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Abstract

Bayesian optimization algorithms form an important class of methods to minimize func-
tions that are costly to evaluate, which is a very common situation. These algorithms
iteratively infer Gaussian processes from past observations of the function and decide
where new observations should be made through the maximization of an acquisition crite-
rion. Often, the objective function is defined on a compact set such as in a hyper-rectangle
of the d-dimensional real space, and the bounds are chosen wide enough so that the opti-
mum is inside the search domain. In this situation, this work provides a way to integrate
in the acquisition criterion the a priori information that these functions, once modeled as
GP trajectories, should be evaluated at their minima, and not at any point as usual acqui-
sition criteria do. We propose an adaptation of the widely used Expected Improvement
acquisition criterion that accounts only for GP trajectories where the first order partial
derivatives are zero and the Hessian matrix is positive definite. The new acquisition cri-
terion keeps an analytical, computationally efficient, expression. This new acquisition
criterion is found to improve Bayesian optimization on a test bed of functions made of
Gaussian process trajectories in low dimension problems. The addition of first and second
order derivative information is particularly useful for multimodal functions.

1 Introduction

Over the last 20 years, Bayesian optimization (BO) methods have established themselves as one of the
references for approximating the point(s) minimizing an expensive-to-evaluate black-box function, from as
few calls to this function as possible. This is reflected in the existence of many reviews and tutorials on
BO in the literature (see for instance Jones (2001); Sobester et al. (2008); Shahriari et al. (2015); Gramacy
(2020); Garnett (2023); Frazier (2018), as well as many applications of BO in industrial applications, such
as aeronautics Forrester et al. (2007); Lam et al. (2018) or agriculture Picheny et al. (2017)). Today, the
machine learning community is a key contributor to BO advances, motivated by the need to optimize hyper-
parameters Bergstra et al. (2011); Snoek et al. (2012); Klein et al. (2017); Wu et al. (2019); Turner et al.
(2021) or exploration strategies in reinforcement learning Wang et al. (2023). More specifically, BO is
concerned with minimization problems that can be written in the following form:

x‹ P arg min
xPX

ypxq, (1)

where y is a pointwise observable function defined over the compact set X Ă R
d, d ě 1. BO assumes that

y can be usefully represented as a Gaussian process (GP), whose mean and covariance functions have been
identified from a limited number of calls to function y. It then sequentially adds new observations of y

at points maximizing an acquisition criterion whose objective, in the search for the global minimum, is
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to make a judicious trade-off between the exploration of X and the exploitation of past observations. In
the theory of decision under uncertainty, acquisition criteria are the expectation of a utility of the possible
function observations according to the stochastic model of the objective function Žilinskas & Calvin (2019).

Several acquisition criteria have been proposed. The earliest, one-dimensional, version of BO Kushner
(1962) involved the probability of improvement and an upper confidence bound. The upper confidence
bound was later theoretically studied in many dimensions in Srinivas et al. (2010). Another early BO
acquisition criterion was described in Močkus (1972) which is, since Frazier & Powell (2007), called the
knowledge gradient. It is a one-step-ahead expected progress in GP mean. The Expected Improvement
beyond the current best observation (EI) is the most classical acquisition criterion. The EI has a simple
interpretation and an analytical expression deprived of parameters to tune, two features which have con-
tributed to its popularity. It was first proposed in Saltenis (1971) and popularized in Schonlau (1997);
Jones et al. (1998); Močkus (2012). More recently, acquisition criteria based on information theory have
been suggested which target entropy reductions in the GP model extrema Hernández-Lobato et al. (2014)
or locations of extrema Villemonteix et al. (2009); Hennig & Schuler (2012).

BO is particularly efficient when the dimension of the search space remains limited (d ď 5 to 10) and
when the function is multimodal with some structure Le Riche & Picheny (2021). Several adaptations of
this formalism have been proposed to extend the efficiency of these approaches to larger input spaces,
by playing directly on the acquisition criterion Siivola et al. (2018), on the identification of latent spaces
of reduced dimensions Bouhlel et al. (2016); Gaudrie et al. (2020), on the introduction of trust regions
Diouane et al. (2022), or by replacing the GP by a Bayesian neural network Kim et al. (2022).

It sometimes happens that the derivatives of the true function at the observed points is available (e.g.,
through automatic differentiation, or adjoint codes in partial differential equations solvers). It is then
possible to add these derivatives as part of the observations of a vectorized Gaussian process composed of
the function prediction and its derivatives Laurent et al. (2019). All the above acquisition criteria could
then be calculated with such a gradient-enriched underlying Gaussian Process. This has been done with
the gradient-knowledge criterion in Wu et al. (2017).

It is nevertheless interesting to note that all of these methods only exploit a limited part of the information
conveyed by the GP (once conditioned by the observations of the true function and potentially by the
observations of its gradient). In particular, they do not take into account the information that the GP
derivatives could bring, whether the function y is convex or not, and even if the derivatives of y are not
observed. Indeed, when y is twice differentiable, it is well known that the first derivatives of y become
zero and that its Hessian matrix is positive definite at its minimum (unless the minimum lies at an edge
of the domain). It is reasonable to believe that the minimization strategy can only benefit from this
supplementary knowledge on derivatives. Figure 1 provides a graphical illustration to support this
intuition. It shows three plots with GP trajectories conditioned by three observations (also known as a
kriging model). The two bottom plots further condition the trajectories on their derivatives so that they
have local minima at the wrong (left) or right location. Because it is easier to force local minima where
the true function really has an optimum, the information on local minima helps better discriminating the
optimal from the non-optimal region. Note also that in Figure 1, while the first and second order derivatives
of the GP trajectories are constrained, no information about the derivatives of the true function is used.
This is a key difference with other work on BO with gradient knowledge such as Wu et al. (2017).

With this in mind, the main contribution of this paper is to propose an adaptation of the famous EI
criterion so that it integrates the information of zero derivative and positive definite Hessian matrix of the
GP trajectories. In other terms, this new criterion only accounts for possible minima of the GP trajectories,
as opposed to the traditional EI that can confer a utility to any part of a trajectory. We emphasize that the
proposed criterion does not imply that derivatives of the true function ypxq be calculated. The derivatives
only concern the GP.

The new criterion is meaningful if the minimum is located inside the search domain, which is a reasonable
assumption in most applications where, precisely, the bounds are chosen as extremes that should not be
reached. A complementary idea for cases where the bounds might be active is nevertheless given as a
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local
optima

local
optima

Figure 1: An illustration of the motivation for conditioning kriging trajectories with derivatives. Top:
kriging trajectories in red, true function as a black solid line. Bottom: kriging trajectories forcing, by
Gaussian conditioning, a zero derivative and a positive second derivative at the vertical dotted bar, i.e. at
the global maximum of the true function in the figure on the left, and at the global minimum in the figure
on the right. The difference between trajectories at the maximum and minimum of the true function is
more apparent when forcing local minima at the right location.
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perspective: a method is proposed to estimate the likelihood that the minimum of y is on the edge of the
domain.

Empirically investigating the effect of a new idea – here adding derivatives acceleration – on an optimization
algorithm is difficult because the performance of an algorithm depends on both the function it is applied
to and the tuning of its hyperparameters. The empirical tests we provide are designed to exclusively show
the effects of the derivatives acceleration while avoiding all such experimental side effects. This is achieved
firstly by testing on Gaussian processes whose hyper-parameters are known, therefore guaranteeing the
compatibility of the model and the test function. Secondly, the maximization of the acquisition criteria is
done with extreme care, which is feasible up to dimension 5 and needs to be relaxed beyond.

The outline of this paper is as follows. Section 2 recalls the theoretical bases of the Gaussian process
regression (GPR) and its use for the minimization of black-box functions. Section 3 introduces the ac-
quisition criterion we propose for taking into account information on the derivatives of y. Section 4 then
illustrates the benefits of this new acquisition criterion on simulated test functions that can be modeled
as realizations of Gaussian processes. Section 5 describes how optima on the bounds can be handled and
concludes the paper.

2 The BO general framework

For d ě 1, let X be a compact subset of R
d. In this work, we are interested in finding the solution(s)

x‹ of the optimization problem defined by Eq. (1) using as few pointwise observations of y as possible.
Anticipating the developments in the following sections exploiting the gradient of y, we assume that y is
an element of C2pX,Rq, the set of real-valued twice continuously differentiable functions defined on X. In
addition, we treat X as explicit, which means that the function y cannot be evaluated outside the search
region (it is defined as a product of intervals in the applications).

To solve this problem, we consider Bayesian Optimization guided by the Expected Improvement (EI)
acquisition criterion. Such methods are sometimes called Efficient Global Optimization algorithms in
reference to Jones et al. (1998), although implementations (of the GP and of the EI maximization) vary.
The choice of the EI acquisition criterion is guided by simplicity: it is the most standard criterion and
most importantly, it does not require GP simulations to be evaluated. Others criteria could benefit from
derivatives acceleration as discussed in the perspectives of this article (Section 5.2).

BO relies on the evaluation of the objective function at a sequence of well-chosen points as summarized
hereunder and in Algorithm 1.

Initialization

To begin, the function y is evaluated at N0 points uniformly chosen in X (typically according to a space-
filling design of experiments (DoE) Fang et al. (2006); Perrin & Cannamela (2017)). We note pxpnq, yn :“
ypxpnqqqN0

n“1 the obtained pairs. Given this available data, a GP-based surrogate model is trained for
y. To obtain convergence results, a common theoretical assumption is that y is a particular realization
of a Gaussian process Y „ GPpµ, Cq, whose prior mean and prior covariance functions are noted µ

and C respectively (see Santner et al. (2003); Rasmussen (2003) for more details about Gaussian process
regression). In practice, it is only required that y can be observed at a finite number of points and the
assumption of y being a sample of Y may not hold. The algorithm then conditions Y to interpolate the
N0 available input-output pairs, resulting in a new YN0

„ GPpµN0
, CN0

q, where:

µN0
pxq “ µpxq ` Cpx, XqCpX , Xq´1pypXq ´ µpXqq, x P X, (2)

CN0
px, x1q “ Cpx, x1q ´ Cpx, XqCpX , Xq´1CpX, x1q, x, x1 P X. (3)
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In the former expressions, X :“ rxp1q ¨ ¨ ¨ xpN0qsT is the pN0 ˆ dq-dimensional matrix that gathers the
available input points, and for any function f and g defined on X and X ˆ X respectively, the following
notation is adopted:

pfpXqqn “ fpxpnqq, pgpX , Xqqnm “ gpxn, xmq, 1 ď n, m ď N0. (4)

Iteration

Given N ě N0 evaluations of y, an acquisition criterion is introduced to choose at which point to carry out
the pN ` 1qth evaluation of y. In the noise-free setting, the classical acquisition criterion is the Expected
Improvement (EI). It is the expectation of a utility at x defined as the progress below the current best
observation:

EIN pxq :“ E rmaxp0, ymin ´ YN pxqqs “
ż

R

maxp0, ymin ´ yqfYN pxqpyqdy

“ σN pxq pUN pxqΦ pUN pxqq ` φ pUN pxqqq .

(5)

Here, UN pxq :“ pymin ´ µN pxqq{σN pxq, σN pxq :“
a

CN px, xq, ymin is the current minimum of the N

observations of y, noted ypxp1qq, . . . , ypxpNqq, Φ and φ denote the probability density function (PDF)
and cumulative density function (CDF) of the standard Gaussian variables, and fYN pxqpyq “ φppy ´
µN pxqq{σN pxqq{σN pxq is the PDF of the Gaussian random variable YN pxq „ N pµN pxq, σN pxq2q, where

YN :“ Y | Y pxp1qq “ ypxp1qq, . . . , Y pxpNqq “ ypxpNqq. (6)

By construction, this acquisition criterion seeks a compromise between exploitation (first term) and explo-
ration (second term) for the global search of the minimum, and the next evaluation point is chosen such
that

xpN`1q P arg max
xPX

EIN pxq. (7)

Stopping criterion

For most existing implementations of BO, the stopping criterion is a maximum number of evaluations of
y. Indeed, unlike gradient-based approaches for minimizing convex functions, once a local minimum of y

has been found, there is no theoretical guarantee that it corresponds to the global minimum of y. While
it may be tempting, stopping the search when the expected improvement drops below a lower bound is
unstable in practice as the EI changes a lot with the GP length scales.

Degrees of freedom

The performance of the BO method depends on several degrees of freedom that vary between implemen-
tations. The choice for µ and C, the way the parameters on which µ and C depend are optimized, the
ratio N0{budget, the way the initial DoE is constructed, the way the acquisition criterion is maximized
are all important (see Le Riche & Picheny (2021) for an investigation of the influence of these choices).

However, as the paper studies an adaptation of the acquisition criterion, it is clearer to fix these parameters
to standard values of the literature. To this end, the function µ is taken as a constant, and the function C

is chosen in the class of tensorized Matérn kernels with smoothing parameter ν “ 5{2 (see Santner et al.
(2003) for alternative classes of functions):

µpxq :“ β, Cpx, x1q :“ σ2

dź

i“1

κ

ˆ |xi ´ x1
i|

ℓi

˙
, x, x1 P X, (8)
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Algorithm 1: Standard BO algorithm.

Choose N0, budget, Y „ GPpµ, Cq ;
Ñ Initialization

Draw at random N0 points xp1q, . . . , xpN0q in X ;
Compute ypxpnqq, 1 ď n ď N0, estimate the parameters on which µ and C depend ;
Define YN0

:“ Y |Y pxp1qq “ ypxp1qq, . . . , Y pxpN0qq “ ypxpN0qq ;
Set k “ 0 ;
Ñ Iteration

while k ă budget do

Search for xpN0`k`1q :“ arg maxxPX EIN0`kpxq ;
Evaluate y at xpN0`k`1q (and potentially adjust the expressions of µ and C) ;
Define YN0`k`1 :“ Y |Y pxp1qq “ ypxp1qq, . . . , Y pxpN0`k`1qq “ ypxpN0`k`1qq ;
Update k Ð k ` 1

end

Return min1ďiďN0`budget ypxpiqq.

κpuq :“
ˆ

1 `
?

5u ` 5
3

u2

˙
exp

´
´

?
5u

¯
, u ě 0. (9)

The Matérn 5/2 kernel is selected here because it is well-performing and common in the literature
(Le Riche & Picheny (2021)). Furthermore, we will soon introduce an acquisition criterion that needs
the fourth order derivatives of the kernel (to have information about the curvatures of the trajectories).
The Matérn 5/2 kernel is precisely four times differentiable, yielding trajectories that are two times con-
tinuously differentiable. The hyperparameter vector θ :“ pβ, σ, ℓ1, . . . , ℓdq will either be considered known
(via the definition of test functions to be minimized in the form of a particular realization of a Gaussian pro-
cess of chosen parameters), or estimated by its maximum likelihood estimator (see Williams & Rasmussen
(2006) for further details). As we focus on costly functions, we will set the maximal budget between 10
and 20 times the dimension d of the problem, while N0 will be chosen small (most of the time we will
have N0 “ 3). The initial DoE will always be a random space-filling Latin Hypercube Sample (LHS)
Damblin et al. (2013); Perrin & Cannamela (2017). For objective numerical comparisons, the maximiza-
tion of the acquisition criteria, whether it is the EI in Equation (7) or one of the new criteria of Section 3,
is always carried out in the same way. At each iteration, the acquisition criterion is first evaluated at a very
large number of points randomly chosen in X (typically of the order of 10d`1). The Nelder-Mead algorithm
Nelder & Mead (1965) then maximizes the acquisition criterion starting from the 10 most promising points
among the random points.

3 Extending the Expected Improvement with derivatives

We now show how to extend the Expected Improvement acquisition criterion so that it accounts for
gradient and Hessian information. The principles underlying the calculations are that GP derivatives are
GPs, and that local optima away from the bounds coincide with canceling derivatives and positive definite
Hessians. These principles have already been used in the context of BO in Hernández-Lobato et al. (2014)
for approximating the entropy of local optima. An independent and differing version, adapted to EI, is
described hereafter.

3.1 Reminders on Gaussian process derivation

The acquisition criteria reviewed in the Introduction, in particular the EI, are only based on the distribution
of YN pxq and do not include information related to higher derivatives. Yet, when the functions x ÞÑ
µpxq and px, x1q ÞÑ Cpx, x1q are sufficiently regular, the statistical properties of the derivatives of Y can
be deduced by simple derivations of µ and C. Indeed, as the Gaussian distribution is stable by linear
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operations, for any linear operator L such that Ly is a function from R
d to R

dL , LY is also a Gaussian
process, with:

E rLY pxqs “ Lµpxq, CovpLY pxq, LY px1qq “ LCpx, x1qLT . (10)

Here, the notations LCpx, x1q and Cpx, x1qLT indicate that operator L is applied as a function of x

and x1 respectively, so that CovpLY pxq, LY px1qq is a pdL ˆ dLq-dimensional matrix. In particular, for
dL “ 1 ` dpd ` 3q{2, if we choose

L : Y ÞÑ LY :“
ˆ

Y,
BY

Bx1

, . . . ,
BY

Bxd

,
B2Y

Bx2
1

, . . . ,
B2Y

Bx1Bx2

, . . . ,
B2Y

Bx2
d

˙
,

we obtain the joint distribution of Y and its first and second order derivatives. For each twice-differentiable
function z, we introduce the following notations,

Bz :“

»
—–

Bz
Bx1

...
Bz

Bxd

fi
ffifl , B2z :“

»
——–

B2z
Bx2

1

¨ ¨ ¨ B2z
Bx1Bxd

...
. . .

...
B2z

Bx1Bxd
¨ ¨ ¨ B2z

Bx2

d

fi
ffiffifl , D2z :“ diagpB2zq “

»
——–

B2z
Bx2

1

...
B2z
Bx2

d

fi
ffiffifl , (11)

and we denote by M`pdq the set of pd ˆ dq-dimensional positive definite matrices.

3.2 An acquisition criterion accounting for the derivatives

For any x in X, it is well known that if Bzpxq “ 0 and B2zpxq P M`pdq, x is a local minimum of z. As
the input space X is bounded, the reciprocal is however not true, since a local minimum can be found at
the boundary of X with a non-zero gradient and/or B2zpxq R M`pdq. The case when the optima are on
the bounds will be discussed in Section 5.1. For now we focus on the interior of X, to integrate as prior
knowledge that the gradient will be zero and the matrix of curvatures positive definite at the local minima
of y, the EI criterion defined by Eq. (5) can be replaced by:

deriv-EIN pxq :“ E
“
1RN pxqBYN pxqPBpεq,B2YN pxqPM`pdq maxp0, ymin ´ YN pxqq

‰
, (12)

where for any ε ą 0, Bpεq :“
 

9y P R
d, } 9y} ď ε

(
is the d-dimensional hypersphere of radius ε, RN pxq is a

matrix such that

RN pxqCovpBYN pxqqRN pxqT “ Id, (13)

and for any event a, 1a is equal to 1 if a is true and to 0 otherwise. BYN pxq has a covariance matrix
(made of the second derivatives of CN px, x1q) with correlations and its density has ellipsoidal level sets.
The normalized vector RN pxqBYN pxq is uncorrelated, its covariance is the identity Id, and its density
has spherical level sets that can be compared to the sphere Bpǫq. The dependency of this scaling on x

disappears for ε small (see Appendix A). Equivalently, we can write the criterion deriv-EIN as

deriv-EIN pxq :“ E
“
1BYN pxqPEpx,εq,B2YN pxqPM`pdq maxp0, ymin ´ YN pxqq

‰
, (14)

with Epx, εq :“
!

9y P R
d, 9y

T
RN pxqT RN pxq 9y ď ε2

)
a d-dimensional ellipsoid. In connection with theoret-

ical decision under uncertainty Žilinskas & Calvin (2019), deriv-EIN pxq is the expectation of a utility of
the function model (the GP trajectories) at x. Here, the utility is defined as the progress of the stochastic
model below the best observation knowing that the function model has a minimum at x i.e., it has null
first order derivatives and positive curvatures. The key idea of deriv-EI is to account only for minima of
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the possible functions. On the contrary, EI accounts for any value of the possible functions which is below
the best observation, which is less consistent with the goal of minimization. Because it characterizes the
behavior of the minima of the GP realizations, deriv-EI can be seen as a criterion between EI and informa-
tion theoretic criteria based on the expected reduction in entropy of the optima Hernández-Lobato et al.
(2014).

By considering deriv-EIN rather than EIN as a new acquisition criterion in Algorithm 1, we expect to
improve its exploitation capabilities, without degrading its exploration capabilities too much. Like EIN ,
deriv-EIN needs only evaluations of the true function, ypxp1qq, . . . , ypxpNqq through YN , BYN and B2YN . It
does not need derivatives of the true function, y. Only the GP is differentiated. However, this acquisition
criterion can no longer be calculated simply, and in the general case it will require the use of sampling
techniques for its evaluation, which may complicate its use. Nevertheless, if we choose ε small, if we neglect
the off-diagonal terms of the Hessian (as it was already proposed in Hernández-Lobato et al. (2014)) while
assuming a well-chosen conditional independence of its diagonal terms, we obtain the following relaxed
acquisition criterion (see Appendix A for a detailed derivation):

deriv-EIN pxq « LikelyMinN pxq ˆ cond-EIN pxq, (15)

LikelyMinN pxq :“ v ˆ εd ˆ exp

˜
´ 9m

T 9S
´1

9m

2

¸
ˆ

dź

i“1

Φ

˜
:τia

1 ´ r2
i

¸
, (16)

cond-EIN pxq :“ s ppzmin ´ aqΦpzminq ` φpzminqq , (17)

where v is a constant that does not depend on x and εd, and where the following notations have been
introduced to simplify the expressions:

BYN pxq „ N

´
9m, 9S

¯
, D2YN :“

`
pB2YN q1,1, . . . , pB2YN qd,d

˘
, (18)

pYN pxq, D2YN pxqqq|BYN pxq “ 0 „ N

¨
˚̊
˚̊
˝

¨
˚̊
˚̋

m

:m1

...
:md

˛
‹‹‹‚,

»
————–

s2 ρ1,1 ¨ ¨ ¨ ρ1,d

ρ1,1 :s1

. . .
...

...
. . .

. . . ρd´1,d

ρd,1 ¨ ¨ ¨ ρd,d´1 :sd

fi
ffiffiffiffifl

˛
‹‹‹‹‚

, (19)

zmin :“ ymin ´ m

s
, ri :“ ρ1i

s:si

, :τi “ :mi

:si

, a “
dÿ

i“1

ria
1 ´ r2

i

φ

ˆ
:τi?
1´r2

i

˙

Φ

ˆ
:τi?
1´r2

i

˙ . (20)

The precise choice of ε has thus no impact.

3.3 Comments on the proposed acquisition criterion

Analysis of the terms in deriv-EI

Comparing the criteria EIN pxq and deriv-EIN pxq, we first notice the presence of the function x ÞÑ
LikelyMinN pxq, whose role is to concentrate the search of the new point to be evaluated around the points

x that are likely to lead to a zero gradient of y (small values of 9m
T 9S

´1
9m), while favouring the areas of

positive second derivatives (high values of Φp:τi{
a

1 ´ r2
i q for all i). The second function x ÞÑ cond-EIN pxq

estimates the expected improvement assuming that the function has a minimum at x, and looks partic-
ularly like the expression given by Eq. (5). The more the second derivatives of YN will be positive in
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probability, which translates into large values of :τi, the more this similarity will be important because, in
this case, the constant a tends towards 0. In addition, as the statistical properties of YN pxq, BYN pxq and
D2YN pxq are known explicitly, it is important to notice that the evaluation cost of deriv-EIN pxq is of the
same order of magnitude as that of the classical EIN pxq. Importantly, there is no need to use sampling
methods to estimate it.

In addition, if µ is chosen to be constant and C is a stationary covariance kernel (which remains the most
common configuration in BO), then BY pxq is statistically independent of Y pxq and D2Y pxq for any x

in X. In particular, if we focus on the first iteration of the BO procedure (N “ 0), and put aside the
constraint on the Hessian, it can be noted that for any ε ą 0 and any x P X,

E
“
1R0pxqBY pxqPBpεq maxp0, ymin ´ Y pxqq

‰
“ pε ˆ EI0pxq, (21)

where pε :“ PpR0BY pxq P Bpεqq is a constant independent of x as the statistical properties of BY pxq do
not depend on x (stationarity). In that case, EI0 is very close to deriv-EI0 (up to the influence of the
second derivatives), and maximizing either of these criteria should give close results. Then, the more the
process Y is conditioned by observations of y, the more Y , BY and B2Y are correlated, and the more
chances there are for deriv-EIN pxq and EIN pxq to propose different points. After many observations, it
is anticipated that the interesting areas from the EI point of view will have low gradients, so that the
two criteria should again propose close new evaluation points. The a priori interest of the deriv-EIN pxq
criterion thus lies in intermediate values of N , in the exploration of the various local minima of y, and the
search for the smallest zone of X likely to contain the global minimum of y.

At last, when the dimension d increases, one of the classical difficulties of BO based on EIN is to favor
exploration over exploitation, by placing a very large number of points on the edges of the domain, which
effectively represent the majority of the volume of X when d is large Siivola et al. (2018). This effect
should be limited by substituting deriv-EIN for EIN , i.e., by requiring that each partial derivative of YN

be close to 0 and that each main curvature be positive through the factor LikelyMinpxq, which becomes
more restrictive as d increases.

A more exploratory deriv-EI

In return, by trying to quickly visit potential high-performance local minima, it is possible that the
deriv-EIN criterion explores fewer regions of X than EIN , which could be penalizing for the minimiza-
tion of functions with multiple local minima. If this were the case (this kind of phenomenon was not
observed on the test cases studied in Section 4), several techniques could be proposed to rebalance the
exploration/exploitation ratio. For instance, the control of the exploration-exploitation balance by chang-
ing target values has been studied in Jones (2001) for the probability of improvement and a likelihood
criterion. Such a shift in target around ymin was included in the EI criterion in Berk et al. (2019); Lizotte
(2008). Another way of reinforcing exploration with respect to exploitation consists in maximizing the
expected improvement at a certain power p ě 1. Indeed, by taking p greater than 1, we further encour-
age low-probability high improvements compared to more probable small improvements. This idea was
pursued in Schonlau et al. (1998) where expressions for the generalized EIN criterion with p ě 2 can be
found. The new EI with derivatives can also benefit from elevating the improvement at a given power. It
becomes,

deriv-EIppq
N :“ E

“
1BY pxqPEpx,εq,B2YN pxqPM`pdq maxp0, ymin ´ YN pxqqp

‰
.

For p “ 2 (see Appendix A for more details) and using the same notations as in Section 3.2, such a criterion
can again be approximated under an analytical form close to the one of Eq. (15):

deriv-EIp2q
N pxq « LikelyMinpxq ˆ cond-EIp2qpxq, (22)

cond-EIp2qpxq :“ s2
`
p1 ` z2

min ´ 2azminqΦpzminq ` pzmin ´ 2aqφpzminq
˘

. (23)
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Adaptation to noisy outputs

The criteria EIN and deriv-EIN are introduced in a context where the observations of Y are assumed
noise-free. If it turns out that these outputs are in fact noisy, and if this noise can be modeled as a
centered Gaussian vector with covariance matrix Σ (which can be assumed to be diagonal or not), only a
few adjustments are needed to calculate these two criteria (and these adjustments are the same in both
cases). First, in order to integrate the noisy nature of the observations in the conditioning formulas,
the distribution of YN for any value of N is obtained by replacing CpX, Xq´1 by pCpX , Xq ` Σq´1 in
equations (2) and (3). Then, as the observations are noisy, the notion of a current minimum value makes
no longer sense, and we need to adapt the value of ymin in the proposed expressions accordingly. This
value can, for example, be chosen as the value minimizing over X the predictive mean x ÞÑ E rYN pxqs, as
it is done in the knowledge gradient approaches Frazier & Powell (2007). To limit the computational cost
associated with the choice of ymin, it is also common practice to minimize the predictive mean only at the
observed input points. Once these two adjustments have been made, the criteria EIN and deriv-EIN can
be applied to noisy observations.

4 Numerical experiments

In this Section, we first illustrate the way the proposed criterion works, and the differences it implies with
the classical EI criterion. In particular, it will be seen that iterates stemming from the maximization
of deriv-EIN are more concentrated inside the search domain than EIN iterates. Then, by considering
functions with minima inside the search domain, we show that deriv-EIN allows faster average convergence
than EIN does. This is particularly visible with highly multimodal functions. In the experiments, deriv-EIN

is calculated through the approximation of Eq. (15).

4.1 Analysis of the deriv-EIN criterion in dimension 1 and 2

Test functions and experimental protocol

We analyze the behavior of the deriv-EIN criterion through the study of an oscillating function in dimension
d “ 1, noted y1D, and of a modified Branin function in dimension d “ 2, noted y2D (see Figure 2 for a
graphical representation of these functions, and Appendix B for their definitions). In order to focus
exclusively on the effects of the acquisition criterion, we fix the hyperparameters (length scales, variance,
trend parameters) of the Gaussian predictor to their maximum likelihood estimate for a large number
of points. It has been observed that a good optimization of the acquisition criterion is a condition for
BO to be efficient Le Riche & Picheny (2021). For this reason, the maximization of the acquisition
criteria is performed by an exhaustive search on a fine grid, which is possible in such low dimensions. In
higher dimension, a careful choice of the initial points of the acquisition function maximization is required
Zhao et al. (2024).

Visualizing the terms making the new acquisition criterion

We illustrate the roles of the LikelyMinN and cond-EIN functions (which are defined in Section 3.2), by
evaluating y1D at N0 “ 5 points and y2D at N0 “ 12 points randomly chosen in X. The evolutions of
LikelyMinN and cond-EIN associated to these evaluations are given in Figures 2-a and b. As expected,
the function LikelyMinN is large at the points the most likely to correspond to local minima, while the
function cond-EIN highlights the areas the most likely to lead to GP trajectories that have a null gradient
while having values lower than the current minimum. For these particular examples, the product of the two
functions, which yields the deriv-EIN criterion, favors new points inside the input domain, when the EIN

criterion encourages to evaluate y1D (resp. y2D) on an edge of X. We also notice that by concentrating the
search at areas of low gradient for y1D or y2D, we limit the significant values of deriv-EIN to sub-regions
of X that are smaller than what EIN would give.

Performance of deriv-EIN over one step

The performance of the deriv-EIN criterion is now analyzed in terms of minimization of y1D and y2D.
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(a) LikelyMinN ( ) and cond-EIN ( ) for y1D
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(b) LikelyMinN ( ) and cond-EIN ( ) for y2D
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(c) EIN ( ) and deriv-EIN ( ) for y1D
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(d) EIN ( ) and deriv-EIN ( ) for y2D

Figure 2: The function y1D is shown in black thick solid lines in plots (a) and (c) where the grey areas
correspond to 95% confidence intervals of the Gaussian predictor. Identically, the black solid lines in plots
(b) and (d) are the contours of function y2D. In each plot, the global minimum is indicated by a cyan
triangle, while the green dots show the points where the function has been evaluated. Plots (a) and (b)
show, for the two considered functions, the evolution of x ÞÑ LikelyMinN pxq in orange solid line, and of
x ÞÑ cond-EIN pxq in magenta dotted line. Plots (c) and (d) compare the evolution of x ÞÑ EIN pxq (in blue
solid line) to that of x ÞÑ deriv-EIN pxq (in red dotted line). For ease of reading, the functions LikelyMinN ,
cond-EIN , EIN , and deriv-EIN are normalized in such a way that their maximum value is fixed to 1.
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We start with a single step. For each j P t1, 2u, and each k ě 2d ´ 1, we generate 500 space-filling LHS

made of k points in X Perrin & Cannamela (2017), which are written
!

X
pjq
k,i

)500

i“1
. For each 1 ď i ď 500, we

then construct a Gaussian predictor of yjD based on its evaluations at each point in X
pjq
k,i , and we denote

by x
pjq,deriv-EI

k,i and x
pjq,EI

k,i the points of X maximizing the criteria deriv-EIk and EIk, respectively. Let

pypjq,EI

k,i and pypjq,deriv-EI

k,i be the smallest value of yjD that we obtain:

pypjq,EI

k,i :“ min
xPX

pjq
k,i

Y
!

x
pjq,EI

k,i

) yjDpxq, pypjq,deriv-EI

k,i :“ min
xPX

piq
k

Y
!

x
pjq,deriv-EI

k,i

) yjDpxq. (24)

By construction, the lower these values are, the better the acquisition criteria should be. In this prospect,
for j P t1, 2u, Figure 3 compares the evolution of the 25%, 50% and 75% empirical quantiles of pypjq,EI

k,i

and pypjq,deriv-EI

k,i as a function of k. As announced in Section 3.3, the interest of the proposed criterion
lies in the intermediate (about r5, 18s ˆ d) values of k. For too low values, as the Gaussian predictor and
its first-order derivatives are not very correlated, the criteria deriv-EIN and EIN are very close, and lead
to similar results in terms of minimization of the objective function. For k large, the Gaussian predictor
approaches the objective function with little uncertainty, and the criteria deriv-EIN and EIN are equally
capable of identifying the global minimum. For intermediate values of k, this phenomenon can be clearly
seen in the evolution of the values of y2D (right plot). Because a one-dimensional space is rapidly explored,
the advantage of deriv-EIN over EIN is less clear in the evolution of the values of y1D (left plot). There,
the two criteria give almost the same results, with deriv-EIN allowing only slight improvements.

Performance of deriv-EIN over many steps

In the above numerical experiments, one step was studied and the new evaluation points were independent
of each other. Getting closer to a BO algorithm, we now quantify the effect of the acquisition criteria
when defining a sequence of points where yjD is evaluated. To this end, for j P t1, 2u, we generate 500

new space-filling LHS in X composed of 3 points each, which are written
!
rX pjq

3,i

)500

i“1
. For each j P t1, 2u

and each repetition of the experiment 1 ď i ď 500, the function yjD is evaluated at each point of rX pjq
3,i ,

and Algorithm 1 presented in Section 2 is run twice, taking as acquisition criterion deriv-EI first, then the
classical criterion EI. At each iteration k ě 1 of the algorithm, we note y

pjq,deriv-EI

k,i and y
pjq,EI

k,i the obtained
current minima of yjD. The empirical estimates of the median and the mean of these current minima is
shown in Figure 4. The interest of the deriv-EI acquisition criterion is again underlined by these results.
Indeed, for all iterations k, the median and the mean of the current minima associated with the deriv-EI
criterion are lower than those of the current minima associated with the EI criterion. Again, the advantage
of deriv-EI over EI takes place in the middle of the iterations k. Note that the median is well below the
mean for the minimization of y1D. It comes from the fact that, for both EI and deriv-EI, some of the runs
have taken a significant number of iterations to identify the area of the global minimum.

4.2 Performance analysis in dimensions 2, 3 and 5

Test functions construction

The EI and deriv-EI acquisition criteria are now compared on a larger set of test functions. To define this
set of functions, we elaborate on the idea of using GPs Hennig & Schuler (2012) which are by construction

compatible with the working assumptions. We start by noting Z
pdq
θ the Gaussian process defined on

X “ r0, 1sd such that for any x, x1 P X and any θ ą 0

E

”
Z

pdq
θ pxq

ı
“ 0, CovpZpdq

θ pxq, Z
pdq
θ px1qq “

dź

i“1

κ

˜c
2
d

|xi ´ x1
i|

θ

¸
, (25)
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Figure 3: Influence of the acquisition criterion deriv-EIN and EIN when minimizing y1D and y2D. For
k ě 2d ´ 1, the lower and upper parts of the black rectangles correspond to the 25% and 75% quantiles
of pypjq,EI

k,i , while the black circles show the median value. Similarly, the lower and upper parts of the red

rectangles correspond to the 25% and 75% quantiles of pypjq,deriv-EI

k,i , while the red triangles show the median
value.
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Figure 4: Influence of the acquisition criterion deriv-EIN and EIN when minimizing y1D and y2D. For

k ě 1, the filled black circles (resp. the filled red triangles) represent the empirical median of
!

y
pjq,EI

k,i

)500

i“1

(resp. of
!

y
pjq,deriv-EI

k,i

)500

i“1
), and the empty black circles (resp. empty red triangles) indicate the empirical

means.
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where κ is the Matérn-5/2 covariance function of Equation (9), which is such that Z
pdq
θ is twice differentiable

in the mean-square sense. Notice the normalization of the length scales in
a

d{2, allowing to define
Gaussian processes in any dimension d with close dependence structures. This normalization can also be
understood by seeing that distances (between the two farthest points, or the expected distance of two
points randomly drawn in X) grow in

?
d, therefore the length scales have to grow in

?
d. We consider as

test function class the set F
pdq
θ of realizations of Z

pdq
θ that admits a global minimum strictly inside X (i.e.,

at a point of zero partial derivatives). The following numerical tests then focus on two particular values of
θ: θ “ 0.2 will characterize strongly oscillating functions admitting a large number of local minima, while
θ “ 0.5 will refer to more regular functions presenting a smaller number of local minima. For θ P t0.2, 0.5u
and d P t2, 3, 5u, we generate 100 functions from F

pdq
θ in a random and independent way. These functions

are noted
!

y
pdq
i,θ

)100

i“1
(see Appendix C for a detailed description of their construction). We finally subtract

from each function its minimum value so that

min
xPX

y
pdq
i,θ pxq “ 0, (26)

and we proceed to the same shifting on the Y process. Figure 5 shows four examples of such functions
belonging to F

p2q
0.2 and F

p2q
0.5 in the case d “ 2.

Experimental protocol

The global minimum of these functions is then searched twice with Algorithm 1 by, first, taking deriv-
EI and, then, EI as the acquisition criterion. The total number of calls to the objective function of
each optimization run is equal to budget “ 100. The two types of searches are initialized with the
evaluation of y

pdq
i,θ at the same space-filling LHS of dimension N0 “ 3 (a different design is generated for

each function minimization). The size of the design is small and does not depend on d. As observed in
Le Riche & Picheny (2021); Hutter et al. (2013), small random designs at the beginning of BO searches
are more efficient. Moreover, the effect of the acquisition criterion is more visible for small initial random
designs. The growth of the length scales in

?
d (Equation 25) guarantees that the correlation between the

N0 points is the same, independently of d. In order to investigate the influence of the acquisition criterion
only on the optimization but not on the learning of the GP, the properties of the Gaussian process Y

used to guide the search are chosen equal to those of Z
pdq
θ . The maximization of the acquisition criteria is

performed in two steps: each acquisition criterion is first evaluated in 105 points randomly chosen in X,
and 10 Nelder-Mead algorithms starting from the 10 most promising points among the random points are
then launched in parallel to identify the new point at which to evaluate the objective function.

Two quantities of interest are then extracted from these Bayesian optimizations. For each 1 ď k ď budget,
each d P t2, 3, 5u, and each θ P t0.2, 0.5u, we first note pypdq,deriv-EI

θ pkq (resp. pypdq,EI

θ pkq) the empirical mean
of the current minimum (mean best-so-far performance) obtained at the kth iteration on all the tested
functions when taking deriv-EI (resp. EI) as the acquisition criterion. Second, we define pkpjq,deriv-EIpθ, sq
(resp. pkpjq,EIpθ, sq), the mean time-to-target that is the average number of iterations necessary for the
best-so-far observation to be lower than a threshold s ą 0 when using deriv-EI (resp. EI). Note that for
both quantities of interest, the average is done on the different test-functions, which have the same kind
of variations and the same minimum equal to 0, which makes them comparable although potentially very
different.

Optimization results

The evolution of these quantities of interest are shown in Figure 6 for θ “ 0.2 and Figure 7 for θ “ 0.5. In
all of these figures, a substantial gain is brought by the deriv-EI criterion with respect to the EI criterion.
The gain is visible both in terms of the mean best-so-far objective function (plots (a) to (c)) and the mean
time-to-target (plots (d) to (f)). We notice, as we had hoped in Section 3.3, that the observed improvements
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Figure 5: Representation of 4 particular elements of F
p2q
0.2 and F

p2q
0.5 , the set of test functions to be minimized.

In each function instance, the global minimum location is indicated with a cyan triangle.

brought by the deriv-EI criterion are greater as the dimension d of the input space increases. As expected,
we also observe that choosing deriv-EI rather than EI is of more interest for more multimodal functions,
i.e., when the length scale θ is small. Indeed, it is in these configurations with a large number of local
minima that adding information about null first order derivatives and positive definite Hessian matrices is
useful.

Remark For all the test functions studied in this section, the condition numbers of the covariance
matrices of the observation points were all between 103 and 2 ˆ 106.

5 Extensions and conclusions

5.1 Management of minima on bounds

The article has assumed until now that the minimum is inside the search space X. If this is not the case,
orienting the search towards areas with a zero gradient can actually be counterproductive, as the global
minimum will typically be associated with a nonzero gradient. Denoting by BX the boundary of X, a
first possibility to circumvent this problem is to penalize the objective function so that optima on the
boundary are pushed inside the domain but arbitrarily close to the boundary, and therefore are associated
to a null gradient and positive definite Hessian. This is the idea of the barrier functions of the interior
point methods Wright & Nocedal (2006). With barrier functions, the objective x ÞÑ ypxq is replaced
by x ÞÑ ypxq ` λcpxq, where λ is a positive constant and c is a continuously twice-differentiable positive
function such that cpxq would be close to zero when x is far from the boundaries of X, and would take
potentially infinite values when x P BX. For instance, if X “ r0, 1s, the function c can be chosen as:

cpxq “ 1
minpx, 1 ´ xq or cpxq “ ´ logpminpx, 1 ´ xqq , 0 ď x ď 1. (27)

The larger λ is, the further from BX the global minimum of y ` λc is, whether the global minimum of y

is on BX or not. And by making λ progressively tend towards 0, we make this global minimum, which
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(f) d “ 5, θ “ 0.2

Figure 6: Plots (a), (b), and (c) show the mean best performance, k ÞÑ pypdq,EI

θ pkq (in black solid line

) and k ÞÑ pypdq,deriv-EI

θ pkq (in red dotted line ) for strongly multimodal functions (θ “ 0.2) and
d P t2, 3, 5u. Plots (d), (e), and (f) give the mean time-to-target s ÞÑ pkpjq,EIpθ, sq (in black solid line) and
s ÞÑ pkpjq,deriv-EIpθ, sq (in red dotted line).
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(f) d “ 5, θ “ 0.5

Figure 7: Plots (a), (b), and (c) compare the mean best-so-far performances for the two acquisition
criteria, k ÞÑ pypdq,EI

θ pkq (in black solid line ) and k ÞÑ pypdq,deriv-EI

θ pkq (in red dotted line ), for
moderatly multimodal functions (θ “ 0.5) and and d P t2, 3, 5u. Plots (d), (e), and (f) compare the mean
time-to-target, s ÞÑ pkpjq,EIpθ, sq (in black solid line) and s ÞÑ pkpjq,deriv-EIpθ, sq (in red dotted line).
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will be well associated to a zero gradient of y ` λc, tend to the global minimum of y. Such an approach
is well-studied for convex optimization problems, with bounds linking the choice of λ to the degradation
in the optimal value of the objective function Wright & Nocedal (2006). In general however, the effect of
the λ decay law is difficult to understand. And the penalty adds a steep function increase at the edge of
X that GPR-based metamodels will have difficulty to learn.

Alternatively, we propose to evaluate a priori the likelihood, noted ℓN , that the minimum of y lies on the
boundary of X.

The ℓN likelihood can be evaluated through a three-step procedure. Starting from the GP-based surrogate
model of y, noted YN , the first step would be to look for positions that may correspond to local minima of
y, by running in parallel M " 1 regularized Newton descent algorithms on the trajectories of YN . These
minimizations would be in that case initialized at randomly chosen points xm

0 P X, 1 ď m ď M , and we
would denote by xm

˚ the obtained minimum when starting from xm
0 . Then, we generate Q " 1 random

samples of the Gaussian random vector pYN px1
˚q, . . . , YN pxM

˚ qq, which we denote by

pY ωq

N px1
˚q, . . . , Y

ωq

N pxM
˚ qq, 1 ď q ď Q. (28)

The indicator ℓN is finally estimated by counting how often the minima of the draws are on the bounds,

ℓN :“ 1
Q

Qÿ

q“1

1
x

m‹
q

˚ PBX
, x

m‹
q

˚ P arg min
1ďmďM

Y
ωq

N pxm
˚ q. (29)

Depending on the value of ℓN , the method described in the rest of the article can be complemented in
one of the two following fashions. If ℓN is too large, the traditional EIN acquisition criterion should be
used instead of deriv-EIN . Alternatively, ℓN can be calculated specifically for each bound and if it is likely
that some specific bounds are hit, then the corresponding variables can be set to these bounds, the BO
iteration being carried out with the deriv-EIN criterion in the lower dimensional space.

Nonetheless, the objective of this work was to come up with an acquisition criterion applicable when the
minimum of y is not on the boundary of X. We leave the continuation of the above analysis, based on the
likelihood to have the optimum at a bound, as a perspective to this work.

5.2 Summary and further perspectives

In the context of Bayesian optimization, this work proposes a novel acquisition criterion allowing to
integrate as additional a priori the fact that interior minima are associated to zero first order derivatives
and positive definite Hessians. With this addition, a classical acquisition criterion such as the expected
improvement takes on a feature of information theoretic criteria by characterizing the distribution of
potential optima when the plain expected improvement accounts for all improving values of the function
model. The new expected improvement with derivatives, called deriv-EI, does not need the derivatives of
the true function. A computationally efficient approximation to deriv-EI is proposed in the article.

It has been observed through several test cases that the new criterion allows significant gains in terms
of function minimization at intermediate budgets of function evaluations. This benefit is larger when
the function to minimize presents several local minima or the dimension is high, since in these cases the
classical expected improvement is too exploratory in particular in areas near the bounds Siivola et al.
(2018).

All the consequences of the proposed acquisition criterion could not be investigated in this paper. In order
to simplify the interpretation of the results, all the comparisons between the classical EI and the deriv-EI
criteria have been carried out in ideal configurations in the sense that the test functions are realizations
of the Gaussian process guiding the minimization. The hyperparameters of the GP characterizing its
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statistical properties are always known by construction of the test functions. Therefore, it will be interesting
to study the sensitivity of Bayesian optimization with deriv-EI to the iterative estimation of the GP
hyperparameters, as it happens in practice. In the same manner, only problems in moderate dimensions
are implemented (d ď 5), as it seems important to restrict ourselves to cases for which the maximization of
the EI and deriv-EI criteria can be sufficiently well solved. During the analysis of configurations in higher
dimensions (d ě 10), the maximization of these criteria becomes a problem in itself and the performances
of the EI and deriv-EI criteria turned out to be too dependent on our ability to correctly maximize them.
Working at the definition of efficient methods to maximize the deriv-EI criterion would therefore be an
appropriate continuation to this work.

Finally, this work has focused exclusively on the EI acquisition criterion because it is a standard in BO, but
other acquisition criteria should also benefit from the predictor’s derivatives. For example, the EI criterion
of Equation (12) can be adapted to the related probability of improvement Kushner (1964): instead of
maximizing x ÞÑ PpYN pxq ă yminq “ E

“
1YN pxqăymin

‰
, we could maximize

x ÞÑ E
“
1YN pxqăymin

ˆ 1RN pxqBYN pxqPBpεq,B2YN pxqPM`pdq

‰
. (30)

In the same manner, the well-known upper confidence bound acquisition criterion Srinivas et al. (2009)
could be adapted by adding a penalty term on the derivatives, which would make it possible to explicitly
play on the exploitation vs. exploration tradeoff in the same way as the standard deviation. The new
point to be evaluated could for instance be sought as a solution to the following problem:

xpN`1q P arg min
xPX

µN pxq ´ λ1σN pxq ` λ2 }E rBYN pxqs} , (31)

with λ1 and λ2 two positive constants.
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A Approximation of the EI with derivatives information

We start by recalling the notations used in Equations (19) and (20). For each x P X, the means and
covariance matrices of random vectors BYN pxq and pYN pxq, D2YN pxqq|BYN pxq “ 0 are written

BYN pxq „ N

´
9m, 9S

¯
,

pYN pxq, D2YN pxqq|BYN pxq “ 0 „ N

¨
˚̊
˚̊
˝

¨
˚̊
˚̋

m

:m1

...
:md

˛
‹‹‹‚,

»
————–

s2 ρ1,1 ¨ ¨ ¨ ρ1,d

ρ1,1 :s1

. . .
...

...
. . .

. . . ρd´1,d

ρd,1 ¨ ¨ ¨ ρd,d´1 :sd

fi
ffiffiffiffifl

˛
‹‹‹‹‚

,

where the notation D2YN :“
`
pB2YN q1,1, . . . , pB2YN qd,d

˘
refers to the diagonal terms of the matrix B2YN .

Using the notations and the general expressions introduced in Section 3.1, the expressions of m and s2

come from the conditioning of the pd ` 1q-dimensional Gaussian vector pYN pxq, BYN pxqq, whose mean is
pµN pxq, BµN pxqq, and whose covariance matrix is

„
CN px, xq BCN px, xqT

BCN px, xq B2CN px, xq


.

Applying the conditioning formula yields,

m :“ ErYN pxq|BYN pxq “ 0s “ µN pxq ` BCN px, xqJB2CN px, xq´1p0 ´ BµN pxqq ,

s2 :“ VarpYN pxq|BYN pxq “ 0q “ CN px, xq ´ BCN px, xqJB2CN px, xq´1BCN px, xq .

The expressions for the mean and covariance matrix of the Gaussian vector YN pxq, D2YN pxq|BYN pxq “ 0,
i.e., the symbols :mi, :si and ρi,j in Equation (19), are obtained following the same conditioning principle, but
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applied to the Gaussian vector pYN pxq, D2YN pxq, BYN pxqq, whose mean is pµN pxq, D2µN pxq, BµN pxqq, and

whose covariance matrix is made of properly ordered terms such as Cov
´

B2YN

Bx2

i

pxq, BYN

Bxj
pxq

¯
“ B3CN

Bx2

i
Bxj

px, xq,

Cov
´

B2YN

Bx2

i

pxq, B2YN

Bxj
pxq

¯
“ B4C

Bx2

i
B2xj

px, xq, . . ..

The conditioning can be applied one more time to pYN pxq, D2YN pxq|BYN pxq “ 0q to account for an
observation of YN pxq, leading to

pD2YN pxqqi|BYN pxq “ 0, YN pxq “ y „ N p :mi ` ρ1ipy ´ mq{s2, :s2
i ´ ρ2

1i{s2q. (32)

For p P t1, 2u, let us first assume that the off-diagonal terms of B2 :YN can be neglected. In that case,
ensuring that B2YN is in M`pdq comes down to ensuring that its diagonal terms are positive, i.e. ensuring
that D2YN is in r0, `8rd, and we can write (using the former notations):

deriv-EIN pxq :“
ż ymin

y“´8

ż

9yPEpx,εq

ż

:Y PM`pdq

pymin ´ yqpdPpy, 9y, :Y q

«
ż ymin

y“´8

ż

9yPEpx,εq

ż

:yPr0,`8rd

pymin ´ yqpfBYN pxqp 9yqfYN pxq,D2YN pxq|BYN pxq“ 9ypy, :yqdyd 9yd:y.

(33)

As it is necessary for a matrix to have positive terms on its diagonal to be positive definite, this approxi-
mation is an overestimation of the number of trajectories that are actually positive definite. In addition,
if ε, the size of the ellipsoid centered at 0 to which BYN pxq belongs, is sufficiently small, it is possible to
approximate fBYN pxqp 9yq by fBYN pxqp0q for any 9y in Epx, εq, which leads to:

deriv-EIN pxq

« VolpEpx, εqqfBYN pxqp0q
ż ymin

y“´8

ż

:yPr0,`8rd

pymin ´ yqpfYN pxq,D2YN pxq|BYN pxq“0py, :yqdyd:y.
(34)

where VolpEpx, εqq is the volume of Epx, εq.
We further assume that for any y P R, the components of D2YN pxq conditioned by the event pBYN pxq “
0, YN pxq “ yq are statistically independent. In other words, a trajectory which passes through px, yq and
which is flat is assumed to have independent curvatures. In this case, the density of D2YN pxq|pBYN pxq “
0, YN pxq “ yq is a product of univariate densities. This leads to,

ż ymin

y“´8

ż

:yPr0,`8rd

pymin ´ yqpfYN pxq,D2YN pxq|BYN pxq“0py, :yqdyd:y

“
ż ymin

y“´8

ż

:yPr0,`8rd

pymin ´ yqpfYN pxq|BYN pxq“0pyqfD2YN pxq|BYN pxq“0,YN pxq“yp :yqdyd:y

«
ż ymin

y“´8

pymin ´ yqp

p2πq d`1

2

exp

ˆ
´ py ´ mq2

2s2

˙¨
˝

dź

i“1

ż `8

:yi“0

exp

ˆ
´ p:yi ´ p :mi ` ρ1ipy ´ mq{s2qq2

2:s2
i p1 ´ ρ2

1i{ps2:s2
i qq

˙
d:yi

:si

b
1 ´ ρ1i

s:si

˛
‚dy

s
.

(35)

If we now perform the following variable changes: z :“ py ´ mq{s, zmin :“ pymin ´ mq{s, ri :“ ρ1i{ps:siq
and :τi “ :mi{:si, it comes:
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ż ymin

y“´8

pymin ´ yqp

p2πq d`1

2

exp

ˆ
´ py ´ mq2

2s2

˙¨
˝

dź

i“1

ż `8

:yi“0

exp

ˆ
´ p:yi ´ p :mi ` ρ1ipy ´ mq{s2qq2

2:s2
i p1 ´ ρ2

1i{ps2:s2
i qq

˙
d:yi

:si

b
1 ´ ρ1i

s:si

˛
‚dy

s

“ sp

ż zmin

z“´8

pzmin ´ zqp

p2πq d`1

2

exp

ˆ
´z2

2

˙˜
dź

i“1

ż `8

:zi“´:τi

exp

ˆ
´ p:zi ´ rizq2

2p1 ´ r2
i q

˙
d:zia
1 ´ r2

i

¸
dz

“ sp

ż zmin

z“´8

pzmin ´ zqp

?
2π

exp

ˆ
´z2

2

˙ dź

i“1

Φ

˜
:τi ` riza

1 ´ r2
i

¸
dz.

(36)

Recalling that Φ and φ are respectively the CDF and the PDF of the standard Gaussian variables, the
former expression can be further simplified by introducing the following first order Taylor expansion of the
function Φ,

Φ

˜
:τi ` riza

1 ´ r2
i

¸
« Φ

˜
:τia

1 ´ r2
i

¸
` riza

1 ´ r2
i

φ

˜
:τia

1 ´ r2
i

¸
, (37)

and by truncating to the first polynomial orders, so that:

ż zmin

z“´8

pzmin ´ zqp

?
2π

exp

ˆ
´z2

2

˙ dź

i“1

Φ

˜
:τi ` riza

1 ´ r2
i

¸
dz

«
ż zmin

z“´8

pzmin ´ zqp

?
2π

exp

ˆ
´z2

2

˙ dź

i“1

˜
Φ

˜
:τia

1 ´ r2
i

¸
` riza

1 ´ r2
i

φ

˜
:τia

1 ´ r2
i

¸¸
dz

«
dź

i“1

Φ

˜
:τia

1 ´ r2
i

¸ż zmin

z“´8

pzmin ´ zqpp1 ` zaq?
2π

exp

ˆ
´z2

2

˙
dz ,

(38)

where

a “
dÿ

i“1

ria
1 ´ r2

i

φ

ˆ
:τi?
1´r2

i

˙

Φ

ˆ
:τi?
1´r2

i

˙ . (39)

It finally comes
deriv-EIN pxq « LikelyMinpxq ˆ cond-EIppqpxq, (40)

with

LikelyMinpxq :“ VolpEpx, εqqfBYN pxqp0q
dź

i“1

Φ

˜
:τia

1 ´ r2
i

¸

“ vεd ˆ exp

˜
´ 9m

T 9S
´1

9m

2

¸
ˆ

dź

i“1

Φ

˜
:τia

1 ´ r2
i

¸
,

(41)

where v is a constant independent of x and ε, and with

cond-EIppqpxq :“
#

s ppzmin ´ aqΦpzminq ` φpzminqq if p “ 1,

s2
`
p1 ` z2

min ´ 2azminqΦpzminq ` pzmin ´ 2aqφpzminq
˘

if p “ 2.

+
(42)
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The expression when the constraint on the second order derivatives is not considered can be recovered by

making :τi tend to infinity. In this case, a tends to 0 and
śd

i“1 Φ

ˆ
:τi?
1´r2

i

˙
tends to 1.

In summary, the approximation provided by Eq. (40) is based on the following four assumptions:

• the off-diagonal terms of B2 :YN can be neglected,

• the value of ε is sufficiently small for fBYN pxqp 9yq to be approximated by fBYN pxqp0q for any 9y in
Epx, εq,

• the components of D2YN pxq conditioned by the event pBYN pxq “ 0, YN pxq “ yq are statistically
independent,

• the first order Taylor expansion of the function Φ provided in Eq. (37) holds.

Numerical assessment of the proposed approximation

In order to numerically evaluate the quality of the approximation of deriv-EIN , we implement a second
Monte-Carlo based approximation :

deriv-EIN pxq « pdpxq :“ VolpEpx, εqqfBYN pxqp0q 1
M

Mÿ

m“1

1Ymďymin
1 :Y mPM`pdqpymin ´ Ymq, (43)

where
!

Ym, :Y m

)M

m“1
gathers M independent realizations of pYN pxq, B2YN pxqq|BYN pxq “ 0. The term

VolpEpx, εqqfBYN pxqp0q is explicitly calculated in the same way in both approximations.

Focusing on the test functions listed in Section 4.2 in dimensions d P t2, 3, 5u, and limiting ourselves to
N P t2d, 5d, 10du, we uniformly sample 1000 points x1, . . . , x1000 in r0, 1sd. We compute the coefficient

of determination R2 between the values of
!

LikelyMinpxjq ˆ cond-EIppqpxjq
)M

j“1
(the proposed and fast

approximation of deriv-EIN ) and the values of
!
pdpxjq

)M

j“1
(the time consuming Monte-Carlo approxima-

tion of deriv-EIN ). The mean value and standard deviation of these coefficients of determination obtained
when repeating 10 times the whole process are finally summarized in Table 1. In each case, we observe
high coefficients of determination, which justifies the use of the fast approximation.

B Expression of the analytical test functions

The functions y1D and y2D which were considered in Section 4.1 have the following expressions (notice the
offset made such that the minimum of the functions is 0):

y1D
0 :

"
r0, 1s Ñ R

x ÞÑ cosp6πx ` 0.4q ` px ´ 0.5q2

y1Dpxq “ y1D
0 pxq ´ min

zPr0,1s
y1D

0 pzq, x P r0, 1s,

y2D
0 :

# r0, 1s2 Ñ R

px1, x2q ÞÑ 10 ` x1 `
´

15x2 ´ 5p15x1´5q2

p4π2 ` 5p15x1´5q
π

´ 6
¯2

` 10 cosp15x1 ´ 5q
`
1 ´ 1

8π

˘
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d θ N mean of R2 standard deviation of R2

2 0.2 4 0.94 0.04
2 0.5 4 0.96 0.03
2 0.2 10 0.94 0.02
2 0.5 10 0.95 0.02
2 0.2 20 0.95 0.02
2 0.5 20 0.98 0.02
3 0.2 6 0.96 0.02
3 0.5 6 0.96 0.06
3 0.2 15 0.95 0.01
3 0.5 15 0.98 0.02
3 0.2 30 0.96 0.02
3 0.5 30 0.98 0.01
5 0.2 10 0.93 0.04
5 0.5 10 0.97 0.03
5 0.2 25 0.92 0.02
5 0.5 25 0.96 0.03
5 0.2 50 0.94 0.01
5 0.5 50 0.95 0.06

Table 1: Coefficients of determination R2 between the proposed, fast, approximation of deriv-EIN and a
Monte-Carlo approximation.

y2Dpxq “ y2D
0 pxq ´ min

zPr0,1s2

y2D
0 pzq, x P r0, 1s2.

C Generation of test functions as realizations of a Gaussian process

We describe here how deterministic functions are defined as particular realizations of a centered Gaussian
process Z indexed by x P X, where X is a compact subset of Rd and the covariance function of Z is denoted
by C. The process consists of the following steps.

1. We start by generating a design of experiments X :“ tx1, . . . , xN u of large size N covering as
much as possible X.

2. We then project Z on this design of experiments, and we note z “ pz1, . . . , zN q the vector con-
taining the values of Z realized at x1, . . . , xN .

3. By Gaussian conditioning, the function x ÞÑ rpxqT R´1z can thus be seen as the continuous
extension of a realization of Z whose projection in X is equal to z, where for all x P X,

rpxq “

¨
˚̋

Cpx, x1q
...

Cpx, xN q

˛
‹‚, R :“

»
—–

Cpx1, x1q ¨ ¨ ¨ Cpx1, xN q
... ¨ ¨ ¨

...
CpxN , x1q ¨ ¨ ¨ CpxN , xN q

fi
ffifl .

It is clear that this type of construction strongly depends on the dimension of X . Indeed, the larger the
size of X , the closer the constructed function will look like a particular realization of Z. In addition, the
larger the input space dimension, d, the more points will be needed in X for the continuous extension to be
relevant. For the examples treated in Section 4.2, X is defined as the concatenation of a two-level factorial
design (in order to cover all the vertices of X “ r0, 1sd) and a space filling LHS design of size 100 ˆ d.
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