

[
δ

2

]3/2
=

4E
3(1−ν2)

R2
0

[
δ

2R0

]3/2
, (10)

R0 is the radius of the sphere before compression, ν is the Pois-
son coefficient, E is the Young modulus. ε = δ/(2R0) is the rela-
tive deformation of the sphere. The scaling exponent αeq would
be 3/2. Except in the very first part of the compression where
αeq(δ ) increases from 1 to αm, in a very limited interval of δ val-
ues, this scaling does not appear in our measures. At the very
beginning of the compression (for δ . 10nm), the force curves
could perharps be approximated by Eq. (10) and a ‘small-regime’
Young modulus could be estimated. At larger compression this
approximation is no longer valid.

The implication of different regimes was mentioned quite early
for spherical shallow shells compression. When the compres-
sion force is radially localized and points inwards, two regimes
were suggested by Landau and Liftzhitz50 and formalized by
Pogorelov51. Pogorelov demonstrated that when the force is
small, the deformation is localized near the point of applica-
tion and grows linearly with the force, whereas when the force
is large, a circular fold around the point of application appears
and the displacement becomes quadradic with the applied force
(buckling of the shell). The transition between the two regimes is
continuous52:

F ∼ Eh2

R0
δ , for δ � h ,

F ∼ Eh5/2

R0
δ 1/2, for δ � h .

(11)

More recently, Lulevich and co-authors18 proposed another
model for microcapsule deformation that includes two contribu-
tions respectively an elastic stretching energy and a bending en-
ergy. They did not consider the limit where buckling may be in-
volved. They modelled the deformation of microcapsules (radius
R0) with solid spheres (RS), and obtained the total reaction force
(load) for RS� R0:

F(ε) = λBEε
1/2 +λSEε

3 , (12)

where the two prefactors λb = π

2
√

2
h2 for the bending energy and

λS = 4πhR0 for the stretching energy, with h is the thickness of
the microcapsule, E its Young modulus, ε its relative deforma-
tion ε = δ/(2R0) scaled by the radius of the microcapsule with no
dimension, δ being the total compression displacement.

Eq. (12) provides a quantitative argumentation for the change
of the scaling exponent which could be produced by two mechan-
ical components placed in parallel (we will come back to this as-
pect in the next sections). Importantly, this calculation is correct
only in the limit of ε � 1, for the smaller ε values the 1/2 scaling
exponent should be observed, whereas for larger deformations
the scaling exponent 3 should be expected. The εco value corre-
sponding to the cross-over εco of these two regimes is estimated
from the relation:

εco =

[
(1−ν)h
2
√

2R0

]2/5
. (13)
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Lately, Vella and coauthors proposed another modelling for
pressurized (including turgor pressure) spherical shell compres-
sion20–22, based on nonlinear equations of shallow shell the-
ory53. They demonstrated both formally and numerically that the
force versus deformation crosses over between two limit regimes,
both with exponent 1:

F ∼ k1δ , for δ � h ,

F ∼ k2δ , for δ � h ,
(14)

with k1 ' π pR0/ log(2τ), k2 ' π pR0, τ = 1
2

√
3(1−ν2)pR2

0/(Eh2),
p the pressure drop.

3.3 Force curve examination and power-law identification

Definitely, standard methods, based on predefined power laws
(related to cell and indenter geometries) that were proposed for
living cells in the past decade show limitations for yeast cell com-
pression with flat cantilevers6,43,44,54–57. However, we take ad-
vantage here of our previous expertise on multi-scale analysis for
computing force derivatives and, based on analytical argumen-
tations, we generalize the MRA approach23 to design models of
minimal dimension that reproduces fairly well the force curves.

If we come back to Fig. 4, we observe two regimes in these
corrected force curves, a first regime with a fast increase of the
force derivative, corresponding to a greater curvature of F(δ )

and a second regime with a slower increase of the force deriva-
tive. Rarely, we could observe that dF/dδ converges to a hor-
izontal plateau. Interestingly, the correction of the force curves
(Eqs (5) (6) and (7)) does not cancel completely this slowing
down (Fig. 4(b,d)), the force derivative remains much below the
cantilever stiffness. There must be another mechanism, hopefully
due to the cell wall, which produces this change during the com-
pression process. We use the maxima of d2F/dδ 2 to identify nu-
merically these transitions points (filled colored disks in Fig. 4).
The value of the first derivative of the force at this transition point
corresponds to a turnover tension undergone by the cell wall be-
fore switching to a second compression regime. We will call this
quantity an effective surface tension. At larger deformation, be-
yond this transition, different mechanisms can contribute to the
slowing down of the force derivative increase; (i) a local disten-
sion of the wall fibers producing a shear thining of the wall, (ii) a
perfusion of liquid out of the cell that could deflate progressively
the cell and decrease its internal pressure (poro-elasticity of the
cell wall). All these processes occur beyond a given deformation,
which however remains below the wall thickness typical value
(100 to 150 nm). The position of this transition δT will be used
together with the force derivative dF/dδ |δT

as mechanical mark-
ers for these cells. Noticeably, these experiments were performed
in the very small deformation limit, purposely to avoid any large
scale rupture and to keep the cells alive. We define dF/dδ |δT

as
an effective tension of the cell wall at which this switch occurs.

The log(F) versus log(δ ) plot shown in Fig. 6(d) highlights the
mechanical transition suggested in previous section. Clearly, it
is necessary to characterize the local slopes of these curves and
their change with the deformation variable δ . Assuming that the
force scales in a finite range of δ as: F(δ ) ∝ δ αeq , then the local
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Fig. 6 Extraction of the αeq exponent values from force curves. (a) Force
curves F(δ ), after correction for cantilever deflexion. (b) dF/dδ . (c) Ra-
tio F(δ )/(dF/dδ ) (Eq. (16)). (d) log10 F vs log10 δ . (e) αeq(δ ) computed
from linear fitting the ratio F(δ )/(dF/dδ ). (f) αeq(δ ) computed from log-
log fitting F(δ ). Scan velocity 1µm/s. The points corresponding to the
local maxima of αeq(δ ) and d2F/dδ 2 are reported with red stars and blue
circles respectively.

derivative of F should scale as dF/dδ ∝ αeqδ αeq−1, which gives a
simple scaling law for F/(dF/dδ ):

F/(dF/dδ ) = α
−1
eq δ . (15)

It can be easily deduced that:

αeq = (dF/dδ )δ/F . (16)

We have therefore two possibilities for computing the local expo-
nent αeq, (i) fitting the log(F) versus log(δ ) curves or (ii) fitting
F/(dF/dδ ) versus δ curves. Both methods were tested in paral-
lel. The second representation offers the advantage to perform
a linear fit with equally spaced δ data points, giving the same
weight to all the points. For the log(F) versus log(δ ) fits, we had
to perform an interpolation of the logδ points to get them equally
spaced.

If there exists a range of scale in which the force curve F(δ )

scales with a single exponent, as suggested by the experimen-
tal bi-logarithmic force curves (Fig. 6(d)), we should get this
exponent value with either of these fitting procedures. How-
ever, comparing the αeq(δ ) plots obtained with these two meth-
ods (Fig. 6(e,f)), we observe that the bilogarithmic fits give much
more noisy estimations than the F(δ )/(dF/dδ ) ratio.

We have therefore preferred the extraction method based on
the F(δ )/(dF/dδ ) ratio for its greater robustness. Interestingly,
because dF/dδ is also computed through the wavelet transform
filtering (Eq. (3)), it smooths the computation of F/(dF/dδ ).

1–16 | 7



Fig. 7 Schematic of the system with two mechanical components (1)
and (2) in series (a) and in parallel (b).

The shape of αeq(δ ) is very interesting, since it highlights the fact
that αeq is not constant; in a first stage αeq increases sharply from
1 and reaches a plateau (more or less flattened) and in a sec-
ond stage it decreases more softly. αeq(δ ) is asymmetric, the two
regimes which are involved before and after the transition are
therefore expected to be of different nature. We note δαm the ab-
scissa are which αeq(δ ) is maximum. It can be estimated from
each force curve, in Fig. 6(e), its position is marked by red stars
on 5 consecutive force curves recorded from the same cell with
the same scan velocity (1µm/s). The local maxima of d2F/dδ 2,
δT are also marked by blue circles. These two transition points
are close to each other, but we cannot conclude here that they
overlap.

We have pointed out three types of models in section 3.2,
one model (Eq. (10)) with a constant exponent, one model with
two exponents giving the force as the sum of two power laws
(Eq. (12)) and two models with two limit regimes with a dif-
ferent effective scaling exponent at very small deformation than
at large deformation (Eqs (11) and (14)). Surprisingly, the force
curves obtained from these compression experiments are very dif-
ferent from these theoretical predictions. However, if we exam-
ine closely the predictions of Vella and co-authors20–22, we find
that they demonstrate the occurrence of two distinct power law
regimes with the same exponent 1, which would suggest that in
the intermediate regime the effective exponent α is no longer 1
and that it must make a non-linear incursion between these two
limits. This model is actually the closest representation of our
experimental configuration, since it considers not only the planar
compression but also the pressurisation of the shell. It would be
interesting to calculate the αeq introduced here from their simu-
lated data and compare it with our experimental estimates.

Here we design multi-component elastic systems, in line with
Bonilla and co-authors23 multi-regime analysis (MRA) elaborated
from a general multi-resistor mechanical system for fitting the
experimental data. Two configurations are considered, a system
with two components in series (Fig. 7(a)) and a system with two
components placed in parallel (Fig. 7(b)).

3.4 Association of two standard elastic elements

3.4.1 Parallel association

The ‘parallel’ system involves two mechanical components placed
in parallel (Fig. 7(b)). Each element follows a generalized stress-
to-strain relation. We have:

F1 = R1

(
δ

`1,0

)α1
,

F2 = R2

(
δ

`2,0

)α2
,

F = F1 +F2 , δ = δ1 = δ2 .

(17)

F is the compression force, R1 and R2 are scaling factors with the
dimension of forces, `1,0 and `2,0 are scaling lengths, δ1 and δ2

are the displacement of each component. δi = 0 when F = 0. We
have introduced factors Ri and `i,0, i = 1,2 for each component,
not only to keep the homogeneity of Eqs (17) whatever the expo-
nents α1 and α2, but also to introduce the characteristic size and
strength of each component.

The computation of dF/dδ is immediate:

dF
dδ

=
dF1

dδ
+

dF2

dδ
=

α1

δ
F1 +

α2

δ
F2 . (18)

αeq introduced in Eq. (16) can be computed as:

αeq =
α1F1 +α2F2

F1 +F2
=

α1 +α2F2/F1

1+F2/F1
. (19)

Given that

F2

F1
=

R2(`1,0)
α1

R1(`2,0)α2
δ

α2−α1 = Aδ
α2−α1 with A =

R2(`1,0)
α1

R1(`2,0)α2
, (20)

we obtain:

αeq =
α1 +Aα2δ α2−α1

1+Aδ α2−α1
. (21)

If we assume that 1 ≤ α1 < α2, from Eq. (21) we get the limit
values:

lim
δ→0

(αeq) = α1 and lim
δ→+∞

(αeq) = α2 . (22)

With the parallel association of two mechanical components, αeq

increases monotonously from the smallest exponent (α1) to the
largest one (α2) (see Fig. 8(d)).

3.4.2 Series association

The ‘series’ system is the sum of two mechanical components
placed in series (Fig. 7(a)). The generalized stress-to-strain re-
lations are:

F1 = R1

(
δ1
`1,0

)α1

F2 = R2

(
δ2
`2,0

)α2

F = F1 = F2 , δ = δ1 +δ2

(23)

The parameters R1, R2, `1,0 and `2,0 are defined as above for the
parallel model. F is the compression force.

From Eqs (23), we compute the total displacement δ and the
derivative of the force dF/dδ :

δ = δ1 +δ2 = `1,0

[
F
R1

]1/α1

+ `2,0

[
F
R2

]1/α2

. (24)
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Fig. 8 Force curves predicted by the parallel model Eq. (17). We take
α1 = 1.2, R1 = 8, `1,0 = 5, and α2 = 1.8, R2 = 0.08, `2,0 = 1, to mimick
what is observed in experimental force curves. (a) Force displacement
curves. (b) Derivatives of the force curves. (c) Force displacement curves
in log-log scales. (d) αeq(δ ) curve computed from the local slope of (c).
black lines: component (1), blue lines: component (2), red lines: sum of
components.

and
dF
dδ

= F/

[
`1,0

α1

(
F
R1

)1/α1

+
`2,0

α2

(
F
R2

)1/α2
]

(25)

αeq can then be computed from Eq. (15):

δ

αeq
=

F
dF
dδ

=
δ1

α1
+

δ2

α2
, (26)

If we replace δ1 = δ −δ2, we get the relation:

1
αeq

=
1

α1
+

δ2

δ

(
1

α2
− 1

α1

)
. (27)

It is possible in that case of series association to express δ2/δ in
function of F:

δ2

δ
=

`2,0

(
F
R2

)1/α2

`1,0

(
F
R1

)1/α1
+ `2,0

(
F
R2

)1/α2
, (28)

or equivalently

δ2

δ
=

1

1+ `1,0
`2,0

(
1

R1

)1/α1
(

1
R2

)−1/α2
F(1/α1−1/α2)

. (29)

Assuming that 1 ≤ α1 < α2, then 1 ≥ 1/α1 > 1/α2; or 1/α1−
1/α2 ≥ 0. We can calculate the following limits:

If F → 0 then
δ2

δ
→ 1 and

1
αeq
→ 1

α2
, (30)
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Fig. 9 Force curves predicted by series model Eq. (23). We take α1 = 1.2,
R1 = 8, `1,0 = 5, and α2 = 1.8, R2 = 0.08, `2,0 = 1, to mimick what is
observed in experimental force curves. (a) Force displacement curves.
(b) Derivatives of the force curves. (c) Force displacement curves in
log-log scales. (d) αeq(δ ) curve computed from the local slope of (c).
black lines: component (1), blue lines: component (2), red lines: sum of
components.

If F →+∞ then
δ2

δ
→ 0 and

1
αeq
→ 1

α1
. (31)

In the example of Fig. 9(d), we observe that αeq decreases
monotonously from the largest exponent (here α2) to the small-
est one (α1). With the series mechanical model of Eq. (23), this
decrease of αeq is observed for any couple of exponents (α1,α2).
We can conclude that this model cannot either reproduce the bell
shape of αeq(δ ) extracted from the experiments (such as those of
Fig. 6(e)).

3.5 Self-canceling component

The previous parallel and series two mechanical component sys-
tems are not adequate for reproducing the experimental αeq

curves. We were therefore interested in a component that could
not be deformed beyond a thickness h (we take h = 30 nm as ex-
emple in Fig. 10). In other words, when the displacement δ gets
close to the value h, the force diverges and the corresponding
mechanical component no longer deforms:

F(δ ) = R
[

δ

`0

]α 1
h−δ

, for δ < h . (32)

Mathematically speaking F can be expressed in the sense of
distributions as:

F(δ ) = F
[

δ

`0

]α 1
h−δ

[H(δ )−H(δ −h)] , (33)

where H(δ ) is the Heaviside function. This expression is more
rigorous from a mathematical point of view, particularly with re-
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Fig. 10 Force curves computed for a single self-cancelling component
Eq. (32). α = 1.2, R = 8, `0 = 5, h = 30. (a) Force displacement curves.
(b) Derivatives of the force curves. (c) Force displacement curves in
log-log scales. (d) αeq(δ ) curve computed from Eq. (35) (black line) and
from the local slope of (c) (red dashed line).

gard to discontinuity points of the function δ and/or its successive
derivatives (δ = 0, δ = h). However, its use leads to more complex
calculations, especially with its successive derivatives and with its
logarithm, which require Cauchy principal values (see chap. 4
of58). We will therefore restrict the following calculations to the
case where δ ∈]0,h[, for the sake of simplicity.

The first derivative of F reads:

dF
dδ

=
αh+(1−α)δ

(h−δ )δ
F . (34)

From Eq. (16), we get the relation for αeq:

αeq =
αh+(1−α)δ

h−δ
. (35)

and for the limits at the edges of the interval ]0,h[

lim
δ→h−

(αeq) = +∞ , lim
δ→0+

(αeq) = α . (36)

We observe that the plot of αeq versus δ1 in Fig. 10(d) diverges
when δ → h−, in the same way as F(δ ) and dF/dδ (δ ). This self-
cancelling mechanical component is particularly interesting in a
formal aspect since if we place it in series with another compo-
nent, after a given deformation its should no longer contribute to
the mechanical response, whereas if we place it in parallel with
another component it should impede a further compression for
the whole mechanical association. In the first case, it ‘disappears’
from the response and in the second case it monopolizes the me-
chanical response.

We discuss the parallel association of two elastic components in
the supplementary ESI file † (Section 1.2) and conclude that this

parallel association of a self-cancelling element with a nonlinear
elastic component cannot reproduce what has been observed in
our single yeast cell compression experiments. We focus here on
the more interesting case of series association.

3.5.1 Self-canceling element in series

We consider now the association in series of a self-cancelling el-
ement with a standard nonlinear elastic mechanical component.
We replace the first relation of Eq. (23) by a self-cancelling ele-
ment and we get:

F1(δ1) = R1

[
δ1
`1,0

]α1 1
h−δ1

, for δ1 < h

F2(δ2) = R2

[
δ2
`2,0

]α2
, for 0≤ δ2 ,

F = F1 = F2 , δ = δ1 +δ2 .

(37)

The first derivatives of F reads:

dF
dδ1

=
R1

`α1
1,0

[
δ

α1−1
1 (α1h+(1−α1)δ1)

(h−δ1)2

]
=

(
α1

δ1
+

1
(h−δ1)

)
F

(38)
and

dF
dδ2

=
R2

`α2
2,0

[
α2δ

α2−1
2

]
=

α2

δ2
F . (39)

From Eq. (16) and previous Eqs (38) and (39), we can obtain:

αeq =
δ

F
dF
dδ

=
δ1 +δ2
δ1

α1+δ1/(h−δ1)
+ δ2

α2

, (40)

with δ = δ1 +δ2, δ1 ≤ h.

Importantly, in the limit of δ →+∞� h, δ1 is bounded by h and
δ = δ1 + δ2. It corresponds to δ2 → +∞, then αeq ∼ δ2

δ2/α2
= α2.

Therefore αeq → α2 when δ → +∞, independently of α2 > α1 or
α2 < α1.

The limit for δ → 0, δ1 � h and δ1
h−δ1

“small”, as compared to
α1:

αeq ∼
δ1 +δ2
δ1
α1

+ δ2
α2

=
1+ δ2

δ1

1
α1

+ δ2
α2δ1

. (41)

In the limit δ → 0, either δ2/δ1→ 0 and then αeq→ α1 or δ1/δ2→
0 and then αeq→ α2.

The transition regime is obtained when intermediate values of
δ1 become close to h and δ = δ1 + δ2 > h remains finite; we can
write δ1 = h(1−ξ ) with ξ � 1 and δ = δ1+δ2 = h−hξ +δ2. From
Eq. (40) we get:

αeq =
h−hξ +δ2
h(1−ξ )

α1+(1−ξ )/ξ
+ δ2

α2

∼ α2

(
δ

δ −h

)
when ξ → 0 . (42)

It can be noted that when δ → h+ (δ1 ∼ h and δ2 → 0+), αeq

increases rapidly.

In Fig. 11 we use α1 = 1.2 and α2 = 1.8, as with previous two-
mechanical component systems. With the introduction of the self-
cancelling element, we observe a similar behavior as the one ob-
served on experimental force curves. The local exponent αeq(δ )

goes through a maximum value αm for δαm , and the position of
this maximum is not precisely h but is slightly larger than h. Again
this is only an example for which we have chosen realistic values
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Fig. 11 Force curves computed for a series association of a self-cancelling
component and a nonlinear elastic component Eq. (37). α1 = 1.2, R1 =

8, `1,0 = 5 (black lines) and α2 = 1.8, R2 = 0.08, `2,0 = 1 (red lines),
h = 30 nm. (a) Force displacement curves. (b) Derivatives of the force
curves. (c) Force displacement curves in log-log scales. (d) αeq(δ ) curve
computed from Eq. (40) (green dotted line) and from the local slope of
(c) (red line).

for α1, α2 and h. The asymmetry of the αeq(δ ) curves is well re-
produced also, and from the range of δ values reported here we
may anticipate that it will converge to the exponent α2 of the sub-
layer (2). We can also conclude that the fact that one of the layer
introduces a strong nonlinearity in the compression response of
the whole system that we would never obtain by a simple combi-
nation of standard power-law mechanical components. The real
situation is probably more complex than what we have described
in Eq. (37), however it highlights the possibility to use these com-
pression measures not only to validate the existence of mechan-
ical sublayers of the YCW with very different behaviors but also
to consider that one of the layer could undergo a drastic change
in its response, leading to highly nonlinear behavior, where its
original scaling law would break. The scale of the transition phe-
nomena observed in our AFM experiments could correspond the
compression limit value of the YCW outer layer.

4 Discussion

4.1 About experimental investigations
The difficulty of the experimental investigations reported in

this paper must first be emphasised. One of the aims of this
research is to analyse long-term cell proliferation processes and
their relationship to cell mechanics. It should be noted that long-
term cultures are not straightforward, such very long experiments
were difficult to perform without encountering unpredictable per-
turbations (spoilage of the samples by environmental agents, tem-
perature drifts of the room air conditioning, temperature instabil-

ities, tubing leaks, evaporation, contamination, loss of computer
coupling with the system camera). Considering that each prolif-
eration required a day of pre-culture, the total duration of a single
run could reach about 100 h.

The AFM measurements were also very time-consuming, as the
collection of force curves could not be automated because cells
sometimes escaped from the cantilever. Yeast cells are very small,
much smaller than most eukaryotic cells that are typically char-
acterised mechanically with this nanomechanical tool. AFM has
a very high sensitivity and can therefore detect even minute per-
turbations. The yeast cells are not adherent cells, their rounded
shape makes their adhesion to a sticky layer more unstable, the
experiments performed at low speed (100 nm/s) often implied a
small drift or rocking of the cells that we could not analyse prop-
erly (Fig. 5(b)).

This work focused on the global compression of yeast cells,
which had to remain sufficiently stable in their position to allow
measurements to be taken. The valid measurements were not
immediately apparent from a visual inspection of the recorded
signals, but only after calibration and analysis. This may explain
why at least four runs for each condition were required to col-
lect two complete experimental runs for each choice of culture
medium.

4.2 Comparison of d2F/dδ 2 and αeq(δ ) curves

In this paragraph, we compare the plots of d2F/dδ 2 and αeq(δ )

and in particular their respective curves and maxima.
In most force curves recorded during AFM compression of sin-

gle yeast cells, we observed that the curvature of the first order
derivative of the force changes from positive below ∼ 50 nm to
negative above (Fig. 12(b)), corresponding to a local maximum
of d2F/dδ 2 (Fig. 12(d)).

Remarkably, this transition occurs in the vast majority of flat
cantilever AFM compression experiments on yeast cells, indepen-
dent of culture media and scan velocities. The same is true for
the shape of the αeq(δ ) curves, which does not change much with
scan velocity. These observations will allow us, in the following,
to average the αeq(δ ) curves in order to minimise their noisy fluc-
tuations.

Moreover, this local maximum of d2F/dδ 2 also seems to corre-
spond to the local maximum of αeq(δ ) (see Figs 6(b) and 12(e,f)).

Fig. 12(f) compares the profiles αeq (panel (e)) and the second
derivative of the force d2F/dδ 2 (panel (d)) as functions of δ for
the same experiment as that shown in Fig. 6, for three different
scan velocities (500, 1000 and 5000 nm/s).

We can observe that the detection of the local maxima of
d2F/dδ 2(δ ) is strongly impaired and biased by the fluctuations
produced by the derivation method combined to the intrinsic data
noise, the black empty circles (maxima of d2F/dδ 2(δ )) are sys-
tematically slightly larger than the red stars (maxima of αeq(δ ))
in Fig. 12(e).

Assuming the weak dependence of the curves d2F/dδ 2(δ ) and
αeq(δ ) on the scan speed, we compute their averages. αeq(δ ) is
plotted a with thicker orange line in Fig. 12(e) and d2F/dδ 2(δ )

is plotted with a thicker orange line in 12(d). Finally, αeq(δ ) and
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Fig. 12 Analyzing the change of the power law exponent αeq with pa-
rameter δ . (a) Corrected force curves F(δ ). (b) dF/dδ . (c) Ratio
F(δ )/(dF/dδ ). (d) Second derivative of the force curve d2F/dδ 2. (e)
αeq(δ ) computed from linear fitting the ratio F(δ )/(dF/dδ ). (f) Compar-
ison of the averaged αeq(δ ) (blue line) and d2F/dδ 2 (orange line) curves.
Scan velocities (5 force curves for each): 500 nm/s (green lines), 1000
nm/s (read lines) and 5000 nm/s (blue lines). The averaged curves are
plotted with thick orange lines in (b), (d) and (e). The points corre-
sponding to the local maxima of αeq(δ ) and d2F/dδ 2 are reported with
red stars and black circles respectively.

d2F/dδ 2(δ ) are plotted together in Fig. 12(f).
It can be seen that the averaging of the αeq(δ ) curves recorded

for different speeds reduces the fluctuations, unlike the averaging
of the d2F/dδ 2(δ ) curves. Nevertheless, the difficulty remains in
correctly identifying the maxima of αeq(δ ).

To solve this issue, we introduce an analytical function Φ(δ )

that facilitates this identification (dashed black line plotted in
Fig. 12(e)). The definition and illustration of Φ(δ ) can be found
in the electronic supplementary information (EIS) file†: section
1.1:Modelling and fitting αeq(δ ) curves. This function Φ(δ ) is a
sum of two well-documented functions, f (δ ) and g(δ ), and is
used as a support for the local maximum of the αeq identifica-
tion; it is not intended to have any mechanical meaning here.
The black dashed line in Fig. 12(e) is calculated by fitting the
mean αeq(δ ) curve (thick orange line) with Φ(δ ). The local maxi-
mum is then estimated numerically from the fitted function Φ(δ ).
Once the δ position δαm corresponding to the maximum of αeq

has been estimated, δαm and αm are stored and the corresponding
force derivative dF/dδ |αm is interpolated from the mean curve
dF/dδ as a function of δ and stored.

Another technique for estimating the local maximum of αeq is
proposed here. To do this, we analytically derive αeq, defined in
eq.(16), as a function of δ . This is easy to find:

dαeq

dδ
=

αeq

δ
−

α2
eq

δ
+

δ

F
d2F
dδ 2 . (43)
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Fig. 13 Comparison of αeq(δ ) (in blue) with d2F/dδ 2 (in orange) curves
for (a) the numerical data of the previous self-canceling element in series
illustrated in Fig. 11 and for (c) the experimental data illustrated in

Fig. 6. Comparison of αeq
δ
− α2

eq
δ

(in blue) with d2F
dδ 2

δ

F (in orange) curves
for (b) the numerical data of the previous self-canceling element in series
illustrated in Fig. 11 and for (d) the experimental data illustrated in
Fig. 6.

And when
αeq

δ
−

α2
eq

δ
=

δ

F
d2F
dδ 2 , (44)

then dαeq
dδ

= 0.
Previous equation (44) can allow to estimate graphically the co-
ordinates of local maximum of αeq(δ ): δαm and αm. This pro-
cedure was applied first to the numerical data of the previous
self-canceling element in series illustrated in Fig. 11 and then to
the experimental data illustrated in Fig. 6.

The results for both cases are shown in Fig. 13(b) and (d),
where the two curves (αeq −α2

eq)/δ and d2F
dδ 2

δ

F are plotted as a
function of δ , respectively. It can be observed in Fig. 13(b) and
(d) that these curves intersect at a point whose abscissa is close to
that of the maximum of αeq. The fact that the two curves intersect
at a point with an abscissa close to the maximum of αeq reinforces
our approach of modelling the indentation force as a function of
δ by a power law with a non-constant exponent that depends on
δ . Finally, from these observations, we can conclude to a first
approximation that the two points δT and δαm (corresponding re-
spectively to a local maximum of d2F/dδ 2(δ ) and αeq(δ )) can be
considered as similar and that we can choose either method (sec-
ond derivative of the force or calculation of the αeq(δ ) curve) to
identify them from the force curves.

This is an important clue for understanding how the YCW struc-
ture changes at δαm . From our discussion above, we can consider
the value δαm as a transition point where the wall tension increase
slows down. This behavior must be related to a switch in the wall
structure, that reverses its behavior (maximum of d2F

dδ 2 ). Imag-
ing the different components of the YCW, concomitantly to the
progression of the cells in the cycle would help solve this issue.
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Several attempts have been published in the literature to stain the
wall components. One recent publication59 validates Trypan Blue
as relevant stain for chitin, glucans and other molecules specific
to plant cell walls, as its spectral properties are suited for confocal
microscopy. However, performing these characterizations would
require specific labelling of the cells and multiple washings of
the sample that alter their proliferation, which are not compati-
ble with an in vivo culture that preserves the yeast proliferation
stages.

4.3 Statistical distributions of the mechanical parameters

We collect in Fig. 14 the δαm , αm and dF/dδαm distributions
computed from yeast cells compression in SMMLAC medium in
the growth phase (exponential growth). To group the AFM se-
ries depending on the stage of proliferation, we analyzed the
proliferation curves and their derivatives with standard theoret-
ical growth models such as Verhulst, Gompertz or rational frac-
tions27.

Interestingly, the occurrence of a maximum of αeq(δ ), is ob-
served independently of the stage of growth, however the me-
chanical parameters may change with the growth stage27 (data
not shown here). In the SMMLAC medium we observe in Fig. 14
that δαm corresponding to the maximum values αm remains in
the interval from 30 nm to 80 nm. We also observe that statisti-
cally, the greater αm values occur preferentially for larger δαm and
larger dF/dδαm . If we consider that this increase of αeq during
the first part of the compression experiment corresponds to the
self-cancelling of one part of the YCW which reaches its compres-
sion limit, we could conclude that the stiffer cells with the largest
effective tension could sustain greater compression forces. How-
ever, it is important to note that the range of δαm values rarely
extends beyond 100 nm, as if another deformation mechanism
(the compression of the second sublayer for instance) would be
systematically involved to release the mechanical stress and re-
verse the increase of the exponent αeq.

4.4 Experimental evidence for YCW multilayered structure

Clearly, in this study we confirm that the non-monotonous varia-
tion of αeq with δ curves cannot be reproduced by spherical shell
compression models; the composition, the fine structure of the
wall can no longer be ignored. Yeast cell growth relies on an
impressive mechanical wall machinery. These cells can support
plastic deformations above a certain stress threshold, involving
plastic components that would allow much larger deformations
under stress60. More importantly, depending on their stage of
growth, YCWs can become thinner and softer to facilitate their
local stretch. Even if this softening is confined to a small fraction
of the wall area, when these cells are compressed, these zones
are likely to be prone to plastic deformation and failure. These
phenomena have previously been reported4, and indeed by en-
dowing their weaker and softer wall components with the ability
to fluidise, yeast cells could become more resilient in critical en-
vironments.

Knowing the composition of the YCW and its multilayered
structure is therefore essential for interpreting our measurements.
The β -1,3 glucan-chitin complex is the major constituent of the
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Fig. 14 Probability density functions computed from force curves com-
pression of yeast cells in SMMLAC. (a) PDF of δαm . (b) Scatter plot of
dF/dδαm versus δαm . The size of the circles is proportional to δm. (c)
PDF of αm. (d) PDF of dF/dδαm . 29 cells (giving a total 29*15= 435
force curves) have been selected from the growth phase to reconstruct
these histograms.

inner wall. Chitin and β -1,6 glucans are minor components.
Chitin is essentially a cross-linker of β -1,3 glucans and contributes
to the insolubility of the fibres and β -1,6 glucans link the compo-
nents of the inner and outer walls. On the outer surface of the
wall we find mainly mannoproteins, which are extensively O- and
N-glycosylated. Their dense packing limits the permeability of the
wall to solutes. However, they are not as highly cross-linked as
other glucan-based polymers of the wall and give the outer layer
of the YCW greater plasticity or deformability. This outer layer
of mannoproteins could play the role of a self-cancelling layer as
proposed in our two-layer elastic model. In particular, changes
that occur in the nanomechanical properties of the YCW, such as
its tension, could be explained by the nature and complexity of
the cross-linking network between β1-6-glucans, mannans and
chitin32,61–63 and not simply by the percentage of each of these
polymers.

Lactate, used in this study is a non-fermentable carbon source,
and in this particular situation the hexose phosphates required
for cell wall biosynthesis must be produced by the inverse process
of glycolysis, gluconeogenesis, which is a more energetically de-
manding process. The growth rate is significantly reduced com-
pared to other fermentable carbon sources, and moreover, with
the lactate carbon source, less carbon source can be devoted to
cell wall biosynthesis, resulting in a thinner YCW with a sim-
pler architecture (less reinforcement by β -1,3-glucan cross-links
in particular and β -glucan and chitin proportion dramatically re-
duced64). The comparison of the YCW tension evolution with
proliferation stages will be examined in a forthcoming paper65.
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4.5 Taking modelling further: future developments

The two-component mechanical models that we have proposed
here provided a quite satisfactory support for explaining which
mechanism could produce the force curves that were recorded
during compression of isolated yeast cells by a flat cantilever. One
element that plays a key role in this respect is what we have called
the ‘self-cancelling’ element, which describes a highly non-linear
and sudden change close to a given distance (h). Other mathe-
matical forms could have been proposed, we do not argue that
this formal model is mechanically relevant, but that it can repro-
duce in a mathematical sense what happens in the experiments.
There is definitely a regime transition during compression that
can be interpreted as a gradient in the composition and/or struc-
ture of the cell wall. We do not have the means to carry out
further microscopic characterisation of YCWs, and we hope that
our demonstration will stimulate further work.

A theoretical aspect that we have chosen not to discuss in detail
here, because it would have required much more mathematical
and technical development, concerns the possibility of modelling
the cell wall as a mechanical component with continuously vary-
ing mechanical parameters, for example with R(δ ) or α(δ ) forms.
These functions are not simple constructions, since they challenge
the foundations of convolution integrals, with mechanical kernels
that would no longer be invariant with deformation (Volterra in-
tegrals). Since we limited our experiment to very small defor-
mations, we believe that our hypothesis of kernel invariance is
correct.

The advantage of the simple two-component models proposed
here is that they can be straightforwardly implemented on com-
puters to identify mechanical parameters such as Ri, `i,0 to com-
pare different yeast mutants through their mechanical response
to compression. A generalisation of this two-layer elastic model
to an n-layer model with n > 2 can be done in the same line as
Bonilla et al.23, as a first step towards a continuous model with a
function α(δ ).

A complete mechanical model that takes into account the fine
fibrillar structure of the wall should include a network of cross-
linked elastic elements with a predefined geometry (random ori-
entation, hierarchical, periodic organisation) for each sublayer,
and the possibility of cross-linking between the different layers.
Pieczywek and co-authors16 give a brief review of the ongoing
research on numerical models that have been constructed so far,
and highlight important developments that could be made to in-
clude molecular ingredients for cell wall plasticity, elasticity, soft-
ening or loosening. Furthermore, the dynamic spatio-temporal
organisation of the cell wall component during growth or its
degradation remains a challenge for even the most sophisticated
modelling techniques. Nevertheless, phenomenological models
such as those proposed here can be constructed to approach the
fascinating question of the real-time adaptation of a living walled
unicellular organism to compressive strain.
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