

Quantum cascade lasers monolithically integrated on germanium

K. Kinjalk, A. Gilbert, A. Remis, Z. Loghmari, L. Cerutti, G. Patriarche, M. Bahriz, Roland Teissier, A. Baranov, J. Rodriguez, et al.

► To cite this version:

K. Kinjalk, A. Gilbert, A. Remis, Z. Loghmari, L. Cerutti, et al.. Quantum cascade lasers monolithically integrated on germanium. Optics Express, 2022, 30 (25), pp.45259. 10.1364/OE.472473. hal-04260106

HAL Id: hal-04260106 https://hal.science/hal-04260106

Submitted on 26 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Quantum cascade lasers monolithically integrated on germanium.

3 K. KINJALK^{1*}, A. GILBERT¹, A. REMIS¹, Z. LOGHMARI,^{1,2} L. CERUTTI¹, G.

4 PATRIARCHE³, M. BAHRIZ¹, R. TEISSIER,^{1,2} A.N. BARANOV¹, J.-B.

5 RODRIGUEZ¹ AND E. TOURNIE¹

6 ¹IES, University of Montpellier, CNRS, Montpellier, France

7 ²Present address: MIRSENSE, Montpellier, France

8 ³C2N, CNRS, Univ. Paris-Saclay, Palaiseau, France

9 *kumar.kinjalk@ies.univ-montp2.fr

10 Abstract: Silicon (Si) photonics can have a major impact on the development of mid-IR 11 photonics by leveraging on the reliable and high-volume fabrication technologies already 12 developed for microelectronic integrated circuits. Germanium (Ge), already used in Si 13 photonics, is a prime candidate to extend the operating wavelength of Group IV-based photonic 14 integrated circuits beyond 8 µm, and potentially up to 15 µm. High performance quantum 15 cascade lasers (QCLs) and interband cascade lasers grown on Si have been demonstrated, 16 whereas no QCLs monolithically integrated on Ge have been reported yet. In this work, we 17 present InAs-based QCLs directly grown on Ge by molecular beam epitaxy. The lasers emitting 18 near 14 μ m exhibited threshold current densities as low as 0.8-0.85 kA/cm² at room 19 temperature.

© 2022 Optica Publishing Group under the terms of the Optica Publishing Group Open Access Publishing
 Agreement

22 1. Introduction

23 Mid-infrared (mid-IR) integrated photonics is expected to provide key advances for the 24 demonstration of systems on chip. The main foreseen applications are free space optical 25 communications and mid-IR spectroscopy sensing with portable and cost-effective systems. 26 Different solutions are currently explored for the development of integrated mid-IR platforms, 27 based on chalcogenide glasses thanks to their wide mid-IR transparency window [1], or III-V 28 materials with direct integration of quantum cascade lasers (QCLs) [2] or interband cascade 29 lasers [3]. Silicon (Si) photonics can have a major impact on the development of mid-IR 30 photonics by leveraging the reliable and high-volume fabrication technologies already 31 developed for microelectronic integrated circuits [4]. Interestingly, germanium (Ge), already used in Si photonics, is a prime candidate to extend the operating wavelength of Group IV-32 33 based photonic integrated circuits beyond 8 μ m, and potentially up to 15 μ m [5]. Furthermore, 34 Ge benefits from a strong third-order nonlinearity which can also be advantageously exploited 35 for the development of active devices [6]. In recent years, the development of a photonic 36 platform based on Ge or Ge-rich SiGe alloys and dedicated to long mid-IR wavelengths has 37 witnessed a burst of research activity [7], which encourages the integration of new devices, 38 especially laser sources. Quantum dot lasers emitting at 1.3 µm grown on Ge have been reported 39 [8]. In this work, we present long-wavelength InAs-based QCLs directly grown on Ge by 40 molecular beam epitaxy (MBE).

41 2. QCL fabrication

Monolithic integration of III-V devices on Ge is concerned by the same problems as the direct
 growth of these materials on silicon. The device performances are strongly affected by the
 different crystal structures of the III-V compounds and group-IV semiconductors, which results

45 in the formation of anti-phase domains (APD) with opposite polarities within the III-V material 46 [9]. The boundaries between these domains with inverted crystallographic orientation create 47 parasitic current channels that shorten the active region of the devices [9]. Another issue is the 48 large lattice mismatch between Ge and the materials used in mid-IR photonics which reaches 49 7% in the case of InAs- and GaSb-based structures. This mismatch is released through the 50 generation of dislocations that can thread through the heterostructure and degrade the photonic devices grown on the mismatched substrate [8]. Our previous results showed however that 51 52 InAs/AISb QCLs grown on Si were not largely concerned by the above-mentioned problems. 53 Performances of the devices emitting at 11 [2] and 7.5 μ m [10] were similar to those of their 54 counterparts grown on native InAs substrates. The first QCLs on Si were grown on substrates 55 with a 6° cut, which favored a growth mode that provided domination of one of the crystallographic polarities [2]. The impact of the remaining threading dislocations was probably 56 partially compensated for in these devices by the decreased interface roughness provided by 57 58 the employed growth mechanism, resulting in a higher QCL gain. In the next work, an on-axis 59 (001) Si substrate was used for growth which was initiated by a specially developed procedure 60 aimed at annihilation of APDs in a buffer layer, preventing their penetration into the OCL active 61 zone [10]. The density of the threading dislocations in these wafers grown on Si reached 10^8 62 cm⁻² but the high performance of the fabricated lasers evidenced that the impact of dislocation-63 related defects on the device operation was quite weak. This finding is primarily due to the very 64 short lifetimes of intersubband transitions, which makes them less sensitive to parasitic 65 recombination channels compared with most of interband emitters. Also, the chemical 66 composition of multicomponent III-V alloys grown on Si can be modified by mechanical strains 67 in vicinity of the dislocations, affecting the band structure and consequently the operation of 68 the concerned devices, such as GaInAs/AlInAs/InP QCLs [11]. In InAs/AlSb QCLs, the effect 69 of this mechanism is negligible. Thus, the main problem in fabricating InAs-based QCLs on 70 Ge is to provide an APD-free surface during the initial growth stage. The procedure employed 71 for the growth on Si cannot be directly transferred to the growth on Ge because of the different 72 chemical nature of these materials.

In this work, the QCL structures were grown by solid-source MBE on a (001) n-Ge substrate
with a residual miscut of ~0.5°. Prior to the QCL growth, a template consisting of a 1.5-µmthick nominally undoped p-GaSb buffer layer capped by a 100-nm-thick, nominally undoped,

r-InAs layer was first grown using a specially developed procedure to promote burying of the

Fig.1. AFM image of the template.

Fig.2. AFM image of the wafer EQ1092. A few threading dislocations (TD) are indicated.

30 nm

25

20

15

10

٥

APDs in the GaSb layer [12]. The template grown in a Riber C21 MBE system was then
transferred to a Riber R412 machine for the growth of the QCL structure EQ1092. The growth
in R412 was started by thermally desorbing the native oxide of the InAs layer at conditions
usually used to deoxidize InAs substrates. The InAs and AlSb layers were grown at deposition

81 rates of 3.03 and 1A/s, respectively, and a V/III flux ratio of ~2. A reference QCL structure 82 EQ1091 was previously grown on an InAs substrate. The active zone of the QCL consists of 83 45 repetitions of the following layer sequence, in Å and starting from the injection barrier: 84 26/41/1/62/1/67/2/66/2/64/6/64/6/62/6/59/9/58/10/57/11/56, where AlSb layers are in bold and 85 the Si-doped layers are underlined. The total electron sheet density N_s in the structure, taking 86 into account the residual doping of InAs, is considered to be about 1×10^{11} cm⁻² per period. The 87 active zone is separated from 3- μ m-thick InAs cladding layers doped with Si to 6×10^{17} cm⁻³ by 88 3-µm-thick undoped InAs spacers. The images of the template surface obtained by atomic

Fig.3. Cross-section TEM image of the QCL grown on Ge. Two threading dislocations (TD) are indicated.

89 force microscopy reveal the absence of APDs emerging at the template surface (Fig.1). The 90 surface exhibit terraces with edges perpendicular to the direction of the substrate miscut. The 91 rms roughness is 3.5 nm. After QCL growth, the surface is slightly undulated, with a rms 92 roughness of 3.8 nm (Fig.2), a much better value than what we previously achieved on Si 93 substrates [10]. The absence of APDs reaching the active zone has been confirmed by 94 transmission electron microscopy (Fig. 3). In contrast, threading dislocations are clearly seen 95 in both AFM and TEM images of the EQ1092 wafer (Fig.2 and 3, respectively). From this and 96 other images, the density of dislocations threading the active zone is estimated to be in the low 10^7 cm⁻². Such a density, however, is at the limit of TEM resolution and we can only give a 97 98 rough – albeit informative – estimate. As expected from the different lattice mismatch, this 99 value is much lower than the $\sim 10^8$ cm⁻² value obtained for QCLs grown on Si [10].

100 The overlap of the fundamental mode with the active region, Γ , and the waveguide loss for an 101 empty waveguide, α_w , were calculated to be 0.5 and 3.6 cm⁻¹, respectively. The waveguide loss 102 associated with light absorption by free carriers in the doped cladding layers was computed 103 using the Drude model with experimental material parameters [13], no absorption in the QCL 104 active zone was taken into account. The wafer was processed into (16-20)-µm-wide ridges and 105 deep mesa devices using standard optical photolithography and wet chemical etching. The 106 substrate was then thinned down to $150 \,\mu\text{m}$ and cleaved into (1-3.6)-mm-long bars that were 107 soldered with In onto copper heatsinks epi-side up. The devices were contacted to the 108 metallized back side of the substrate and to the top of the n+-InAs cladding layer. The QCLs 109 were tested in pulsed mode (333 ns/12 kHz) on the bars in a temperature stabilized probe station 110 at 300K or in a flow LN₂ cryostat using wire bonding of selected devices. In both configurations, emission spectra were recorded with a Bruker V70 infrared Fourier transform 111

spectrometer (FTIR) equipped with a pyroelectric detector. An additional 30 Hz current modulation was applied for pulsed measurements of light-current curves with the slow FTIR detector. The reference lasers were fabricated and tested in the same way.

115 3. Results and discussion

116 Figure 4 displays the voltage-current (V-I) and light-current characteristics of 3.6-mm-long 117 QCLs grown on Ge (EQ1092) in comparison with reference devices grown on a native InAs 118 substrate (EQ1091). The QCLs grown on Ge exhibit threshold current densities J_{th} of 0.8-0.85 119 kA/cm² in pulsed mode at room temperature (RT) compared to 0.71-0.73 kA/cm² for the 120 reference devices of the same length. It is worth noting only a small additional voltage drop in 121 the V-I characteristics introduced by the use of a Ge substrate, which indicates a good quality 122 of electrical contacts and low resistance of the interface region between the QCL structure and 123 the substrate. The large density of in-plane misfit dislocations is known to create a carrier density as high as 10^{20} cm⁻³ in GaSb [14] that renders the GaSb/Ge interface highly conductive. 124 125 Due to the specific type-III band alignment the p-GaSb/n-InAs heterojunction behaves as an 126 ohmic contact [15].

127 The initial slope efficiency of these lasers is 110-120 and 120-135 mW/A, for EQ1092 and 128 EQ1091 QCLs, respectively, with an optical power reaching 80 mW for the best

Fig.4. Voltage-current (left scale) and light-current (right scale) characteristics of two 3.6-mm-long lasers from both studied wafers. The ridge width is 18 and 19 μ m for the lasers EQ1091 and EQ1092, respectively.

129 devices. The temperature dependence of the threshold current is very similar for the devices 130 fabricated from both studied wafers (Fig.5) with a characteristic temperature T_0 of this 131 exponential dependence close to 160 K. Emission spectra of the QCL presented in the insets in 132 Fig.5 are centered at 13.8-14.0 μ m, slightly below 14.2 μ m expected from the simulations.

133 Figure 6 shows the threshold current densities of the studied QCLs fabricated from both wafers

134 plotted as a function of reciprocal cavity length. This data can be analyzed using the general

135 QCL threshold condition [16]:

136
$$J_{th} = J_{tr} + \frac{(\alpha_w + \alpha_m)}{\Gamma g} = J_{tr} + \frac{\alpha_w}{\Gamma g} - \frac{\ln(R)}{\Gamma g} \frac{1}{L}$$

137 where J_{tr} is the transparency current, α_m is the mirror loss depending on the laser length L, R =138 0.29 the facet reflectivity calculated using the Fresnel formula for the given dielectric 139 waveguide and g is the differential gain.

Fig.5. Threshold current density of the 3.6-mm-long QCLs as a function of temperature. The insets show RT emission spectra measured at RT at about 1.5 kA/cm^2 .

The linear fits of the data in Fig.6 are parallel for both QCLs grown on Ge and the reference devices and indicate the same differential gain of 22 cm/kA that corresponds to the material gain of 44 cm/kA considering the overlap of the optical mode with the gain region. The threshold current densities of the lasers grown on Ge are higher by about 15% compared with the devices grown on the native substrate. It is interesting to note that this difference is nearly constant for devices of different lengths and does not change with temperature (Fig.4).

146 As can be seen from the data shown in Fig.6, the transparency current is the main component 147 of the threshold in the reference QCLs, whereas the waveguide loss $\alpha_w = 3.6$ cm⁻¹ is responsible 148 for about 25% of the threshold current in long lasers. The transparency current includes a 149 current associated with electrons bypassing the lasing transition in the QCL active region and 150 also the current leakage over the ridge edges related to the device fabrication. However, the 151 principal element of the transparency current is the thermal backfilling of the lower laser 152 transition level, which requires an additional current J_{bf} to be injected to compensate the 153 resulting decrease in the population inversion [17]. The impact of thermal backfilling on device 154 performance is governed by the QCL design, namely, by the width of the injector miniband 155 Δ_{ini} , and the doping level N_s. Comparison of the low-bias parts of the very similar voltage-156 current characteristics presented in Fig.4 clearly shows that there is no current related to 157 additional leakage of any origin in the QCLs grown on Ge. The small extra voltage at higher 158 currents can be, in principle, explained by a larger Δ_{inj} , and/or lower N_s in the EQ1092 lasers. 159 However, both factors should reduce the thermal backfilling and thus J_{tr} , which is evidently not 160 the case. It is more reasonable to attribute the observed shift of the data for the EQ1092 lasers 161 to an additional loss $\alpha_d = 2.6 \text{ cm}^{-1}$ in the laser waveguide (Fig.6), which, in turn, can be due to 162 the light scattering on defects related to threading dislocations (Figs.2,3). This conclusion 163 agrees with previously reported results on InAs-based QCLs grown on an on-axis silicon 164 substrate [10]. Those lasers had threshold current densities 22% higher than the devices grown 165 on the native substrate. This difference did not change much with temperature demonstrating

Fig.6. Threshold current density of the studied QCLs as a function of the reciprocal cavity length. At least five devices were measured at each length for both wafers.

166 the same T_0 value around room temperature. The observed increase in J_{th} was explained by 167 higher optical losses because of additional absorption on crystal imperfections. In this work, 168 we succeeded to quantify this effect by careful characterizations of lasers of different length. 169 The weaker J_{th} degradation of 15% reflects a lower density of threading dislocations originating 170 from the smaller lattice mismatch between the QCL material and the Ge substrate and is 171 confirmed by the TEM observations.

172 One can compare these results with those of mature InP OCLs that exhibit low threshold current 173 densities when grown on their native substrate [18] but higher densities when grown on silicon 174 [19]. Interestingly, their properties degrade drastically as well even when heterogeneously 175 integrated onto Si- or Ge-based platforms. Notably, their threshold current density increases in 176 the $1.5 - 3 \text{ kA/cm}^2$ range, and their maximum operating temperature decreases down to $30 - 3 \text{ kA/cm}^2$ 177 60 °C [20-22]. This is in marked contrast to the results reported here and in previous 178 publications that show similar performance for InAs/AISb QCLs epitaxied on their native InAs 179 substrate, on Ge (this work), or on Si substrates [10].

180 4. Conclusions

181 In conclusion, we demonstrated InAs-based QCLs operating near 14 μ m with a pulsed 182 threshold current density as low as 0.8-0.85 kA/cm² in 3.6-mm-long lasers at room temperature. 183 This value is just 15 % higher than that of the reference devices grown on a native InAs 184 substrate. We attribute this increase in threshold current density to an additional optical loss α_d 185 = 2.6 cm⁻¹ in the laser waveguide due to light scattering on threading misfit dislocations. The 186 high performance of the studied QCLs confirm their suitability for monolithic integration on 187 Si/Ge mid-IR photonic circuits.

Funding. Part of this work was supported by the French Program "Investments for the Future"
(Equipex EXTRA, ANR-11-EQPX-0016), the French ANR (LightUp, ANR-19-CE24-0002)
and the H2020 program of the European Union (OPTAPHI, GA 860808).

191 **Disclosures.** The authors declare no conflict of interest.

192 Data availability. Data underlying the results presented in this article are not publicly193 available at this time, but may be obtained from the authors upon reasonable request.

194 References

195	1.	A. Gutierrez-Arroyo, et al, "Optical characterization at 7.7 µm of an integrated platform based on chalcogenide
196		waveguides for sensing applications in the mid-infrared," Opt. Express 24(20), 23109 (2016).
197	2.	H. Nguyen-Van, A.N. Baranov, Z. Loghmari, L. Cerutti, JB. Rodriguez, J. Tournet, G. Narcy, G. Boissier, G.
198		Patriarche, M. Bahriz, E. Tournié, and R. Teissier, "Quantum cascade lasers grown on silicon," Sci Rep 8, 7206
199		(2018).
200	3.	L. Cerutti, D. A. Díaz Thomas, J-B. Rodriguez, M. Rio Calvo, G. Patriarche, A. N. Baranov, E. Tournié."
201		Ouantum well interband semiconductor lasers highly tolerant to dislocations," Optica 8(11), 1397 (2021).
202	4.	H. Lin, et al. "Mid-infrared integrated photonics on silicon: a perspective," Nanophotonics 7(2), 85 (2017).
203	5	R Soref "Mid-infrared photonics in silicon and germanium" Nature Photonics 4 495 (2010)
204	6	N Hon et al "The third-order nonlinear ontical coefficients of Si Ge and Sil-xGey in the midwaye and
205	0.	longwaye infrared "I Appl Phys 110 11301 (2011)
205	7	D Marris Marini et al "Germanium-based integrated photonics from near- to mid-infrared applications"
200	/.	D. vanis-volum, et al., Germanan-osce integrated photomes non-near-to-ind-infrared appreadons, Nanoshotonics 7(11) 1781-1703 (2018)
207	0	Nanophotomics, 7(11), 1701–1795 (2016).
200	о.	11. Liu, 1. wang, Q. Jiang, N. Hogg, F. Tutu, F. Fozzi, and A. Secus, Long-wavelengin in As/GaAs quantum- dat loan diodo manelithically groups of Co-substrated, "Nature Distancies, 416 (2011).
205	0	dot laser diode monontinicarly grown on de substrate, Nature Photomics 3, 410–419 (2011).
210	9.	H. Kroemer, Polar-on-nonpolar epitaxy, J. Cryst. Growth 81, 192-204 (1987).
	10.	Z. Lognmari, JB. Rodriguez, A.N. Baranov, M. Rio-Caivo, L. Cerutti, A. Meguekam, M. Banriz, R. Teissier,
		E. Tournie, "InAs-based quantum cascade lasers grown on on-axis (001) silicon substrate," APL Photonics 5
213		041302 (2020).
214	11.	R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, X. M. Fang, A. Eisen- bach, J. M. Fastenau, D.
215		Lubyshev, A. W. K. Liu, N. G. Huy, A. O. Morgan, S. A. Edwards, M. J. Furlong, and A. Lyakh, "InP-based
210		quantum cascade lasers monolithically integrated onto silicon," Opt. Express 26, 22389 (2018).
21/	12.	M. Rio Calvo, J-B. Rodriguez, C. Cornet, L. Cerutti, M. Ramonda, A. Trampert, G. Patriarche, E. Tournié,
218		"Crystal phase control during epitaxial hybridization of III-V Semiconductors with silicon," Adv. Electron.
219		Mater. 8, 2100777 (2022).
220	13.	A.N. Baranov and R. Teissier, "Quantum cascade lasers in the InAs/AISb material system," IEEE J. Selected
221		Topics in quantum electronics 21 (6) 1200612 (2015).
222	14.	M. Mehta, G. Balakrishnan, S. Huang, A. Khoshakhlagh, A. Jallipalli, P. Patel, M. N. Kutty, L. R. Dawson and
223		D. L. Huffaker," GaSb quantum-well-based "buffer-free" vertical light emitting diode monolithically embedded
224		within a GaAs cavity incorporating interfacial misfit arrays," Appl. Phys. Lett. 89, 211110 (2006).
225	15.	O. Diera, M. Sterkel, M. Grau, C. Lin, C. Lauer, and M-C. Amann," Tunnel junctions for ohmic intra-device
226		contacts on GaSb-substrates," Appl. Phys. Lett. 85, 2388 (2004).
227	16.	S. Slivken, A. Evans, W. Zhang, and M. Razeghi, "High-power, continuous-operation intersubband laser for
228		wavelengths greater than 10 μ m, " Appl. Pys. Lett. 90, 151115 (2007).
229	17.	D. Botez, J. C. Shin, L. J. Mawst, I. Vurgaftman, J. R. Meyer and S. Kumar, "Suppression of carrier leakage in
230		4.8 µm - emitting quantum cascade lasers," Proc. of SPIE 7616, 76160N (2010).
231	18.	F. Wang, S. Slivken, D. H. Wu, and M. Razeghi," Room temperature quantum cascade laser with ~31% wall-
232		plug efficiency," AIP Adv. 10, 075012 (2020).
233	19.	R. Go, H. Krysiak, M. Fetters, P. Figueiredo, M. Suttinger, X. M. Fang, A. Eisenbach, J. M. Fastenau, D.
234		Lubyshev, A. W. K. Liu, N. G. Huy, A. O. Morgan, S. A. Edwards, M. J. Furlong, and A. Lyakh, "InP-based
235		quantum cascade lasers monolithically integrated onto silicon," Opt. Express 26(17), 22389-22393 (2018).
236	20.	A. Spott, J. Peters, M.I. Davenport, E.J. Stanton, C.D. Merritt, W.W. Bewley, I. Vurgaftman, C.S. Kim, J.R.
237		Mever, K. Kirch, L.J. Mawst, D. Botez, J.E. Bowers, "Quantum cascade laser on silicon," Optica 3, 545 – 551
238		(2016).
239	21.	A. Malik, A. Spott, E.J. Stanton, J.D. Peters, J.D. Kirch, L.J. Mawst, D. Botez, J.R. Meyer, and J. E. Bowers,"
240		Integration of Mid-Infrared Light Sources on Silicon-Based Waveguide Platforms in 3 5-4 7 um Wavelength
241		Range," IEEE J. Selected Topics in quantum electronics 25 (6) 1502809 (2019)
242	22	E I Stanton A Spott I Peters M L Davenport A Malik N Volet I Liu CD Merritt I Vurgaftman CS
243		Kim J.R. Meyer and J.E. Bowers, "Multi-Spectral Quantum Cascade Lasers on Silicon With Integrated
244		Multiplexers," Photonics 6. 6 (2019).
- · ·		1 ,