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Abstract

Motivation Indicator values are numerical values used to characterize eco-
logical niches of species and estimate their occurrence along gradients. While
indicator values on climatic and edaphic niches of plant species hare received
considerable attention in ecological research, data on species optimal posi-
tioning along disturbance gradients are less developed. Here, we present a
new data set of disturbance indicator values identifying optima along gra-
dients of natural and anthropogenic disturbance for 6,382 vascular plant
species based on the analysis of 736,366 European vegetation plots and
using expert-based characterization of disturbance regimes in 236 habitat
types. The indicator values presented here are crucial for integrating distur-
bance niche optima into large-scale vegetation analyses and macroecological
studies.

Main types of variables contained We set up five main continuous
indicator values for European plants: disturbance severity, disturbance fre-
quency, mowing frequency, grazing pressure and soil disturbance. The first
two indicators are provided separately for the whole community and the herb
layer. We calculated the values as the average of expert-based estimates of
disturbance values in all habitat types where a species occurs, weighted by

the number of plots in which the species occurs within a given habitat type.
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Spatial location and grain Europe. Vegetation plots ranging in size
from 1 m? to 1,000 m?.

Time period and grain Vegetation plots mostly sampled between 1956
and 2013 (= 5 and 95" quantiles of the sampling year, respectively).

Major taxa and level of measurement Species-level indicator values
for vascular plants.

Software format .csv file.

1 Introduction

Disturbance is a major driver of vegetation dynamics, influencing plant
growth and species interactions (Huston 1979; Pickett & White 1985; McIn-
tyre, Lavorel, Landsberg, & Forbes 1999), with consequences for the real-
ized niche and distribution of species (Sheil, 2016). For practical purposes,
disturbance has been defined by plant ecologists as mechanisms that limit
plant biomass through its partial loss or complete destruction (Grime, 1979;
van der Maarel, 1993; White & Jentsch, 2001). Thus, disturbance is thought
to play a strong role in the functional differentiation of plant communities
(Grime, 1979; Westoby, 1998).

In contrast to the major climatic and soil niches of species described by,
for instance, Ellenberg indicator values (EIVs) (Ellenberg et al., 1992), the
estimation of species disturbance optima has received less attention in the
literature (but see Frank & Klotz 1990; Landolt et al. 2010; Grime, Hodgson,
& Hunt 2014). Thus, to deepen our understanding of plant community re-
sponses to global environmental changes, as well as to improve disturbance—

dependent ecosystem management strategies, we need to integrate analyses
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of the disturbance niche (namely, the species optimal positioning within
disturbance gradients) into ecological studies.

A common approach in ecology is to link species response to disturbance
with morpho-physiological functional traits (Laliberté, Shipley, Norton, &
Scott 2012; Vandewalle et al. 2013; Jaschke, Heberling, & Wesche 2020). For
example, the ‘competitor, stress-tolerator, ruderal’ (CSR) theory has been
proposed to identify main plant strategy classes based on functional traits
(Grime, 1979; Pierce et al., 2017).

Nonetheless, approaches based on functional traits are problematic for
many reasons. First, we cannot expect traits and trait combinations to de-
scribe disturbance with sufficient accuracy because plants may respond to
the same disturbance event with alternative strategies (Marks & Lechowicz,
2006). Second, disturbance consists of at least two separate dimensions, the
severity of an event and its frequency (Turner, 2010), which are not eas-
ily separated by the use of plant traits. In addition, the large variety of
physical processes characterizing disturbance (such as fire, wind, grazing,
cutting and soil disturbance) further complicates trait-based characteriza-
tion of disturbance regimes in vegetation. Finally, circular reasoning may
occur in studies examining the response of plant traits to disturbance gradi-
ents when plant traits are used as proxies for disturbance, which precludes
testing trait-disturbance relationships (Gotzenberger, Kiihn, & Klotz 2008).

For these reasons, Herben, Chytry, & Klimesovd (2016) proposed an al-
ternative approach to estimate species-level disturbance indicator values in-
dependently of plant traits. Such indicator values were based on the number
of species’ occurrences in vegetation plots classified by severity and frequency
of disturbance regimes estimated by experts for different habitat types. The

indicator values reported by Herben et al. (2016) have been proved to meet



cONOYULT A~ WN =

76

v

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

04

95

96

97

98

99

100

101

Global Ecology and Biogeography

theoretical expectations for functional differentiation in plants, particularly
with respect to life history categories and clonality (Herben, Klimesova, &
Chytry 2018a). However, such indicator values have been calculated only
for 1,248 vascular plant species occurring in the Czech Republic and did not
include specific indicator values for mowing frequency and grazing pressure —
two key disturbance types affecting European vegetation of managed herba-
ceous ecosystems. Other expert-based indicator values have been proposed
for mowing and grazing in Europe. However, they are limited in terms of
the species pool and region, such as Central Russia (Ramenskii, Tsatsenkin,
Chizhikov, & Antipin 1956), Germany (Briemle, Nitsche, & Nitsche 2002)
and the Alps (Jouglet, 1999; Landolt et al., 2010). In addition, disturbance
indicators related to the concept of hemeroby (i.e. unnaturalness of vegeta-
tion due to human impacts) have been proposed for some European plants
(see e.g. Hill et al. 2002), but they do not distinguish between frequency
and severity and combine other human-affected processes with disturbance,
namely nutrient availability and dispersal.

Here we present a data set of species-level disturbance indicator values
for 6,382 vascular plants commonly found in Europe. The large number of
species and geographic extent covered by our data set can stimulate the inte-
gration of plant-disturbance relationships in the field of macroecology, func-
tional biogeography and large-scale European vegetation monitoring and

assessment.

2 Materials and Methods

We followed three main methodological steps to calculate disturbance indi-
cator values (Figure 1): a) we selected vegetation plots and classified these to

habitat types; b) we assigned expert-based disturbance values to the differ-
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ent habitat types; and ¢) we calculated species indicator values by averaging
the disturbance values of the habitat types where the species occurred. Fi-
nally, we examined how indicator values were distributed across different
main plant life forms and how they responded to functional traits and CSR
values (Grime, 1979; Pierce et al., 2017). All analyses were performed using

R version 4.1.0 (R Core Team, 2021).

2.1 Vegetation data and habitat classification

We based the calculation of indicator values on 1,263,388 georeferenced veg-
etation plots from the European Vegetation Archive (EVA; project 123;
Chytry et al. 2016; data retrieved on 5 May 2021). The plots were mostly
located mostly in Europe, including a few sites in Greenland. Plots ranged
from 53.5°W to 62.2°FE longitude and 34.8°N to 80.1°N latitude.

We used the revised version of the EUNIS (European Nature Information
System) Habitat Classification described by Chytry et al. (2020) to classify
vegetation plots to EUNIS habitat types (hereafter, ‘habitats’). The clas-
sification was performed using the classification expert system EUNIS-ESy
(Chytry et al. (2020); version 2021-06-01, DOI: 10.5281/zenodo.4812736).
This system identifies habitats based on species composition and cover-
abundances of particular species or species groups, accounting for the abi-
otic environment and geographic location as classification criteria (Chytry
et al., 2020). The system evaluates each vegetation plot in terms of species
composition and cover and checks whether it meets the formal pre-defined
assignment criteria of different habitats. Some plots cannot be classified to a
specific habitat, either because transitional species compositions are simul-
taneously assigned to multiple habitats or the unusual species composition

prevents the classification of the plot to an existing habitat.
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We classified 842,218 plots into 236 EUNIS habitats. The remaining
plots could not be classified. We further removed plots with coordinate
uncertainty greater than 5 km and plots with an area smaller than 1 m?
and greater than 1,000 m?, leaving 736,662 vegetation plots available for
indicator value calculations. In the final selection, we retained plots with
unknown coordinate uncertainty (18.5%) and plot size (26.0%), otherwise
an important part of the geographical coverage (e.g. France) would have
been lost. The selected plots were mostly sampled between 1956 and 2013
(= 5" and 95" quantiles of the sampling year, respectively).

The vegetation plots from EVA cover a substantial part of the geo-
graphical range of most native European plants, but the native range of
alien species is obviously not well represented by these data. We assume
that species-disturbance relationships are constant within species geographic
range. However, we acknowledge the importance of future investigation of
species-disturbance relationships depending on species ranges, particularly

for non-native species.

2.2 Estimation of habitat-level disturbance values

To calculate species-level indicator values, we assigned expert-based distur-
bance values to each of the 236 habitats, assuming that habitats are suffi-
ciently homogeneous in this respect and that the same disturbance values
can be reasonably assigned to different plots classified within each habitat.
The values of disturbance variables were estimated based on the personal
field experience of members of our author team and information from the
literature.

To evaluate disturbance regimes in habitats, we used the absolute def-

inition of disturbance (White & Jentsch, 2001), which relates disturbance
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to measurable changes (losses) in plant community biomass (Grime, 1979).
In addition, we only considered disturbance of the whole community (or its
whole vegetation layers) and not disturbance affecting just small patches or
single individuals within the community (van der Maarel, 1993). For exam-
ple, in forests, the destruction of the tree layer by stand-replacing windstorm
was considered a disturbance event, but not the fall of individual dead trees.
We considered both regular disturbances (e.g. annual mowing or burning of
grassland, agricultural management of arable land or planned logging of a
mature managed forest) and irregular disturbances (e.g. wildfires or extreme
drought events).

The estimated variables included disturbance severity, disturbance fre-
quency, mowing frequency, grazing pressure, and soil disturbance. Distur-
bance severity and frequency refer to all possible types of disturbance that
may occur in a given habitat, including anthropogenic and natural distur-
bance as well as grazing and mowing. Conversely, mowing frequency, graz-
ing pressure and soil disturbance were estimated separately for such factors.
Soil disturbance specifically refers to any factor causing plant biomass death
from soil turning and furrowing.

Because one habitat can be affected by more than one disturbance, we
estimated values for the disturbance severity and disturbance frequency of
the disturbance type we considered most important for a given habitat. If
we considered two or more disturbance types with comparable importance in
the same habitat (for example, soil erosion and grazing in rocky grasslands),
we estimated their combined effects. We considered the following distur-
bance types (from most to least frequent): grazing, fire, logging, substrate
movement, vegetation removal by humans, wave and current action, ero-

sion, flooding, trampling, pathogen outbreaks, mowing, windthrow, arable
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land management, drought, inundation, frost, volcanic activity and snow
movement. All disturbance types are described in Table S1.1 (Appendix S1
Supporting Information).

Estimates of disturbance severity, grazing pressure and soil disturbance
reflect the mean fraction of above-ground vegetation biomass destroyed by
a single disturbance event typical of that habitat. We estimated one value
for each variable and habitat type, ranging from 0 (no change in biomass)
to 1 (complete loss of plant cover). Disturbance frequency and mowing
frequency correspond to the estimated mean interval (in years) between two
consecutive disturbance or mowing events.

We further considered separate values of disturbance frequency and sever-
ity estimated for the whole plant community (including all vegetation layers)
and values considering only the herb layer (Herben et al., 2016). This sep-
aration was necessary to account for the fact that disturbance regimes in
the tree and shrub layers differ in severity and frequency from the distur-
bance regimes in the herb layer of the same community. For habitats with
herbaceous vegetation only, the whole-community values were equal to the
herb-layer values.

In Appendix S1 (Supporting Information), we report additional details
on the criteria used to assign disturbance values to habitats. Table S1.1
also includes the description and range of periodicity of disturbance types
that were used to assign mean disturbance frequency on the habitats. The
list of habitats, their disturbance values and the most important type of
disturbance evaluated for each of them are reported in the Zenodo public

data repository (link).
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2.3 Indicator value calculation

Before calculating species indicator values, we stratified vegetation plots by
geographical location and habitat to reduce local oversampling of certain
vegetation types. We randomly selected one plot for each habitat that fell
within each cell of a grid with a resolution of 0.00225°, corresponding ap-
proximately to a 250 m grid. We repeated this process 999 times. Each
repetition resulted in a selection of 439,213 plots. Across all draws, 736,366
different vegetation plots were used (see Figure S2.1; Appendix S2 Support-
ing Information).

We followed an approach similar to Herben et al. (2016) to calculate dis-
turbance indicator values. For each repetition of vegetation plot selection,
we calculated disturbance indicator values for each species occurring in at
least 20 plots as the average of the expert-based disturbance values, weighted
by the number of plots where the species occurs in each habitat. We then
calculated the final indicator value for each species by taking the median of
the weighted mean of the disturbance values over the whole set of repeti-
tions. Finally, we excluded those species that were retained for the indicator
values calculation fewer than 10 times across the whole set of repetitions, re-
sulting in 6,382 species. We did not include cultivated plant species because
indicator values for these species were increased by disturbance in cultivated
land affecting all other species. Nevertheless, we included fruit tree species
(e.g. Prunus domestica) or occasionally cultivated species (e.g. Fragaria
vesca) because they may occur spontaneously in the vegetation.

For habitats that are never mown (207 of 236), we assigned a default value
of 100 years of mowing return time to calculate mowing frequency values
for species occurring in both mown and unmown habitats. To calculate

disturbance and mowing frequency of species, we used the inverse of return



oNOYTULT D WN =

233

234

235

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

257

258

Global Ecology and Biogeography

time, which is the mean interval between successive disturbance events. We
logip-transformed disturbance and mowing frequency to account for their
positively skewed distribution. To avoid negative values in the scale after the
log-transformation, we expressed return times in centuries (i.e. years/100).

To provide a measure of uncertainty due to the 999 draws following a
stratified resampling design of vegetation data from EVA, we also calculated
and reported the standard deviation of the weighted mean of disturbance
values. Furthermore, we explored whether plot size had an effect on indicator
values and if the minimum threshold of 20 plots retained for each species is
sufficient to perform the calculation. We report methodological details and

results of these analyses in Appendix S3 (Supporting Information).

2.4 Indicator value relationship with plant characteristics

We further assessed how the indicator values were distributed across the
main plant life forms described by Raunkiser (1905) (i.e. therophyte, hy-
drophyte, geophyte, hemicryptophyte, chamaephyte and phanerophyte) and
how they were related to the plant traits of the leaf-height-seed (LHS)
scheme (Westoby, 1998), namely, specific leaf area (SLA), plant vegeta-
tive height and seed mass. These functional traits represent fundamental
trade-offs of plants controlling their growth rate, competitive ability and
dispersal ability. Therefore, all of these traits have been hypothesized to be
involved in the response to disturbance (Laliberté et al., 2012; Vandewalle
et al., 2013).

Plant life forms were compiled for a subset of 6,116 species. We dis-
carded those species for which we were not able to determine their plant life
form. Functional trait data were compiled for a subset of 5,057 species in

total (2,369 for SLA; 4,717 for plant height; 3,391 for seed mass) using the

10
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LEDA trait database (Kleyer et al., 2008). Missing values that could not
be retrieved from LEDA were taken from TRY (Kattge et al., 2020) and
other databases to obtain as much trait information as possible. Additional
databases consulted for functional traits were Flora d’'Italia (Pignatti, Guar-
ino, & La Rosa 2017-2019) and the Pladias Database of the Czech Flora and
Vegetation (Chytry et al. 2021, www.pladias.cz) for plant height; D3 (Hintze
et al., 2013), the Seed Information Database (Royal Botanic Gardens Kew,
2021) and PICOS (Garcia-Gutiérrez et al., 2018) for seed mass; trait data
reported by Ladouceur et al. (2019) for SLA; and BROT2.0 (Tavsanoglu &
Pausas, 2018) for both seed mass and SLA. See Table S4.1 and Table S4.2
(Appendix S4, Supporting Information) for additional details on the number
of species for each plant life form and the number of trait data observations
retrieved from each database, respectively.

We visually inspected box plots to explore how indicator values were
distributed across different plant life forms. Based on the rationale that
the positioning along the disturbance gradient affects plant functional traits
of individual species, we fitted linear mixed-effect models using functional
traits as dependent variables and the disturbance indicator values as predic-
tors allowing for inclusion of a quadratic term when significantly improving
the goodness of fit (i.e., the Akaike Information Criterion). We modeled po-
tential phylogenetic dependencies by using family and genus of the species
as a nested random intercept term (~ 1| family / genus). We applied such
analyses on the five main indices reported here, namely disturbance severity
and frequency (both measured at the whole-community disturbance level),
mowing frequency, grazing pressure and soil disturbance.

Finally, we also compared the ‘competitor, stress-tolerator, ruderal’ (CSR)

scores defined by Pierce et al. (2017) to the disturbance indicator values and
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reported the results of these analyses in Appendix S4 (Supporting Informa-
tion). We fitted linear mixed effect models to test how the C, S and R scores
explain variation in disturbance indicator values (Figure S4.2) and we com-
pared indicator values grouped by main categorical strategy classes (Figure
S4.3). To calculate CSR values, we used a subset of 1,683 species present in
our data set for which SLA, leaf dry matter content (LDMC) and leaf area
(LA) were available from the Pladias Databasee (Chytry et al. 2021) and

TRY (Kattge et al., 2020).

3 Data structure and patterns

3.1 General description

The data set contains five main independent indicator values encompassing
different dimensions of disturbance for 6,382 species of the European vas-
cular flora: disturbance severity, disturbance frequency, grazing pressure,
mowing frequency and soil disturbance. In addition, the data set includes
species indicator values for disturbance severity and frequency for the herb
layer (Table 1). The data set includes the most frequent species of the Eu-
ropean flora based on the frequency of their records in the EVA database,
including both native European and alien plant species belonging to 166
plant families. We report figures on how the species are distributed into
habitat groups and most frequent families in Appendix S5. In addition, for
each species we report both the number of times the species was present
in at least 20 plots of the 999 repetitions used to calculate the indicator
values and the number of habitats (median) in which the species occurred
in the repetitions. We also include the uncertainty (standard deviation) of

each indicator value obtained across the 999 repetitions (see Figure S6.1,
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Appendix S6, Supporting Information). Uncertainty is higher in species oc-
curring in a low number of habitats with contrasting disturbance regimes.
The nomenclature of species and families found in the data set is based on
Euro+Med PlantBase (2021).

In general, disturbance indicator values estimate the realized disturbance
niche optimum of a species because they are based on species occurrences
in sampled vegetation. These indicator values provide information about
the ecology of the species in terms of the main characteristics of the dis-
turbance events that occur in the vegetation types where the species most
frequently occurs. For example, the highest values of disturbance severity
are found in weed flora of arable land (e.g. Cyanus segetum, Ranunculus
arvensis). In contrast, the lowest values of disturbance severity are found in
many species occurring in marshes (e.g. Carex limosa), high-mountain cliffs
(e.g. Campanula morettiana, Androsace spp.) and some aquatic plants (e.g.
Potamogeton spp.). Similarly, the lowest values of mowing frequency are
found in all the species associated with various never-mown habitats, while
the highest values are found in species commonly occurring in fertile hay
meadows (e.g. Crepis biennis, Schedonorus pratensis, Trisetum flavescens),
which are the most frequently mown habitats.

The indicator values presented here showed low correlation among each
other (Figure 2). This result supports the multidimensional nature of dis-
turbance as a factor and highlights the importance of using different facets
of indicator values when assessing disturbance in vegetation. However, dis-
turbance severity and frequency in the herb layer showed higher correlations
with other indicator values (Figure S6.2, see Appendix S6 Supporting In-
formation). For this reason, in this manuscript we focused on disturbance

severity and frequency at the whole-community level in this manuscript,
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rather than focusing on disturbance values in the herb layer.

3.2 Potential for ecological research

The indicator values proposed here are a tool for evaluating plant com-
munity composition and function in relation to disturbance. For example,
by calculating community-level means of disturbance values, our indicator
values could be used to explore plant taxonomic and functional diversity
along disturbance gradients. Furthermore, we believe that characterizing
species disturbance niche optima could be used to improve the effectiveness
of restoration and conservation strategies based on modifying disturbance
regimes in vegetation.

Importantly, the disturbance indicator values were determined based on
species occurrence in habitats. Our approach makes them independent of
species traits and allows us to avoid circular reasoning when focusing on the
response of plant functional traits to disturbance gradients. When analyzed
in relation to plant characteristics, we encountered clear differences in all
types of indicator values between plant life forms (Figure 3). For exam-
ple, annual plants (therophytes) had higher values of disturbance severity,
disturbance frequency and soil disturbance, consistent with the theoretical
expectation by Grime (1979) that disturbance favour more annual plants in
vegetation. Similarly, lower disturbance frequency for phanerophytes and,
to a lesser extent, geophytes, reflects that less intensive disturbance regimes
favour the establishment of slow-growing woody plants and those with un-
derground storage organs (MclIntyre et al., 1995). These results are consis-
tent with the analyses of Herben et al. (2018a), but with a larger number
of species and a wider geographical extent. Nevertheless, both mowing fre-

quency and grazing pressure showed little difference among plant life forms,
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except for hydrophytes and phanerophytes, which usually grow at other sites
than those managed by mowing or grazing.

Although the linear models showed very low R? values, we detected some
significant relationships between plant functional traits (plant height, seed
mass and SLA) and disturbance indicator values (Figure S2.2, Appendix S2
Supporting Information). Overall, most of the models analyzed indicated
significant quadratic relationships, reflecting previous results obtained for
Czech flora (Herben et al., 2018a). For example, the functional traits ini-
tially decreased and then increased with increasing disturbance frequency.
Furthermore, SLA and height generally decreased with increasing grazing
pressure. Overall, these results suggest that the disturbance indicator values
presented here can be used as explanatory variables to explore the underly-
ing mechanisms of trait variation along disturbance gradients. However, the
mechanisms explaining why the relationships are mostly quadratic (rather
than linear) are still poorly understood, and previous analyses have shown
that productivity, rather than disturbance, is a better predictor of the plant
functional traits of the LHS scheme (Herben et al., 2018a). Finally, we high-
light that the low association of the CSR scores with disturbance indicator
values (see Appendix 54) likely depend on the differences between the theory
of (Grime, 1979) and our approach. The CSR scores represent the trade-
off in terms of both disturbance and productivity along three main axes (=
plant strategies) so that the adaptation to disturbance is not the same under
different levels of productivity (Herben et al., 2018b). Conversely, although
distinguishing between frequency and severity, our indicator values focus on
disturbance only, independently of the functional adaptation of plants to

other components.
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4 Conclusions

Quantifying disturbance niche and disturbance optimum of individual plant
species is a relevant goal for ecological research, as disturbance is an impor-
tant driver of plant biodiversity and function. Here we presented disturbance
indicator values based on expert quantification of disturbance in different
habitats. This data set extends previous work conducted for the Central
European flora (Herben et al. 2016; Herben et al. 2018a) by including a
larger pool of species for the whole European continent and introducing
new indicator types — specifically, grazing pressure and mowing frequency.

While our data set focused specifically on disturbance for the European
flora, we believe that our approach can be used to develop indicator val-
ues in any other system where sufficient species occurrence data and expert
knowledge on habitats is available. We nevertheless emphasize that using
expert estimates of habitat types to quantify species’ ecological optima is
based on some assumptions that must be considered when using the indi-
cator values. In particular, we assume that disturbance regimes within the
same habitat type are the same in time and space, and that species occur-
rence in such habitats corresponds to their optimal ecological positioning.
Nevertheless, the approach presented here allows us to assess disturbance
across a large number of species and, more importantly, to disentangle dis-
turbance from other — often confounded — ecological components, such as
stress, competition and productivity.

For these reasons, we anticipate that the data set presented here may
facilitate and stimulate the inclusion of disturbance into macroecological
research. Such indicator values can be used, for instance, to test how
plant morpho-physiology and functional composition of plant communities

respond along disturbance gradients (Herben et al. 2018a), and can help

16

Page 24 of 59



Page 25 of 59 Global Ecology and Biogeography

cONOYULT A~ WN =

a7 improve the characterization of plant functional groups for dynamic models

10 ns  of vegetation and plant biodiversity (Boulangeat et al., 2012).

13 2w DATA AVAILABILITY STATEMENT

20 The data set is freely available in the Zenodo public data repository (https://zenodo.org/).
18 a1 N.B: the data will be made freely available at the time this manuscript is ac-
20 a2 cepted for publication. Since Zenodo does not support the upload
22 a3 of data for double-blind revision, the data can be currently down-
24 24 loaded at the following link: https://figshare.com/s/63ea83c4d650c5fdddea)
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a) Vegetation data and EUNIS habitat classification
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plot species
A Sagittaria sagittifolia . EUNIS
A Phragmites australis habitat
A Uicadioes | R A Q51
B Urtica dlioica P 4 B V15
B Myosotis arvensis C
B Cyanus segetum
- — [

c) Calculation of species indicator values

b) Expert-based estimation of disturbance

Habitat-level disturbance values
EUNIS N Frequency | Mowing N .
Habitat Severity yrs) vrs) Grazing Soil
Q51 0.2 1 10 0.1 0.1
V15 0.8 1 5 0.2 0.8
i dii
Examples:

Q51 = Tall-helophyte bed

V15 = Bare tilled, fallow or recently abandoned arable land

Repeated random
stratification

of European
vegetation plots

for indicator k; species j:

Yz Wjidk
ij: i=1Wji 1*

Dty Wi

Urtica dioica

Figure 1: Methodological workflow to calculate disturbance indicator val-
ues including some examples for contrasting species and habitats. a) Based
on vegetation-plot data from the European Vegetation Archive (EVA), we
classified plots to habitat types of the European Nature Information System
(EUNIS). b) We assigned disturbance values to each EUNIS habitat based on
expert judgement. c¢) We stratified vegetation plots by geographical location
and for each disturbance indicator and species, we calculated disturbance
indicator values as the average of expert-based disturbance values, weighted

d,; = Disturbance value
for disturbance type k
in habitat i

Wj; = Number of occurrences
of species j in habitat i

Phragmites australis

density

Sagittaria sagittifolia

Myosotis arvensis

Cyanus segetum

0.2 04 06

0.8 1.0

Disturbance severity

by the number of plots where the species occurs in each habitats.
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Figure 2: Distributions and pairwise correlations between the main distur-
bance indicator values in the data set. The diagonal represents the distri-
bution of indicator values. The top-right panels show Pearson’s correlation
coefficient. The bottom-left panels show density scatter plots, with lighter
colors corresponding to a higher density of data points. Disturbance sever-
ity and frequency correspond to indicator values estimated at the whole-
community level. See Figure S6.2 (Appendix S6 Supporting Information)
for a complete correlation matrix including values for disturbance severity
and frequency in the herb layer.
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Figure 3: Distribution of the main disturbance indicator values across ma-
jor plant life forms. Box-plots were generated for a subset of 6,116 species

for which data on plant life form were

available. The box represents the

50% of the central data, with the line inside corresponding to the median
and the notches to the confidence interval of the median. The whiskers

represent the observations within 1.5 *

interquartile range values. Distur-

bance severity and frequency correspond to indicator values estimated at

the whole-community level.
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SUPPORTING INFORMATION

Appendix S1: Summary of expert-based assessment of distur-

bance in habitats

In this appendix, we provide additional information on the criteria applied
to estimate disturbance values for different habitats of the European Nature
Information System (EUNIS) habitat classification. The disturbance indi-
cators were assigned by our author team based on our field experience and
literature information.

Disturbance definition. We use the absolute definition of disturbance
(White and Jentsch 2001, p. 405), relating disturbance to loss of plant
community biomass (Grime 1979).

Community disturbance vs patch disturbance. We focused on dis-
turbance of the whole communities or their highest vegetation layers rather
than disturbance of small patches within the community (van der Maarel
1993). For example, we consider the destruction of the forest tree layer by
stand-replacing windstorm, but we do not consider the fall of individual old
trees in a forest.

Regular and irregular disturbances. We consider both the regu-
lar disturbances (e.g. annual mowing or burning of grassland, agricultural
management of arable land or planned logging of a mature managed for-
est) and irregular disturbances (e.g. wildfires or extreme drought events in
grasslands), and estimated the inverse of disturbance frequency as the mean
return time.

Habitat-transforming vs non-transforming disturbances. We con-
sider only those disturbances that do not transform a particular habitat type

to another habitat type. For example, grazing in a pasture is considered.
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Forest fire or logging is also considered when a forest regenerates in a dis-
turbed area. In contrast, ploughing of a meadow that changes it to arable
land is not considered. Mire draining and peat extraction are also not consid-
ered because they change the mire to a grassland, shrubland or successional
forest.

Defining the most important disturbance type for each habitat.
To assess disturbance in vegetation we considered the disturbance types re-
ported in Table S1.1. Most habitats are affected by varying disturbance
types characterized by different frequency and severity. For each habitat,
we estimated disturbance frequency and severity for those disturbance types
that cumulatively remove the most biomass over a long period (longer than
the return time of the least frequent disturbance). For example, a tem-
perate semi-dry grassland can be disturbed by both grazing that occurs in
intervals of several weeks in particular spots and extreme drought events
that occur irregularly once in 5 to 15 years. In this system, grazing cumu-
latively removes more biomass over a long period (e.g. 20 years); therefore,
we consider grazing as the main disturbance type and estimate the distur-
bance frequency and severity for grazing, not drought events. In contrast,
Mediterranean annual grasslands are occasionally grazed, but most of their
biomass is killed annually by the advent of the dry period in the late spring.
In this system, drought cumulatively removes more biomass than grazing;
therefore, we consider drought as the main disturbance type.

In addition to the quantification of general disturbances, we estimated
separately three specific types of disturbances: grazing pressure, mowing
frequency and soil disturbance. These disturbance types were assessed for
all the habitats, including those in which they are not the most important

habitat types.
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Table S1.1: Disturbance types considered for habitat-level estimation of
disturbance values and their range of periodicity. The table reports number
of times each disturbance type was considered as a main disturbance type
in the 236 habitats.

Page 38 of 59

Disturbance type Periodicity Notes Number of

habitats

Wave and current ac- | weeks to years Mainly extreme events in water bodies dur- | 18

tion ing storms.

Flooding years to decades Biomass removals in terrestrial or semi- | 14
aquatic environments by the kinetic energy
of sudden water flow, not due to inunda-
tion.

Inundation years to decades Longer inundations that kill the whole | 4
plant communities by submerging vegeta-
tion (not the kinetic energy of water), e.g.
filling a drained pond; excludes, for ex-
ample, daily inundation in saltmarshes in
coastal tidal zones.

Frost months to decades Frost events that kill the whole plant com- | 2
munities, such as in the aquatic environ-
ment; excludes regular seasonal losses of
foliage or shoots in perennial herbs.

Frost-related mechani- | weeks to years Movement due to freeze-and-thaw cycles. 1

cal disturbance

Drought years to decades Drought period coming suddenly after a | 5
period with abundant moisture; drought
kills the whole plant communities and most
or all plant individuals.

Windthrow decades to centuries Stand-replacing events in forest vegetation. | 8
It does not includes single tree falls.

Fire years to decades 44

Volcanic activity months to centuries 3

Substrate movement weeks to years Includes both gravitation-driven move- | 19
ments (such as on screes) and wind-driven
movements (such as in sand dunes)

Erosion days to millenia Erosion of substrate (e.g. on cliffs and | 17
steep slopes)

Snow movement years to decades Avalanches and creeping snow movement | 2
on slopes

Logging decades 40

Mowing months to years Including cutting of dwarf-shrub vegeta- | 9
tion

Grazing weeks to years Including trampling by grazing animals 118

Trampling (humans) days to weeks Trampling by humans. Includes the move- | 14
ment of vehicles.
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9 Vegetation removal by | weeks to months Including cuttings and herbicide applica-
10 humans in settlements, tion

1 around buildings and
12 infrastructures

18

13 Arable land manage- | months Including tillage, herbicide application,

14 ment

weeding, hoeing

15 Pathogen outbreaks decades Outbreaks of pathogenic organisms (e.g.

insect herbivores, fungi and bacteria)

11

20 55
22 56
24 57

26 58

59

60

32 61
34 %
36 63
38 64

40 %

66

67

69

70

e Grazing pressure included grazing by large herbivores, both domes-

tic and wild, mainly mammals, but in saltmarshes, aquatic habitats
and wetlands also by birds. Grazing by invertebrates and small verte-
brate herbivores was not considered. Grazing pressure was estimated
on a scale from 0 to 1, where 0 means that the habitat is not grazed
and 1 means that all the vegetation is removed by grazing at least once

a year.

Mowing return time (frequency) is the time between two consec-

utive mowings *

Soil disturbance includes mechanical disturbance of the soil surface
or the upper soil layer by furrowing or soil turning. It is estimated on
a scale from 0 to 1, where 0 means no soil disturbance and 1 means
soil turning across the whole area of the habitat, such as ploughing on

arable land.

* = For the habitats that are never mown, a value of 100 years was used
for the calculation of species indicator values. See Materials and Methods

of the main article.
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Figure S1.1: Density plots (diagonal), pairwise correlations (top-right)
and scatter plots (bottom-left) for the disturbance values assigned to the
236 habitats. DSW = disturbance severity (at the whole community level);
DSH = disturbance severity in the herb layer; DRTW = disturbance return
time (at the whole community level); DRTH = disturbance return time in
the herb layer; MRT = mowing return time; GP = grazing pressure; SD =
soil disturbance. Return time for disturbance and mowing is expressed in
years. A 100-year value was assigned by default to MRT for never mown
habitats.
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Appendix S2: Geographic distribution of vegetation data

log(n.plots)
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Figure S2.1: Geographic distribution of the density (on a natural logarithm
scale) of vegetation plots from the European Vegetation Archive (EVA) used
to calculate disturbance indicator values (736,366 in total, after 999 random
stratification rounds).
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Appendix S3: Sensitivity analyses

In this appendix we describe the methods and results of sensitivity analy-
ses exploring the role of plot size in affecting indicator values and test the
minimum plot number to calculate the indicator values.

First, to test the role of plot size on the indicator values, we subset our
vegetation plot data by excluding plots with missing information on plot size
and stratified the data set into three categories based on plot sizes ranges
(i.e., ‘small’; ‘medium’, ‘large’), resulting in a total of 544,433 plots. The
assignment to the three categories depended upon the vegetation type (see
Table S3.1). Then, we recalculated the indicator values for each plot size

range category and compared the results to our original values.

Table S3.1: Ranges of plot size for each category (= ’Small’, "Medium’
and ’Large’). Range values were assigned differently to forest or non-forest
vegetation. The table report the total percentage for each category over
544,433 plots.

Plot size | Plot size range (m?)

% of plots
category | Forest Non-forest
‘Small‘ 1-50 1-4 29.9
‘Medium* 51 - 100 5-81 50.2
‘Large 101 - 1000 | 82 - 1000 19.9

We argue that plot size cannot affect directly disturbance indicators be-
cause expert-based disturbance values of habitat types were assigned inde-
pendently from vegetation plot characteristics. Indeed, we show that pat-
terns are consistent to our original indicator values (Pearson’s r > 0.84) (see
Figure S3.1 and Figure S3.2). However, the values of disturbance indicators
can slightly vary depending on plot size because the latter depend upon

habitat types, from which disturbance values are derived.
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Figure S3.1: Relationship between our original indicator values (y-axis)
and indicator values re-calculated for each subset of plot size category (=
‘Small’, "Medium’, 'Large’) (x-axis) for disturbance severity and frequency
(at the whole community level) and disturbance severity and frequency in
the herb layer. The panels include the Pearson’s correlation (r) and number

of observations.
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Figure S3.2: Relationship between our original indicator values (y-axis)
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and Soil disturbance. The panels include the Pearson’s correlation (r) and
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08 Second, to test that a minimum of 20 plots per species is sufficient for

90 estimating disturbance indicator values, we report the results of a sensitivity

100 analysis in which we recalculated the indicator values by randomly selecting,

101 where possible, 20 plots only for each species in each of the 999 repetitions

102 in which we calculated the disturbance indicator values.

We show that

103 the values obtained this way are nearly the same to disturbance indicator

104 values reported in our main manuscript (Pearson’s r > 0.99) (Figure S3.3),

105 demonstrating that a minimum of 20 plots per species represent a robust

106 threshold for calculating disturbance indicator values.
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Figure S3.3: Relationship between our original indicator values (y-axis)
and indicator values re-calculated by randomly selecting 20 plots for each
species in each round (x-axis) across the 6,382 species. Pearson’s correlation
(r) was higher than 0.99 across all the pairwise comparisons.
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w7 Appendix S4: Plant functional traits and C-S-R data rela-

s tionships with disturbance indicator values

Table S4.1: Number of species (observations) available for each plant
life form. The table report both counts including those species that falls
into more plant life form categories (data used for Figure 3 in the main
manuscript), as well as the number of species for each category excluding
the species falling into more than one plant life form category.

Species number (observations)

Plant life form Multiple plant Unique plant
life form life form
Phanerophyte 546 508
Chamaephyte 656 437
Hemicryptophyte | 3584 2902
Geophyte 700 364
Hydrophyte 120 89
Therophyte 1272 1059

Table S4.2: Number of species-level observations (trait data) retrieved
from each database for each plant functional trait.

Database name Plant height Seed mass SLA  Source
BROT2.0 - 361 305 Tavsanoglu & Pausas (2018)
D3 - 169 - Hintze et al. (2013)
Flora d’Italia 2304 - - Pignatti et al. (2017-2019)
SID-KEW - 89 - Royal Botanic Gardens Kew (2021)
Ladouceur - - 48 Ladouceur et al. (2019)
LEDA 2149 244 1803  Kleyer et al. (2008)
PICOS - 50 - Garcia-Gutiérrez et al. (2018)
PLADIAS 122 - - Chytry et al. (2021)
TRY 142 678 213 Kattge et al. (2020)
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Figure S4.1: Relationship between plant functional traits (y-axes) and
main disturbance indicator values (x-axes) across individual species. Lighter
colors of the bins correspond to a higher density of data points. The pan-
els include the predicted line of the linear mixed-effect model and related
marginal R?. The line is fitted from a quadratic relationship if this signifi-
cantly improved the goodness of fit (= Akaike Information Criterion, AIC).
Plant functional trait values are on a log scale.
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49 Figure S4.2: Relationship between competitor (C), stress-tolerator (S) and
50 ruderal (R) Grime’s scores (x-axes) and main disturbance indicator values
51 (y-axes) across individual species for a subset of 1,683 species. Lighter colors
52 of the bins correspond to a higher density of data points. The panels include
53 the predicted line of the linear mixed-effect model and related marginal R2.
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Figure S4.3: Distribution of the main disturbance indicator values across
the main Grimes’ plant strategy categories (C = competitor; S = stress-
tolerator; R = ruderal). The box plots are obtained on a subset of 1,683
species for which data on C-S-R scores where available. The colors of the
box represent the positioning of each category in the color wheel of the CSR
triangle by Pierce et al. (2017). The box represents the 50% of the central
data, with the line inside corresponding to the median and the notches to the
confidence interval of the median. The whiskers represent the observations

within 1.5 * interquartile range values.
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9

10 139 groups

11

12
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14 Poaceae -

15 Fabaceae -

16 Caryophyllaceae -
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25 Rubiaceae -

26 Orobanchaceae -
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33 Primulaceae -

34 Asparagaceae -

35 Crassulaceae -
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40 Salicaceae -

41 Polygonaceae -

42 Plumbaginaceae -

43 Violaceae - I

44 Ericaceae - -
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46 © © © 0
47 Number of species
32 Figure S5.1: Number of species included in the data set for each plant
50 family. Only the 30 most frequent families are shown.
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Figure S5.2: Number of species included in the data set found in different
EUNIS habitat groups (see Chytry et al., 2020) based on 736,366 EVA plots.
Panel a) displays species found in at least one plot belonging to a given
habitat group. Panel b) displays species found in at least 20 plots belonging
to a given habitat group.

19

Page 54 of 59



Page 55 of 59 Global Ecology and Biogeography

1

2

3

4

5

6

7

8 1w Appendix S6: Distribution of uncertainty and pairwise corre-
9

10 w1 lation matrix of indicator values
11

o
Q
~

13 . Disturbance frequency 0 o Disturbance severity
14 Disturbance frequency (herb-layer) Disturbance severity (herb-layer)
5000 -
15 - 2000 - 2000 - 2000 -
8 4000 -
16 o 1500- 1500 - 1500 -
8— 3000 -
17 e 10004 20004 1000+ 1000~
1 8 500 - 1000 - 500 - 500 -
1 9 0 - ] ] ' ] ] 0 - ] ] ' ] 0 L ] ] ] ] O b ) ] ] ]
20 0 1 2 3 4 0 1 2 3 0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.03
21 Grazing pressure Mowing frequency Soil disturbance
22 1500
23 > 2000~ 2000-
24 $ 1500~ 1000~ 1500 -
>3
25 g 1000- 1000~
26 i 500-
500- 500-
27
28 055 ) } 0 Wy T v 055 } ] \
0.00 0.01 0.02 0 1 2 3 4 0.00 0.01 0.02 0.03
29 Standard deviation

w w
e gpS)
O
~—

Disturbance frequency Disturbance severity

Disturbance frequency

Disturbance severity

(herb-layer) (herb—-layer)
32 c o
33 2 0.03- o 0.03-
®
34 é 0.02- 0.02-
35 °
36 § 0.01- 0.01-
37 % DS .
38 : ; : ; : ; : ; 0.00-¢ ; : ; 0.00-¢ ; : ;
39 0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
40 Grazing pressure Mowing frequency Soil disturbance
log(count)

41 s 4l 0.03-
42 kS 400

> 3- o
43 § 2 0.02 o5
jg .§ ; 0.01- 7

g |

©
46 @ 0% oo T saee 0003 oo TR 1
47 0 50 100 150 0 50 100 150
48 Sample size
49 (mean number of habitats occupied by the species)
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55 values of standard deviation are found in those species occurring in low number of
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Figure S6.2: Pairwise correlations (top-right) and density scatter plots (bottom-
left) for the whole set of indicator values available in the data. Lighter colors in
the bottom-left panels correspond to a higher density of data points. The first
five indicators starting from top left (DSW, DFW, MF, GP and SD), correspond
to the main indicators presented in the main manuscript. DSW = disturbance
severity (at the whole community level); DSH = disturbance severity in the herb
layer; DFW = disturbance frequency (at the whole community level); DFH =
disturbance frequency in the herb layer; MF = mowing frequency; GP = grazing
pressure; SD = soil disturbance.
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