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Abstract
Recruitment dynamics including what determines success or failure of Arctic benthic invertebrates are
poorly known despite their important role for population dynamics. The main objective of this study was
to assess the potential influence of extreme seasonal/physical constraints, in particular freshwater
discharge, on the recruitment of a dominant bivalve Hiatella arctica within a High Arctic fjord. We
collected young recruits over several sampling periods from 2016 to 2018 at two contrasting sites (inner
vs middle fjord) for 5-weeks to 12-months and measured their abundance, size at metamorphosis and
lipid class composition.

Young stages of H. arctica settled from June to the end of October, when trophic conditions are optimal.
We hypothesize that growth stops during winter due to poor trophic conditions. Data suggest that
abundance of recruits, their total lipid concentration and composition of lipid classes are similar in both
sites. By contrast, analyses of size-class show differing temporal and spatial patterns with 6 cohorts
detected in middle fjord and only one at the inner station, which can be attributed to discrete spawning
events and possible secondary migration. Based on an assessment of their potential age, we hypothesize
that spat batches recruiting earlier in the summer exhibit better growth performance probably because of
higher food quality and availability.

Introduction
The structure of communities and dynamics of populations are strongly influenced by the supply of
recruits and their settlement and post-settlement success (Butman 1987; Ólafsson et al. 1994), but these
processes are poorly known in polar regions. In the Arctic, bivalves spawn directly after the phytoplankton
bloom (Kuklinski et al. 2013), but data on recruitment are limited to few species (Stanwell-Smith and
Barnes 1997). According to Thorson (1950), high latitude marine invertebrates exhibit mostly
lecithotrophic development (i.e., the larvae rely on energy reserves but not on food sources), due to low
and unpredictably phytoplankton biomass. Nevertheless, in recent years, the discovery of more pelagic
larvae in polar waters than expected questioned on the general validity of the Thorson model (Pearse
1994). It is becoming increasingly clear that mixed types of development coexist, even within a single
species, and that the flexibility and plasticity of life strategies are substantial (Hadfield and Strathmann
1996).

Global warming induces major modifications in the Arctic marine environment, e.g., a decrease in sea-ice
cover (extent and thickness) and an increase in freshwater discharge (Kwok and Rothrock 2009; McPhee
et al. 2009) leading to the intensification of the stratification (Bridier et al. 2021). In Greenland, warming
drives increasing melt of the Greenland ice sheet and results in increased discharge of ice and meltwater
(Howat et al. 2007; Kjeldsen et al. 2015). Released icebergs increase the risk of ice scouring (Sejr et al.
2021) while meltwater is likely to impact fjord circulation, surface-water temperature, salinity, and
turbidity (Mortensen et al. 2013); low salinity also increases the susceptibility of marine organisms to
other stressors (Nielsen et al. 2021). These physical parameters are often suggested to be important
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drivers of benthic recruitment in coastal areas (Yakovis et al. 2013), which can influence benthic
productivity (Bashevkin et al. 2020; Leal et al. 2022). Increased temperature and turbidity or decreased
salinity could lower survival rates of larvae as already documented in the White Sea (Ushakova and
Saranchova 2003) or in the Kongsfjorden fjord (Svalbard archipelago, Zajaczkowski and Legezynska
2001).

Because of its high abundance, colonizing various hard-bottom and soft-sediment habitats, Hiatella
arctica (up to 57 ind.m− 2, Sejr et al. 2002) is a promising marine bivalve model to study recruitment. This
species has a long pelagic larval stage (Gordillo 2001). It is a widespread common circumpolar bivalve
exhibiting substantial morphological/physiological plasticity and inhabiting shores up to 175 m depth
(Ockelmann 1958) in temperate to polar areas (Gordillo 2001). The main objective of this study was to
evaluate the seasonal recruitment success of H. arctica at two sites in a high Arctic fjord. A site in the
inner fjord more influenced by low salinity and high turbidity due to freshwater run-off compared to a site
in the outer fjord (Sejr et al. 2022). We expected that recruitment of H. arctica would be lower at the site
near the Zackenberg River (inner fjord, Pass Hytten) compared to a more marine area (middle fjord, Basalt
Island). The specific objectives were therefore 1) to measure the spatial (2 sites) and temporal variability
of recruitment (a sampling scheme spanning 12 months) of a dominant marine polar bivalve, 2) to
identify the presence of cohorts of recruits and assess their age, 3) to estimate the size at metamorphosis
of each cohort, and finally 4) to obtain initial results on the physiological condition of young recruits by
their lipid class composition.

Materials and methods

1. Study site and sampling strategy
The study was conducted in the ~ 90 km long and 2–7 km wide deep-sill fjord of 330 m depth with an
entrance of 45 m depth (Young Sound, 74°18’N, 20°18’W, NE Greenland, Fig. 1), reducing exchanges with
the open sea (Bendtsen et al. 2007). This fjord system is influenced by freshwater inputs from snow and
ice melting, especially during summer (Bendtsen et al. 2007), and is covered by sea ice from September
to June. Whereas bottom water temperature and salinity at 60 m depth remain relatively steady around − 
1.8°C and 32 psu respectively, they are much more variable during summer at shallower depths (~ 30 m)
(Fig. 1, but also see De Cesare et al. 2017; Bridier et al. 2019; Sejr et al. 2022 for details). Our sampling
strategy included several deployment periods of either 5 weeks (August-September 2016), 9 months
(August 2016-May 2017) and 12 months (May 2017-May 2018) in two contrasting sites (Fig. 1). Basalt
Island (BI) (depth = 21.5 m, 74.33°N, 20.36°W) is located in the most marine part of the fjord whereas
Pass Hytten (PH) (depth = 16.5 m, 74.41°N, 20.33°W) is in a more upstream section at the outlet of a river
on silted and more turbid bottoms (Bridier et al. 2019; Holding et al. 2019; Sejr et al. 2022). Both sites are
influenced by an inflow of nutrient-depleted freshwater, with CO2-desaturated, lower salinity and higher
turbidity measurements (Fig. 1). Settling larvae and subsequent juveniles were collected with ‘Tuffy’ traps,
extensively used in recruitment studies of invertebrate species (Menge et al. 1994). In each site mooring
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lines with subsurface buoys located at 5 m from the bottom were deployed by divers at a depth of 20 m.
At each site, 10 replicate traps were collected. The biological material found on traps were directly frozen
and preserved at -80°C until laboratory analyses.

2. Sample analyses
For each trap/replicate, recruits were retrieved by sieving it gently on a 200-micron square mesh with
filtered seawater. Each batch of recruits was examined and counted under a binocular microscope to
assess abundance per trap and subsequent settlement rate (see below). Morphometric analysis of ~ 30
randomly selected individuals per trap were performed using the methods described in Martel et al.
(1995) under a binocular stereomicroscope. For the examination of Prodissoconch PII (PII), the longest
distance was measured along the anteroposterior axis (Fig. 2). All measurements were made using
Keyence VHX-2000 Series digital microscope with VH-Z100UR objectives (Osaka, Japan, 1µm and HDR
resolution). Lipids were extracted in dichloromethane-methanol as in Parrish (1999) by using a modified
Folch procedure (1957). Extracts were separated and analyzed by thin-layer chromatography using flame
ionization detection with an Iatroscan MK-6 (Shell USA, Fredericksburg, VA, USA). This method separates
aliphatic hydrocarbons (HCs), ketones (KETs), triglycerides (TAGs), free fatty acids (FFAs), free fatty
alcohol (ALCs), free sterols (STs), diglycerides (DGs). acetone mobile polar lipids (AMPLs), and
phospholipids (PL). Lipid classes were identified and quantified with the use of standard calibration
curves obtained for each lipid class. Lipid classes were evaluated in mg.individual− 1, summed and
expressed as a percentage of total lipids. Lipids were analyzed only on 9 months samples due to their
higher biomass availability, as these analyses required at least 50µg of tissues.

3. Data analyses
In Hiatella arctica, little is known about larval growth in the Arctic, and we approximated value of post-
larval growth by firstly quantifying the difference between total shell length and PII size. Then, to assess
days since metamorphosis, we used a growth estimate of 7 µm/day from the study of Flyachinskaya and
Lezin (2017) focusing on the larval development of Mya arenaria in the White Sea, an environment close
to our study area. Differences in the abundances of recruits were investigated by performing
permutational univariate analyses of variance (PERMANOVA, 9999 permutations) and matrix of similarity
based on the Euclidean Distance using PRIMER 7 /PERMANOVA+. Two sources of variation were tested
among treatments including ‘Sites’ (BI or PH) and ‘Period’ (2016: 5weeks; 2017: 9 months and 2018: 12
months). The number of replicates was determined by the number of traps used and varied between 9
and 11. To investigate cohort composition and age structure, we performed a length frequency analysis
and estimated the proportion of individuals in each cohort. We used a Gaussian mixture model to
account for the length distribution and identify the number of cohorts in each sample. The number of
components of the finite mixture model was assessed using an information criterion. More specifically,
we used the Singular Bayesian Information Criterion (sBIC) (Drton and Plummer 2017). This information
criterion is robust in situations where models are irregular, which can be the case for Gaussian mixture
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models. This criterion allows determining the model (i.e., the number of components) that best accounts
for the data-generating process. The R (R Core Team 2013) package ‘sBIC’ (Weihs and Plummer 2016)
uses the EM algorithm to approximate maximum likelihood estimates of model parameters, estimate the
posterior probabilities of cluster membership for each data point, and model posterior probabilities. We
considered a maximum of 10 components and the sBIC allowed ranking models including a different
number of components and selecting the model that best accounts for the process that generated the
data. Once the number of components has been determined, the R package ‘mclust’ (Scrucca et al. 2016)
was used to produce a density estimate for each data point and estimate the mean and standard
deviation of each Gaussian component of the mixture model. The analysis associated to one year’s data
was performed on either 171 and 255 length measurements corresponding to PH or BI respectively. The
5-week period data included 14 (PH) and 80 (BI) length measurements. Lipid classes of young recruits
were analyzed on the 9-month period data via 1-way PERMANOVAs (9999 permutations) with 2 fixed
levels (BI and PH) and 10 replicates. Non-parametric Wilcoxon test was used to compare mean PII sizes
and means of Gaussian components in the size-class distribution. For all statistical tests, α level was set
to 0.05.

Results

1. Abundance pattern
Hiatella arctica was the dominant species recruiting on traps, its relative abundance exceeding 92% for
long sampling periods in both stations. For the 9- and 12-month periods 909 and 937 recruits or 2909 and
3286 recruits were collected in PH and BI, respectively. By contrast, the proportion of H. arctica collected
over 5 weeks during the fall season was quite low, with 9 and 28% of the total abundance of recruits at
PH and BI, respectively (339 and 863 individuals). However, this is mostly due to the high proportion of
unidentified post-larvae during this period (60% at BI, 75% at PH). Abundances of H. arctica were similar
between both stations (P-perm = 0.1983, Pseudo-F = 134.99, Df = 2 and Df residuals = 62), but differences
appeared between sampling periods (P-perm = 0.0001, Pseudo-F = 1.7474, Df = 1 and Df residuals = 62),
without interaction between ‘Site’ and ‘Period’ (P-perm = 0.6093, Pseudo-F = 0.5152, Df = 2 and Df
residuals = 62). The increase in the number of recruits as the duration of the sampling period increases
reveals a cumulative recruitment starting with fewer than 19 ± 3.0 recruits (± SE) collected during 5-week
periods in PH and BI, and mean abundance per trap increasing up to > 83 ± 7.4 during the 9-month period,
and to > 302 ± 32.5 individuals for 12-month periods at both sites (Fig. 3).

2. Size-class distribution and growth
For the 12-month sampling period, shell length of H. arctica recruits collected in PH varied from 485.7 to
976.0 µm (mean value of 721.3 ± 8.1 µm; ± SE, n = 171) and from 495.6 to 971.7 µm (mean value of
687.2 ± 6.3 µm; ± SE, n = 255) in BI (Fig. 4) (Table 1). In BI, five independent cohorts were detected
(posterior model probability = 0.79, log(likelihood) = -1514.62, Df = 14, Supplementary File 1) (Fig. 4)
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whose mean shell length was equal to 523.1, 607.4, 678.6, 765.3 and 884.4 µm (Table 1), contrasting
with one sole cohort in PH (posterior model probability = 0.61, log(likelihood) = -1038.79, Df = 2,
Supplementary File 1) (Fig. 4). Based on 5-week sampling period, size classes of recruits varied from
311.6 to 617.4 µm (mean value of 464.9 ± 6.4 µm; ± SE, n = 80) in BI and from 347.8 to 949.2 µm (mean
value of 502.6 ± 39.4 µm; ± SE, n = 14) in PH (Table 1, Fig. 4). Whereas no cohorts could be detected in PH
(log(likelihood) = -89.25, Df = 2), six were observed in BI (posterior model probability = 0.33, log(likelihood)
= -425.94, Df = 17, Supplementary File 1) (Fig. 4) with corresponding mean lengths of 326.7, 409.5, 433.6,
468.4, 528.6 and 591.1 µm (Table 1). In fact, size-class distributions were similar for 5-week and 12-
month data in BI, but with a larger size range in the 12-month sample (Fig. 4). Moreover, at BI the mean
PII size of each cohort was very close for the same sampling duration, but not for different durations, with
a mean value of 314.0 µm over 5 weeks and 290.7 µm over 12 months (F-value = 39.23, P-value = 
0.000147, Df = 1, Df residuals = 9, Anova) (Table 1). Assuming a mean post-larval growth of 7 µm per day,
approximated ages of H. arctica recruits in BI ranged from ~ 33 to 85 days in the 12-month period, and
from ~ 0 to 40 days in the 5-week sampling period, respectively (Table 1).
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Table 1
Size distributions for post-larvae of H. arctica observed in samples collected during different sampling

periods on both sampling sites.
Site Group n Mean

Full
length

SE Mean
PII
Size

SE Δ

(Full
length-
PII size)

Approximate age

(days)

Basalt
Island

12
months

1 [495; 555] 19 523.1 3.4 287.3 3.2 235.7 ~ 
33.7

 

2 ]555; 648] 78 607.4 2.8 291.2 1.4 316.2 ~ 
45.2

 

3 ]648; 712] 69 678.6 2.0 291.9 1.9 386.7 ~ 
55.2

 

4 ]712; 834] 64 765.3 3.8 291.8 2.9 473.5 ~ 
67.6

 

5 ]834; 972] 25 884.4 6.3 291.3 4.4 593.1 ~ 
84.7

 

Pass
Hytten

12
months

1 [485; 980] 171 721.3 8.1 282.6 1.4 438.7 ~ 
62.7

 

Basalt
Island

5
weeks

1 ]310; 385] 2 326.7 15.1 326.4 10.3 0.3 ~ 0  

2 ]385; 423] 19 409.5 2.4 301.4 2.7 108.0 ~ 
15.4

 

3 ]423; 445] 13 433.6 1.6 311.4 3.3 122.1 ~ 
17.4

 

4 ]445; 500] 24 468.4 14.0 314.8 2.8 153.6 ~ 
21.9

 

5 ]500; 560] 18 528.6 3.4 313.8 2.7 214.8 ~ 
30.7

 

6 ]560; 618] 4 591.1 10.6 316.1 1.3 275.0 ~ 
39.3

 

Pass
Hytten

5
weeks

1 [347; 950] 14 502.6 39.4 306.1 6.5 196.5 ~ 
28.1

 

3. Lipid classes
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The total concentration of lipids in recruits collected over the 9-month sampling period was similar in
both sites (Pseudo-F = 0.0209, P-perm = 0.8755, Df = 1, Df residuals = 18), with a mean value of 0.61 ± 
0.15 mg/individual. Seven lipid classes were detected with highest contributions of Phospholipid (PL),
representing near 90% of the total lipids, and low values of 1% for Triglycerides (TAG) (Supplementary
File 1).

Discussion

Spatial bivalve recruitment patterns in the Young Sound
fjord
H. arctica was the dominant species recruiting on the spat traps throughout the surveys at both sampling
sites (PH, BI). No difference was observed between sites for the abundance of Hiatella recruits with an
increasing number of recruits found in samples collected over 5 weeks, 9 months and 12 months,
respectively. No spatial differences were observed in 9-month samples for the total lipid concentration
and the lipid classes composition. Such results are quite surprising because PH and BI sites are
submitted to contrasting freshwater inputs (Bridier et al. 2019, 2021) that could have influenced survival
and growth of the young bivalve recruits (Bashevkin et al. 2020). In the White Sea, Saranchova et al.
(2006) showed that pediveliger larvae of H. arctica display a higher resistance to low salinity than those
of Heteranomia ovata. The larvae stage H. arctica can endure reduced salinity for 2 weeks, with survival
rates of 25% at salinities at 12‰ (Saranchova et al. 2006). Such data could explain the dominance of H.
arctica in the assemblages of recruits observed in spat traps especially if, during their pelagic dispersal,
bivalve larvae enter the surface layers of the fjord that exhibit the most variable salinity, temperature, and
turbidity during summer (Bendtsen et al. 2007).

The size-class distributions displayed both spatial and temporal differences. At the BI site, we detected 6
cohorts but only one at PH. The single cohort at PH could result from too much overlap of cohort-specific
size distributions (i.e., failure to identify cohorts), although a similar size range was observed at both sites
500 to 1000µm and we did find evidence of cohorts in BI. In addition, we hypothesize that the shift
between the size ranges of the two sampling periods from 300 to 650µm over 5 weeks and from 500 to
1000µm over 12 months reveals secondary settlement stimulated by trophic conditions, as observed by
Forêt et al. (2018, 2020). In YS, recruits would drift from the middle to the inner fjord in response to better
food conditions or to density dependence interactions allowing an allochthonous recruitment in PH. As
pointed out by Forêt et al. (2018, 2020) secondary dispersal temporal patterns depend on both the
physiology of bivalve recruits and the pelagic trophic environment, a phenomenon called “trophic
migration trigger” (TMT), analogous to “trophic settlement trigger” (TST) (Toupoint et al. 2012; Androuin
et al. 2022).

Trophic constraints on larvae of filter-feeding bivalves
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To survive within Arctic Fjords, planktotrophic larvae, feeding on phytoplankton, must be able to respond
to short periods of high food availability and prolonged periods of low resources during the polar night
(Weslawski et al. 1991). In the present study, we determined that the concentration of total lipids found in
H. arctica recruits in YS collected in both sites seem to be low with values around 0.6 mg.individual− 1 and
1% of TAG at the end of the winter 2017. Gallager et al. (1986) studied the lipid class composition of
healthy and starved larvae of Crassostrea virginica and Mercenaria mercenaria and showed that
energetic (TAG) and structural (PL) lipids were roughly in equal proportion throughout development of
healthy larvae. TAG content is an indicator of larval quality and is directly affected by exogenous food
intake and also influenced by environmental stress increasing metabolic activity and reducing food
intake (Fraser 1989). In our study, no data on larvae are available, but the very weak TAG accumulation in
the young juveniles sampled seems to indicate starvation in May and potentially poor physiological
condition at the end of winter. Another explanation could be the complete use of energy obtained from
food to direct transfers to growth without energetic reserve accumulation. However, in optimal laboratory
condition, bivalve post-larvae fed ad libitum without environmental stressful conditions showed
important TAG accumulation concomitant with substantial shell growth (Gagné et al. 2010).

Temporal pattern of bivalve recruitment within the YS fjord
The mean PII sizes of H. arctica recruits in the YS fjord of 290µm (12-month period) and 314µm (5-week
period) are clearly larger than previous values of 200µm observed for the same species in the White Sea
by Lyachinskaya and Lezin (2008). Such values of 290–314µm can be compared to PII sizes of post-
larvae and juveniles of other bivalves of subarctic areas, which can reach up to 422µm for the blue
mussel Mytilus edulis (South 2016; Martel et al. 2014). Food supply during the planktonic phase, as well
as seawater temperature, are among the most important factors determining the size of veliger larvae at
metamorphosis, that is, at the end of the planktonic life (Pechenik et al. 1990; Emlet and Sadro 2006). As
hypothesized by Pechenik and Levine (2007) and Martel et al. (2014), a short larval phase associated to
small PII size at settlement could decrease larval mortality within the water column due to reduced
exposure to predation or dispersal to unsuitable habitats. It is also suggested that a longer larval phase
associated to large PII size at settlement could decrease the probability of early mortality of juveniles
because of a larger size and a larger pump for more filter-feeding activity (Pechenik 1996). However, data
obtained with oysters Crassostrea gigas in a Mediterranean lagoon were not consistent with this
hypothesis: an inverse relationship between PII size and survival after metamorphosis was observed,
showing that recruitment success was associated with smaller PII sizes (Lagarde et al. 2018). The
relatively small and uniform size at metamorphosis (PII size < 310µm) observed in this study is probably
related to a trade-off between growth and the necessity for pediveliger larvae to undergo metamorphosis
rapidly and access to the more rapid post-larvae growth thanks to the development of gills (Gagné et al.
2010). Because of low seawater temperatures throughout the year, metabolism and growth of marine
invertebrates are classically slowed down in the polar environment (Clarke 1992). However, Sejr et al.
(2004), working on the resource limitations to growth and production of YS H. arctica populations,
suggested that despite low rates of assimilation and growth at low temperature, H. arctica adults were
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able to grow much faster in laboratory experiments than observed in YS when provided with food. Thus,
low food availability seems to be the major factor of growth regulation.

In this study, data collection was constrained by difficulties accessing the marine station of the YS fjord.
The sampling scheme covers various recruitment periods over several years from 2016 to 2018. While the
5-week period provides a state in late summer / early fall 2016, the 9-month period extends to the end of
winter 2016–2017, and the 12-month period includes the summer 2017 and lasts up to the end of winter
2017–2018. The size-class distributions of recruits collected during one year at both sampling sites
reveal the occurrence of several successive cohorts with small PII size differences, which suggests
several spawning events in H. arctica, and a similar size at metamorphosis. As emphasized by Martel et
al. (2014), in Mytilus edulis recruits mean PII size can be highly variable, which reflects metamorphosis
delays later in the recruitment season. Here, with relatively small and constant PII size (< 310µm), we
suggest that there is no metamorphosis delay, and that primary settlement is probably controlled by a
similar triggering cue. Many studies have focused on such settlement cues, including trophic signals
linked to phytoplankton blooms (Trophic Settlement Trigger TST, Toupoint et al. 2012; Lagarde et al.
2018; Leal et al. 2018), to water temperature (mussels: Bayne 1964, clams: Lutz and Jablonski 1978;
Bayne and Newell 1983) or to chemical cues (Hadfield and Paul 2001). The synchronization between the
larval cycle and primary production is related to the 'match/mismatch' theory (Cushing 1990). Thus, an
ice breakout earlier in the season could lead to an early phytoplankton bloom, which in turn could lead to
a temporal desynchronization between this peak of primary production and that of pelagic secondary
consumers such as zooplankton, including meroplankton (Søreide et al. 2010; Leu et al. 2011).

Spawning and larval presence ofH. arcticain Arctic waters

Based on previous larval growth studies on H. arctica (Flyachinskaya and Lezin 2017) and on the size of
the five different cohorts identified at BI (12-months), we estimated that the age of oldest recruits (i.e.,
those that have settled the earliest), could reach 85 days or more. Such an age would indicate the
beginning of spawning in February 2018, a period with ice cover, without light or primary production.
Moreover, a study of the occurrence and abundance of pelagic bivalve larvae within a high Arctic fjord
(Adventfjorden, Svalbard) identified a strong seasonality in the occurrence of bivalve larvae, largely
coinciding with periods of primary productivity (Brandner et al. 2017). The seasonal occurrence of bivalve
larvae shows variation in duration across the biogeographic range of H. arctica, with longer duration at
higher latitudes (8 months at 56°N and 78°N) and shorter duration at lower latitude populations (1–2
months at 42°–46°N) (Brandner et al. 2017). Such results contradict those of Ockelmann (1958) who
observed only 2 months of H. arctica larval presence at a latitude of 78°N. According to Kulikova et al.
(2013) larvae of H. arctica drift in the water column between May and December at all latitudes whereas
the period of presence shifts to Autumn (September-October) at lower latitudes. The spawning season of
H. arctica has been determined in the White Sea, lasting from June to November in a study conducted at
a lower latitude (Flyachinskaya and Lezin 2006, 2008). For the data of 5-weeks at BI, we estimated that
the age of oldest recruits (i.e., those that have settled the earliest) could reach 39 days or more. So, it is
possible that the spawning of H. arctica in YS starts in June and lasts up to the end of October because
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timing of blooms is related to the break-up of ice cover around mid-July (Rysgaard et al. 1999) for a
period of around 80 days.

Perspectives
Climate change with declining sea ice cover and accelerated melting of glacial ice should increase
freshwater input and turbidity in the water column (Sejr et al. 2022). Whereas the high phenotypic
plasticity of Hiatella arctica to freshwater input is well detailed (Saranchova et al. 2006), the primary
production in Young Sound should be more structuring on such a species. Indeed, as sea ice cover (extent
and thickness) will decline under warming, as will the production of sympagic algae, the dynamics of
stratification and light conditions will occur (Søreide et al. 2013). However, the magnitude and direction of
these effects on the various fjord ecosystems around Greenland are still largely unclear. The
desynchronization between an earlier phytoplankton bloom during the season due to advanced ice retreat
and peak of zooplankton (Søreide et al. 2010; Leu et al. 2011; Gaillard 2017) could be important for the
recruitment success of H. arctica (growth, size at settlement, physiological state of larvae and post-
larvae). Starvation due to poor trophic conditions, depleting the nutritional reserves, could lead larvae of
H. arctica to settle with low energetic contents, which would be consistent with the ‘Desperate larvae
Hypothesis’ (Elkin and Marshall 2007). Under climate change, modifications in the composition or
dynamics of the phytoplankton community could lead to asynchronies between different trophic levels
such as an increase in the proportion of dinoflagellates upon diatoms (Hernández-Fariñas et al. 2014).
The trophic regimes and their dynamics that control the functioning of benthic marine invertebrate
communities, including their dominant component such as H. arctica in the Arctic, would be deeply
modified. As an example, phytoplankton communities should be dominated by smaller cells such as
picophytoplankton (Holding et al. 2019) that are known to synchronize the primary settlement of mussel
larvae (Toupoint et al. 2012; Androuin et al. 2022), and thus potential risks of mismatches. Because H.
arctica is one of the preferred preys of walrus and eider ducks, a reduction in population sizes as well as
energy reserves of adults could impact the benthic-pelagic coupling in polar areas, with cascading effects
on higher trophic levels (Kędra et al. 2015zéquel et al. 2022).
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Figure 1

See image above for figure legend
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Figure 2

Picture of a recruit of H. arctica taken under a Keyence VHX-2000 Series digital microscope showing the
various measurements acquired here (Prodissoconch size (PII): height and width; Shell length; Shell
width).
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Figure 3

Mean abundance per spat trap (± Standard Error) of recruits of Hiatella arctica collected at both studied
sites over either 5 weeks, 9, or 12 months.
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Figure 4

Size-class of recruits of H. arcticacollected in 12 month spat traps (immersed from mid-May 2017 to mid-
May 2018) at either a) Basalt Island or b) Pass Hytten and in 5 week samples (immersed from August
2016 to September 2016) at c) Basalt Island and d) Pass Hytten. Lines represent the estimated Gaussian
densities (probability density) corresponding to cohorts (Gaussian finite mixture model).
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