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Abstract

Bayesian optimization algorithms form an important class fomethods to minimize functions
that are costly to evaluate, which is a very common situationThese algorithms iteratively
infer Gaussian processes from past observations of the ftioe and decide where new ob-
servations should be made through the maximization of an agigition criterion. Often, in
particular in engineering practice, the objective functio is de ned on a compact set such as
in a hyper-rectangle of ad-dimensional real space, and the bounds are chosen wide egiou
so that the optimum is inside the search domain. In this situ#on, this work provides a
way to integrate in the acquisition criterion thea priori information that these functions,
once modeled as GP trajectories, should be evaluated at theainima, and not at any point
as usual acquisition criteria do. We propose an adaptationf the widely used Expected
Improvement acquisition criterion that accounts only for @ trajectories where the rst
order partial derivatives are zero and the Hessian matrix ipositive de nite.  The new
acquisition criterion keeps an analytical, computationdy e cient, expression. This new
acquisition criterion is found to improve Bayesian optimiation on a test bed of functions
made of Gaussian process trajectories in dimensions 2, 3 @dThe addition of rst and
second order derivative information is particularly usefiufor multimodal functions.

Keywords: nonconvex optimization, Gaussian process regression,tstcal learning,
stochastic process derivation

1. Introduction

Over the last 20 years, Bayesian optimization (BO) methodsave established themselves
as one of the references for approximating the point(s) mmizing an expensive-to-evaluate
black-box function, from as few calls to this function as paeghle. This is re ected in the

existence of many reviews and tutorials on BO in the literatte (see for instance [16, 35, 32,
11,19,.8], as well as many applications of BO in industrial afipations, such as aeronautics
[€, 119], agriculture [25] or the optimization of machine lgaing hyperparameters |[34, 41].
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More speci cally, BO is concerned with minimization problens that can be written in the
following form:

X Pargminypxqg (1)

x PX

wherey is a pointwise observable function de ned over the compacesX € RY, d¥ 1. BO
assumes thaty can be usefully represented as a Gaussian process (GP), vehosean and
covariance functions have been identi ed from a limited nuitwer of calls to functiony. It then
sequentially adds new observations gfat points maximizing anacquisition criterion whose
objective, in the search for the global minimum, is to make augicious trade-o between
the exploration of X and the exploitation of past observations. In the theory of ecision
under uncertainty, acquisition criteria are the expectatn of autility of the possible function
observations according to the stochastic model of the obje® function [42].

Several acquisition criteria have been proposed. The eadt, one-dimensional, version of
BO [17] involved the probability of improvement and an uppeicon dence bound. The up-
per con dence bound was later theoretically studied in manglimensions in|[37]. Another
early BO acquisition criterion was described in_[22] whicts] sincel[7], called the knowledge
gradient. It is a one-step-ahead expected progress in GP med he Expected Improvement
beyond the current best observation (El) is the most classat acquisition criterion. The El
has a simple interpretation and an analytical expression gaved of parameters to tune, two
features which have contributed to its popularity. It was rst proposed in |[28] and popu-
larized in [30,/15, 23]. More recently, acquisition critesi based on information theory have
been suggested which target entropy reductions in the GP meldextrema [13] or locations
of extrema [33/ 12].

BO is di cult to beat when the dimension of the search space maains limited (d & 5to 10)
and when the function is multimodal with some structure|[20] Several adaptations of this
formalism have been proposed to extend the e ciency of thesgpproaches to larger input
spaces, by playing directly on the acquisition criterion &, on the identi cation of latent
spaces of reduced dimensions [2, 10], or on the introductiohtrust regions [4].

It is nevertheless interesting to note that all of these methds only exploit a limited part
of the information conveyed by the GP. In particular, they donot take into account the
information that the GP derivatives could bring, whether the function y is convex or not.
Indeed, wheny is twice di erentiable, it is well known that the rst deriva tives ofy become
zero and that its Hessian matrix is positive de nite at its mhimum (unless the minimum
lies at an edge of the domain). It is reasonable to believe théne minimization strategy can
only bene t from this supplementary knowledge on derivaties.

With this in mind, the main contribution of this paper is to propose an adaptation of the
famous EI criterion so that it integrates the information of zero derivative and positive
de nite Hessian matrix of the GP trajectories . In other terns, this new criterion only
accounts for possible minima of the GP trajectories, as opped to the traditional El that
can confer a utility to any part of a trajectory. We emphasizehat the proposed criterion
does not imply that derivatives of the true functionypxq be calculated. The derivatives
only concern the GP.  The new criterion is meaningful if the mimum is located inside
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the search domain, which is a reasonable assumption in mogtpéications where, precisely,
the bounds are chosen as extremes that should not be reachédcomplementary idea for
cases where the bounds might be active is nevertheless gi@sna perspective: a method is
proposed to estimate the likelihood that the minimum ofy is on the edge of the domain.
The outline of this paper is as follows. Sectidn 2 recalls thikeoretical bases of the Gaussian
process regression (GPR) and its use for the minimization bfack-box functions. Section
introduces the acquisition criterion we propose for takgninto account information on the
derivatives ofy. Section[4 then illustrates the bene ts of this new acquisibn criterion on
simulated test functions that can be modeled as realizatisrof Gaussian processes. Section
describes how optima on the bounds can be handled and cows the paper.

2. The EGO general framework

For d ¥ 1, let X be a compact subset oRY. In this work, we are interested in nding
the solution(s) x of the optimization problem de ned by Eq. (1) using as few paitwise
observations ofy as possible. Anticipating the developments in the followgn sections ex-
ploiting the gradient of y, we assume thaty is an element ofC’pX; Rg, the set of real-valued
twice-di erentiable functions de ned on X. In addition, we treat X as explicit, which means
that the function y cannot be evaluated outside the search region (it is de nedsa product
of intervals in the applications).

To solve this problem, we consider Bayesian Optimization giled by the Expected Improve-
ment (EI) acquisition criterion. Such methods are often ctd E cient Global Optimization
algorithms (EGO) in reference tol[15], although implement&ns (of the GP and of the El
maximization) vary. EGO relies on the evaluation of the objetive function at a sequence of
well-chosen points as summarized hereunder and in AlgonitHIl.

Initialization

To begin, the functiony is evaluated atN, points uniformly chosen inX (typically according
to a space- lling design of experiments (DoE) [5, 25]). We ne ;x™%y, :  yx™qd°, the
obtained pairs. Given this available data, a GP-based sumate model is trained fory.
To obtain convergence results, a common theoretical assutiom is that y is a particular
realization of a Gaussian proces¥  GPp;C g whose prior mean and prior covariance
functions are noted and C respectively (see [29, 27] for more details about Gaussiaipess
regression). In practice, itis only required thaly can be observed at a nite number of points
and the assumption ofy being a sample ol may not hold. The algorithm then conditions
Y to interpolate the N available input-output pairs, resulting in a newYy, GPp n,;Cn,G
where:

NoXO  Xg CpGXoCpX X glppXg  pXag x PX; (2)

CnoX;x'g Cpx;x'g Cpx; X oCpX ;X qlCpX;xlg x;x'PX: (3)



In the former expressionsX : r xP. xMoasT is the fNg  dgrdimensional matrix that
gathers the available input points, and for any functionf and g dened on X and X X
respectively, the following notation is adopted:

gdFpXag fxM%9 pgpX ;X dGm  9Xn;XmG 12 nyme Ng: (4)

Iteration

Given N ¥ Nj evaluations ofy, an acquisition criterion is introduced to choose at which
point to carry out the pN  1d" evaluation of y. In the noise-free setting, the classical
acquisition criterion is the Expected Improvement (El). Itis the expectation of a utility at
x de ned as the progress below the current best observation :

»

Elnpxg: Ermax@;ymn YnOS maxm; Ymin  YF vy gy Py 5)
R

N Xy g pUn X qq Py X qaq

a__
Here,UNXQ: P Ymin  NIXQA{ N XG N PXQ: Cn X ; X G Ymin IS the current minimum of
the N observations ofy, noted ypx™9q :::;yx™ 9 and denote the probability density
function (PDF) and cumulative density function (CDF) of the standard Gaussian variables,

and fy, xqy/q py  ~nXqa{ n X qa{ npxqis the PDF of the Gaussian random variable
Ynmxg Np NG npxoerg where

YooY [ YPg o yPg i Y9y g (6)
By construction, this acquisition criterion seeks a comproise between exploitation ( rst

term) and exploration (second term) for the global search dhe minimum, and the next
evaluation point is chosen such that

x™ 19pPargmaxEly pxq (7)

xPX

Stopping criterion

For most existing implementations of EGO, the stopping crigrion is a maximum number of
evaluations ofy. Indeed, unlike gradient-based approaches for minimizirgpnvex functions,
once a local minimum ofy has been found, there is no theoretical guarantee that it c-
sponds to the global minimum ofy. While it may be tempting, stopping the search when the
expected improvement drops below a lower bound is unstable practice as the El changes
a lot with the GP length scales.

Degrees of freedom

The performance of the EGO method depends on several degredésfreedom that vary
between implementations. The choice for and C, the way the parameters on which and
C depend are optimized, the ratioNo{budget, the way the initial DoE is constructed, the
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Algorithm 1: Standard EGO algorithm.

ChooseNg; budgetY GPp;C q;
N Initialization

Computeypx™9g 1@ n & Ny, estimate the parameters on which and C depend ;

Dene Yy, : Y|YpPMig ypMag:::;Ypx™Modq  yp™odq;

Setk O0;

N Iteration

while k  budgetdo
Search forx™o & 19:  argmax py Eln, «XQ;
Evaluate y at x™¢ k 19 (and potentially adjust the expressions of and C) ;
Dene Yy, k 1: Y[YMdg ypPag:::;yp™o k ldg  ypcMo K 14g;
Updatek B k 1

end

Return miniaiang budget ypxPag

way the acquisition criterion is maximized are all importah(see [20] for an investigation of
the in uence of these choices).

However, as the paper studies an adaptation of the acquisiti criterion, it is clearer to X
these parameters to standard values of the literature. To th end, the function is taken
as a constant, and the functionC is chosen in the class of tensorized Matérn kernels with
smoothing parameter  5{2 (see [29] for alternative classes of functions):

1d

: 1
xq: ; Cpxlg: 2 |x.‘ i X xIPX; (8)
i1 !
?_ 5 ?_
pg: 1 5u :—%u2 exp 5u ; u¥ O: (9)
The hyperparameter vector : p ;;  1;:::; qqwill either be considered known (via the

de nition of test functions to be minimized in the form of a paticular realization of a
Gaussian process of chosen parameters), or estimated byntaximum likelihood estimator
(seel[39] for further details). As we focus on costly functis, we will set the maximal budget
between 10 and 20 times the dimensiahof the problem, whileNg will be chosen small (most
of the time we will haveN, 3). The initial DoE will always be a random space- lling Latin
Hypercube Sample (LHS)L|3, 25]. For objective numerical cqrarisons, the maximization
of the acquisition criteria, whether it is the El in Equation () or one of the new criteria of
Section[3, is always carried out in the same way. At each itdfan, the acquisition criterion
is rst evaluated at a very large number of points randomly chsen inX (typically of the
order of 10 1). The Nelder-Mead algorithm [24] then maximizes the acquin criterion
starting from the 10 most promising points among the random points.



3. Extending the Expected Improvement with derivatives

We now show how to extend the Expected Improvement acquisith criterion so that it
accounts for gradient and Hessian information. The princlps underlying the calculations
are that GP derivatives are GPs, and that local optima away fsim the bounds coincide with
canceling derivatives and positive de nite Hessians. Thegrinciples have already been used
in the context of BO in [13] for approximating the entropy of bcal optima. An independent
and di ering version, adapted to El, is described hereafter

3.1. Reminders on Gaussian process derivation

The acquisition criteria reviewed in the Introduction, in particular the El, are only based on
the distribution of Yy pxgand do not include information related to higher derivative. Yet,
when the functionsx PN pxgand px;x g PRCpx; x 'g are su ciently regular, the statistical
properties of the derivatives ofY can be deduced by simple derivations of and C. Indeed,
as the Gaussian distribution is stable by linear operationdor any linear operatorL such
that Ly is a function fromRY to R%, LY is also a Gaussian process, with:

ErLYmgs L pxg CovLYmgLYpx'gq LCpex™d': (10)

Here, the notations LCpx;x'g and Cpx;x'dL " indicate that operator L is applied as a
function of x and x* respectively, so that CoyL Yxg LY px'qgqgis apd,  d_gdimensional
matrix. In particular, for d. 1 dpd 3q{2, if we choose

Loy bRy v B BY BY. BY ... BY

we obtain the joint distribution of Y and its rst and second order derivatives. For each
twice-di erentiable function z, we introduce the following notations,

Bz B’z Bz Bz
B B Bx1BXq B¢
Bz : .. Bz Do . D?%z: diagpBzq : o (1D
Bz B’z B’z B2z
Bxq Bx1BXq Bx3 B}

and we denote byM pdgthe set ofpd dgdimensional positive de nite matrices.

3.2. An acquisition criterion accounting for the derivaties

For any x in X, it is well known that if Bzpxgq 0 and B’zpxg PM pdg x is a local
minimum of z. As the input spaceX is bounded, the reciprocal is however not true, since a
local minimum can be found at the boundary oKX with a non-zero gradient and/orB’zpxq R
M pdg The case when the optima are on the bounds will be discussedSection[5.1. For
now we focus on the interior oiX, to integrate as prior knowledge that the gradient will be
zero and the matrix of curvatures positive de nite at the loal minima of y, the EI criterion
de ned by Eq. (§) can be replaced by:



deriv-EInpXq: E 1gr, xqery mampgByYy g pdg MaX0; Ymin - YN X QQ (12)

where for any" i 0, Bg'q: WPRY, 1o " is the d-dimensional hypersphere of radius
", Rnypxqis a matrix such that

Ry qCovpBy kaR X | g; (13)
and for any eventa, 1, is equal tolif ais true and to 0 otherwise. The termR y pxgBY\ pxq P

Bp'gguarantees that the GP gradient, normalized by the square o of its covariance, has
a small enough norm. Equivalently, we can write the criterio deriv-Ely as

dEI’iV-E|N pxq. E 1BYN px gFEpPX ;" GB2 YN pxgPM  pdg maXFD; Ymin YN Xdqq ; (14)

with Epc;"q:  PPRY: W Ry Rymg@e "2 ad-dimensional ellipsoid. In connection
with theoretical decision under uncertainty [[42], deriv-Ey px gis the expectation of a utility
of the function model (the GP trajectories) atx. Here, the utility is de ned as the progress
of the stochastic model below the best observation knowingpat the function model has a
minimum at x i.e., it has null rst order derivatives and positive curvatures. The key idea
of deriv-El is to account only for minima of the possible furtions. On the contrary, El
accounts for any value of the possible functions which is log the best observation, which
is less consistent with the goal of minimization. Because ¢haracterizes the behavior of the
minima of the GP realizations, deriv-El can be seen as a cniten between El and information
theoretic criteria based on the expected reduction in entpy of the optima [13].

By considering deriv-Ekf rather than Ely as a new acquisition criterion in Algorithm[1,

we expect to improve its exploitation capabilities, withotl degrading its exploration capa-

bilities too much. Like Ely, deriv-Ely needs only evaluations of the true function,
ypx g ::: ypx ™ dg through Yy, BYy and BYYy. It does not need derivatives of the true
function, y. Only the GP is di erentiated. However, this acquisition citerion can no longer

be calculated simply, and in the general case it will requirthe use of sampling techniques for
its evaluation, which may complicate its use. Neverthelesg we choosé' small, if we neglect

the o -diagonal terms of the Hessian (as it was already proped in [13]) while assuming a
well-chosen conditional independence of its diagonal tesinwe obtain the following relaxed

acquisition criterion (se€_A for a detailed derivation):

deriv-Elypxq  LikelyMinpxq cond-Elypxqg (15)
TQ 1 1d .
LikelyMin  pxq: VolpEpK;"qgq exp M% aﬁ ; (16)
i1 r
cond-ElXq: SP@min a0 Emind  EmindG (17)

where VobEpX; "qqis the volume ofEpx;"q, and where the following notations have been
introduced to simplify the expressions:



BYapkqg N m:9 ; D?Yy: pBYyoui:::;pBYnGq ; (18)

m s 11 1.d
m; : [ :
PG D?YnpxqaaByxg O N o T ; (19)
' : - E d Ld
Mg d;1 dd 1 Sd
d 2 i
. . . R . 1 |2
Zmin - M; r: i; . ﬁ; a a fi > r : (20)
S SS;i Si i, 1o "

Finally, we note that the volume of Epx;"qis proportional to detpCovpBry px qgqq{?, and
that the constant of proportionality depends on" without depending onx. The precise
choice of" has thus no impact.

3.3. Comments on the proposed acquisition criterion

Analysis of the terms in deriv-El .
Comparing the criteria Ely p< qand deriv-Ely px g we rst notice the presence of the function
x PNLikelyMin  px g whose role is to concentrate the search of the new point to bealuated

around the pointsx that are likely to lead to a zero gradient ofy (small values ofd™ 9 1n@),
while favouring the areas of positive second derivativesi@ih values of p;{ 1 rZqfor all
i). The second functionx PNcond-Ely px q estimates the expected improvement assuming
that the function has a minimum atx, and looks particularly like the expression given by Eg.
(®). The more the second derivatives ofy will be positive in probability, which translates
into large values of:;, the more this similarity will be important because, in thiscase, the
constant a tends towards 0. In addition, as the statistical properties of Yy pxq BYnX(Q
and D?Yy g are known explicitly, it is important to notice that the evaluation cost of
deriv-Ely px qis of the same order of magnitude as that of the classicalgix g Importantly,
there is no need to use sampling methods to estimate it.

In addition, if is chosen to be constant andC is a stationary covariance kernel (which
remains the most common con guration in BO), thenBY px qis statistically independent of
Y gand D2Y pxqfor any x in X. In particular, if we focus on the rst iteration of the BO
procedure N  0), and put aside the constraint on the Hessian, it can be notethat for
any" j Oandanyx PX,

E 1Rop><qBYp<qFBp‘q maXFD; Ymin Yp(qq p- E|0FP(CF (21)

wherep : PpRoBY xq PBp'qqgis a constant independent ok as the statistical properties
of BY pxqdo not depend onx (stationarity). In that case, El, is very close to deriv-E} (up
to the in uence of the second derivatives), and maximizingither of these criteria should give
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close results. Then, the more the procesé is conditioned by observations of/, the more
Y, BY and B’Y are correlated, and the more chances there are for derivggk gand Ely pxq

to propose di erent points. After many observations, it is aticipated that the interesting

areas from the EI point of view will have low gradients, so thahe two criteria should again

propose close new evaluation points. The priori interest of the deriv-Ely px g criterion thus

lies in intermediate values oN, in the exploration of the various local minima ofy, and the

search for the smallest zone of likely to contain the global minimum ofy.

At last, when the dimensiond increases, one of the classical di culties of BO based on fl
is to favor exploration over exploitation, by placing a verylarge number of points on the
edges of the domain, which e ectively represent the majositof the volume of X whend is

large [33]. This e ect should be limited by substituting deiv-El for Ely, i.e., by requiring

that each partial derivative of Yy be close to0 and that each main curvature be positive
through the factor LikelyMinpx g which becomes more restrictive ad increases.

A more exploratory deriv-El .

In return, by trying to quickly visit potential high-perfor mance local minima, it is possible
that the deriv-El y criterion explores fewer regions of than Ely, which could be penalizing
for the minimization of functions with multiple local minima. If this were the case (this kind
of phenomenon was not observed on the test cases studied ict®a 4), several techniques
could be proposed to rebalance the exploration/exploitatn ratio. For instance, the control
of the exploration-exploitation balance by changing targevalues has been studied in [16]
for the probability of improvement and a likelihood criteron. Such a shift in target around
Ymin Was included in the EI criterion in [1,/21]. Another way of raiforcing exploration
with respect to exploitation consists in maximizing the expcted improvement at a certain
powerp ¥ 1. Indeed, by taking p greater than 1, we further encourage low-probability high
improvements compared to more probable small improvementd his idea was pursued in
[31] where expressions for the generalized\Etriterion with p ¥ 2 can be found. The new
El with derivatives can also bene t from elevating the impreement at a given power. It
becomes,

For p 2 (seelA for more details) and using the same notations as in 8en B.2, such a
criterion can again be approximated under an analytical fon close to the one of Eq.[(15):

deriv-EIﬁ,quxq LikelyMinpxq  cond-EI”%x g (22)

2

cond-EP%xq: s pl 2z, 28Zwnd P@minQ PZmin 239 Zmind : (23)

4. Numerical experiments

In this Section, we rst illustrate the way the proposed crierion works, and the di erences it
implies with the classical El criterion. In particular, it will be seen that iterates stemming
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from the maximization of deriv-Ely are more concentrated inside the search domain than
Ely iterates. Then, by considering functions with minima insid the search domain, we
show that deriv-Ely allows faster average convergence than\Eldoes. This is particularly
visible with highly multimodal functions. In the experimens, deriv-Ely is calculated
through the approximation of Eq. (I15).

4.1. Analysis of the deriv-E}, criterion in dimension 1 and 2

Test functions and experimental protocol

We analyze the behavior of the deriv-E| criterion through the study of an oscillating func-
tion in dimensiond 1, noted y'P, and of a modi ed Branin function in dimensiond 2,
noted y2P (see Figurd ]l for a graphical representation of these funmtis, and AppendiXB for
their de nitions). In order to focus exclusively on the e eds of the acquisition criterion, we
x the hyperparameters (length scales, variance, trend pameters) of the Gaussian predictor
to their maximum likelihood estimate for a large number of piats. The maximization of
the acquisition criteria is performed by an exhaustive seeln on a ne grid, which is possible
in such low dimensions.

Visualizing the terms making the new acquisition criterion

We illustrate the roles of the LikelyMiny and cond-Ek functions (which are de ned in
Section[3.2), by evaluatingy® at Ny 5 points andy?® at N, 12 points randomly chosen
in X. The evolutions of LikelyMiny and cond-Ef associated to these evaluations are given
in Figures[1-a and b. As expected, the function LikelyMig is large at the points the most
likely to correspond to local minima, while the function cod-Ely highlights the areas the
most likely to lead to GP trajectories that have a null gradiat while having values lower
than the current minimum. For these particular examples, tk product of the two functions,
which yields the deriv-Ek, criterion, favors new points inside the input domain, whenhe
Ely criterion encourages to evaluatg*® (resp. y?°) on an edge ofX. We also notice that
by concentrating the search at areas of low gradient for'® or y2°, we limit the signi cant
values of deriv-E| to sub-regions ofX that are smaller than what Ely would give.

Performance of deriv-Ef, over one step

The performance of the deriv-E{ criterion is now analyzed in terms of minimization ofy*P
and y?P.
We start with a single step. For eaclj P t1;2u, and eachk ¥ 2d) 1, we generateb00space-

. 500
ling LHS made of k points in X [25], which are written X% . For eachl @ i & 50Q
|

we then construct a Gaussian predictor ofi® based on its evaluations at each point inxk‘?iq,
and we denote byx]**™* and xJ*' the points of X maximizing the criteria deriv-Ely

and Ely, respectively. Letpl 5% and g **™*' be the smallest value of/® that we obtain:

pgEl |

W;i

min  y°mxg gt min yPx g (24)

xPX 2Oy tx P U xPX Pyt x P adenvEl )
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(c) Eln and deriv-Ely for y'P (d) El'y and deriv-Ely for y?P

Figure 1: The function yP is shown in black thick solid lines in plots (a) and (c) where he grey areas
correspond to 9846 con dence intervals of the Gaussian predictor. Identically, the black solid lines in plots

(b) and (d) are the contours of function y?P. In each plot, the global minimum is indicated by a cyan
triangle, while the green dots show the points where the funtion has been evaluated. Plots (a) and (b)
show, for the two considered functions, the evolution ofx PRNLikelyMin  pxq in orange solid line, and of
x PNcond-Ely pxqin magenta dotted line. Plots (c) and (d) compare the evolution of x PNEIy pxq (in blue

solid line) to that of x PRderiv-Ely pxq (in red dotted line). For ease of reading, the functions LikdyMin y,

cond-Ely, Ely, and deriv-Ely are normalized in such a way that their maximum value is xed to 1.
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By construction, the lower these values are, the better thecguisition criteria should be.
In this prospect, forj P t1;2u, Figure[2 compares the evolution of th5% 50% and 75%
empirical quantiles ofp!’ *' and p/***"™* as a function ofk. As announced in Sectioi 313,
the interest of the proposed criterion lies in the intermedite (about r5;18s d) values of
k. For too low values, as the Gaussian predictor and its rstqwler derivatives are not very
correlated, the criteria deriv-Ely and Ely are very close, and lead to similar results in terms
of minimization of the objective function. Fork large, the Gaussian predictor approaches
the objective function with little uncertainty, and the criteria deriv-Ely and Ely are equally
capable of identifying the global minimum. For intermedia¢ values ofk, we observe on this
Figure that deriv-Ely yields better, lower, values of/*P (left sub gure) and even more so of

y?P (right sub gure) than El y does.

Performance of deriv-Ef, over many steps

In the above numerical experiments, one step was studied atite new evaluation points
were independent of each other. Getting closer to a BO algtinm, we now quantify the
e ect of the acquisition criteria when de ning a sequence gboints whereyl® is evaluated.
To this end, forj P t1;2u, we !geneﬁBESOO new space- lling LHS in X composed of 3

points each , which are written )Qﬁq . For eachj P t1;2u and each repetition of the
T

experiment 1o i o 50Q the function y/® is evaluated at each point ob(gf’;’iq, and Algorithm
presented in Sectionl2 is run twice, taking as acquisitionriterion deriv-El rst, then the
classical criterion EI. At each iterationk ¥ 1 of the algorithm, we notey***™*' and yf
the obtained current minima ofyl®. The empirical estimates of the median and the mean of
these current minima is shown in Figurél3. The interest of thderiv-El acquisition criterion

is again underlined by these results. Indeed, for all iterains k, the median and the mean of
the current minima associated with the deriv-El criterion ae lower than those of the current
minima associated with the EI criterion. Again, the advantge of deriv-El over EI takes
place in the middle of the iterationsk. Note that the median is well below the mean for the
minimization of y°. It comes from the fact that, for both EI and deriv-El, some othe runs

have taken a signi cant number of iterations to identify thearea of the global minimum.

4.2. Performance analysis in dimensions 2, 3 and 5

Test functions construction

The EI and deriv-El acquisition criteria are now compared om larger set of test functions.
To de ne this set of functions, we elaborate on the idea of usy GPs [12] which are by
construction compatible with the working assumptions. Wetart by noting Z™ the Gaussian
process de ned orX r 0;1s! such that for anyx;x'PX andany O

c
1d
2|x; 1
E z™xq 0, Coviz™imxqz™xqq au ; (25)
i1
where is the Matérn-5/2 covariance function of Equation [(B), whib is such that Z™ is
twice di erentiable in the mean-square sense. Notice the noalization of the length scales
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Figure 2: Inuence of the acquisition criterion deriv-El y and Ely when minimizing y'® and y?°. For
k ¥ 2d 1, the lower and upper parts of the black rectangles correspahto the 25% and 75% quantiles

of pﬂiq;E', while the black circles show the median value. Similarly, he lower and upper parts of the red
rectangles correspond to the25% and 75% quantiles ofm‘jiq;der'v'E' , while the red triangles show the median
value.
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Figure 3: In uence of the acquisition criterion deriv-El y and Ely when minimizing y*B and y3°. For k ¥ 1,
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the lled black circles (resp. the lled red triangles) repr esent the empirical median of yE’.iq’E' - (resp. of
| ’ i

. . - 500
yp dervEl T 1), and the empty black circles (resp. empty red triangles) irdicate the empirical means.
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in 2 d{2, allowing to de ne Gaussian processes in any dimensiahwith close dependence
structures. This normalization can also be understood by sig that distances (between
the,two farthest points, or the expected distance of two pots randomly drawn in X) grow
in  d, therefore the length scales have to grow ind. We consider as test function class
the set F ™ of realizations ofz™ that admits a global minimum strictly inside X (i.e., at a
point of zero partial derivatives). The following numerichtests then focus on two particular
values of : 0:2 will characterize strongly oscillating functions admittng a large number
of local minima, while 0:5 will refer to more regular functions presenting a smaller
number of local minima. For P t0:2;0:5uand d P t2; 3; 5u, we gﬁner)alte100funct|ons from

F™in a random and independent way. These functions are caly'[qu | (see AppendiX C

for a detailed description of their construction). We nally subtract from each function its
minimum value so that

i y/Pd .
miny;“mxq 0, (26)

and we proceed to the same shifting on the process. Figuré¥4 shows four examples of such
functions belonging toF }5' and F /% in the cased 2.

Experimental protocol

The global minimum of these functions is then searched twiagith Algorithm Llby, rst,
taking deriv-El and, then, EIl as the acquisition criterion. The total number of calls to the
objective function of each optimization run is equal to budgt 100 The two types of
searches are initialized with the evaluation oji'?dq at the same space- lling LHS of dimension
No 3 (a dierent design is generated for each function minimizabn). The size of the
design is small and does not depend ah As observed inl[20, 14], small random designs
at the beginning of BO searches are more e cient. Moreoverhe e ect of the acquisition
critgrion is more visible for small initial random designs.The growth of the length scales
in d (Equation [Z8) guarantees that the correlation between thé&l, points is the same,
independently ofd. In order to investigate the in uence of the acquisition crierion only on
the optimization but not on the learning of the GP, the propeties of the Gaussian process
Y used to guide the search are chosen equal to thosez8t". As explained in Section 2, the
maximization of the acquisition criteria is performed in tvo steps: each acquisition criterion
is rst evaluated in 1 points randomly chosen inX, and 10 Nelder-Mead algorithms starting
from the 10 most promising points among the random points are then lauhed in parallel
to identify the new point at which to evaluate the objective @inction.

Two quantities of interest are then extracted from these Basian optimizations. For each
1 o k o budget, eachd P t2;3;5u, and each P t0:2;0:50, we rst note p#*™F kq

(resp. ppdq’E' pkg) the empirical mean of the current minimum (mean best-so-fgperformance)
obtained at thek™ iteration on all the tested functions when taking deriv-El (esp. El) as the
acquisition criterion. Second, we de nekA 3%V-El -5 q (resp. RA9E p; s g, the mean time-
to-target that is the average number of iterations necessaror the best-so-far observation
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