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Graph-based representation of history-dependent material
response in the Data-Driven Computational Mechanics

framework

Héloïse Dandin, Adrien Leygue, Laurent Stainier
Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, F-44000 Nantes

Abstract

This work develops an extension of the Data-Driven Computational Mechanics
approach introduced by Kirchdoerfer and Ortiz (2016) to history-dependent behaviour.
The material database is replaced by a material directed graph, where vertices represent
strain-stress pairs and arcs encode thermomechanically admissible transitions between
them. A graph search algorithm is used to select local material databases representative
of the incremental material behaviour. This study thus gives the mathematical tools for
a structured data-driven representation of the material behaviour, designed to minimise
the increase of the problem dimensionality. The performances of the proposed approach
applied to elastoplasticity are studied on a single-element structure and a larger truss
structure. A two-step solver is proposed to address numerical accuracy issues in the latter
case.

Keywords: Data-Driven Computational Mechanics, computational plasticity, graph
theory
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1 Introduction

Model-free Data-Driven Computational Mechanics (DDCM), first introduced by Kirchdoerfer
and Ortiz [2016], is a method for solving boundary value problems in solid mechanics without
constitutive models. In this approach the material behaviour is represented by a discrete
set of points, instead of a set of explicit mathematical expressions as in classical constitutive
modelling (see, e.g., Lubliner [2008]) or machine learning methods (see, e.g., Ghavamian and
Simone [2019], Flaschel et al. [2022]). In DDCM, the solution is then formulated as a distance
minimisation problem, which becomes a mixed-integer quadratic problem (MIQP) exhibiting
combinatorial complexity [Kanno, 2019].

The data sets that describe the material behaviour, also referred to as material databases,
can be obtained in different ways. On the one hand, multiscale modelling has been used to
generate data with constitutive models identified at the microscopic scale [Karapiperis et al.,
2021, Korzeniowski and Weinberg, 2021, Platzer, 2020]. On the other hand, identification
methods such as Data-Driven Identification (DDI) allow estimating stresses from experimental
strain measures without constitutive models [Leygue et al., 2019, Dalémat et al., 2019, Vinel,
2022]. In that case, DDI can be seen as an inverse problem of DDCM for material properties
identification.

These material databases are likely to evolve during an incremental simulation, for example
to locally enrich a sparse database [Platzer, 2020] or due to the irreversibility of the behaviour
[Eggersmann et al., 2019]. In the latter case, the solver must, at each point of the structure and
for each loading increment, monitor irreversibility and propose a set of admissible data points.
Eggersmann et al. [2019] review typical representational paradigms for history-dependent
materials in continuum mechanics: general materials with memory, differential representation,
internal and history variables. All these methods, especially the first one, imply to increase
significantly the dimensionality of the problem. For instance, the work by Valdés-Alonzo [2022]
develops an extension of DDI to dissipative behaviours within the framework of materials
with memory, while Pham et al. [2023], following Ciftci and Hackl [2022], and Langlois et al.
[2022] use differential representations. Poelstra et al. [2022] and Bartel et al. [2023] adopted
a different strategy based on history surrogates that also requires a consequent dimensionality
augmentation.

In this work, we develop a graph-based representation of history-dependent material
databases. Graph theory is a branch of discrete mathematics interested in networks and
pairwise relations between objects, that has already been applied in solid mechanics, for example
to granular materials [Goddard, 2008] and dislocation kinematics [Starkey et al., 2022]. It
offers a wide range of tools and methods designed to handle large amounts of data and solve
optimisation problems. We show that the history dependence can be encoded in a material
directed graph (abbr. digraph). This is first achieved by expanding the usual strain-stress
constitutive space to other thermodynamical quantities like internal variables, and second by
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making use of graph arcs to record dissipation levels. Standard efficient graph algorithms can
then be used to extract the material database from the material digraph and perform the
simulation in strain-stress space.

To illustrate the concepts, we present numerical results obtained for one-dimensional
elements, in which case all quantities of interest are scalar. We first put aside the combinatorial
issues arising from the alternating minimisation solver by modelling the behaviour of a single
element to demonstrate the ability of the method to generate a material database from the
material digraph allowing us to solve a simple problem. For larger structures, we show the
accuracy issues and challenges coming both from the combinatorial complexity of DDCM and
the richer material behaviour. An enhanced solver that takes advantage of the thermodynamical
information encoded in the material digraph is proposed. We show that it is possible to retrieve
a good response from the system both at global and local scales.

2 Data-Driven Computational Mechanics framework for
inelastic material response

This section recalls the mathematical framework for model-free data-driven inelasticity
introduced by Kirchdoerfer and Ortiz [2016] and Eggersmann et al. [2019].

We consider the discrete representation of an inelastic body composed of N nodes and M

integration points, which undergoes displacements u = {ua}N
a=1 and loads f = {fa}N

a=1. In a
time-discrete setting, we seek to approximate solutions at times {t0, . . . , tk, tk+1, . . . }.

The internal state of the system can be described at each time step by strain and stress
pairs {(εe,k+1,σe,k+1)}M

e=1, with εe,k+1,σe,k+1 ∈ Rme and me the dimension of the tensors
at integration point e for linearised kinematics. In a three-dimensional setting, me = 6 in
Voigt notation, while me = 1 for bar elements. A local state is thus defined as ze,k+1 =
(εe,k+1,σe,k+1) ∈ Ze,k+1 with Ze,k+1 = Rme×me the local phase space1, while zk+1 = {ze}M

e=1 is
a point in the global phase space Zk+1 =

M⊗
e=1

Ze,k+1, with ⊗ meaning the tensor product of
spaces.

The mechanical admissibility of a state is material-independent and is given by the
compatibility and equilibrium constraints at time step tk+1:

εe,k+1 = Beuk+1, ∀e = 1 . . .M, (1a)

M∑
e=1

weB
T
e σe,k+1 = fk+1, (1b)

with we the weights of integration points and Be the discrete kinematic operator matrix related
1The notation Ze,k+1 is introduced here for convenience as it will be used in the following. However, note

that the local phase space is independent of k.
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to the integration point e. These relations define the set of mechanical constraints,

Ek+1 = {z ∈ Z | Eqs. (1a) and (1b)} ⊂ Zk+1. (2)

In the model-free data-driven approach the material response is described by a collection of
states obtained through experiments or numerical simulations at a finer material scale. These
local material data sets denoted

De,k+1 = {yi = (εi,σi) ∈ Ze,k+1, i = 1 . . . N∗ | past local history} ⊂ Ze,k+1, (3)

for inelastic behaviours, with N∗ the number of material strain-stress pairs, also extend to the
global material database at time tk+1 as Dk+1 = D1,k+1 × · · · × DM,k+1 ⊂ Zk+1.

The following norm can be defined in the local phase space:

∥ze,k+1∥C =
[1
2(Ce,k+1 : εe,k+1) : εe,k+1 + 1

2(C−1
e,k+1 : σe,k+1) : σe,k+1

]1/2
, (4)

with C a positive-definite 4th-order tensor that is not related to any material property and
can be updated during the simulation. Hence, the (squared) distance between two states
ze,k+1, ye,k+1 ∈ Ze,k+1 is:

d2
C(ze,k+1, ye,k+1) = ∥ze,k+1 − ye,k+1∥2

C . (5)

Finally, the extension to the global phase space Zk+1 gives the distance

d2
C(zk+1, yk+1) =

M∑
e=1

wed
2
C(ze,k+1, ye,k+1) . (6)

The data-driven problem is then reformulated into a double minimisation problem, whose
solution at step tk+1 is given by:

S = arg min
zk+1∈Ek+1

min
yk+1∈Dk+1

d2
C(zk+1, yk+1) , (7)

i.e. the pair (zk+1, yk+1) of states, respectively mechanically admissible and from the material
database constrained by history, which are closest to each other according to distance dC. The
solution is typically obtained by alternating minimisation over continuous (z) and discrete (y)
variables, as illustrated in Fig. 1, that consists in the fixed point iteration:

z
(i+1)
k+1 = PEk+1PDk+1z

(i)
k+1, (8)

with i the iteration number, y(i)
k+1 = PDk+1z

(i)
k+1 the closest point projection onto Dk+1 and

PEk+1y
(i)
k+1 the projection of a material state onto Ek+1. The discrete nature of the material
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database leads to high combinatorial complexity as M and N∗ increase. The proportion of
local minima also increases, implying a greater probability that the solver will converge on
local minima that are far from the global minima [Kanno, 2019].

The main challenge thus lies in the selection of the local material databases De,k+1 subject
to the history of strain and stress as defined in Eq. 3.

Figure 1: DDCM algorithm for elastic material response at loading step k + 1

3 Directed graphs for DDCM simulations of
history-dependent materials

In this section, we generalise the material database to the material digraph concept. We also
show how to construct this digraph and extract the local database De,k+1 from it.
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3.1 Representation of the discrete material behaviour with a
material digraph

The definitions and concepts of graph theory provided here can be found in Harary et al. [1965],
Bondy and Murty [2008] and Rigo [2016].

A directed graph G (abbr. digraph) consists of a pair (V (G), A(G)), or shortly, (V,A), with
V a set of vertices and A a set of arcs disjoint from V . An incidence function ψG links each arc
to an ordered pair of vertices in V :

ψG : A 7→ (V, V )
a → (uv),

(9)

with u the tail and v the head of a. A cost c(a) is assigned to each arc a ∈ A. G is connected
if, for every partition of its vertex set into two non-empty subsets X and Y , there is an arc
with one end in X and the other in Y ; otherwise, it is disconnected.

We note G = (V,A) the digraph encoding the material behaviour, illustrated on Fig. 2.
Its vertices are the material states and its arcs are thermomechanically consistent transitions
between these states such that G contains no isolated vertex. Given an arc (yiyj) ∈ A between
vertices yi, yj ∈ V , the cost cD(yiyj) is the dissipative cost of the transition from states yi to yj:

cD(yiyj) = Di→j, (10)

with Di→j the dissipation level of the transition. In this way, a non-dissipative or reversible
transition is such that cD(yiyj) = 0 and is encoded with two symmetric arcs in the digraph, i.e.
(yiyj) and (yjyi), while an irreversible transition is represented with one arc directed such that
cD(yiyj) > 0.

Figure 2: A digraph G for an elastoplastic material response with loading and unloading.

We define a non-dissipative directed subgraph E = (V (E), A(E)) ⊆ G such that A(E) is
the set of non-dissipative arcs of A(G) and V (E) the set of vertices joined by arcs in A(E). E
might be disconnected and all the vertices belonging to the same connected component can be
linked together via zero-cost arcs only (see Fig. 3 (a)). As a result, each connected component is

5



associated with an elastic domain, which fundamentally corresponds to a clique, i.e. a digraph
in which every pair of vertices is joined by exactly two arcs, one in each direction.

(a) (b)

Figure 3: Subgraphs of G (Fig. 2): (a) non-dissipative subgraph E, (b) dissipative subgraph
P .

Furthermore, we define the dissipative directed subgraph P = (V (P ), A(P )) ⊆ G such
that A(P ) = A(G) \ A(E) and V (P ) has no isolated vertex. A(P ) thus contains all
thermodynamically irreversible transitions: all arcs in A(P ) have strictly positive dissipative
cost, as in Fig. 3 (b).

For a database representing a purely elastic material behaviour, the digraph G is a clique
and is equal to the non-dissipative subgraph E. Therefore, the local database De,k+1 contains
all material states.

From this point on, we will use the terms of computational mechanics and graph theory
interchangeably to refer to a state of the material database or the corresponding vertex in the
digraph and a thermomechanical transition or the equivalent arc. We also call material digraph
and write G the digraph associated with the material data set.

3.2 Distinction between identical states in the constitutive space

Let us now consider two identical states in the constitutive space yk = (ε,σ) and yκ = (ε,σ)
but with different histories of strain and stress, denoted {yl}l⩽k and {yλ}λ⩽κ respectively.

A path is a special type of graph made of an ordered sequence of arcs such that the tail
of each arc of the sequence coincides with the head of the preceding and where all the visited
vertices are pairwise distinct. A path with the same first and last vertices is called a cycle.

Histories {yl}l⩽k and {yλ}λ⩽κ exist in the digraph as paths whose vertices are the states of
histories. Yet according to its definition, P is acyclic. Thus, if either {yl}l⩽k or {yλ}λ⩽κ or both
contain any arcs ak ∈ A(P ) and aκ ∈ A(P ) that belong to different connected components of
P , then yk and yκ are different vertices of G (see Fig. 4). Otherwise, yk and yκ belong to the
same elastic domain and are strictly equal (same characteristics in the constitutive space and
same loading histories).
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Figure 4: Identical states yk and yκ in constitutive space (ε,σ) but with different histories.

In conclusion, the digraph framework makes it possible to distinguish between states with
the same localisation in the constitutive space but different past histories and thus to represent
complete and repeated loading cycles with various loading directions without any modification
in the formalism. In that case, simulating the material response is only achievable in the
sampled areas of the constitutive space with adequate dissipation levels. For example, to
predict the mechanical behaviour for a loading-unloading-reloading cycle, the material digraph
must encode the material response for at least one cycle and for the same strain range as implied
by the applied loading.

3.3 Local database selection

The solution of the data-driven problem at time step k + 1 and integration point e is given
by the pair (ze,k+1, ye,k+1) of respectively mechanical and material states computed with Eq. 7.
This first requires knowing the local material database De,k+1, which contains all the admissible
states in the data set given the history of e.

As shown in Section 3.1, the history of a state is encoded in the global material database
digraph. Therefore, selecting De,k+1 now comes down to searching for admissible futures in the
material database or equivalently to searching for existing paths in the digraph.

To do that, we use the concept of tree as defined in graph theory. A tree is a connected
graph that contains no cycles. As for digraphs, trees can be written in terms of coupled sets
of arcs and vertices as T = (V (T ), A(T )). Starting from a root r ∈ V (G), a tree T (r) contains
all vertices of G that can be reached from r, and the arcs leading to them. Hence a vertex
v ∈ V (G) belongs to V (T ) if there is a path in G leading from r to v.

Knowing that digraph G encodes the thermodynamically admissible transitions between
states of material database D and given a root ye,k, we build a rooted tree from this vertex and
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denote it T (ye,k). Finally, the local material database at k + 1, illustrated in Fig. 5, contains
the local states corresponding to the vertices of T (ye,k):

De,k+1 = {yi,∀yi ∈ V (T (ye,k))} . (11)

(a) (b)

Figure 5: (a) Tree T (ye,k) built from G (Fig 2). (b) Material database, root ye,k and local
database De,k+1.

3.4 Local database reduction

The alternating minimisation solver used for elastic problems is highly sensitive to local minima
[Kirchdoerfer and Ortiz, 2017], the number of which increases in inelasticity. In the incremental
problem developed above, we usually consider small loading increments. We therefore assume
small increments of the material solution at a material point e both in terms of distance in the
constitutive space and dissipative cost of the transition.

To this end, we introduce the concept of path cost defined as the sum of every arc’s cost:

c(p) =
∑

a∈A(p)
c(a), (12)

with p a specific path and A(p) the set of its arcs. A minimum cost path is the shortest
path with respect to cost c(•) and is denoted [u, v]c with u and v the tail and head vertices
respectively. As part of an elastoplastic local database, u is always a tree’s root and v is a
vertex of T (u), which ensures that there is at least one path from u to v.

Finally, three conditions on the states belonging to De,k+1 as defined in Eq. 11 are applied
to reduce local material databases:

1. squared data-driven distance:
d2
C(yk, yi) ⩽ TOL1, (13)

2. cumulated squared data-driven distance along the path:

cδ(p = [yk, yi]δ) =
∑

a∈A(p)
cδ(a) ⩽ TOL2, (14)

8



with cδ(a) = d2
C(tail(a), head(a)),

3. path dissipative cost:

cD(p = [yk, yi]D) =
∑

a∈A(p)
cD(a) ⩽ TOL3, (15)

with cD(a) = Dhead(a)→tail(a).
It should be noted that the first two conditions involve algorithmic criteria while the latter is a
material criterion. Furthermore, for any path from yk to yi, the data-driven distance is always
smaller or equal to the distance along the path used in condition 2. The effect of these criteria
and their combinations will be discussed in more detail in Section 4.3.

Fig. 6 details the new data-driven procedure for the incremental inelastic problem. As
stated by Eggersmann et al. [2019], the difference with the elastic case lies in the definition of
local databases while the following algorithmic steps remain the same.

Figure 6: DDCM algorithm for rate-independent elastoplastic material response at loading step
k + 1.

3.5 Numerical representation of the material digraph

In practice, material data can be generated in two different ways. On the one hand, it can come
from numerical simulations, for example in the context of multiscale modelling [Karapiperis
et al., 2021, Gorgogianni et al., 2023]. In this case, a constitutive model provides all the
information needed to build the material digraph, i.e. strains, stresses and dissipation. On the
other hand, experimental tests can also be used to generate this data, using a full-field strain
measurement technique coupled with DDI for strains and stresses. Dissipation can be inferred
from calorimetric measurements with assumptions on potential heat exchanges [Chrysochoos
et al., 2010, Seghir et al., 2013, Vinel, 2022].
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A graph is usually encoded by an adjacency matrix, i.e. a square matrix A that represents
adjacent vertices of the graph. A component Auv usually equals the number of arcs from vertex
u to v.

In the present work, the numerical representation of the material digraph G is an N∗ ×N∗

adjacency matrix Aij = exp(c(yiyj)) where N∗ is the number of points in the data set and
c(yiyj) is the cost of arc (yiyj). The exponential function allows to distinguish between the
absence of arc from a zero-cost arc. We use two matrices to encode the costs defined above:

• data-driven distance matrix: Aδ
ij = exp(cδ(yiyj)),

• dissipative cost matrix: AD
ij = exp(cD(yiyj)).

Both matrices represent the same material digraph (same vertices and same arcs) but with
different arcs’ costs. Therefore they have the same sparsity pattern that might be stored only
once.

It is to be noted that the material digraph should be designed in such a way that it contains
a sufficient number of arcs to provide enough information about the material behaviour and
thus improve the solver’s precision, and yet as few arcs as possible to ensure adjacency matrices’
sparsity and speed up computations (e.g. graph search). In particular, cliques should not be
fully encoded as such as long as at least one path exists between all vertices of the corresponding
elastic domain. For instance, an enhanced representation of cliques could be developed to speed
up computations.

Finally, local databases can be obtained thanks to generic graph search algorithms [Bondy
and Murty, 2008] or shortest-path algorithms like Dijkstra’s [Dijkstra, 1959]. We implement
the reduction criteria introduced in Section 3.4 within the chosen routine as a boundary or
limit of path cost.

4 Numerical implementation and investigation of a
single element problem

4.1 Material digraph construction

We generate an artificial database thanks to an elastoplastic material model with linear
kinematic hardening. The yield function is given by:

f(σ, εp) = |σ −Hεp| − σy (16)

with hardening modulus H, yield limit σy and plastic strain εp.
We build a regular data set representing the material response under elastoplastic loading,

elastic unloading and plastic reloading. The strain increment in the non-hardened elastic
domain and the first dissipative part is 0.01 %. Unloading and reloading paths are generated
with a plastic strain increment of 0.2 % and an elastic strain increment of 0.04 %.
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We define the arcs of the material digraph as follows:
• elastic domains, or sets of states that could be represented by cliques, are encoded

as minimum spanning subgraphs with respect to the data-driven distance, i.e. such
that all vertices are connected in both directions and with arcs that minimise the total
(data-driven) cost of each connected component,

• elastic domains are linked together with dissipative arcs that encode irreversibility, i.e.
such that

t∫
0

|ε̇p|dt > 0.

We rely on the order of the generated sequence of material points and on the dissipation level to
determine the arcs’ direction and whether they should be encoded. The final digraph is similar
to the one presented in Fig. 2. According to this definition, superimposed states in the (ε, σ)
configuration (see Fig. 7 (a)) might have different histories and dissipation levels (see Fig. 7
(b)) and are different vertices of the material digraph.

(a) (b)

Figure 7: Material data set under loading, unloading and reloading conditions, the black solid
line represents an example history: strain and stress reach a maximum before decreasing, while
dissipation only increases. (a) In stress-strain space, colouring represents the dissipation state,
(b) 3d representation.

A local database contains potential states for a given loading increment. The criteria
defined in Section 3.4 tighten eligibility conditions and therefore downsize the database. The
data-driven distance criterion is implemented with sklearn’s Nearest Neighbor algorithm and
a maximum radius equal to TOL1. The path distance and cost conditions are computed
with Dijkstra’s algorithm implementation from Python library scipy.sparse.csgraph and
graph adjacency matrices Aδ and AD encoding respectively data-driven distance and transition
dissipation as arcs’ cost. Again, TOL2 and TOL3 represent the maximum admissible path cost
for the last node of the sequence to be in the local database. Note that TOL represent relative
tolerances taken with respect to the chosen metric C.
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Fig. 8 shows local databases for different reduction criteria in space (ε
√
E, σ/

√
E), which

has the same dimensions as the constitutive space. In this representation and because we set
the DDCM parameter C equal to Young’s modulus, data-driven and euclidean distance are
equivalent. Criterion 1 expresses a maximum data-driven radius centred on the root and is
represented by a circle in these coordinates (see Fig. 8 (b)).

(a) (b)

(c) (d)

Figure 8: Material database and effect of reduction criteria on the local database. (a) Material
database. (b) Data-driven distance, TOL1=10−5 × C. (c) Cumulated data-driven distance
along the path, TOL2=10−2 × C. (d) Path dissipative cost, TOL3=5 · 10−5 × C.

The second criterion limits the data-driven distance along the shortest path from the root
to a point in the local database (see Fig. 8 (c)). Note that the notion of path included in
this cost excludes points corresponding plastic unloading, contrarily to previous criterion. It is
equivalent to a radius in the graph representation and seems more suitable to our study as it
better reflects the effective loading path leading to a given transition.

Finally, the dissipative criterion in Fig. 8 (d) adds all vertices in elastic domains obtained
with dissipative increments lower than the chosen tolerance to the database. It is used in the
following simulations in association with the second criterion. Other criteria could also be
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developed, for instance, to explicitly forbid non-monotonic increments (in dissipation). This
assumption is for example used in the classical return-mapping algorithm for elastoplastic
constitutive modelling.

4.2 Evaluation of results quality

DDCM solution strongly depends on database sparsity, especially when DDCM metric C is not
optimised [Kirchdoerfer and Ortiz, 2017, Eggersmann et al., 2019]. This is the case here as we
choose a fixed value for this parameter throughout the simulation despite slope discontinuities
in the material data. This work aims to demonstrate the ability of the present graph-based
approach to represent the mechanical solution independently of the convergence study, which
should be improved by an enhanced solver, e.g. through game theory as suggested by Weinberg
et al. [2023]. To decouple the influence of these parameters, we seek to limit the data set’s
density effect by filtering the FE reference solution with the data set. We therefore introduce
a new indicator: the data-driven projection of the FE reference solution onto the material
database. This value is computed in two steps:

1. projecting the FE solution zref onto the material database (reference material states),

yref = PDz
ref ,

2. re-projecting the reference material states onto equilibrium (projected reference
mechanical states),

zproj = PEk+1y
ref.

The projected states represent the best solution achievable by a data-driven solver with given
data and chosen metric. This is particularly important as the material data set might contain a
non-uniform discretisation of the constitutive space with possibly very different sampling rates
in the elastic and dissipative domains. Even for a regular data set as in Fig. 9, gaps appear in
the projected data when the database is too sparse in the neighbourhood of the FE solution.
Hence the distance between the DDCM solution and the projected reference solution provides
a neutral indicator regarding data sparsity and is used in the following to evaluate the results
accuracy.

It is noteworthy that the distance between DDCM solution and projected reference states
is not totally independent of the database density, since the convergence of the fixed point
algorithm depends on this density. However, this indicator is more neutral than the comparison
with the FE reference solution usually used.

4.3 Resolution of a data-driven problem

We illustrate the approach with the one-dimensional spring-bar element system on Fig. 10
subject to a strain ε̄ up to 15 % followed by elastic unloading and plastic reloading in
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Figure 9: Material data set and (left) FE solution, (right) projected reference mechanical states.

compression with ε̄ down to 10 %, a spring stiffness K = 2l0E and l0 = 1 m the bar length. The
material data set is artificially generated as described in Section 4.1 with constitutive model
parameters E = 1 Pa, H = E/200 and σy = E/100 and the data-driven metric is set to C = E.

Figure 10: Boundary value problem: spring-bar element system

Fig. 11 (a) shows the mechanical and material states obtained at all time steps. The DDCM
solver is able to retrieve a good approximation of the path shape even during the unloading
phase, where the material database does not contain points with the exact reference dissipation
level. The projected reference solution is well recovered except from the onset of unloading
(time step 188) until reloading (time step 225) where the distance between DDCM mechanical
states and projected reference mechanical states increases (see Fig. 11 (b) and (c)). As stated
by Kanno [2019], this phenomenon is characteristic of the solver and occurs even for simple
problems. Moreover, absolute strain and stress errors, computed as

errε = |εk − εproj
k | ,

errσ = |σk − σproj
k | .

(17)

are given on Fig. 11 (c) between mechanical and projected reference mechanical states. The
evolution of these values during loading is coherent with the chosen metric which affects a lower
weight on stresses compared to strains and thus tends to approximate the latter better.

14



Figure 11: (a) Mechanical and material solutions for the spring-bar element model under
loading, unloading and reloading. (b) local material database, DDCM solution (blue star
and red point) and projected reference mechanical state (green point) at maximum loading. (c)
Errors between DDCM and projected reference mechanical states.

5 Numerical experiment on a truss problem

5.1 Truss structure and related challenges

The simulation of a truss structure is a combinatorial problem that involves coupled
minimisations of mechanical and material states at all integration points. The DDCM
alternating minimisation solver ensures global convergence but is likely to fall into local minima,
which could lead to a completely unreliable solution both at local and global scales. As an
example, Fig. 12 (a) shows a 2D truss composed of 102 nodes and 252 elements, subject to
displacement-driven boundary conditions. The top and left boundaries are fixed while right
and bottom nodes are subject to the same displacement up to 7 mm and back to 6 mm with
135 increments, as illustrated in Fig. 12 (b). The material data set is artificially generated
as described in Section 4.1 with constitutive model parameters E = 217.5 GPa, H = 1 GPa,
σy = 250 MPa, a strain increment of 0.001 % and the metric is set to C = E. These parameters
are representative of steel and close (in adimensional form) to those used in the previous section.
The local database reduction tolerances are set to TOL2 = 5 × 103 ×C and TOL3 = 10−5 ×C.

DDCM mechanical and material states obtained at all loading steps for two plastically

15



X
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Figure 12: (a) Truss geometry and boundary conditions. (b) Applied displacement. (c)
Evolution of DDCM mechanical, material states and projected reference mechanical states
for yellow and red elements during loading.

deformed elements of the mesh are illustrated on Fig. 12 (c). Although prediction is satisfactory
for the yellow element, the solution computed for the red element does not match the expected
elastoplastic response. Strain “sliding” is observed for strains from 0 Pa1/2 to 6 × 103 Pa1/2

and DDCM underestimates maximum strain, even though the overall path shape is consistent.
These effects are related to the constitutive space discretisation with finer strain increments
along with a metric value that gives strains a higher weight in the distance calculation. Besides,
Fig. 13 (a) highlights the median of relative strain and stress errors, calculated as:

errε = |εe,k − εproj
e,k |/εproj

e,k ,

errσ = |σe,k − σproj
e,k |/σproj

e,k .
(18)

The difference in magnitude between the strain and stress medians is consistent with the strain
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and stress discretisation: with the data-driven distance, which transforms into the euclidean
distance in the (ε

√
E, σ/

√
E) space, the stress range is much lower than that of strains, and

stress discretisation is denser.
Fig. 13 (b) shows how relative errors are distributed in the mesh with elements sorted

by increasing strain. The plotted time step corresponds to the loading phase, which implies
that both strain and stress should grow together. For some elements labelled in range
220-252 nonetheless, stress levels are lower than expected, which corresponds to the stress
underestimation observed on Fig. 12 (c) for the red element. At this specific loading step, 19 %
of the elements have strain relative errors greater than 100 %, half of which reaching strain
levels smaller than 500 Pa1/2 ≈ 0.1 %.

(a) (b)

(c)

Figure 13: (a) Median relative errors between DDCM and projected reference mechanical states.
(b) Relative errors at time step 33 (black dotted line on plot (a)) between DDCM and projected
reference mechanical states, the yellow and red dotted lines refer to the elements highlighted
on Fig. 12 (a). (c) Evolution of resulting force against displacement for the truss problem.

Additionally, combinatorial resolution optimises the global objective function to the
detriment of local behaviours. The macroscopic response, illustrated on Fig. 13 (c) by the
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evolution of the resulting force along the truss right boundary as a function of the applied
displacement, also exhibits the consequence of local sliding for lower strains. The DDCM
maximum force however is close to reference as local over- and underestimations of strains
offset each other.

Even though the laws of mechanics and thermodynamics are fulfilled, respectively with the
mechanical fields satisfying kinematic compatibility and equilibrium, and the material fields
satisfying the condition of non-negativity of dissipation, the lack of a unique solution within
local material databases combined with the sensitivity of the alternated minimisation solver
to local minima leads to defective results at local and global scales. We therefore discuss a
possible improvement of the solver for combinatorial elastoplastic problems.

5.2 Predictor-corrector algorithm

We suggest to implement a two-step non-dissipative predictor-dissipative corrector algorithm
inspired by resolution methods for constitutive models. This first requires to define two types
of local databases:

• a non-dissipative prediction local database Dpred
e,k+1 ⊂ De,k+1 that only contains states

such that the dissipative cost of any path from subgraph root ye,k to a state of the local
database is null, or equivalently, local databases only contain states belonging to the same
elastic domain as the roots,

• a dissipative correction local database Dcorr
e,k+1 = De,k+1 obtained as defined in Section 3.3

by taking the prediction’s material state ypred
e,k+1 as root.

Local databases Dpred
e,k+1 and Dcorr

e,k+1 might also respect the reduction criteria based on cumulated
data-driven distance along path and path dissipative cost, introduced in Section 3.4. In practice,
Dpred

e,k+1 is calculated by setting the tolerance on dissipative path cost TOL3 to zero and the
tolerance on path data-driven distance TOL2 for Dcorr

e,k+1 must be chosen such that Dpred
e,k+1 ⊆ Dcorr

e,k+1

to allow permanent deformation of elements.
A data-driven iteration is thus performed in two steps as illustrated on Fig. 14. First, a

non-dissipative step, called predictor, where the resolution is performed using Dpred
e,k+1 with root

ye,k until convergence. Then a dissipative computation or correction is performed using Dcorr
e,k+1,

equal to the local database defined in Section 3.3 and Section 3.4, obtained by taking the
predicted material state ypred

e,k+1 as root vertex. In addition, the material states in the correction
stage are initialised with the predicted material states. The corrected states are also the final
solution of the loading increment. This modification of the DDCM algorithm does not involve
any additional hypothesis or parameter but is solely based on physics.

The truss problem introduced above is now solved with the enhanced algorithm. The
DDCM solution for the yellow element depicted in Fig. 12 is shown on Fig. 15 (a) and is
mostly similar to the solution obtained in Section 5.1, except in the unloading part where it is
slightly overestimated. Fig. 15 (b) shows the states obtained for the red element: the predicted
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Figure 14: Illustration of the predictor-corrector elastoplastic DDCM algorithm.

solution improved significantly compared to Fig. 12. The material response is well predicted in
the reversible part, although the solver still tends to underestimate strains in the dissipative
domain, leading to early unloading.

Fig. 16 confirms that relative errors also improved compared to the previous simulation. The
median values were reduced down to 20 % of those in the previous simulation. Additionally, at
loading step 33, high relative errors mostly restrict to slightly deformed elements: only 11 % of
the elements exhibit strain relative errors greater than 100 %, half of which with strain levels
smaller than 500 Pa1/2 ≈ 0.1 %. Finally, the macroscopic response of the mesh, evaluated by
the resulting force against displacement curve on Fig. 16 (c), is recovered as well.
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Figure 15: Evolution of DDCM mechanical, material states and projected reference mechanical
states for the truss problem with predictor-corrector algorithm. (a) Yellow element. (b) Red
element.

6 Conclusion

This work extends the concept of material database defined in the original DDCM approach to
that of material digraph, suitable for representing history-dependent behaviours. The former
is merely a sampling of the strain-stress response of the material, and therefore sufficient to
represent elastic behaviours. The latter also encodes thermomechanically admissible transitions
between states through the arcs of the digraph. In an incremental scheme, a local database
representing the local material behaviour has to be selected at each loading step. We show that
this selection operation can be efficiently performed with graph tools by computing a rooted
tree from the last local material state. The obtained local database represents every possible
future states that are compatible with the thermomechanical history. It therefore contains
states that might be distant regarding different criteria. A reduction of the local database
is proposed by filtering states according to three of those criteria. Additional conditions
could also be introduced to filter states obtained from dissipation-wise non-monotonic paths.
This restriction, similar to the hypothesis used by the classical return-mapping algorithm in
constitutive modelling, would ensure that the local database only contains states belonging
either to the same elastic domain as the root or to a linked dissipative part of the material
database.

The presented numerical results were obtained for material databases computed with an
elastoplastic constitutive model with linear kinematic hardening. However, neither the material
digraph nor the local databases used by the DDCM solver rely on any internal variable. We thus
believe that the method can handle any hardening type and possibly other inelastic behaviours,
although the latter may require adapting the constitutive space. Cyclic loading can be predicted
as long as the constitutive space discretisation (i.e. the database) covers the range of strain
and dissipation that needs to be studied.
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(a) (b)

(c)

Figure 16: (a) Median relative errors between DDCM and projected reference mechanical states.
(b) Relative errors at time step 33 (black dotted line on plot (a)) between DDCM and projected
reference mechanical states, the yellow and red dotted lines refer to the elements highlighted
on Fig. 12 (a). (c) Evolution of resulting force against displacement for the truss problem with
predictor-corrector algorithm.

For trusses, the standard DDCM solver is strongly affected by the problem combinatorial
complexity and can reach a spurious solution. Model-based computational mechanics usually
circumvents such solutions by limiting the material behaviour to a tangent space and controlling
loading increments. Within the DDCM framework, we take advantage of the material digraph
to compute two local databases: the thermomechanically admissible database, as defined above,
and a smaller iso-dissipation database. The first one is called dissipative database, while the
latter is non-dissipative. An enhanced two-stage solver, composed of a prediction step with the
non-dissipative local database and a correction step with the dissipative database, has been
developed that exhibits promising results.

Fundamentally, there is a priori no theoretical obstacle to the extension of the method to
full 3D elastoplasticity. However, the extension implies an increase of the constitutive space
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dimensionality and a larger number of points is required to accurately represent the material
behaviour. This problem is not specific to inelastic behaviours since it even arises in elasticity,
and has been addressed, e.g. with adaptive approaches [Gorgogianni et al., 2023]. Additionally,
the amount of possible dissipative paths will increase even faster and the material digraph will
necessarily have to sample the possible transitions. An efficient description of the material
digraph then becomes necessary, and graph theory provides a wide range of tools and algorithms
that have not yet been explored in detail. In particular, a hierarchical representation of the
digraph based on cliques, that play an important role in the approach, could be of use.

Nevertheless, once this operation is achieved, graph theory provides optimised algorithms
for efficient graph search and database construction. For instance regarding local databases
selection, an operation that has to be repeated at every integration point, a worst case
scenario gives Dijkstra’s algorithm (with Fibonacci heap) running time complexity in
O(|A| + |V | × log(|V |)), with | • | the cardinal number of the sets of arcs A and vertices V . The
reduction criteria yet restrict the graph search to the root’s neighbourhood, decreasing time
cost. Alternatively, a Breadth-First Search (BFS) algorithm with a complexity in O(|A| + |V |)
could be used to explore the vertices from one depth to the next, starting from the root (as
opposed to Depth-First Search algorithm, which explores the complete branch before moving
to the next). These numerical optimisations will be the subject of future work.
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