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ARITHM ÉTIQUE QUASICRISTALLINE : VERS UNE D ÉFINITION DES MODULES DE DRINFELD EN CARACT ÉRISTIQUE NULLE

Dans cet article nous développons la notion de module de Drinfeld quasicristallin, que l'on peut voir comme un analogue en caractéristique zéro des modules de Drinfeld classiques. On prendra garde que l'adjectif se réfère aux quasi-cristaux (au sens de [?]), sans rapport avec la théorie cristalline initiée par A. Grothendieck.

Introduction

Rassembler sous la dénomination commune de corps globaux les corps de nombres (alias les extensions finies de Q) et les corps de fonctions (alias les extensions finies de Q := F q (T )) a sans doute constitué l'un des gestes les plus productifs en théorie des nombres. Cette philosophie, promue par A.Weil dans son ouvrage si influent ([?]), a largement établi l'habitude de prouver d'abord les conjectures pour les corps de fonctions (donc en caractéristique positive), en utilisant les structures supplémentaires attachées à ces derniers, à savoir d'abord :

(1) La géométrie des courbes que l'on trouve comme en coulisses dans les extensions de Q mais pas pour les corps de nombres ; (2) l'arithmétique de rang 1, c'est-à-dire l'existence d'anneaux de Dedekind avec groupe d'unités fini, qui découle du caractère non archimédien de la somme par rapport aux valuations à l'infini, tandis que les valuations à l'infini des extensions de Q sont, elles, archimédiennes. L'aspect géométrique des extensions de Q était utilisé par Weil pour démontrer l'hypothèse de Riemann [?] dans ce cas, ce qui l'a conduit à la formulation des fameuses conjectures, dites de Weil [?]. Les preuves de Weil et de Deligne continuent à inspirer certaines approches du cas "classique", comme le montrent les travaux d'A. Connes [?] et C. Deninger [?]. Il s'agit en particulier de chercher l'analogue d'un morphisme étale de courbes qui induirait une extension finie K/Q. D'autre part l'arithmétique des anneaux de Dedekind de rang 1 a été synthétisée par V. Drinfeld [?] et D. Hayes [?] dans une théorie du corps de classes en caractéristique positive qui combine des idées venues de la théorie de la multiplication complexe et du théorème de Kronecker-Weber. Plus généralement, V. Drinfeld [?] a appliqué sa théorie à la r ésolution d'un cas de la réciprocité de Langlands en caractéristique positive.

Ce qui précède rend très naturel le projet de chercher une version de la théorie de Drinfeld-Hayes pour les corps de nombres. Une piste était fournie dans les articles [?] et [?] qui concernent l'étude de l'invariant modulaire quantique j qt : R/GL(2, Z) R ∪ {∞}, une fonction multivaluée, discontinue et invariante par rapport à l'action projective de GL(2, Z) sur R. La définition de j (θ) utilise les approximations diophantiennes de θ.

Il existe aussi une definition de j qt en caractéristique positive j qt : R/GL(2, Z) R ∪ {∞}, où R = Q ∞ est l'analogue des nombres réels et Z = F q [T ] ⊂ Q est l'analogue des entiers rationnels. Dans ce cas, pour f ∈ R une unité fondamentale quadratique sur Q, j qt (f ) est fini, et on peut identifier

j qt (f ) = {j(a i )| a i ⊂ A ∞1 , i = 1, . . . , d}, (1) 

où (voir [?] pour plus de précisions)

• A ∞1 est un sous-anneau de Dedekind de O K = l'anneau des entiers de K = Q(f ), "petit" au sens que A × ∞1 = F × q ; • Les a i ⊂ A ∞1 sont des idéaux ; • j : Cl A∞ 1 -→ R est un invariant modulaire des classes d'idéaux de A ∞1 .

Si l'on note H O K le corps de classes associé à O K , le théorème principal de [?] dit que

H O K = K( α∈j qt (f ) α) = K( d i=1 j(a i )).
La preuve utilise la théorie de Drinfeld-Hayes, autrement dit une théorie du corps de classes basée sur le "petit" anneau A ∞1 ([?], [?]). On a la conjecture suivante:

Conjecture (Demangos-Gendron [?]). Soient θ ∈ R \ Q une unité fondamentale quadratique et K = Q(θ) le corps quadratique associé, de discriminant D. Alors, j qt (θ) est un ensemble de Cantor autosimilaire d'ordre D et

H K = K(N avg (j qt (θ)))
où H K est le corps de classes de Hilbert de K et N avg (j qt (θ)) est un produit pondéré des éléments de j qt (θ).

Dans cet article, on démontre que j qt (θ) est l'image continue d'un ensemble de Cantor ; en particulier il est soit de Cantor, soit fini (voir Corollaire ??).

En vue de prouver l'analogue en caractéristique nulle des résultats résumés plus haut il est désirable de disposer de l'équivalent de la théorie de Drinfeld-Hayes dans ce cas. On constate immédiatement que le premier pas consiste à trouver un anneau analogue A σ1 à A ∞1 en caractéristique nulle, où σ 1 : K -→ C est un plongement de K/Q.

Dans le cas où K = Q(ϕ), avec ϕ le nombre d'or, une description explicite de A σ1 était implicite dans les calculs de renormalisation donnés en [?] (voir § §2,3). Richard Pink ([?]) a par la suite suggéré la définition élégante et transparente suivante : soit K/Q une extension quadratique réelle, σ i , i = 1, 2, les deux plongements de K dans R. On fixe σ 1 en identifiant K avec σ 1 (K). Soit

A σ1 = {α ∈ O K | |α | ≤ 1}, α = σ 2 (α).
Si l'on écrit K = Q(θ) où θ est une unité fondamentale et que l'on définit les semigroupes multiplicatifs

a x = {α ∈ O K | |α | < θ -x } ⊂ a + x = {α ∈ O K | |α | ≤ θ -x }, Pink a demontré que j qt (θ) = x∈[0,1)
{j(a x ), j(a + x )}, où j est un analogue de l'invariant modulaire (voir §??). Cette formule est l'analogue exacte de (??): en fait, les idéaux a i qui apparaissent dans (??) s'écrivent explicitement

a i = {g ∈ K| |g | ∞1 < q -i }.
Pink a observé également que les semigroupes a x sont des quasicristaux (et même des ensembles modèles). Cependant il leur manque pour constituer de véritables idéaux d'être stables par rapport à la somme. Dans cet article, partant de l'observation de R. Pink, nous explorons la possibilité de développer une théorie de Drinfeld-Hayes basée sur l'anneau quasicristallin A σ1 . Nous commençons au §?? avec une récapitulation de la théorie de Drinfeld-Hayes. Au §?? nous donnons la définition générale d'un anneau quasicristallin arithmétique puis discutons au §3 le monoïde des classes d'idéaux Cl qc Aσ 1

. Nous définissons ensuite ( §??) la fonction zêta ζ a associée à un idéal quasicristallin et démontrons l'existence d'un prolongement méromorphe à tout le plan complexe. Au §?? on utilise la fonction zêta ζ a pour définir l'invariante modulaire j : Cl qc . Nous commençons ensuite ( §??) un développement plus géométrique en introduisant pour chaque idéal quasicristallin un solénoïde associé qui constitue essentiellement une définition analytique d'un module de Drinfeld quasicristallin. Enfin au §?? on introduit les fonctions trigonométriques quasicristallines qui découlent de formules du produit, ainsi que l'exponentielle associée, dans le cadre de ces modules quasicristallins.
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1. Bref résumé de la théorie de Drinfeld-Hayes La théorie quasicristalline développée ici est basée sur la théorie des modules de Drinfeld-Hayes de rang 1, presentée par exemple dans [?], [?], [?] et que nous résumons ci-dessous.

Soient Q = F q (T ) ⊃ Z := F q [T ] le corps des fonctions rationnelles à coefficients dans le corps fini F q (q = p k , p un nombre premier) avec son sous-anneau des polynômes. Alors Q est le corps de fonctions de la droite projective P 1 = Q ∪ {∞} et Z l'anneau des fonctions regulières sur P [START_REF] Baake | A Mathematical Invitation[END_REF] 

-{∞}. Soit R := Q ∞ le completé de Q à la place v ∞ : v ∞ (f ) = deg T -1 (f ) = -deg T (f ) et |f | = q -v∞(f ) . On identifie R à F q [[T -1 ]
], le corps des séries de Laurent en la variable T -1 . On note enfin C = (R) ∞ , qui est un corps complet et algébriquement clos.

On dit qu'une extension K/Q est géométrique si le corps des constantes K ∩ F q de K est aussi F q . Dans ce cas il existe un morphisme π : Σ K → P 1 de courbes défines sur F q qui induit cette extension. Toutes les extensions considérées ici sont géométriques. À une telle extension on associe la clôture intégrale O K de Z dans K ; on a O K = Reg(Σ K \ π -1 (∞)), où Reg dénote les fonctions régulières. Si ∞ 1 ∈ π -1 (∞) on peut définir

A ∞1 = Reg(Σ K \ {∞ 1 }) ⊂ O K ,
qui est un anneau de Dedekind ; A ∞1 est "petit" au sens que A × ∞1 est fini, ce qui implique l'existence des places A ∞1 → C d'images discrètes. À ces deux anneaux de Dedekind O K et A ∞1 on peut associer les corps de classes de Hilbert au sens de Rosen ([?])

H A∞ 1 H O K K
dont les groupes de Galois sont isomorphes aux groupe des classes idéaux correspondants:

Gal(H A∞ 1 /K) ∼ = Cl A∞ 1 et Gal(H O K /K) ∼ = Cl O K .
Exemple 1. Le cas de K ⊂ R extension de degré 2 sur Q, induite par le morphisme π : Σ K → P 1 , de degré 2, est particulièrement intéressant. On a deux préimages de

∞ ∈ P 1 , soit π -1 (∞) = {∞ 1 , ∞ 2 }. Dans ce contexte A ∞1 = {g ∈ K| |g | ∞1 ≤ 1}, où g est la conjuguée de Galois de g et |g | ∞1 = q -v∞ 1 (g ) . Fixons une unité fondamentale f ∈ O × K tel que |f | ∞1 = q d > 1. Suivant [?] on a l'identification A ∞1 = F q [f, f T, . . . , f T d-1 ] ⊂ O K = F q [f, T ].
Dans cette même référence on a également démontré (cf. Theorem 4 de [?]) que :

Gal(H A∞ 1 /H O K ) ∼ = Z := {a 0 , . . . , a d-1 } ⊂ Cl A∞ 1 où a i = (f, f T, . . . , f T i ) = {g ∈ A ∞1 | |g | ∞1 ≤ q i-d } ⊂ A ∞1 .
À tout idéal fractionaire de A ∞1 on associe un A ∞1 -module de rang 1 comme suit. On définit d'abord l'exponentielle associé à a

exp a (z) = z 0 =α∈a 1 - z α :
qui est un épimorphisme additif (C, +) → (C, +) de noyau a. Pour tout α ∈ A ∞1 il existe alors ([?]) un polynôme additif1 ρ α (X) tel que le diagramme ci-dessous soit commutatif:

C/a α• -C/a C exp a ∼ = ? ρα -C ∼ = exp a ?
Le module de Drinfeld (de rang 1) associé à a, soit D a = (C, ρ), est défini alors comme C muni de la structure de A ∞1 -module définie par les ρ α . En tant que A ∞1 -module, on a D a ∼ = C/a. Il existe une normalisation naturelle de D a par ξ a ∈ C qui joue un rôle analogue à la normalisation de Z par πi ∈ C dans la théorie de l'exponentielle classique. On remplace le réseau a ⊂ C par Λ a := ξ a a et on considère l'exponentielle correspondante e a (z) := exp Λa (z) = ξ a exp a (ξ -1 a z). On choisit ξ a de manière à obtenir un module de Drinfeld D a = (C, ρ) conjugué à D a et normalisé par rapport au signe (voir au §12 de [?]). Dans ce cas, pour chaque α ∈ A ∞1 les coefficients de ρα appartiennent au corps de classes de Hilbert H A∞ 1 et de plus (voir [?] et [?] Theorem 3.4.2) Hayes a montré qu'ils engendrent ce corps :

H A∞ 1 = K(coefficients de ρα ).
Le module D a s'appelle module de Hayes. Il a permis à ce dernier de développer une théorie explicite du corps de classes basée sur le "petit" anneau de Dedekind A ∞1 en utilisant les modules Da . Le but de cet article est de proposer un candidat pour représenter un analogue des modules de Hayes pour les anneaux d'entiers des corps de nombres. En particulier, on définira les analogues des objets suivants :

-le petit anneau A ∞1 : ce sera un anneau quasicristallin PVS (Pisot-Vijayaraghavan et Salem), voir §?? ; -un idéal a de A ∞1 , appelé ci-dessous idéal quasicristallin, voir §?? ; -le groupe de classes d'idéaux Cl A∞ 1 , ici le monoïde des classes des idéaux quasicristallins, voir §?? ;

-le quotient C/a, noté Ŝa , alias ici le solénoïde quasicristallin associé à a, voir §?? ; -l'exponentielle exp a , voir §?? ; -le module de Drinfeld D a , devenu le module de Drinfeld quasicristallin et noté E a ⊂ C * . Sa structure de "module" provient d'applications multivaluées

ρ α : D a -→ D a ,
induisant des fonctions bien définies sur le cercle S 1 = C * /R * + .

Anneaux et idéaux quasicristallins

Soit X ⊂ R n . On dit que X est un ensemble de Delaunay s'il est 1. Uniformément discret : il existe r > 0 tel que pour tout x ∈ X, B r (x)∩X = {x}, où B r (x) est le boule ouvert de radius r centré en x.

Relativemente dense

: il existe R > r > 0 tel que pour tout v ∈ R n , B R (v) ∩ X est non nulle.
Un quasicristal (au sens d'Yves Meyer [?]) est un ensemble de Delaunay Λ ⊂ R n qui est un presque réseau : il existe un ensemble fini F ⊂ R n tel que

Λ -Λ ⊂ Λ + F.
Exemple 2 (Ensembles Modèles). Soit R N = V 1 ⊕ V 2 une décomposition en somme directe de deux sous-espaces vectoriels, π i les projections sur V i , i = 1, 2. Soient Γ ⊂ R N un réseau et D ⊂ V 2 un ensemble relativement compact (appelé fenêtre). L'ensemble modèle associé est défini par Dans la suite on se concentrera sur le cas des idéaux quasicristallins associés aux sous monoïdes multiplicatifs d'un corps de nombres K/Q de degré d > 1. On note les d plongements σ : K → C ainsi que l'espace de Minkowski

M = M(Γ , D) = M(V 1 , V 2 , Γ , D) = {π 1 (v)| v ∈ Γ , π 2 (v) ∈ D} ⊂ V 1 .

Normalement on prendra

N = n + m, V 1 = R n et V 2 = R m ,
K → K ∞ = {z = (z σ ) ∈ C d |z σ = z σ } ∼ = R r × C s ,
où r est le nombre de plongements réels, s le nombre des paires de plongements complexes conjugués et d = r + 2s. On fixe un sous ensemble

Σ = {σ 1 , . . . , σ k }, σ i : K → K σi =    R ou C de plongements tel que si σ ∈ Σ est complexe, σ ∈ Σ. L'ensemble Σ définit un sous-espace K Σ ⊂ K ∞ de façon évidente et un plongement Σ = (σ 1 , . . . , σ k ) : K → K Σ . Si Σ est le complémentaire de Σ, on a K ∞ = K Σ ⊕ K Σ . On dit que A ⊂ K est un anneau quasicristallin s'il existe Σ = (σ 1 , . . . , σ k ) comme ci-dessus et tel que l'image Σ(A) ⊂ K Σ est un anneau quasicristallin de K Σ . On identifiera alors A avec son image Σ(A) ⊂ K Σ . Exemple 4. Fixons Σ comme ci-dessus. On peut associer à chaque σ ∈ Σ la fenêtre D σ = {x ∈ K σ | |x| ≤ 1}. Alors l'ensemble modèle A Σ = M(K Σ , K Σ , O K , D Σ ), où D Σ = σ∈Σ D σ , définit un anneau quasicristallin A Σ ⊂ K Σ . Si Σ = {σ} on note A σ ⊂    R ou C
l'anneau quasicristallin associé, qu'on dira de rang 1, réel ou complexe selon la nature du plongement σ.

Si par exemple K = Q(θ) ⊂ R est une extension quadratique réelle de Q, alors on a deux plongements σ 1 = id et σ 2 de sorte que

A σ1 = {α ∈ O K | |α | ≤ 1}, A σ2 = {α ∈ O K | |α| ≤ 1},
où α dénote le conjugué galoisien de α. Dans ce cas, on a De même un entier algébrique complexe ω avec |ω| > 1 est un nombre de PV complexe ([?]) si tous ses conjugués ω σi = ω satisfont |ω σi | < 1; c'est un nombre de S complexe si tous ses conjugués ω σi = ω satisfont |ω σi | ≤ 1 avec de nouveau égalité pour au moins un i. On note P V l'ensemble de tous les nombres de Pisot-Vijayaraghavan complexes, S celui des nombres de Salem complexes et P V S l'union de ces deux ensemles (P V S = P V ∪ S). Les intersections P V R = P V ∩ R, S R = S ∩ R, P V S R = P V S ∩ R, consistent en les nombres P V , S et P V S classiques ainsi que leurs opposés. Si K/Q est finie, on note P V K = P V ∩ K et de même pour S et P V S. On a alors l'énoncé suivant : Proposition 1. Soit A σ ⊂ K comme dans l'Exemple ??. Alors on a l'égalité

A σ1 ∩ A σ2 = ±1, A σi = O K , i = 1,
A σ = P V S K ∪ µ K ∪ {0} où µ K ⊂ O ×
K est le sous-groupe multiplicatif des racines de l'unité. Preuve. On identifie A σ à son plongement complexe en utilisant la place σ.

Pour tout α ∈ A σ , |α τ | ≤ 1 pour tout τ = σ, σ. Si |α| > 1 alors α ∈ P V S K et sinon |α| = 1 et donc α ∈ µ K .
Un tel A σ sera appelé anneau quasicristallin P V S associé à K et σ; dans ce que suit nous nous concentrerons sur l'étude de tels anneaux quasicristallins de rang 1. On choisit une fois pour toutes une place complexe dans chaque paire de places conjuguées : l'ensemble des σ i tels que σ i , σ i = σ contient r + s -1 éléments. Notons π : K ∞ -→ K {σ} la projection sur K {σ} , où l'on rappelle que {σ} est le complémentaire de σ dans l'ensemble des places. Soient z ∈ K σ et δ = (δ 1 , . . . , δ r+s-1 ) > 0 (i.e. δ i > 0 pour tout i). On écrira

|z| < δ x , x ∈ R r+s-1 , si et seulement si |z i | < δ xi i pour tout i. Si u ∈ U K := O × K /µ K ∼ = Z r+s-1 est une unité d'ordre infini, on définit pour chaque x ∈ R r+s-1 a x (u) := {α ∈ O K | |π (α)| < |π (u)| x }.
Il est clair que a x (u) est un ensemble modèle et un monoïde multiplicatif, donc un idéal quasicristallin fractionnaire puisque A σ agit dessus par multiplication. Pour u 1 , u 2 , u ∈ U K , on a les inclusions

a x (u 1 ) • a x (u 2 ) ⊂ a x (u 1 u 2 ), a x (u) • a y (u) ⊂ a x+y (u), ainsi que les égalités a -x (u) = a x (u -1 ), u • a x (u) = a x+1 (u) où 1 = (1, . . . , 1). Pour tout u ∈ U K , on a a 0 := P V K ∩ A σ = a 0 (u),
l'ensemble de nombres de PV de A σ , qui est un idéal quasicristallin entier maximal de A σ ; son complémentaire est donné par

A σ \ a 0 = S K ∪ µ K .
Dans la suite on fixe u une unité de PV3 , c'est-à-dire une unité u d'ordre infini tel que |π (u)| < 1. Nous omettrons parfois u dans la notation, écrivant simplement a x .

Outre les quasicristaux a x , il sera commode de disposer des quasicristaux associés à un vecteur + = (+ 1 , . . . , + d-1 ) ∈ {0, 1} d-1 : si l'on note

< +i = < si + i = 0, ≤ si + i = 1 , on définit a + x = {α ∈ O K | |π (α)| < + |π (u)| x } ⊃ a x . Lorsque + = (1, . . . , 1), on note a := a + , de sorte que A σ = a 0 et a + x = a x quand + = (0, . . . , 0). Les quasicristaux a x ⊆ a +
x sont des idéaux quasicristallins entiers si x ≥ 0 (parce que u est PV), et autrement des idéaux quasicristallins fractionnaires. Clairement,

a x a + x =⇒ ∃i tel que σ i (u) xi ∈ O K .
Par exemple, si K = Q(θ) est une extension quadratique réelle et θ > 1 une unité fondamentale, alors pour x ∈ R, Note 2. On peut considérer les analogues des quasicristaux et des ensembles modèles dans le cas de caractéristique positive (voir §?? ci-dessus pour les notations). En remplaçant R par R on peut définir pareillement les notions de quasicristal et d'ensemble modèle. On a alors

a x (θ) a + x (θ) ⇔ θ x ∈ O K , et dans ce cas a + x (θ) = a x (θ) ∪ {±θ x }.
A ∞1 = A σ = a + 0 = {g ∈ O K | |π (g)| ∞1
≤ 1} qui est un anneau au sens usuel. Dans ce contexte les a x (u) s'identifient à

a n := {g ∈ O K | |π (g)| ∞1 ≤ q -n }, n = (n 1 , . . . , n r+s-1 ) ∈ Z r+s-1 .
où a n est un idéal fractionnaire au sens usuel. Plus généralement tout idéal quasicristallin fractionnaire qui est un ensemble modèle est un idéal fractionnaire au sens usuel de l'anneau A ∞1 . On en conclut que les analogues en caractéristique nulle des "petits" anneaux A ∞1 sont les anneaux quasicristallins PV de type A σ .

Note 3. Notons enfin que les constructions faites ci-dessus en rang 1 ont des équivalents dans le cas où A Σ est un anneau quasicristallin modèle de rang k, Σ = {σ 1 , . . . , σ k }. On définit en ce cas l'ensemble P V Σ des nombres de PV associés à Σ comme

P V Σ = {α ∈ O K | |σ 1 (α) • • • σ k (α)| > 1, |σ (α)| < 1 pour tout σ ∈ Σ }.
On a donc toujours A Σ = P V Σ ∪ µ K et l'analogue des idéaux modèles a x (u) se définit par l'intermédiaire d'un vecteur x ∈ R r+s-k .

Monoïdes des classes d'idéaux quasicristallins

Dans ce qui suit on étudie l'arithmétique des idéaux quasicristallins. On montre tout d'abord l'existence d'un produit monoïdal : 1. Les a x ne sont pas inversibles pour tout x ∈ K σ ; 2. Supposons qu'il existe α ∈ a x tel que π (α) = π (u) x ∈ O × K pour tout i ; alors a x est inversible d'inverse a -x . Démonstration. 1. Si b est un inverse pour a, il existe α ∈ a tel que α -1 ∈ b, puisque le produit

ab = A contient 1. Soit β ∈ a tel que |α i | < |β i | < u -xi i pour tout i ; un tel élément existe parce que O K ⊂ K σ est dense. Alors β/α ∈ ab mais n'est pas élément de A ; contradiction. 2. On peut supposer que α ∈ O × K , puis 1 = α • α -1 ∈ a x • a -x , ce qui implique que a x • a -x = A.

Soit a un idéal quasicristallin et soit

A := aO K son extension en un O K -idéal, par définition l'ensemble des sommes finies de la forme i γ i α i , γ i ∈ O K , α i ∈ a. On note que abO K = (aO K )(bO K ) (produit des idéaux), d'où le fait que cette opération d'extension induit un morphisme de monoïdes Φ : Cl(A) -→ Cl(K). On note que le produit monoïdal est "incomplet" dans le sens qu'il ne coïncide pas avec le produit des idéaux quand a, b en sont. Par exemple, on peut faire toutes les constructions ci-dessus en caractéristique positive, en considérant les extensions finies K du corps de fonctions Q = F q (T ). En ce cas les ensembles modèles sont des idéax d'anneaux du type A ∞1 (voir au §1 et la note 2 ci-dessus) mais le produit introduit ici n'est pas le produit de ces idéaux : il manque ici l'operation d'addition qui n'est pas assez bien contrôlée en caractéristique nulle, dans le cadre de quasicristaux. Cependant si l'on se restreint aux idéaux quasicristallins qui sont des ensembles modèles, il est possible de définir un produit qui incorpore la somme d'une manière satisfaisante, et tel qu'il coïncide avec le produit des idéaux lorsque a, b en sont. Dans ce qui suit, nous développons la définition d'un tel produit.

Soient A un O K -idéal fractionnaire (réalisé comme un réseau de K ∞ ) et D ⊂ K σ une fenêtre qui est un produit d'intervalles de la forme

D + x (u) := (-u xi , u xi ) +i , (-u xi , u xi ) +i = (-u xi , u xi ) si + i = 0 [-u xi , u xi ] si + i = 1 . Soit a = a + A,x (u) 
= M(A, D) l'ensemble modèle associé. On observe que le choix de la fenêtre D n'est pas forcément unique : par exemple, il est possible (en fait probable) qu'on ait l'égalité

M(A, D +
x (u)) = M(A, D x (u)) pour tout +, où D x (u) correspond à + = (0, . . . , 0). Dans ce cas, on dit que l'ensemble modèle est générique et on le spécifie comme ensemble modèle, en privilégiant la fenêtre la plus petite, c'est-à-dire D x (u), plutôt que les autres D + x (u). En général, il existe, pour chaque ensemble modèle de ce type, une plus petite fenêtre, à savoir l'intersection

a=M(A,D + x (u)) D + x (u),
qui est aussi de la forme D + x (u) pour un choix approprié de +. De cette façon, chaque ensemble modèle basé sur le réseau A est déterminé et se détermine par sa plus petite fenêtre. Dans le cas générique on note simplement a pour

a A,x (u) = M(A, D + x (u))) = M(A, D x (u))
; dans les autres cas on précisera la distinction 

a + = a + A,x (u) a = a A,x (u). Lemme 1. Si M(A, D) = M(B,

Proof. Au moins l'un des ensembles

A \ B, B \ A est infini si A = B: supposons que A \ B est infini. Soit D = D ∩ D . Puisque l'action de u ∈ O × K stabilise A \ B, il en suit qu'il existe α ∈ M(A, D ) \ M(B, D ) ⊂ M(A, D) \ M(B, D ). Donc A = B et D = D .
On dit que l'ensemble modèle non générique a est fermé ; si de plus il existe α ∈ a tel que α

-1 ∈ A -1 et |π (ũ)| = |π (u)| -x ,
on dit que a est unitaire. Dans tous les cas on appelle a un idéal quasicristallin modèle : c'est bien un idéal quasicristallin de A au sens précédent.

Soient maintenant a = M(A, D), b = M(B, D ) deux idéaux quasicristallins modèles. On peut alors définir un produit qui se restreint au produit usuel des idéaux fractionnaires quand a, b en sont:

a * b := M(A * B, D • D ) ⊃ a • b, où A * B est le produit usuel d'idéaux fractionnaires et D • D = {x = tt | t ∈ D, t ∈ D }.
En raison de notre convention pour le choix de fenêtre, le produit a * b est bien défini et c'est aussi un idéal quasicristallin modèle. L'ensemble des idéaux quasicristallins modèles, soit I mod (A), constitue un monoïde lorsqu'il est muni du produit * , dont l'élément neutre est

1 := A = M(O K , D 0 ).
Proposition 5. L'ensemble I mod 0 (A) := {idéaux quasicristallins modèles unitaires} est un sous-groupe du monoïde I mod (A).

Démonstration. Soient a A,x ∈ I mod 0 (A) et α ∈ a A,x un élément qui montre que c'est un idéal unitaire ; on a donc α -1 ∈ a A -1 ,-x avec

a A,x * a A -1 ,-x = A = 1. Si a A,x , b B,y sont unitaires, avec α, resp. β, comme ci-dessus, alors a A * B,x+y est unitaire par rapport à αβ et a A,x * b B,y = a A * B,x+y .
On appellera principal l'idéal quasicristallin

αA := M(αO K , D α ) où α ∈ K × et D α = [-|σ 1 (α)|, |σ 1 (α)|] × • • • × [-|σ r+s-1 (α)|, |σ r+s-1 (α)|].
De manière équivalente, si l'on note

x(α) := log |π (u)| (|π (α)|) (2) := log |σ1(u)| |σ 1 (α)|, . . . , log |σr+s-1(u)| |σ r+s-1 (α)| , alors on a αA = a (α),x(α) .
On remarque que pour tout α ∈ A, αA ⊂ A, autrement dit αA est un idéal quasicristallin entier. En général les idéaux quasicristallins principaux sont tous unitaires et forment un sous-groupe

P mod (A) = αA : α ∈ K × ⊂ I mod 0 (A) ⊂ I mod (A).

On note le quotient

Cl mod (A) := I mod (A)/P mod (A). C'est le monoïde des classes d'idéaux quasicristallins modèles. Il contient

Cl mod 0 (A), (3) 
le sous-groupe des classes d'éléments de I mod 0 (A). Soient u 1 , . . . , u r+s-1 un choix de système d'unités fondamentales. Les vecteurs x(u 1 ), . . . , x(u r+s-1 ) , de R r+s-1 (voir (??) ci-dessus) sont linéairement independants ; on note Υ le groupe additif qu'ils engendrent.

Lemme 2. Υ ⊂ R r+s-1 est un réseau. [START_REF] Cassels | An Introduction to Diophantine Approximation[END_REF] Démonstration. Le rang de Υ en tant que groupe abélien est r + s -1 ; reste à montrer que Υ est discret. Considèrons le cube centré à l'origine

C = {x : |x i | ≤ R} ⊂ R r+s-1 avec R > 0 : il suffit de vérifier que Υ ∩ C est fini. La préimage D ⊂ R r+s-1 + de C par l'inverse du logarithme est un produit : D = {y| r 1 ≤ |y i | ≤ r 2 } et donc la préimage D de D dans K σ pour la valeur absolue | • | : K σ → R r+s-1 +
est un produit d'anneaux de dimensions 1 ou 2, uniformément éloignés de l'origine comme de l'infini. On en conclut que tout élément π

(δ) ∈ π (O × K ) ∩ D satisfait des inégalités 0 < c 1 < |δ| < c 2 avec c 1 , c 2 des constants qui ne dépendent que de C (parce que δ • σ i (δ) = ±1). En particular, la préimage de π (O × K ) ∩ D par π est contenue dans un compact et contient donc un nombre fini d'éléments de O × K ⊂ O K . Ainsi Υ ∩ C est bien un ensemble fini.
On note le tore quotient

T Υ := R r+s-1 /Υ. Du fait de l'identité u i • a + O K ,x = a + O K ,x+x(ui) , i = 1, . . . , r + s -1, l'ensemble Z := a + O K ,x mod P mod (A) x∈T Υ , + (4) 
est un sous-monoïde de Cl mod (A). [START_REF] Cassels | An Introduction to Diophantine Approximation[END_REF] Ce lemme est essentiellement équivalent au théorème des unités de Dirichlet, à une nuance près : on utilise log |π (u)| au lieu du logarithme népérien.

Théorème 1. L'application

Cl mod (A) -→ Cl(K), a -→ aO K = le O K -idéal engendré par a,
est surjective, de noyau le sous-monoïde Z.

Démonstration. On commence par montrer que cette application est un homomorphisme. Soient a, b deux idéaux quasicristallins modèles : il faut montrer que 

(a * b)O K = (aO K * bO K ) mod P(K), (5) 
ω i = j α ij β ij , α ij ∈ A, β ij ∈ B, |π (ω i )| < |π (u)| -(x+y) .
On note que α ij ∈ A, resp. β ij ∈ B n'est pas forcément un élément de a, resp. b ; il est possible par exemple que |π

(α ij )| < |π (u)| -x . Néanmoins, en multipliant η par 1 = u -2M N u 2M N , M ≥ |I| pour tout I où γ I = 0, on obtient η = I u -2N M γ I u 2N M i∈I   j α ij β ij   = I u -2N |I| γ I i∈I   j (u N α ij )(u N β ij )   et pour N suffisamment grand, u N α ij ∈ a et u N β ij ∈ b. On peut donc supposer sans perte de généralité que α ij ∈ a, β ij ∈ b. Puis η = I γ I i∈I   j α ij β ij   (6) = I γ I α ij β ij (7)
où les sommes de produits qui apparaissent à la ligne (??) proviennent du développement des produits de sommes de la ligne (??). Il est alors clair que l'expression (??) appartient au produit d'idéaux

aO K * bO K . Autrement dit (a * b)O K ⊂ (aO K * bO K ) mod P(K). Inversement soit η ∈ aO K * bO K ; on peut écrire η = k I γ I,k α I • J γ J,k β J , γ I,k α I ∈ aO K , γ J,k β J ∈ bO K , où I, J ⊂ N sont finis et α I , β J sont des produits d'éléments de a, b, γ I,k , γ J,k ∈ O K .
En développant les produits, on obtient des O K -combinations linaires d'expressions de la forme 

α I β J ∈ (a * b)O K . Alors, η ∈ (a * b)O K et on a prouvé l'égalité (??) i.e. que l'application du théorème est un homomorphisme. Si A = (α, β) est un O K -idéal, l'idéal quasicristallin modèle a = a A,x , |π (α)|, |π (β)| < |π (u)| -x satisfait A = aO K , et
I mod A (A) = {a = M(A, D)} ⊂ I mod (A).
(Par le Lemma ??, il existe un seul A tel que a = M(A, D).) On peut identifier chaque element a de I mod A (A) avec sa fonction caractéristique

χ a : A -→ {0, 1}, χ a (α) = 1 ⇔ α ∈ a.
On munit I mod A (A) de la topologie induite du plongement I mod A (A) → 2 A , où 2 = {0, 1} et 2 A est muni de la topologie produit. Chaque inclusion A ⊂ B induit un plongement 2 A → 2 B qui est un homéomorphisme sur son image, defini en prolongeant f : A → 2 à B \ A par 0. Notons que d'après la démonstration du Lemme ??, l'image de I mod A (A) dans 2 B est disjointe de I mod B (A). Autrement dit

I mod (A) = A I mod A (A) ⊂ lim -→ 2 A
est topologisé comme union disjointe, incluse dans la limite inductive lim -→ 2 A . Proposition 6. L'action multiplicative de K × sur I mod (A) induit une action bien définie du quotient K × /µ K par homéomorphismes, qui est propre et discontinue. La topologie quotient sur Cl mod (A) est Hausdorff.

Démonstration. L'action de µ K laisse invariante chaque O K -idéal A et chaque fenêtre D ; son action sur I mod (A) est donc triviale. Tout γ ∈ K × /µ K agit sans point fixe : en effet, c'est clair si γ ∈ O × K /µ K , parce que γA = A pour tout O K - idéal ; si maintenant γ ∈ O × K /µ K , γ ∈ µ K , chaque fenêtre D satisfait γD = D. Alors, γ définit une bijection de I mod (A) qui respecte la topologie. Soit a ∈ I mod A (A) defini par la fenêtre D. Soit X = {γ ∈ O × K /µ K | γD ⊂ D}, X = O × K /µ K \ X. D'après le Lemma ??, l'action multiplicative de π (O × K ) est sans point d'accumulation. Donc, il existe • α ∈ a tel que π (α) ∈ γ∈X γD ; • β ∈ a tel que π (β) ∈ γ∈X γD.
On définit alors l'ouvert U a dont la fonction caractéristique χ satisfait 1.

χ(α) = 1 ; 2. χ ∈ I mod A (A) i.e. χ| K\A ≡ 0 et en particulier, χ(β) = 0. Si γ ∈ O × K /µ K , γU ⊂ I mod γA (A) d'intersection nulle avec U ⊂ I mod A (A).
Si γ ∈ X, χ γa (α) = 0 i.e. γU ∩U est vide ; de la même façon, si γ ∈ X , χ γa (β) = 1 et γU ∩U est également vide. On en conclut bien que l'action est propre et discontinue.

Note 4. Lorsque K/Q est quadratique et réelle, a = a + A,x , x ≥ 0 et A ⊂ O K = Z[θ],
θ une unité fondamentale, on peut identifier canoniquement χ a avec une fonction de codage

χ a : N -→ {0, 1}. Plus précisement, χ a (a) = 1 si et seulement si il existe b ∈ N tel que χ a (aθ + b) = 1. La correspondance a → χ a est injective sur Z car la projection α = aθ + b → a est injective sur O K .

Soit maintenant

Z 0 := Z ∩ Cl mod 0 (A), où Cl mod 0 (A) est défini dans (??). On a alors le résultat suivant : Théorème 2. Cl mod (A) est un monoïde de Cantor 5 et Cl mod 0 (A) est dense dans Cl mod (A). De plus le sous-groupe Z 0 est dense dans Z et de rang topologique [START_REF] Connes | An essay on the Riemann hypothesis[END_REF] au plus r + s -1.

Démonstration. Par le Théorème ??, pour prouver que Cl mod (A) est de Cantor, il suffit de montrer que c'est le cas de Z. On note d'abord que comme espace topologique Z s'identifie homéomorphiquement avec le sous espace de

I mod O K (A) ⊂ 2 O K défini par les fonctions χ a +
x , x ∈ T Υ , (voir (??)). On commence alors par prouver que Z est parfait. Si a x = a O K ,x ∈ Z est générique, alors a x est une limite à gauche : lim y>x a y = a x .

En effet, si y > x, a y ⊂ a x et par généricité, tout α ∈ a x appartient à a y si y est assez proche à x, ce qui implique que χ ay → χ ax dans la topologie faible (de Tychonoff). Inversement, si a x est fermé, on a a y ⊃ a x pour tout y < x et lim y<x a y = a x .

Pour a + x non générique général, on considère y → x tel que

y i > x i si + i = 0 et y i < x i si + i = 1 puis lim a y = a +
x . Le même genre d'argument montre que Z est fermé. L'ensemble Z étant parfait et fermé dans un ensemble de Cantor, il est lui aussi de Cantor. L'ensemble Z 0 est dense parce que l'ensemble des paramètres x tels que π (u) x ∈ O K est dense en K σ et d'après ce qui précède on peut trouver une suite d'éléments de Z 0 qui converge vers n'importe quel element de Z. Soient x 1 , . . . , x r+s-1 ∈ T Υ tels que

π (u) xi =: π (α i ) ∈ π O K \ (O × K ∪ Q) , i = 1, .
. . , r + s -1, et tels que x 1 , . . . , x r+s-1 sont indépendants dans le sens qu'il existe un choix de préimages xi dans R r+s-1 qui forment une base ; c'est possible, parce que l'ensemble [START_REF] Bernard | Modular invariant of quantum tori[END_REF] Un monoïde de Cantor est un ensemble de Cantor qui est un monoïde dont le produit est continu. [START_REF] Connes | An essay on the Riemann hypothesis[END_REF] Le rang topologique est le nombre minimal de générateurs d'un sous-monoïde dense.

π O K \ (O × K ∪ Q) est dense en K σ .
Observons qu'il n'existe pas de combination entière non triviale nulle

n 1 x 1 + • • • + n r+s-1 x r+s-1 = 0 ; en effet l'existence d'une telle relation impliquerait que α i ∈ O × K .
De plus, puisque il existe des préimages qui forment une base de R r+s-1 , il suit que le groupe T := x 1 , . . . , x r+s-1 ⊂ T Υ est dense. Soient a x1 , . . . , a xr+s-1 ∈ Z 0 les idéaux quasicristallins fermés associés à x 1 , . . . , x r+s-1 . Alors, de la densité du groupe T des paramètres et de l'analyse de la convergence dans Z en termes du paramètre x il suit que le groupe engendré par les a xi est bien dense dans Z.

La fonction zêta d'un idéal quasicristallin

Soit a ⊂ R un idéal quasicristallin de dimension 1 ; lorsque a est un idéal modèle nous le distinguerons en utilisant la notation

m = M(A, D) = M(K σ , K σ , A, D) ⊂ R, où D = D +
x (u) ⊂ K σ (voir § §??, ?? pour des précisions). La fonction zêta associée s'écrit

ζ a (s) = 0<α∈a α -s .
Dans cette section nous montrons l'existence d'un prolongement méromorphe de ζ a au plan tout entier. Nous donnons également, lorsque a = m est un idéal quasicristallin modèle, une équation fonctionnelle généralisée pour ζ m . En vue de ce dernier objectif on considère plus généralement la situation suivante. Soit f ∈ S(K σ ), l'espace de Schwartz de K σ , avec f paire i.e. telle que f (-x) = f (x).

On définit les f -poids sur m (plus bas la dépendance par rapport à f sera omise de la notation) selon

χ(α) = χ f (α) := f (α ), α ∈ m, α := π (α) ∈ D.
La fonction L quasicristalline associée à m et χ est alors définie par

L(m, χ, s) := 0<α∈m χ(α) α s .
Proposition 7. Soient a un idéal quasicristallin de rang

1 et m = M(A, D) ⊂ R un idéal quasicristallin modèle avec poids χ = χ f . Les fonctions ζ a (s), L(m, χ, s) convergent uniformément sur tout compact du demi-plan ouvert Re(s) > 1.
Note 5. L'argument qui suit s'étend à tout ensemble de Delaunay X ⊂ (0, ∞), c'est-a-dire que la fonction zêta ζ X (s) := x∈X x -s aussi converge uniformément sur tout compact du demi-plan ouvert Re(s) > 1.

Démonstration. Soient 0 < α 1 < α 2 < • • • les éléments positifs de a. Comme celui- ci est uniformément discret, il existe r > 0 tel que B r (α n ) ∩ a = {α n } pour tout n ∈ N. En remplaçant a par a = r -1 (a -α 1 ) + 1,
on obtient un autre quasicristal dont les éléments positifs sont les Démonstration. On utilise la méthode usuelle de l'intégrale de Riemann-Stieltjes (voir par exemple [?], Theorem 1.12). Soit

α n := r -1 (α n -α 1 ) + 1 où α1 = 1 et αn+1 -αn > 1 pour tout n. Alors il existe un constante C > 0 tel que, pour tout s tel que Re(s) ≥ σ > 1, |ζ a (s)| ≤ C 1 α Re(s) n ≤ C 1 n Re(s) = Cζ(Re(s)).
α 1 < α 2 < • • • comme dans la démonstration de Proposition ??. En écrivant α 0 := 0, α -m := -α m , m ∈ N, on définit la a-partie entière comme [x] a := α m si α m ≤ x ≤ α m+1 et la a -partie fractionnaire comme {x} a := x -[x] a ∈ [0, R] où a est relativement dense par rapport à R > 0. Alors ζ a (s) = 0<α≤x α -s + α>x α -s = 0<α≤x α -s + ∞ x u -s d[u] a = 0<α≤x α -s + ∞ x u -s du - ∞ x u -s d{u} a = 0<α≤x α -s + x 1-s s -1 + {x} a x -s + ∞ x {u} a du -s (8) = 0<α≤x α -s + x 1-s s -1 + {x} a x -s -s ∞ x {u} a u -s-1 du, (9) 
où l'égalité (??) provient d'une intégration par parties dans l'intégrale de Riemann-Stieltjes (voir Theorem A. 3 de [?]). La dernière expression (??) est méromorphe pour Re(s) > 0, avec un seul pôle simple en s = 1. Ici, on notera que l'intégrale figurant dans (??) converge uniformément sur les compacts du demi-plan Re(s) > 0 et que l'intégrand est holomorphe, ce qui implique que l'intégrale est également holomorphe sur ce demi-plan. En intégrant par parties de façon répétée, on obtient le prolongement souhaité. 

m ∨ = m ∨ 1 ⊂ m ∨ 2 ⊂ • • • et m ∨ n = A ∨ . Soit maintenant δ(x)
µ ∨ (x) = ξ∈A ∨ χ ∨ (ξ)δ(x -ξ) := ∞ n=1 ν n (x) (11) où a. La fonction χ ∨ est définie par χ ∨ (ξ) := 2π |disc(A)| • f ∨ (ξ ), avec f ∨ le dual de Fourier de f et disc(A) le discriminant de A ; b. Pour chaque n ∈ N, ν n est un peigne pondéré ν n (x) = ξ∈∆m ∨ n χ ∨ (ξ)δ(x -ξ) avec support ∆m ∨ 1 := m ∨ quand n = 1 et ∆m ∨ n := m ∨ n -m ∨ n-1 = M (A ∨ , nD ∨ -(n -1)D ∨ ) pour n ≥ 2 ;
c. La convergence de la deuxième série dans (??) est très rapide : pour tous

N ∈ N et R ∈ R + a+R a-R d|ν n |(x) = O(n -N ) quand n → ∞, (12) 
uniformement en a.

Démonstration. Le poids χ se prolonge à tout O K en posant χ(α) = f (α ). Alors, pour toute fonction test g ∈ S(K σ ), on peut écrire

R g(x) dµ(x) = α∈m f (α )g(α). La fonction définie sur K ∞ par G(x, y) = f (y)g(x)
décroît rapidement à l'infini et sa transformée de Fourier G ∨ (ξ, η) = f ∨ (ξ)g ∨ (η) est également à décroissance rapide à l'infini. Appliquant à G la formule de Poisson classique par rapport au réseau A ⊂ K ∞ on obtient :

α∈m f (α )g(α) = α∈A f (α )g(α) = 2π disc(A) ξ∈A ∨ f ∨ (ξ )g ∨ (ξ),
qui fournit la première égalité dans (??). La fonction f ∨ étant aussi de la classe de Schwartz, l'assertion c) est immédiate, sauf l'indépendence par rapport à a. Mais les ensembles modèles ∆m ∨ n , utilisés dans la définition des ν n , font intervenir des fenêtres du volume

Vol (nD ∨ -(n -1)D ∨ ) = O(n r+s-2 ).
On peut donc effectuer une partition de nD ∨ \ (n -1)D ∨ en n r+s-2 parties de volume uniformément borné par une constante indépendante de n. On obtient ainsi pour tout n les partitions

∆m n = n r+s-2 i=1 ∆m n,i , |ν n | = n r+s-2 i=1 |ν n,i | .
Les quasicristaux ∆m n,i (voir [?], [?]) sont uniformément discrets avec une constante r > 0 qui ne dépend pas de n, i. Les poids décroissant rapidement à l'infini, on en déduit l'estimation figurant dans (??) et que l'on peut choisir la constante, implicite dans (??), indépendamment de a.

Nous nous proposons d'appliquer le Théorème ?? à l'étude des fonctions L associées à ∆m ∨ n et χ ∨ :

L ∨ n (m, χ, s) := L(∆m ∨ n , χ ∨ , s) = 0<β∈∆m ∨ n χ ∨ (β) β s .
Proposition 9. La suite de fonctions L ∨ n (m, χ, s) convergent uniformément vers zéro sur tout compact du demi-plan Re(s) > 1. De plus la somme

∞ n=1 L ∨ n (m, χ, s) (13) 
converge uniformément sur un domaine du même type et définit donc une fonction holomorphe pour Re(s) > 1.

Démonstration. Comme déjà observé dans la preuve du Théorème ??, les ensembles modèles ∆m ∨ n sont uniformément discrets avec une constant r > 0 indépendante de n.

Alors, pour [c, C] ⊂ R, c > 1, |L ∨ n (m, χ, s)| ≤ A • max β∈∆m ∨ n |f ∨ (β )|, Re(s) ∈ [c, C],
où A est de nouveau une constante indépendante de n. Ainsi puisque la transformée de Fourier f ∨ de f est dans l'espace de Schwartz, L ∨ n (m, χ, s) converge uniformément vers 0 sur les compacts pour Re(s) > 1. À cause de la décroissance rapide de f ∨ à l'infini, la somme (??) converge de même.

Notons

L ∨ (m, χ, s) := ∞ n=1 L ∨ n (m, χ, s),
qu'on appellera fonction L généralisée. Les fonctions normalisées

Λ(m, χ, s), Λ ∨ n (m, χ, s), Λ ∨ (m, χ, s) se définissent en multipliant chacune des fonctions L(m, χ, s), L ∨ n (m, χ, s) et L ∨ (m, χ, s) par le facteur classique π -s/2 Γ (s/2).
La fonction thêta quasicristalline associée à m, χ s'écrit

θ m,χ (t) := 1 2 χ(0) + 0<α∈m χ(α)e -πα 2 t ,
et les fonctions thêta duales de niveaux n = 1, 2, . . . sont définies par

θ ∨ m,χ,1 (t) := 1 2 χ ∨ (0) + 0<β∈m ∨ χ ∨ (β)e -πβ 2 t pour n = 1 et θ ∨ m,χ,n (t) := 0<β∈∆m ∨ n χ ∨ (β)e -πβ 2 t
pour n ≥ 2. Les quasicristaux ∆m ∨ n , étant uniformément discrets avec une constante r que l'on peut choisir indépendamment de n, ils définissent une suite {θ ∨ m,χ,n (t)} qui converge uniformément sur tout compact de (0, ∞). Comme la restriction de χ ∨ à ∆m ∨ n tend rapidement à zéro, la limite de cette suite est nulle. De la même façon qu'à la Proposition ??, la somme

θ ∨ m,χ (t) := ∞ n=1 θ ∨ m,χ,n (t)
converge et définit une fonction lisse.

Lemme 3. La fonction

θ ∨ m,χ (t) - χ ∨ (0) 2 est à décroissance rapide à l'infini.
Démonstration. C'est une conséquence immédiate des faits suivants : 1) les ∆m n sont uniformément discrets de constante r > 0 indépendante de n et 2) la fonction χ ∨ est elle-même à décroissance rapide à l'infini.

Appliquons maintenant la formule sommatoire distributionnelle de Poisson-Meyer à la fonction

f t (x) := e -πtx 2 , f ∨ t = t -1/2 f t -1 . En utilisant l'identité T ∨ (f ) = T (f ∨
), où T est une distribution tempérée, et le fait que f t est paire, on obtient l'équation fonctionnelle :

θ m,χ (t) = 2π |disc(A)| t -1/2 θ ∨ m,χ (t -1
). ( 14 

Λ(m, χ, s) = 2π |disc(A)| Λ ∨ (m, χ, 1 -s).
Démonstration. En suivant la preuve classique, l'équation fonctionnelle (??) implique que la transformée de Mellin

M θ m,χ - 1 2 χ(0) (s) := ∞ 0 θ m,χ (t) - 1 2 χ(0) t s/2 dt t converge pour tout s. Si Re(s) > 1 on a ∞ 0 e -πtα 2 t s/2 dt t = π -s/2 Γ (s/2)α -s , ce qui donne M θ m,χ - 1 2 χ(0) (s) = Λ(m, χ, s). Puis Λ(m, χ, s) = 1 0 2π disc(A) θ ∨ m,χ (t -1 ) - χ(0) 2 t s/2 dt t + ∞ 1 θ m,χ (t) - χ(0) 2 t s/2 dt t = 2π disc(A) ∞ 1 θ ∨ m,χ (t) - χ ∨ (0) 2 t (1-s)/2 dt t + ∞ 1 θ m,χ (t) - χ(0) 2 t s/2 dt t (15) + χ(0) s + 2π disc(A) • χ ∨ (0) s -1 .
Il reste à observer que les intégrales apparaissant dans (??) sont holomorphes en s sur C tout entier du fait de la décroissance rapide à l'infini des intégrands (voir le Lemme ??). L'équation fonctionnelle annoncée est alors conséquence de l'équation pour les fonctions thêta correspondantes.

Revenons à la fonction zêta, ζ m (s). On aurait envie de prendre f = f D , fonction indicatrice de la fenêtre D, dans la formule sommatoire de Poisson-Meyer. Toutefois celle-ci n'est valable que pour f lisse et f D ne l'est pas. Néanmoins, on va voir qu'en prenant une suite de fonctions lisses à supports compacts qui converge vers f D , la limite correspondante du côté droit de (??) est uniforme sur les compacts de C \ {0, 1}.

Soient donc ε → 0 et f ε → f D une suite de fonctions lisses qui convergent uniformément vers f D et telles que (1) supp(f ε ) = D ε est relativement compacte pour tout ε et D ε → D uniformément pour la topologie de Hausdorff.

(2)

f ε | D ≡ 1 et |f ε (x)| ≤ 1 pour tout x ; (3) f ε ≥ 0 et f ε (-x) = f ε (x) pour tout x ∈ K {σ} . Soit m ε = M(A, D ε ) = supp(χ ε ). On note d'abord que Λ(m ε , χ ε , s) converge pour Re(s) > 1 vers Λ(m, s) := π -s/2 Γ (s/2)ζ m (s)
(qui admet une extension meromorphique à C \ {0, 1} à cause de la Proposition ??).

Cette convergence a lieu parce que :

1. Tout α ∈ m ε \ m satisfait x i < +i |σ i (α)| < x i + ε. Alors (à l'exception de α "limite" e.g. |σ i (α)| = x i pour tout i), la dernière inégalité implique que pour tout M > 0 il existe N tel que |α| > M quand ε -1 ≥ N ; 2. |χ ε (α)| ≤ 1.
Pour les mêmes raisons on a convergence uniforme sur les compacts des fonctions θ mε,χε (t) vers θ m (t), donc convergence des intégrales

∞ 1 θ mε,χε (t) - χ(0) 2 t s/2 dt t -→ ∞ 1 θ m (t) - χ(0) 2 t s/2 dt t .
Alors, d'après (??), les intégrales

2π disc(A) ∞ 1 θ ∨ mε,χε (t) - χ ∨ ε (0) 2 t (1-s)/2 dt t (16) 
convergent aussi uniformément sur les compacts, toujours pour Re(s) > 1. En utilisant la symétrie s → 1 -s, on déduit que la famille {Λ ∨ (m ε , χ ε , s)} converge uniformément sur les compacts de C \ {0, 1}. Notons la limite

Λ ∨ (m, s) := lim ε→0 Λ ∨ (m ε , χ ε , s).
On obtient ainsi l'équation fonctionnelle :

Théorème 5. Λ(m, s) = 2π √ |disc(A)| Λ ∨ (m, 1 -s) pour tout s ∈ C.

Démonstration. D'après le Théorème

??, on a pour tout s ∈ C \ {0, 1} Λ(m, s) = lim ε→0 Λ(m ε , χ ε , s) = lim ε→0 2π |disc(A)| Λ ∨ (m ε , χ ε , 1-s) = 2π |disc(A)| Λ ∨ (m, 1-s).

L'invariant modulaire quantique et un résultat de R. Pink

Nous développons ici la relation, découverte par Richard Pink ([?]), entre les quasicristaux et l'invariant modulaire quantique ; voir le Théorème ?? ci-dessous. Cette section, si brève soit-elle, revêt néanmoins une importance centrale, l'observation de Pink ayant en grande partie motivé le présent travail.

Soient A = A σ ⊂ R un anneau quasicristallin de rang 1 et a ⊂ R un idéal quasicristallin fractionnaire de A. En utilisant la fonction zêta ζ a (voir §??) on peut définir l'invariant modulaire quasicristallin, à savoir Il y a évidemment invariance par rapport à la multiplication par les éléments de K × , par suite de l'égalité ζ αa (s) = α -s ζ a (s), α ∈ K × . On obtient ainsi une fonction bien définie j : Cl mod (A) -→ R ∪ {∞}. 

ζ θ,ε (s) = 0<n∈Λε(θ) n -s
qui converge pour (s) > 1, en tant qu'une sous-somme de celle qui définit la fonction zêta classique. On définit de plus

j ε : R -→ R pour j ε (θ) := 12 1 -J ε (θ) , J ε (θ) := 49 40 ζ θ,ε (6) 2 ζ θ,ε (4) 3 . 
L'invariant modulaire quantique ([?]) est la fonction multivaluée

j qt : Mod qt := R/GL 2 (Z) R ∪ {∞}, j qt (θ) := lim ε→0 j ε (θ),
où la limite est définie comme l'ensemble des points d'adhérence lorsque ε → 0. Soit maintenant θ une unité fondamentale quadratique réelle de K = Q(θ) avec O K = Z[θ] l'anneau des entiers. Lors d'une conversation privée ([?]), Richard Pink a dégagé la formule suivante pour j qt (θ). Revenant au monoïde Z défini dans la formule (??) du §??, celui-ci s'écrit dans le cas quadratique sous la forme

Z = x∈[0,1) {a x , a + x } ⊂ Cl mod (A).
Théorème 7 (R.Pink). Soit θ une unité fondamentale quadratique réelle. Alors

j qt (θ) = {j(a)| a ∈ Z}.
Démonstration. On peut supposer que θ > 1, étant donné que j qt (θ) = j qt (±θ ±1 ).

Notons

Λ x := Λ θ -x (θ) et ∆ := θ -θ . Pour x ≥ 0 et n ∈ Λ x , il existe m ∈ Z tel que |nθ + m| < θ -x . En particulier, en écrivant α = nθ + m, on a Λ x = α -α ∆ α ∈ O K , |α| < θ -x , où α est le conjugué de α. D'où ∆ θ m Λ x+m = α -α θ m α ∈ O K , |α| < θ -x-m (change de variable α -β θ m ) = -β θ m + βθ m θ m β ∈ O K , |β | < θ -x = β - β (-θ 2 ) m β ∈ O K , |β | < θ -x . En particulier lim m→∞ ∆ θ m Λ x+m = a x et lim m→∞ j θ -x-m (θ) = j(a x ).
On en déduit que

{j(a x )| x ∈ [0, 1)} = {j(a x )| x ≥ 0} ⊂ j qt (θ)
où la première égalité est conséquence de l'identité a x+1 = θa x et de l'invariance de j(a) par rapport à a → λa, λ ∈ R. Donc tout point d'adhérence de j ε (θ) l'est aussi des j(a x ), ce qui fournit le résultat. 6. Le solénoïde associé à un quasicristal D'après la Note ?? ci-dessus les quasicristaux dans le Théorème ?? jouent le même rôle que les idéaux a ⊂ A σ1 , et donc les quasicristaux de rang 1 devraient fournir un analogue des modules de Drinfeld en caractéristique nulle. Dans cette section on développe l'analogue de la notion analytique de module de Drinfeld, c'est-à-dire l'analogue du module quotient R/a.

L'ensemble des quasicristaux de R n est muni d'une topologie de la manière suivante : à un quasicristal Ω ⊂ R n on associe la mesure de Radon µ Ω qui est le peigne de Dirac de Ω (voir la formule (??)) et on met la topologie faible sur l'espace des mesures µ Ω . Si on fixe 

⊂ R ⊂ Ŝ1 , où le plongement R → Ŝ1 est induit par R → S 1 .
Un épimorphisme ρ : S 1 → S 1 induit un homéomorphisme ρ : Ŝ1 → Ŝ1 , de la même manière que ρ induit un homéomorphisme ρ : R → R du revêtement universel R de S 1 . Mais si l'on considère plutôt comme objet principal la paire ( Ŝ1 , Ẑ), alors ρ est un morphisme de telles paires, ρ( Ẑ) ⊂ Ẑ, et

ρ-1 ( Ẑ) = deg(ρ) i=1 (r i + Ẑ).
On peut ainsi considérer ρ comme un revêtement de paires de degré égal à deg(ρ). Intuitivement, on peut voir Ẑ comme un élargissement de l'élément neutre du cercle S 1 et, en conservant la transversale Ẑ, on récupère les propriétés de S 1 en travaillant avec la paire ( Ŝ1 , Ẑ).

Revenant au solénoïde ŜΩ , le rôle de Ẑ est joué par l'ensemble Ω = {ω + Ω} ω∈Ω ⊂ ŜΩ , transversale complète 7 passant par 0, la complétée pro-quasicristalline de Ω. Si Ω est un réseau Ω = {0} ; on peut donc voir en général Ω comme un élargissement de l'élément neutre. Par contre, si l'on identifie deux points de ŜΩ qui appartiennent à la même Ω-transversale, i.e. x ∼ y si et seulement si x, y ∈ z + Ω, on obtient le quotient transversal topologique défini par Ω, qui est en général une varieté ramifiée plate. Nous adopterons dans la suite une position intermédiaire, considèrant parfois des notions comme "fonction" ou "torsion" modulo Ω, mais sans identifier ce dernier [START_REF] Diamond | Beurling Generalized Numbers[END_REF] Une transversale (complète) d'une lamination L est un sous-ensemble T ⊂ L tel que T ∩ L est discret (non vide) pour la topologie de L, pour toute feuille L ⊂ L.

ensemble à un point. Autrement dit on regardera Ω comme la transversale neutre en développant une théorie qui n'oublie pas ce fait en passant au quotient. Considérons maintenant l'analogue d'une isogénie entre deux solénoïdes quasicristallins. On dit que deux quasicristaux Ω, Ω ⊂ R n sont équivalents ([?], [?]) s'il existe un couple d'ensembles finis F, F ⊂ R n telle que 

Ω ⊂ Ω + F et Ω ⊂ Ω + F.
(x i + Ω), x i ∈ R n , ( 17 
)
où l'union n'est pas forcément disjointe. Si Ω, Ω sont tous les deux apériodiques, ρ : ŜΩ → ŜΩ est un homéomorphisme.

Démonstration. D'après l'Exemple ??, ii), il existe F fini tel que Ω ⊂ Ω + F . Si la suite x i +Ω converge dans ŜΩ , x i +Ω+F converge aussi dans ŜΩ+F , ce qui implique que x i + Ω ⊂ x i + Ω + F converge dans ŜΩ . Donc ρ est continue. Inversement, supposant que x i + Ω converge dans ŜΩ , le même argument montre que x i + Ω ⊂ x i + Ω converge dans ŜΩ , ce qui signifie que ρ est surjective. Montrons que de plus ρ| Ω est injective. Supposons au contraire que γ = lim γ i + Ω = η = lim η i + Ω sont des points distincts de Ω tels que ρ(γ) = ρ(η). On observe alors que, par définition de la topologie, la limite γ = lim γ i + Ω existe si γ i est de Cauchy et γ = η si et seulement si (γ i -η i ) → 0. La même chose est vraie en échangeant Ω et Ω , d'où il suit que ρ(γ) = lim γ i + Ω = lim η i + Ω = ρ(η), contradiction. Comme Ω, Ω sont relativement denses l'injectivité de ρ en Ω se prolonge à un voisinage feuilleté et ρ est donc bijective et bicontinue dans un voisinage de 0. On montre de même l'injectivité sur chaque transversale x + Ω, ce qui prouve que ρ est un homéomorphisme local. La préimage ρ -1 ( Ω ) est égale à la clôture de

x∈Ω (x + Ω) ⊂ y∈Ω, f ∈F (y + f + Ω) ⊂ f ∈F (f + Ω),
qui fournit bien (??).

Enfin si Ω, Ω sont apériodiques, ρ induit un homéomorphisme L Ω ≈ L Ω des feuilles canoniques denses ce qui, joint au fait que ρ est un homéomorphisme local, implique qu'il s'agit bien d'un homéomorphisme.

La proprieté d'être un presque réseau implique que

Σ n Ω := Ω + • • • + Ω (n fois)
est aussi un quasicristal (et un idéal quasicristallin dans le cas où Ω en est un). De plus, Σ n Ω est équivalent à Ω. Le Théorème ?? implique qu'il existe une surjection continue

+ : ( ŜΩ , Ω) × ( ŜΩ , Ω) -→ ( ŜΣ 2 Ω , Σ 2 Ω), (x + Ω, y + Ω) -→ x + y + Σ 2 Ω, où l'on a identifié Σ n Ω = Σ n Ω. En général, pour m ∈ N k où m 1 + • • • + m k = n, il y a une application + = + m,n : ( ŜΣ m 1 Ω , Σ m1 Ω) × • • • × ( ŜΣ m k Ω , Σ m k Ω) -→ ( ŜΣ n Ω , Σ n Ω), ( 18 
) induite par (x 1 + Ω, . . . , x k + Ω) -→ x 1 + • • • + x k + Σ n Ω.
Si l'on note + 3 = + 1,3 , 1 = (1, 1, 1), l'égalité des compositions

+ 3 (x + Ω, y + Ω, z + Ω) = +(+(x + Ω, y + Ω), z + Ω) = +(x + Ω, +(y + Ω, z + Ω)),
ainsi que des version plus générales nous donnent l'analogue de la loi de l'associativité. On peut donc considérer ŜΩ comme une généralisation de la notion de tore, ou mieux la collection de solenoïdes

{( ŜΣ n Ω , Σ n Ω)} n≥1 ,
munie des applications (??). Pour prouver la continuité de la somme, il faut disposer du résultat suivant : Supposons alors que la suite (??) ne converge pas dans la topologie quasicristalline. Si pour R > 0 on note

(ω i + ΣΩ) R := (ω i + ΣΩ) ∩ [-R, R], cela signifie qu'il existe R > 0 tel que pour chaque N ∈ N, ils existent i N , j N > N et ω j N + β j N ∈ (ω j N + ΣΩ) R avec ω j N + β j N ∈ (ω i N + ΣΩ) R .
Puisque ΣΩ est aussi un quasicristal, il existe F ⊂ R fini tel que ΣΩ + ΣΩ ⊂ ΣΩ + F . Donc, en passant à une sous-suite, il existe f ∈ F avec

ω j N + β j N = γ j N + f ∈ ΣΩ + ΣΩ ⊂ ΣΩ + F. ΣΩ étant uniformémente discret, il n'y a qu'un nombre fini de γ j N ∈ ΣΩ possibles avec γ j N + f ∈ [-R, R].
En extrayant de nouveau une sous-suite on peut supposer la suite des γ j N constante. Autrement dit il existe γ ∈ ΣΩ telle que la suite de contre-exemples à la continuité est égale le constante γ + f :

ω j N + β j N = γ + f.
Enfin, après passage à une sous-suite, on peut supposer que la suite des conjugués {ω i N } converge de manière monotone, disons croissante : ω i N w. Il en résulte la situation suivante : pour chaque N , d'une part

ω j N -a ≤ γ + f ≤ ω j N + a et de l'autre ω i N -a ≤ γ + f ou bien γ + f ≤ ω i N + a. ( 21 
)
En passant de nouveau à une sous-suite, on peut supposer dans (??) que l'une ou l'autre condition est satisfaite pour tout N : supposons d'abord que

ω i N + a < γ + f ≤ ω j N + a. (22) 
Pour M > j N , nous avons i M > j N , donc ω i M ≥ ω j N (par la monotonie de la suite de conjugués), qui implique que γ + f ≤ ω j N + a ≤ ω i M + a, contredisant (??). Supposons à présent satisfaite la première inégalité dans (??), qui fournit

ω j N -a ≤ γ + f < ω i N -a. (23) 
Mais alors si M est tel que ω j M > ω i N , (??) est contredite.

De tout ceci on conclut que la suite (??) converge et que la somme s'étend en une application continue de Ω × Ω. La preuve pour + m,n général se fait par récurrence. Dans le cas d'un quasicristal de dimension > 1 et fenêtre ⊂ R k , l'argument est identique, supposant sans perte de géneralité que D est un cube et en imposant une condition de monotonie selon chaque coordonnée.

Étant donnée une suite d'applications de paires

f n : ( ŜΣ n Ω , Σ n Ω) -→ ( ŜΣ n Ω , Σ n Ω)
on dira qu'elle définit un endomorphism quasicristallin si on a des carrés commutatifs

ŜΣ m 1 Ω × • • • × ŜΣ m k Ω fm 1 ו••×fm k -ŜΣ m 1 Ω × • • • × ŜΣ m k Ω ŜΣ n Ω + m,n ? fn -ŜΣ n Ω , + m,n ? (24) 
pour m 1 + • • • + m k = n.
Un endomorphisme quasicristallin inversible est un isomorphisme quasicristallin. On notera End( ŜΩ , Ω) le monoïde multiplicatif des endomorphismes, le produit étant défini par la composition. Les opérations de somme induisent des opérations correspondantes sur les endomorphismes ; ainsi on a une opération End( ŜΩ , Ω) × End( ŜΩ , Ω)

+ -→ End( ŜΣΩ , Σ Ω) definie par f n , g n -→ f n + g n : ŜΣ n (ΣΩ) -→ ŜΣ n (ΣΩ) .
Autrement dit la collection {End( ŜΣ n Ω , Σ n Ω)} possède la structure d'un presque anneau c'est-à-dire une collection de monoïdes (pour un certain produit) avec des applications commutatives

End( ŜΣ m 1 Ω , Σ m1 Ω) × • • • × End( ŜΣ m k Ω , Σ m k Ω) + -→ End( ŜΣ n Ω , Σ n Ω), où m 1 + • • • + m k = n ;
ces opérations sont distributives par rapport au produit. Note 10. Par opposition au cas des réseaux, il n'est pas nécessairement vrai que N ∈ Z définit un élément de End( ŜΩ ). On a seulement le "quasiendomorphisme" :

N : ŜΩ -→ ŜNΩ , x + Ω -→ N x + N Ω où N Ω := {N x| x ∈ Ω} ⊂ Σ N Ω.
Considérons le cas de a ⊂ K ⊂ R un idéal quasicristallin modèle par rapport à l'anneau quasicristallin A = A σ de rang 1. La proposition suivante identifie les sommes quasicristallines d'un tel idéal quasicristallin modèle.

Proposition 11. Soit x ∈ R r+s-1 , u ∈ O × K , a x = a A,x (u). Alors Σ n a x = a y , où y = -log |π (u)| n + x. En général, a x1 + a x2 = a y , où y = -log π (u) (π (u) x1 + π (u) x2 ).
Démonstration. On donne la preuve dans le cas de K/Q quadratique réelle ; le cas général est tout à fait analogue. Par définition, a x + a x ⊂ a -log π (u) 2+x . Soit alors γ ∈ a x-log θ 2 ; on peut supposer que γ > 0 sans perte de généralité. On a donc γ < 2θ -x . Soit α ∈ a x tel que α > 0 et soit β = γα avec 0 < β . On peut choisir α tel que β < θ -x , parce que l'ensemble de α , α ∈ a x , est dense dans la fenêtre D x . Alors γ = α + β ∈ a + a.

La pertinence de la Proposition ?? tient à ce que si l'on suppose l'injectivité (encore conjecturale) de l'invariant modulaire j dans Cl mod (A), alors j(a) j(Σ n a) pour tout n = 1. Ceci implique que la structure que l'on développe ici en partant des collections de sommes de solenoïdes {( ŜΣ n a Σ n â)} (ou de manière équivalente les sommes {Σ n a}), cette structure ne produit pas un, mais un ensemble d'invariants modulaires, tout comme l'invariant modulaire quantique de la Section ??.

Notons maintenant qu'il existe une action de A sur ( Ŝa , â) donnée par

α : ( Ŝa , â) -→ ( Ŝa , â), x + a -→ αx + αa -→ αx + a
où l'on utilise l'inclusion αa ⊂ a pour définir la deuxième application 8 . Cette action s'étend à tous les Σ n a et on a le carré commutatif suivant :

( ŜΣ m 1 a , Σ m1 â) × • • • × ( ŜΣ m k a , Σ m k â) αו••×α -( ŜΣ m 1 a , Σ m1 â) × • • • × ( ŜΣ m k a , Σ m k â) ( ŜΣ n a , Σ n â) + ? α -( ŜΣ n a , Σ n â). + ? (25) 
Autrement dit chaque α ∈ A définit un élément de End( Ŝa ), d'où l'on tire une injection A → End( Ŝa ) de presque anneaux. De plus pour tout f = {f n } ∈ End( Ŝa ), les restrictions de f n à la feuille canonique L Σ n a ≈ R ⊂ ŜΣ n a définissent des endomorphismes de R et c'est ainsi que l'on peut identifier A ⊂ End( Ŝa ) ⊂ R.

Cependant pour que r ∈ R représente une telle restriction on doit avoir ra ⊂ a, qui implique que r ∈ O K . Mais ce sont précisement les éléments de A ⊂ O K qui préservent a (à cause de sa propriété caractéristique |γ | ≤ 1). Nous avons ainsi démontré le Théorème 11. End( Ŝa , â) = A.

Par analogie avec la théorie classique des courbes elliptiques on dira que Ŝa est à multiplication quasicristalline par rapport à A et que Ŝa est un A-module quasicristallin.

Si m ⊂ A est un idéal quasicristallin entier, on dit que x ∈ Ŝa est un point de m-torsion si pour tout α ∈ m αx ∈ â. On note ( Ŝa , â)[m] l'ensemble des points de m-torsion.

Remarquons que pour m = A, on a ( Ŝa , â)[A] = â ; c'est l'analogue du fait que, pour un tore T = C/Λ à multiplication complexe par rapport à l'anneau de entiers O K , l'ensemble T[O K ] des points de O K -torsion est réduit à {0}. [START_REF] Demangos | Quantum j-Invariant in Positive Characteristic I: Definitions and Convergence[END_REF] Ici il faut remarquer que pour α = 0, αa et a sont équivalents : dans le cas où a = ax, ceci est conséquence du fait que tous les ensembles modèles définis à l'aide d'un même réseau sont équivalents (voir [?], [?]).

La torsion est clairement compatible avec la somme, induisant une application

+ : ( Ŝa , â)[m] × ( Ŝa , â)[m] -→ ( ŜΣa , Σâ)[m]
qui est distributive par rapport à l'action de A. Autrement dit la collection des paires {( ŜΣ n a , Σ n â)[m]} n≥1 constitue un presque A-module : pour chaque partition

m 1 + • • • + m k = n on a l'operation ( ŜΣ m 1 a , Σ m1 â)[m] × • • • × ( ŜΣ m k a , Σ m k â)[m]) + -→ ( ŜΣ n a , Σ n â)[m],
qui est distributive par rapport à l'action multiplicative de A.

Nous terminerons avec la discussion de constructions associées au solénoïde d'un quasicristal, lesquelles constituent une tentative de complétion dudit solénoïde par rapport à la somme. Ces constructions sont motivées par l'envie de pouvoir travailler avec de "vrais" anneaux ou idéaux, par exemple l'anneau A ou l'idéal a engendré par l'anneau quasicristallin A ou un A-idéal a : malheureusement, comme nous l'avons vu, ils sont tous deux égaux à l'anneau O K lui-même, le problème étant que ce dernier anneau n'est pas suffisamment grand pour distinguer les anneaux engendrés par A et les a.

La première construction est la plus évidente : il s'agit de prendre la limite du système direct des projections entre les solénoïdes sommes : 

Ša := lim -→ Ŝa → ŜΣ 2 a → • • • . D'après la Proposition ??, Σ n a = O K , (26) 
= R/O K , où O K = Z[θ].
Démonstration. Il est clair que Ša est un groupe : si x ∈ ŜΣ m a , y ∈ ŜΣ n a , m ≤ n, la somme x+y est définie dans ŜΣ n a en y, en envoyant x par l'application ŜΣ m a → ŜΣ n a ce qui donne un élément de ŜΣ 2m a . Cette définition est consistante dans la mesure où elle est compatible avec toutes les applications qui définissent la limite. La somme fournit donc une opération binaire qui est commutative et inversible dans Ša . Il est clair que la limite ǎ est fermée par rapport à la somme. À cause de (??), l'action naturelle de O K sur Ša est continue et respecte le sous-groupe ǎ. De plus il y a un système compatible d'épimorphismes vers le tore quantique

ŜΣ n a -→ T(θ) := R/O K induit par x + Σ n a → x + O K ,
où l'on observe que cette application identifie la transversale x + Σ n â passant par x au point x + O K ∈ T(θ). Ce système induit à son tour un épimorphisme Ša → T(θ) de noyau ǎ.

Le deuxième construction est une variante de celle-ci dans le contexte de l'analyse non standard, le point étant qu'il est possible de résoudre le probème de distinguer A de O K en travaillant dans un modèle non standard de ce dernier anneau. Pour un ensemble infini X on note * X l'ultrapuissance de X par rapport à un ultrafiltre non principal u ⊂ 2 N fixé. Par définition on a donc * Démonstration.

X := X N / ∼ u où {x i } ∼ u {x i } ⇐⇒ {i| x i = x i } ∈ u. Alors l'ultrapuissance * O K est
Soit * α = * {α i } ∈ * O K tel que α i ∈ Σ i A pour tout i ∈ N. Comme Σ n A Σ n+1 A pour tout n ∈ N, α j ∈ Σ i A pour tout j ≥ i et donc * α = * {α i } ∈ * (Σ n A) = Σ n * A
pour tout n. La preuve de la seconde affirmation est identique.

Considérons maintenant * R comme un corps topologique muni de la topologie ordonnée, ce qui en fait un ensemble totalement disconnecté. Proposition 14. ( * a , +) est un sous-groupe de Delaunay de * R.

Démonstration. Il est clair que * a est relativement dense dans * R. Soit r n tel que Σ n a est uniformément discret par rapport à r n . Alors Σ n * a est aussi uniformément discret par rapport a r n . Si * ε > 0 est infinitésimal, * ε < r n pour tout n, donc * a est * ε-uniformément discret.

Pour tout a idéal quasicristallin de A, le quotient de Hausdorff * T a := * R/ * a est un tore quasicristallin non standard. On note que * T a n'est pas compact au sens usuel parce que la topologie ordonnée sur * R n'est pas 2-dénombrable.

Si l'on note * R ε ⊂ * R le sous espace vectoriel des infinitésimaux, le quotient 

Fonction exponentielle et modules de Drinfeld quasicristallins

Nous développons dans cette sectioune une trigonométrie quasicristalline qui est ensuite utilisée pour définir entre autres une exponentielle, laquelle fournit un analogue des modules de Drinfeld en caractéristique nulle.

Rappelons d'abord quelques formules de trigonométrie ordinaire dans la représentation en produits infinis. Dans ce qui suit on utilise les fonctions sinus et cosinus "absolues", c'est-à-dire non normalisées par rapport à π, définies par les formules suivantes :

s(x) := x ∞ n=1 1 - x 2 n 2 , c(x) = s (x) := ∞ n=1 1 - x 2 (n -1/2) 2 .
On rappelle également la formule de Wallis :

π 2 = ∞ n=1 4n 2 (2n -1)(2n + 1) = ∞ n=1 n 2 (n -1/2)(n + 1/2)
.

Notons que le n-ième terme du produit est le quotient du carré de la racine, n, de s(x), divisée par le produit (n -1/2)(n + 1/2) des racines de c(x) voisines de n.

Donc, si l'on écrit α n = n, β n = n -1/2, les ensembles Z + = {α n }, Z 1 2 ,+ = {β n } sont les racines positives de s(x), c(x) et on a9 :

π = 1 β 1 ∞ n=1 α 2 n β n • β n+1 . ( 27 
)
Supposons que l'on remplace les fonctions absolues en multipliant le réseau Z par une constante ξ : Z → ξZ. Notons s ξ la fonction sinus associée :

s ξ (x) = x 1 - x 2 ξ 2 n 2 .
Puis

s ξ = ξ • s • ξ -1 , c ξ (x) := s ξ (x) = c(ξ -1
x) et les ensembles de zéros de s ξ (x), c ξ (x) sont ξZ, ξZ [START_REF] Baake | A Mathematical Invitation[END_REF] 2 . Si l'on définit π ξ en utilisant (??), avec les ensembles de zéros ξZ, ξZ [START_REF] Baake | A Mathematical Invitation[END_REF] 2 au lieu de Z, Z 1 2 , nous voyons que π ξ = π/ξ, et les réseaux normalisés coïncident :

πZ = π ξ ξZ.
On en conclut que les fonctions sinus et cosinus classiques, qui s'écrivent dans cette notation sin(x) = s π (x) = πs(π -1 x), cos(x) = c π (x) = c(π -1 x), proviennent d'une construction canonique qui ne dépend que de la classe projective de Z. En effet, si en guise de notion "absolue" du sinus nous avions utilisé ξZ au lieu de Z, nous aurions obtenu sin ξ (x) = (s ξ ) π ξ (x) = π ξ s ξ (π -1 ξ x) = πξ -1 s ξ (ξπ -1 x) = s π (x) = sin(x). Soit a ⊂ K ⊂ R un idéal quasicristallin fractionnaire de rang 1. On commence par définir le sinus et cosinus "absolus"

s a (x) := x 0<α∈a 1 - x 2 α 2 , c a (x) := s a (x).
On observe immédiatement que les deux fonctions sont lisses, que s a (x) est impaire et c a (x) est paire. Soit e a (ix) := c a (x) + is a (x) l'exponentielle associée. De plus l'image de e a (ix) est contenue dans C * ⊂ C : c'est une conséquence immédiate de la formule de produit qui définit s a et de ce que

c(0) = lim x→0 s(x) x = 1.
La Figure 1 montre l'image par e a (ix) d'un segment (compact) de R ⊂ ŜC a , où a = A, l'anneau quasicristallin associé à K = Q(ϕ), avec ϕ le nombre d'or. On observe la formation d'une suite de cardioïdes autosimilaires, manifestation experimentale du théorème suivant : 

c a (x) = 0<β∈b 1 - x 2 β 2 . (28) Démonstration. En effet, écrivons c a (x) = s a (x) c a (x) = 0<α∈a 1 - x 2 α 2 - 0<α∈a 2x 2 α 2 0<γ =α, γ∈a 1 - x 2 γ 2 .
On constate ainsi qu'entre chaque paire de zéros consécutifs de a, c a change de signe précisément un fois. Autrement dit il y a un et un seul élément de b entre chaque paire de zéros consécutifs de a et on peut énumérer les éléments de a, b de la manière suivante : 

• • • α -2 < β -2 < α -1 < β -1 < 0 < β 1 < α 1 < β 2 < α 2 < • • • , où α -n := -α n , β -n := -β n .
0 < α 1 < α 2 < • • • , 0 < β 1 < β 2 < • • • . En suivant à nouveau (??) on définit π a := 1 β 1 ∞ n=1 α 2 n β n • β n+1 .
Les fonctions trigonometriques normalisées de la variable complexe z sont alors définies par

sin a (π a z) := (s a ) πa (π a z) = π a z 0<α∈a 1 - z 2 α 2 (29) et cos a (π a z) := (c a ) πa (π a z) = 0<β∈b 1 - z 2 β 2 .
Enfin l'exponentielle quasicristalline normalisée associée à a est donnée par exp a (π a iz) := e πa (iπ a z) := cos a (π a z) + i sin a (π a z).

Notons

Ĉa := exp a (π a iâ) ⊂ Êa := exp a (π a i Ŝa ) ⊂ C * .

Ci-dessous nous utiliserons les notations suivantes :

s a (x) := sin a (π a x), c a (x) := cos a (π a x), e a (x) := exp a (π a ix).

Observons que, puisque s a (â) ≡ 0, 

1 ∈ Ĉa = c a (â) = Êa ∩ R est l'
(ϕ) = s a (ϕ) = -2 ϕ<α∈a 1 - ϕ 2 α 2 .
Ecrivons les éléments positifs de a sous la forme

0 < α 1 = ϕ < α 2 < α 3 < • • • .
On sait que, en tant que quasicristal, a est engendré par trois intervalles, de longueurs respectives ϕ,

1 et ϕ -1 . Autrement dit, pour tout n, on a soit α n+1 = α n + ϕ, soit α n+1 = α n + 1, soit α n+1 = α n + ϕ -1
. Ainsi pour n petit on obtient :

α 2 = ϕ + 1 = ϕ 2 , puisque ϕ + ϕ -1 ∈ a. α 3 = α 2 + ϕ = ϕ 3 car ϕ 2 + 1, ϕ 2 + ϕ -1 ∈ a. α 4 = α 3 + 1 = ϕ 3 + 1. α 5 = α 4 + ϕ -1 = ϕ 3 + 1 + ϕ -1 = ϕ 3 + ϕ.
Observons que α 2 /ϕ = ϕ < 2 et par induction α n /ϕ < n pour tout n. En effet, si l'on suppose que cela est vrai pour n, on a

α n+1 ϕ = α n ϕ +    1 si α n+1 = α n + ϕ ϕ -1 si α n+1 = α n + 1 ϕ -2 sinon < n + 1. Ainsi, pour tout n ≥ 2 1 - ϕ 2 α 2 n < 1 - 1 n 2 et donc |e a (ϕ)| < 2 n≥2 1 - 1 n 2 = 1.
Finalement, e a ne peut donc pas en particulier définir un quasimorphisme de C.

La défaut d'injectivité de l'exponentielle quasicristalline à valeurs dans le groupe C × constitue un obstacle sérieux en vue de la définition d'un équivalent des modules de Drinfeld en caractéristique nulle.

On observe alors que : Exemple 6. Soit Ŝ1 = lim ←-S 1 le solénoïde classique. On definit l'application ê : Ŝ1 -→ * C, x = (x n ) -→ * {e(x n )}, e(x) := exp(2πix), et on note que ê est bien définie et homomorphe. Si ê(x) = ê(ŷ), il existe un X ∈ u, où u est un ultrafiltre non principal et X est infini, tel que e(x n ) = e(y n ) pour tout n dans X ; en particulier les deux suites cohérentes coïncident pour n assez grand. On en conclut que ê est bien un monomorphisme. A TERMINER !!! On se propose alors de redéfinir e a de manière à inclure les dérivées de s a (x). Adoptant le point de vue de la théorie des courbes elliptiques on définira un (quasi) produit sur la famille {E Σ n a } en transférant la somme + à {E Σ n a } grâce aux exponentielles, produit qui est en théorie à valeurs multiples puisque les e Σ n a ne sont pas injectives. Plus précisément, pour x, y ∈ E a , on note

Définissons alors êa : Ŝa

-→ * C, êa (x) = * {e (n) a (x)}, e (n) a = is (n) a + c
x ⊗ a y := {z = e a (ẑ)| ∃x ∈ e -1 a (x), ŷ ∈ e -1 a (y) tels que x + ŷ = ẑ}. Si l'on considère l'application (éventuellement multivoque) En accord avec la notation on appelle l'application (multivoque) α : E a → E a , racine α-ième quasicristalline (par rapport à a). Notons que la racine α-ième habituelle n'est bien définie que sur C * privé d'un rayon et ne fournit donc pas une fonction bien définie sur le cercle U (1).

Comme indiqué dessus la question reste ouverte de savoir si la racine α-ième quasicristalline est à valeurs multiples ou non. Quoi qu'il en soit, dans le cadre de cette théorie d'a-periodicité, il est tout à fait naturel que la racine α-ième quasicristalline soit multivoque, avec un ensemble de valeurs qui est typiquement un ensemble de Cantor, c'est-à-dire que x → x α est une fonction bien définie à un ensemble de Cantor près. Dans cet esprit on peut définir la notion de racine α-ième de 1, à savoir un z ∈ D a tel que z γ ⊂ C a . Plus généralement, pour chaque idéal quasicristallin entier m ⊂ A, on parlera d'une racine m-ième de 1, autrement dit un z ∈ D a tel que z γ ⊂ C a pour tout α ∈ m. L'ensemble de toutes les racines m-ièmes de 1 coïncide évidemment avec l'image Écrivons

Ω R = ±{0 = α 0 < α 1 < • • • < α k } (32)
et pour i = 1, . . . , k, α i := (σ 1 (α i ), . . . , σ d-1 (α i )) où σ 1 , . . . , σ d-1 sont les automorphismes de Galois non triviaux de K/Q. En particulier :

1. D'après les définitions de Ω et Ω R , pour i = 0, . . . , k, α i ∈ W et α i ∈ (0, R). On peut supposer sans perte de généralité que x > 0 ; le cas x < 0 se traite en utilisant un argument identique. De plus x doit se trouver dans les intervalles de (0, R) délimités par les α i . Alors, il existe γ > 0 tel que γ < α i+1 -α i ou < R -α k avec x = αβ = α i + γ. 

Mais

Aσ 1 →

 1 R et montrer sa continuité par rapport à la topologie cantorienne de Cl qc Aσ 1

Exemple 3 .

 3 Soient Γ ⊂ R n+m un réseau qui est aussi un anneau unitaire et D ⊂ R m un monoïde multiplicatif relativement compact qui contient π(1) (par exemple, on peut prendre D = {la boule unitaire en R m } ou le produit [-1, 1] × • • • × [-1, 1]). L'ensemble modèle associé A = M(Γ , D) est donc un anneau quasicristallin. Pour chaque idéal A ⊂ Γ et chaque sous-monoïde relativement compact D ⊂ D, a = M(A, D ) est un idéal quasicristallin de A.

2 ,

 2 où X est le groupe engendré par X et la deuxième égalité est conséquence du fait que O K = Z[θ], pour θ une unité fondamental. Si K = Q(ω) quadratique complexe, il n'y a qu'une paire de places conjuguées (σ et σ) avec A σ = O K . Si Σ comprend tous les plongements de K, on obtient A Σ = O K . Soient θ un entier algébrique réel tel que θ > 1, θ σi ses conjugués, σ i = id. On rappelle que θ est un nombre de Pisot-Vijayaraghavan (PV) si pour tout i, |θ σi | < 1, voir [?], [?]. Si |θ σi | ≤ 1 pour tout i, avec égalité pour au moins une valeur de i, on dit que θ est un nombre de Salem (S) ([?]).

Note 1 .

 1 Le choix de l'unité u est sans conséquence. Plus précisément la famille Z := {a + x (u)} +,x est indépendante du choix de u. En effet, si ũ est autre unité de PV, il existe y tel que |π (u)| y = |π (ũ)|.

Proposition 2 .

 2 Soient a, b ⊂ A ⊂ R n deux idéaux quasicristallins contenus dans un anneau quasicristallin A. Alors, le produit monoïdal a • b := {αβ| α ∈ a, β ∈ b} ⊂ a ∩ b est aussi un quasicristal. Démonstration. On note tout d'abord que a • b est relativement dense car α • b ⊂ a • b pour n'importe quel α ∈ a non zéro, et α • b est relativement dense. On rappelle ensuite qu'un ensemble relativement dense est un quasicristal si et seulement si il est contenu dans un ensemble modèle (général) M (voir [?], Theorem 9.1.i). En particulier, A ⊂ M pour un certain ensemble modèle M. Mais alors a•b ⊂ A ⊂ M, de sorte que a • b est bien un quasicristal. Soit A = A σ ⊂ K un anneau quasicristallin avec les notations de l'Exemple 3 ci-dessus. Il est clair que si a est un idéal quasicristallin fractionnaire, il en est de même de γa pour tout γ ∈ K. La classe projective [a] = {γa| γ ∈ K} s'appelle la classe de l'idéal quasicristallin. L'ensemble des classes d'idéaux quasicristallins de A s'écrit Cl(A) = {[a] | a un idéal quasicristallin fractionnaire de A}. Proposition 3. Cl(A) est un monoïde multiplicatif avec élément identité 1 = [A]. Cependant ce monoïde n'est pas un groupe. En particulier :

Proposition 4 .

 4 L'application Φ est un épimorphisme de monoïdes. Son noyau contient l'ensemble Z defini dans la Note ??. Démonstration. Choisissons u ∈ A une unité PV. Si B = (α, β) ⊂ O K est un idéal, on peut supposer après multiplication par γ = u n ∈ O × K , que α, β satisfont |π (α)|, |π (β)| < 1, i.e. α, β ∈ A. Alors b := B ∩ A définit un élément de Cl(A) tel que Φ(b) = B. Puisque tout a ∈ Z contient une unité de la forme γ = u n , Z est bien contenu dans le noyau de Φ.

  D ) où D, D sont les plus petites fenêtres (au sens expliqué dans les paragraphes dessus) alors A = B et D = D .

  où P(K) désigne l'ensemble des idéaux fractionnaires principaux de O K . En multipliant par des éléments appropriés de O K , on peut supposer sans perte de généralité que a, b sont des quasicristaux entiers i.e. des ensembles modèles basés sur les idéaux entiers A, B ⊂ O K avec des fenêtres paramétrées par x, y > 0. Supposons pour plus de clarté que a et b sont tous deux génériques ; la preuve dans les autres cas est identique. Soient alors α 1 , α 2 , . . . resp. β 1 , β 2 , . . . , resp. ω 1 , ω 2 , . . . une liste de tous les éléments positifs de a, resp. b, resp. a * b. Un élément de (a * b)O K est donc de la forme η = I γ I ω I , ω I := i∈I ω i , où I ⊂ N est fini et γ I ∈ O K est nul pour presque tout I ⊂ N. Par définition de a * b comme ensemble modèle basé sur le réseau A * B, on a

  On trouve bien que ζ a (s) converge uniformément sur tout demi-plan de la forme Re(s) ≥ σ > 1, d'où le résultat. Le cas de L(m, χ, s) est complètement analogue, où l'on utilise C • max α∈m |f (α )| au lieu de C. Note 6. Il faut noter que ζ a n'est pas une fonction zêta au sens de Beurling. Voir [?] où l'on introduit formellement les multiplicités qui correspondent aux factorisations distinctes d'éléments, pour avoir un produit eulérien. Du fait de l'absence de factorisation unique pour m, les fonctions zêta et L considerées ici ne s'écrivent pas en général comme produits eulériens. Proposition 8. ζ a (s) possède une extension méromorphe (unique) sur tout C, avec un seul pôle simple en s = 1.

Note 7 .

 7 Grâce à la Proposition ?? on peut définir les a-nombres de Bernoulli par B a,n = ζ a (-n), n impair. On suppose maintenant que a = m = M(A, D) ⊂ R est un idéal quasicristallin modèle ; le reste de cette section est consacré à la démonstration d'une équation fonctionnelle pour ζ m . Pour commencer, il est nécessaire d'introduire un peu de terminologie supplémentaire. D'après Meyer ([?]), l'idéal quasicristallin modèle dual de m est l'idéal modèle fractionnaire m ∨ = M[A ∨ , D ∨ ] associé au réseau dual A ∨ = {α ∈ K| Tr(αA) ⊂ Z} et à la fenêtre D ∨ := (π/3) • {x| |x • y| ≤ 1, ∀y ∈ D}, homothétique du convexe dual de D. Pour tout n ∈ N, on aura besoin de considérer aussi les idéaux modèles m ∨ n := M(A ∨ , n • D ∨ ) de sorte que

  la distribution de Dirac (δ(f ) = f (0) pour une fonction f lisse au voisinage de l'origine) et considérons le peigne de Diracµ m (x) = α∈m δ(xα).(10)De plus, soit µ m,χ (x) = α∈m χ(α)δ(xα) le peigne pondéré associé à χ. Le résultat suivant (formule de Poisson-Meyer) est formulé dans [?] avec référence à [?], [?] pour les preuves. Pour plus de clarté nous en donnons ci-dessous une démonstration dans notre contexte. Théorème 3 (Meyer [?], §V.7.3). La transformation de Fourier de µ = µ m,χ au sens des distributions est donnée par le peigne de Dirac généralisé

) Théorème 4 .

 4 La fonction Λ(m, χ, s) possède un prolongement méromorphe à C tout entier, avec deux pôles simples en s = 0 et s = 1, et des résidus χ(0) et 2πχ ∨ (0)/ |disc(A|. De plus, on a l'équation fonctionnelle :

  j(a) := 12 3 1 -49 40 J(a) , J(a) := ζ a (6) 2 ζ a (4) 3 .

Corollaire 1 .

 1 Soit θ ∈ R une unité fondamentale quadratique. Alors j qt (θ) est l'image continue d'un ensemble de Cantor. Note 8. Pour démontrer que j qt (θ) est de Cantor, il serait suffisant établir que j est injective, proprieté qui est conjecturée. Note 9. Le Théorème de Pink constitue l'analogue exact du Theorem 4 de [?]. Plus précisément (pour la notation voir au §?? ci-dessus) soit K = Q(f ) où f est une unité fondamentale. Si l'on note j qt : GL 2 (Z)\R R ∪ {∞} l'invariant modulaire quantique en caractéristique positive associé au corps de fonctions R = Q ∞ ([?], [?]), on a j qt (f ) = {j(a)| a ∈ Z} où maintenant Z = {a 0 , . . . , a d-1 } ∼ = Gal(H A∞ 1 /H O K ) est le sous groupe de Cl A∞ 1 décrit au §??.

Exemple 5 .

 5 i) Si Ω, Ω sont deux réseaux isogènes alors Ω, Ω sont équivalents ; cette relation d'équivalence est donc une généralisation de la relation d'isogénie.ii) Si Ω, Ω ⊂ R n sont deux ensembles modèles définis par rapport au même réseau Γ ⊂ R n+k , alors Ω, Ω sont toujours équivalents ([?]).On rappelle qu'un ensemble X ⊂ R n est apériodique si le groupe de ses périodesPer(X) := {v ∈ R n | v + X = X} est réduit à {0}. Si un quasicristal Ω ⊂ R n estapériodique, on appelle L Ω := R n + Ω ⊂ ŜΩ la feuille canonique ; elle est clairement homéomorphe à R n et dense dans ŜΩ . Théorème 8. Soient Ω ⊂ Ω ⊂ R n deux quasicristaux modèles définis par le même réseau. Alors, la correspondence x + Ω → x + Ω , x ∈ R n , définit un morphisme de paires (revêtement) canonique ρ : ( ŜΩ , Ω) -→ ( ŜΩ , Ω ) qui est surjectif. Plus précisément, ρ : ŜΩ → ŜΩ est un homéomorphisme local surjectif de solénoïdes telle que ρ( Ω) ⊂ Ω et ρ -1 ( Ω ) ⊂ d i=1

  image de O K ⊂ R ≈ L a ⊂ Ŝa dans Ša , où L a est la feuille canonique. En particulier, ǎ ⊂ Ša est dense ; cependant ǎ = Ša parce que l'image L ǎ de L a en Ša satisfait L ǎ ∩ ǎ = O K . En particulier ǎ ne définit pas un solénoïde transverse. Néanmoins on considèrera la paire ( Ša , ǎ) comme un cas limite ou singulier. Théorème 12. ( Ša , ǎ) est une paire de O K -modules. Le quotient Ša /ǎ est isomorphe au tore quantique T(θ) :

  un anneau et une extension élémentaire de O K ([?]), ce qui implique que * O K et O K sont indistinguables par les propositions de la logique du premier ordre. Soit * A ⊂ * O K l'ultrapuissance de A et considérons l'anneau engendré par * A : * A := n≥1 Σ n * A. Proposition 12. Frac( * A ) = * K. Démonstration. On sait par le travail de Salem que K = Q(θ) où θ est de PV, donc * K = * Q(θ). Soit K := Frac( * A ). Puisque A consiste en tous les nombres PVS (complexes), K ⊃ Q{θ * n | * n ∈ * Z}. Reste à montrer que * Q ⊂ K. Mais si * a ∈ Z est arbitraire, * aθ * n ∈ * A si * n est assez grand, parce que ( * aθ * n ) = * a(θ ) * n est la classe d'une suite ayant des valeurs absolues ≤ 1. Donc * a ∈ K. D'où * Z ⊂ K, puis * Q ⊂ K. De même, pour tout A-idéal quasicristallin a, on définit le * A -idéal * a := n≥1 Σ n * a. Les intersections ou unions d'ensembles dénombrables qui sont triviales dans le modèle standard O K peuvent devenir non triviales dans * O K . En effet : Proposition 13. * A * O K . Si x < y, alors a y a x .

•

  R := * R/ * R ε joue le rôle de revêtement universel de certaines laminations de dimension 1 ; en particulierF(θ) = {le feuilletage de Kronecker de pente θ} = • R/ * Z(θ), où * Z(θ) ⊂ * Z est le groupe des approximations diophantiennes (voir [?]). Dans le cas présent, * A étant * ε-uniformément discret pour tout * ε ∈ * R ε , on a * R ε ∩ * A = {0} ce qui implique qu'il existe un plongement * A → • R. Mais l'image de * A dans • R est dense : en fait * A ∩ R = O K qui est dense en R.Donc * T a est un objet véritablement non standard : on perd la proprieté de Hausdorff en annulant les infinitésimaux. Le résultat suivant est l'analogue du Théorème ??. Théorème 13. • R/ * A est isomorphe au tore quantique R/O K . Démonstration. On note que * A ⊃ A = O K et que l'intersection des ensembles * A , R ⊂ • R est A ∩ R = O K . De plus chaque "feuille" • r + • R possède une intersection non nulle avec * A , d'où • R/ * A = R/ A = R/O K .

Figure 1 .

 1 Figure 1. Une feuille d'un solénoïde quasicristallin associé au nombre d'or

?

  ne commute pas. Cependant, dans le contexte des groups approximatifs, il convient d'affaiblir la notion de morphisme de la façon suivante.Soient G = (G, +) et H = (H, +) des structures dotées de produits commutatifs partiellement définis et | • | : H -→ R une valuation. On rappelle qu'une fonction f : G -→ H est un quasimorphisme si la somme f (g) + f (g ) est définie quand g + g l'est et il existe une constante D (indépendante de g et g ) telle que|f (g + g ) -f (g) -f (g )| ≤ D.Dans le cas des solénoïdes quasicristallins il est commode d'introduire la variante suivante de cette notion, où l'on suppose de plus qu'il existe des structures auxiliaires ΣG, ΣH où les sommes prennent formellement leurs valeurs, Σ étant munie d'une valuation | • |. Un quasimorphisme adapté consiste alors en un couple de fonctionsf : G -→ H, Σf : ΣG -→ ΣH avec |Σf (g + g ) -f (g) -f (g )| ≤ D.Théorème 15. L'exponentielle quasicristalline définit un quasimorphisme adapté e a : ( Ŝa , +) -→ (C × , ×) au sens qu'il existe un constant D > 0 tel que e Σa (x + y) e a (x)e a (y) < D. Démonstration. L'affirmation suit immediatement du fait que les exponentielles e Σa , e a , fonctions continues sur des solénoïdes compacts Ŝa , ŜΣa , ont des images (compactes) qui omettent 0. Note 11. Montrons que vues comme fonctions sur les solenoïdes complexes ŜC a , ŜC Σa , les exponentielles e Σa , e a ne définissent pas un quasimorphisme adapté. En effet, sinon on aurait pour tous z, w ∈ C e Σa (z + w) e a (z)e a (w) < D pour un certain D > 0. Mais alors, d'après le théorème de Liouville, ce quotient (holomorphe) serait constant e Σa (z + w) e a (z)e a (w) = C avec en fait C = 1 qui est la valeur à l'origine. Les exponentielles respecteraient donc le produit e Σa (z + w) = e a (z)e a (w), (30) et partant aussi l'inverse. En conséquence, restreignant (??) à la droite réelle R, on obtiendrait une application non constante et homomorphe e : R → C * dont l'image serait nécessairement le cercle unité S 1 . En particulier, les images des solénoïdes Ŝa , ŜΣa par e a , e Σa seraient alors égales à S 1 . Or en fait, pour un unité de Pisot ρ ∈ R, |e a (ρ)| = 1. Si par example on choisit ρ = ϕ = le nombre d'or et a = a 0 , ϕ ∈ a est l'élément positif minimal et nous avons e a (iϕ) = c a

  x), . . . n'est pas périodique. En fait le corps C des complexes n'est pas sufisamment grand pour recevoir une image injective d'un solénoïde. Par contre l'ultraproduit * C admet de telles plongements injectifs de solénoides de dimension 1:

  Proposition 16. L'application êa est injective. Démonstration. La restriction de êa à R, étendue à C, est injective. En effet, si e

a

  (z + h) pour tous les indices n, alors, par analyticité, e a est périodique de période h. Puis, 1 = e a (0) = e a (h), on a s a (h) = 0 qui implique que h ∈ a. Mais a est supposé apériodique et ne contient donc aucun sous-groupe ce qui est contradictoire. En particulier, l'application z → (e (n) a (z)) induit une inclusion Ŝa → C ∞ . Supposons qu'il existe X ∈ u et z, w ∈ C tels que e (n) a (z) = e (n) a (w), pour tout n ∈ X.

i

  Σ : E a -→ E Σa , i Σ (x) = {e Σa (x)| x ∈ e -1 a (x)}, on voit immédiatement que x ⊗ a 1 = i Σ (x).L'action de A sur Ŝa induit aussi une action (éventuellement multivoque)x → x α := {y = e a (αx)| x ∈ e -1 a (x)}(31) qui respecte le produit:(x ⊗ a y) α = x α ⊗ a y α , où le côté gauche est l'ensemble des z α , z ∈ x ⊗ a y. Nous obtenons donc le cube commutatif ci-dessous, où α : C * C * est l'application multivoque définie en (, ⊗ a ) munie de l'action de A sera appelée module de Drinfeld quasicristallin sur A. Insistons sur le fait que les opérations algébriques mentionnées sont peut-être multivoques. Nous ignorons à l'heure actuelle si les définitions de i Σ , ⊗ a , ainsi que l'action de A sont, en fait, univoques.Néanmoins le théorème qui suit montre que l'action de A est univoque modulo changement d'échelle : elle est bien définie en tant qu'action sur les phases. On note d'abord que l'exponentielle définit une surjection canonique [e a ] : Ŝa -→ U (1) = C * /R × + en composant avec la projection C * → U (1).

Théorème 16 .

 16 Soit γ ∈ A. Alors, il existe une fonction bien définie et continueγ : U (1) -→ U (1), [x] := x mod R × + -→ [x γ ] := x γ mod R ×Définissons la fonction tangente de la façon habituelle :t a (z) := tan a (π a z) = s a (z) c a (z) . Soient x,y ∈ C. Alors [e a ](x) = [e a ](y) si et seulement si t a (x) = t a (y), si et seulement si De la formule ci-dessus on déduit que t a (γx) = t a (γy). Mais ceci implique que la fonction U (1) -→ U (1), [e a ](x) -→ [e a ](γx) est bien définie et continue.

  e a ( Ŝa , â)[m] .

8 . 1 W

 81 Appendice : continuité de la conjugaisonSoit Ω ⊂ R un quasicristal de dimension 1. NotonsΩ R := Ω ∩ B R (0), où B R (0) = [-R,R] est la boule de rayon R centrée en 0. Une suite de translations {α i + Ω}, α i ∈ Ω, converge donc dans la topologie quasicristalline si pour chaque R > 0, il existe N R > 0 tel que pour tous i, j > N R ,(Ω -α i ) R = (Ω -α j ) R . L'union Ω α := R>0 i>N R (Ω -α i ) Rest un quasicristal. Le complété quasicristallin Ω est l'ensemble de ces Ω α muni de la topologie quasicristalline définie par la base d'ouvertsO R (Ω α) = {Ω ∈ Ω : Ω R = (Ω α) R }, R > 0.Comme on l' vu au §??, Ω est une transversale fermée du solénoïde ŜΩ , donc un espace de Stone c'est-à-dire un espace compact et totalement discontinu.Désormais on supposera que Ω est un ensemble modèle de dimension 1, basé sur le réseauO K ⊂ R d avec la fenêtre de paramètres x ∈ (R + ) d-= W x = (-θ -x1 , θ -x1 ) × • • • × (-θ -x d-1 , θ -x d-1 ) où W = W x = [-θ -x1 , θ -x1 ] × • • • × [-θ -x d-1 , θ -x d-1]. Notons que si θ -xi ∈ O K pour tout i = 1, . . . , d -1, W et W définissent le même ensemble modèle. Sinon, on obtient un nombre fini de nouveaux ensembles modèles en utilisant W au lieu de W .On rappelle que Ω est dit répétitif si pour tout R > 0, l'ensemble des R-périodesPer R (Ω) := {x ∈ R : (Ω -x) R = Ω R } est relativement dense.Lemme 4. Ω est répétitif si et seulement si il est défini en utilisant la fenêtre ouverte W .Démonstration. Supposons que Ω se définit avec W .

2 .

 2 Puisque dans la liste ordonnée (??) figurent tous les éléments de Ω R , il n'existe pas γ ∈ O K avec γ > 0 et tel qu'il existe un i vérifianti < k et γ < α i+1 -α i ou birn i = k et γ < R -α k et ±(α i + γ) ∈ Ω. En particulier, d'après 2, si i < k et γ < α i+1 -α i , ±γ ∈ W ± α i et pour i = k et γ < R -α k , on a également ±γ ∈ W ± α k .Considérons alors l'ensembleΥ = 0 = γ ∈ O K : γ < α i+1 -α i pour quelque i < k or γ < R -α k ⊂ (0, α), où α := max max i<k (α i+1 -α i ), R -α k .L'ensembles de ses conjugués, soit Υ , est un sous-ensemble d'un ensemble modèle dans {0} × R d-1 défini en utilisant la fenêtre (0, α) en R × {0}, et Υ est donc uniformément discret. On peut alors choisir δ > 0 suffisamment petit tel que, pour tout β avec β < δ, on a :a. β ± α i ∈ W , c'est-à-dire β ± α i ∈ Ω et b. Pour γ ∈ Υ et tout i tel que soit γ < α i+1 -α i , soit i = k, γ < R -α k γ ∈ W ± α i -β .En particulier,β ± α i + γ ∈ Ω (33) pour γ < α i+1 -α i si i < k et γ < R -α k si i = k.La condition a. implique que ±αi = (±α i +β)-β ∈ (Ω-β) R , qui fournit l'inclusion Ω R ⊂ (Ω -β) R .La condition b. fournit l'inclusion inverse. En effet, supposons qu'il existe x = αβ ∈ (Ω -β) R \ Ω R , α ∈ Ω.

  α = β + α i + γ ∈ Ω,ce qui contredit (??). On en conclut que (Ω -β) R = Ω R , d'où β ∈ Per R (Ω).L'ensemble des β avec β < δ est un quasicristal, donc relativement dense, ainsi que Per R (Ω). Ceci démontre que Ω est répétitif.Si par contre Ω est défini avec W et n'est pas définissable avec W , il existe un ensemble fini de α ∈ Ω avec α ∈ ∂W . De plus le sous ensemble Ω R ⊂ Ω pour R > |α| ne peut exister ailleurs que dans Ω : autrement dit, il n'existe pas de β avec (Ω -β) R = Ω R . En particulier, pour un tel R, Per R (Ω) = {0}, et donc Ω n'est pas répétitif.Corollaire 2. Si Ω est défini par W = W x , Ω est minimal : pour tout Ω ∈ Ω, Ω = Ω.

  Théorème 6. L'invariant modulaire quasicristallin j est continu.Démonstration. Il suffit de montrer que la restriction au monoïde Z ⊂ Cl mod (A) est continue. Si a i → a, alors a i converge vers a dans la topologie de Hausdorff (uniformément sur tout compact) et donc pour tout s fixé, ζ ai (s) → ζ a (s). La continuité de j est une conséquence immédiate.

Soit θ ∈ R. Pour ε > 0 on définit Λ ε (θ) := {n ∈ Z | nθ < ε}

où x est la distance de x à l'entier le plus proche. On introduit la fonction zêta

  Ω, on note la clôture ŜΩ := {v + Ω} v∈R n (voir par exemple [?]). De manière équivalente ŜΩ peut être défini en utilisant le pavage de Voronoï P Ω associé à Ω, où maintenant ŜΩ est la clôture de l'ensemble {v + P Ω } v∈R n des translatés de P Ω . Dans [?] les auteurs montrent que ŜΩ est homéomorphe à la limite inverse d'un système de varietés ramifiées plates ("branched flat manifolds") de dimension n. Si Ω est un réseau, ŜΩ ≈ R n /Ω et on retrouve la notion classique de tore quotient. Un point de ŜΩ est répresenté par un pavage construit avec les mêmes mailles que Ω et qui possède des sous-pavages arbitrairement grands qui coïncident à translation près avec des sous-pavages de Ω. Proposition 10. Soit Ω ⊂ R n un quasicristal. Alors ŜΩ est un solénoïde compact de dimension n. Si Ω = M est un ensemble modèle générique, ŜΩ est minimal. Démonstration. ŜΩ est un solénoïde comme limite inverse de varietés ramifiées de dimension n. Puisque Ω est de Delaunay, ŜΩ est compact. Enfin si Ω est générique, il est répétitif, ce qui implique que ŜΩ est minimal (voir par exemple [?]).

	Il est instructif de rappeler le cas du solénoïde classique
	Ŝ1 = lim

←-

S 1 , où la limite est définie par rapport à tous les épimorphismes de S 1 = R/Z vers luimême. Le complété profini Ẑ de Z s'identifie au noyau de l'épimorphisme Ŝ1 → S 1 ; de plus Ŝ1 / Ẑ ∼ = S 1 définit un sous-groupe de Ŝ1 qui est une transversale canonique. De manière équivalente Ẑ = Z est la clôture topologique de Z

  Soient {α i + Ω}, {β i + Ω} des suites dans Ω qui convergent vers deux points de Ω. Il faut démontrer que{ω i + ΣΩ} := {α i + β i + ΣΩ} (20)D'après le Théorème ??, la suite des conjugués {ω i } est convergente vers w ∈ ΣD, où ΣD est la fenêtre de ΣΩ. Les fenêtres ω i + ΣD associés aux quasicristaux modèles ω i + ΣΩ convergent donc. On peut supposer sans perte de généralité que ΣD = [-a, a].

	Il suffit de montrer que la somme est transversalement continue, autrement dit que
	l'application canonique Ω × Ω	+ → ΣΩ s'étend en une application continue
		Ω ×	Ω + -→ Σ Ω.
	(19)	
	induit une application continue et surjective
		Ω	D.
	Démonstration. C'est essentiellement une conéquence de la Proposition 4.3 de [?],
	qui affirme la continuité de l'application canonique
			-
	streinte à Ω ⊂ Ω, coïncide avec la conjugaison (??). On se reportera à l'Appendice
	pour un argument plus détaillé.
	Théorème 10. Soit Ω un ensemble modèle. Alors la somme + m,n , définie en
	(??), est continue.	

Théorème 9. Soit Ω un ensemble modèle de fenêtre D. Alors la correspondance α ∈ Ω -→ α ∈ D β : ŜΩ , Ω -→ F Ω , D où F Ω est une feuilletage de Kronecker qui paramétrise les ensembles modèles "basés" sur Ω et où D apparaît comme transversale canonique. L'application β reDémonstration. On considère d'abord la preuve dans le cas particulier où -Ω est un quasicristal modèle de dimension 1, défini par la fenêtre D ⊂ R ; -m = (1, 1), n = 2.

  image continue d'un ensemble de Cantor, donc est elle-même ou un ensemble de Cantor, ou bien finie. On considèrera Ĉa comme un "élargissement" de 1, de la même façon que l'on a regardé â ⊂ Ŝa comme un élargissement de 0. La paire ( Êa , Ĉa ) est l'objet que l'on voudrait considérer comme un analogue d'un module de Drinfeld de rang 1 en caractéristique zéro.Comme on le verra, ceci se complique du fait du défaut d'injectivité de e a . Ce serait trop espérer que de vouloir faire de e a un homomorphisme au sens usuel entre la structure sommatoire dans la suite des solenoïdes { ŜΣ n a } et la structure de groupe de C * (pour la définition des Σ n , voir immédiatement après la démonstration du Théorème 8). Plus précisément, le diagramme

	Ŝa × Ŝa

  1. Dans le cas classique, l'exponentielle est combinaison linéaire du sinus et de sa dérivée et définit une fonction injective sur S 1 . Il n'est pas nécessaire d'utiliser davantage de dérivées dans la définition de l'exponentielle. Au demeurant la suite des dérivées du sinus est périodique de période 2. 2. Dans le cas des courbes elliptiques on utilise la fonction ℘ de Weierstrass et sa dérivée. L'application de Weierstrass étant déjà injective, il n'est pas nécessaire de mettre en jeu davantage de dérivées. 3. Dans le cas des modules de Drinfeld, l'exponentielle est essentiellement donnée par le sinus ; sa dérivée est identiquement 1 et il ne sert donc à rien de l'inclure. Au contraire, ici la serie des dérivées s a (x), c a (x) = s a (x), s

C'est-à-dire de la forme f (X) = c i τ i où τ(X) = X q est le morphisme de Frobenius.

On note (voir [?]) qu'un idéal quasicristallin entier et non réduit à zéro est aussi un quasicristal.

Il en existe toujours ; voir par exemple la preuve du Théorème 3.26 de Narkiewicz [?].

N.B. Il n'est pas possible de réintégrer le facteur 1/β 1 dans le produit, en écrivant plutôt (αn/βn) 2 : le résultat ne converge pas.

Démonstration. Le quasicristal de dimension 1 Ω peut être vu comme un mot biinfini sur un alphabet fini, où chaque lettre de l'alphabet indexe une différence d'éléments consécutifs de Ω. Pour Ω un ensemble modèle défini avec W , d'après le Lemme ??, le mot qui indexe Ω est répétitif. La minimalité de Ω suit de la Proposition 4. 

s'étend à la conjugation et il faut montrer que cette extension est continue : une fois montrée cette continuité, il s'en suit que c α ∈ W . Soit alors V c α un voisinage ouvert ; on a

Ceci démontre qu'il existe R > 0 tel que

on aura que c β ∈ V , ce qui démontre le Théorème dans le cas où Ω est défini à l'aide de W . Si maintenant Ω se définit par W , il n'est pas répétitif mais l'argument cidessus montre que la conjugaison est continue sur l'ensemble de Cantor Ω0 = Ω\Ω. Puisque les points de Ω sont isolés dans Ω, il suit que la conjugation est continue sur Ω tout entier.