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Abstract

Bayesian optimization algorithms form an important class of methods to minimize functions
that are costly to evaluate, which is a very common situation. These algorithms iteratively
infer Gaussian processes from past observations of the function and decide where new ob-
servations should be made through the maximization of an acquisition criterion. Often, in
particular in engineering practice, the objective function is defined on a compact set such as
in a hyper-rectangle of a d-dimensional real space, and the bounds are chosen wide enough
so that the optimum is inside the search domain. In this situation, this work provides a
way to integrate in the acquisition criterion the a priori information that these functions,
once modeled as GP trajectories, should be evaluated at their minima, and not at any point
as usual acquisition criteria do. We propose an adaptation of the widely used Expected
Improvement acquisition criterion that accounts only for GP trajectories where the first
order partial derivatives are zero and the Hessian matrix is positive definite. The new
acquisition criterion keeps an analytical, computationally efficient, expression. This new
acquisition criterion is found to improve Bayesian optimization on a test bed of functions
made of Gaussian process trajectories in dimensions 2, 3 and 5. The addition of first and
second order derivative information is particularly useful for multimodal functions.

Keywords: nonconvex optimization, Gaussian process regression, statistical learning,
stochastic process derivation

1. Introduction

Over the last 20 years, Bayesian optimization (BO) methods have established themselves
as one of the references for approximating the point(s) minimizing an expensive-to-evaluate
black-box function, from as few calls to this function as possible. This is reflected in the
existence of many reviews and tutorials on BO in the literature (see for instance [16, 35, 32,
11, 9, 8], as well as many applications of BO in industrial applications, such as aeronautics
[6, 19], agriculture [26] or the optimization of machine learning hyperparameters [34, 41].

Email addresses: guillaume.perrin@univ-eiffel.fr (G. Perrin), leriche@emse.fr (R. Le Riche)

This work is licensed under a Creative Commons Attribution 4.0 International License.

October 25, 2023

https://creativecommons.org/licenses/by/4.0/


More specifically, BO is concerned with minimization problems that can be written in the
following form:

x‹ P argmin
xPX

ypxq, (1)

where y is a pointwise observable function defined over the compact set X Ă R
d, d ě 1. BO

assumes that y can be usefully represented as a Gaussian process (GP), whose mean and
covariance functions have been identified from a limited number of calls to function y. It then
sequentially adds new observations of y at points maximizing an acquisition criterion whose
objective, in the search for the global minimum, is to make a judicious trade-off between
the exploration of X and the exploitation of past observations. In the theory of decision
under uncertainty, acquisition criteria are the expectation of a utility of the possible function
observations according to the stochastic model of the objective function [42].
Several acquisition criteria have been proposed. The earliest, one-dimensional, version of
BO [17] involved the probability of improvement and an upper confidence bound. The up-
per confidence bound was later theoretically studied in many dimensions in [37]. Another
early BO acquisition criterion was described in [22] which is, since [7], called the knowledge
gradient. It is a one-step-ahead expected progress in GP mean. The Expected Improvement
beyond the current best observation (EI) is the most classical acquisition criterion. The EI
has a simple interpretation and an analytical expression deprived of parameters to tune, two
features which have contributed to its popularity. It was first proposed in [28] and popu-
larized in [30, 15, 23]. More recently, acquisition criteria based on information theory have
been suggested which target entropy reductions in the GP model extrema [13] or locations
of extrema [38, 12].
BO is difficult to beat when the dimension of the search space remains limited (d ď 5 to 10)
and when the function is multimodal with some structure [20]. Several adaptations of this
formalism have been proposed to extend the efficiency of these approaches to larger input
spaces, by playing directly on the acquisition criterion [33], on the identification of latent
spaces of reduced dimensions [2, 10], or on the introduction of trust regions [4].
It is nevertheless interesting to note that all of these methods only exploit a limited part
of the information conveyed by the GP. In particular, they do not take into account the
information that the GP derivatives could bring, whether the function y is convex or not.
Indeed, when y is twice differentiable, it is well known that the first derivatives of y become
zero and that its Hessian matrix is positive definite at its minimum (unless the minimum
lies at an edge of the domain). It is reasonable to believe that the minimization strategy can
only benefit from this supplementary knowledge on derivatives.
With this in mind, the main contribution of this paper is to propose an adaptation of the
famous EI criterion so that it integrates the information of zero derivative and positive
definite Hessian matrix of the GP trajectories . In other terms, this new criterion only
accounts for possible minima of the GP trajectories, as opposed to the traditional EI that
can confer a utility to any part of a trajectory. We emphasize that the proposed criterion
does not imply that derivatives of the true function ypxq be calculated. The derivatives
only concern the GP. The new criterion is meaningful if the minimum is located inside
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the search domain, which is a reasonable assumption in most applications where, precisely,
the bounds are chosen as extremes that should not be reached. A complementary idea for
cases where the bounds might be active is nevertheless given as a perspective: a method is
proposed to estimate the likelihood that the minimum of y is on the edge of the domain.
The outline of this paper is as follows. Section 2 recalls the theoretical bases of the Gaussian
process regression (GPR) and its use for the minimization of black-box functions. Section
3 introduces the acquisition criterion we propose for taking into account information on the
derivatives of y. Section 4 then illustrates the benefits of this new acquisition criterion on
simulated test functions that can be modeled as realizations of Gaussian processes. Section
5 describes how optima on the bounds can be handled and concludes the paper.

2. The EGO general framework

For d ě 1, let X be a compact subset of R
d. In this work, we are interested in finding

the solution(s) x‹ of the optimization problem defined by Eq. (1) using as few pointwise
observations of y as possible. Anticipating the developments in the following sections ex-
ploiting the gradient of y, we assume that y is an element of C2pX,Rq, the set of real-valued
twice-differentiable functions defined on X. In addition, we treat X as explicit, which means
that the function y cannot be evaluated outside the search region (it is defined as a product
of intervals in the applications).
To solve this problem, we consider Bayesian Optimization guided by the Expected Improve-
ment (EI) acquisition criterion. Such methods are often called Efficient Global Optimization
algorithms (EGO) in reference to [15], although implementations (of the GP and of the EI
maximization) vary. EGO relies on the evaluation of the objective function at a sequence of
well-chosen points as summarized hereunder and in Algorithm 1.

Initialization

To begin, the function y is evaluated at N0 points uniformly chosen in X (typically according
to a space-filling design of experiments (DoE) [5, 25]). We note pxpnq, yn :“ ypxpnqqqN0

n“1
the

obtained pairs. Given this available data, a GP-based surrogate model is trained for y.
To obtain convergence results, a common theoretical assumption is that y is a particular
realization of a Gaussian process Y „ GPpµ, Cq, whose prior mean and prior covariance
functions are noted µ and C respectively (see [29, 27] for more details about Gaussian process
regression). In practice, it is only required that y can be observed at a finite number of points
and the assumption of y being a sample of Y may not hold. The algorithm then conditions
Y to interpolate the N0 available input-output pairs, resulting in a new YN0

„ GPpµN0
, CN0

q,
where:

µN0
pxq “ µpxq ` Cpx,XqCpX,Xq´1pypXq ´ µpXqq, x P X, (2)

CN0
px,x1q “ Cpx,x1q ´ Cpx,XqCpX,Xq´1CpX,x1q, x,x1 P X. (3)
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In the former expressions, X :“ rxp1q ¨ ¨ ¨ xpN0qsT is the pN0 ˆ dq-dimensional matrix that
gathers the available input points, and for any function f and g defined on X and X ˆ X

respectively, the following notation is adopted:

pfpXqqn “ fpxpnqq, pgpX,Xqqnm “ gpxn,xmq, 1 ď n,m ď N0. (4)

Iteration

Given N ě N0 evaluations of y, an acquisition criterion is introduced to choose at which
point to carry out the pN ` 1qth evaluation of y. In the noise-free setting, the classical
acquisition criterion is the Expected Improvement (EI). It is the expectation of a utility at
x defined as the progress below the current best observation :

EIN pxq :“ E rmaxp0, ymin ´ YNqs “
ż

R

maxp0, ymin ´ yqfYN pxqpyqdy

“ σN pxq pUNpxqΦ pUNpxqq ` φ pUN pxqqq .
(5)

Here, UNpxq :“ pymin´µNpxqq{σN pxq, σNpxq :“
a

CNpx,xq, ymin is the current minimum of
the N observations of y, noted ypxp1qq, . . . , ypxpNqq, Φ and φ denote the probability density
function (PDF) and cumulative density function (CDF) of the standard Gaussian variables,
and fYN pxqpyq “ φppy ´ µNpxqq{σN pxqq{σN pxq is the PDF of the Gaussian random variable
YNpxq „ N pµNpxq, σN pxq2q, where

YN :“ Y | Y pxp1qq “ ypxp1qq, . . . , Y pxpNqq “ ypxpNqq. (6)

By construction, this acquisition criterion seeks a compromise between exploitation (first
term) and exploration (second term) for the global search of the minimum, and the next
evaluation point is chosen such that

xpN`1q P argmax
xPX

EINpxq. (7)

Stopping criterion

For most existing implementations of EGO, the stopping criterion is a maximum number of
evaluations of y. Indeed, unlike gradient-based approaches for minimizing convex functions,
once a local minimum of y has been found, there is no theoretical guarantee that it corre-
sponds to the global minimum of y. While it may be tempting, stopping the search when the
expected improvement drops below a lower bound is unstable in practice as the EI changes
a lot with the GP length scales.

Degrees of freedom

The performance of the EGO method depends on several degrees of freedom that vary
between implementations. The choice for µ and C, the way the parameters on which µ and
C depend are optimized, the ratio N0{budget, the way the initial DoE is constructed, the
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Algorithm 1: Standard EGO algorithm.
Choose N0, budget, Y „ GPpµ, Cq ;
Ñ Initialization

Draw at random N0 points xp1q, . . . ,xpN0q in X ;
Compute ypxpnqq, 1 ď n ď N0, estimate the parameters on which µ and C depend ;
Define YN0

:“ Y |Y pxp1qq “ ypxp1qq, . . . , Y pxpN0qq “ ypxpN0qq ;
Set k “ 0 ;
Ñ Iteration

while k ă budget do

Search for xpN0`k`1q :“ argmaxxPX EIN0`kpxq ;
Evaluate y at xpN0`k`1q (and potentially adjust the expressions of µ and C) ;
Define YN0`k`1 :“ Y |Y pxp1qq “ ypxp1qq, . . . , Y pxpN0`k`1qq “ ypxpN0`k`1qq ;
Update k Ð k ` 1

end

Return min1ďiďN0`budget ypxpiqq.

way the acquisition criterion is maximized are all important (see [20] for an investigation of
the influence of these choices).
However, as the paper studies an adaptation of the acquisition criterion, it is clearer to fix
these parameters to standard values of the literature. To this end, the function µ is taken
as a constant, and the function C is chosen in the class of tensorized Matérn kernels with
smoothing parameter ν “ 5{2 (see [29] for alternative classes of functions):

µpxq :“ β, Cpx,x1q :“ σ2

dź

i“1

κ

ˆ |xi ´ x1
i|

ℓi

˙
, x,x1 P X, (8)

κpuq :“
ˆ
1 `

?
5u ` 5

3
u2

˙
exp

´
´

?
5u
¯
, u ě 0. (9)

The hyperparameter vector θ :“ pβ, σ, ℓ1, . . . , ℓdq will either be considered known (via the
definition of test functions to be minimized in the form of a particular realization of a
Gaussian process of chosen parameters), or estimated by its maximum likelihood estimator
(see [39] for further details). As we focus on costly functions, we will set the maximal budget
between 10 and 20 times the dimension d of the problem, while N0 will be chosen small (most
of the time we will have N0 “ 3). The initial DoE will always be a random space-filling Latin
Hypercube Sample (LHS) [3, 25]. For objective numerical comparisons, the maximization
of the acquisition criteria, whether it is the EI in Equation (7) or one of the new criteria of
Section 3, is always carried out in the same way. At each iteration, the acquisition criterion
is first evaluated at a very large number of points randomly chosen in X (typically of the
order of 10d`1). The Nelder-Mead algorithm [24] then maximizes the acquisition criterion
starting from the 10 most promising points among the random points.
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3. Extending the Expected Improvement with derivatives

We now show how to extend the Expected Improvement acquisition criterion so that it
accounts for gradient and Hessian information. The principles underlying the calculations
are that GP derivatives are GPs, and that local optima away from the bounds coincide with
canceling derivatives and positive definite Hessians. These principles have already been used
in the context of BO in [13] for approximating the entropy of local optima. An independent
and differing version, adapted to EI, is described hereafter.

3.1. Reminders on Gaussian process derivation

The acquisition criteria reviewed in the Introduction, in particular the EI, are only based on
the distribution of YNpxq and do not include information related to higher derivatives. Yet,
when the functions x ÞÑ µpxq and px,x1q ÞÑ Cpx,x1q are sufficiently regular, the statistical
properties of the derivatives of Y can be deduced by simple derivations of µ and C. Indeed,
as the Gaussian distribution is stable by linear operations, for any linear operator L such
that Ly is a function from R

d to R
dL , LY is also a Gaussian process, with:

E rLY pxqs “ Lµpxq, CovpLY pxq,LY px1qq “ LCpx,x1qLT . (10)

Here, the notations LCpx,x1q and Cpx,x1qLT indicate that operator L is applied as a
function of x and x1 respectively, so that CovpLY pxq,LY px1qq is a pdL ˆ dLq-dimensional
matrix. In particular, for dL “ 1 ` dpd ` 3q{2, if we choose

L : Y ÞÑ LY :“
ˆ
Y,

BY
Bx1

, . . . ,
BY
Bxd

,
B2Y

Bx2

1

, . . . ,
B2Y

Bx1Bx2

, . . . ,
B2Y

Bx2

d

˙
,

we obtain the joint distribution of Y and its first and second order derivatives. For each
twice-differentiable function z, we introduce the following notations,

Bz :“

»
—–

Bz
Bx1

...
Bz

Bxd

fi
ffifl , B2z :“

»
——–

B2z
Bx2

1

¨ ¨ ¨ B2z
Bx1Bxd

... . . . ...
B2z

Bx1Bxd
¨ ¨ ¨ B2z

Bx2

d

fi
ffiffifl , D2z :“ diagpB2zq “

»
——–

B2z
Bx2

1

...
B2z
Bx2

d

fi
ffiffifl , (11)

and we denote by M`pdq the set of pd ˆ dq-dimensional positive definite matrices.

3.2. An acquisition criterion accounting for the derivatives

For any x in X, it is well known that if Bzpxq “ 0 and B2zpxq P M`pdq, x is a local
minimum of z. As the input space X is bounded, the reciprocal is however not true, since a
local minimum can be found at the boundary of X with a non-zero gradient and/or B2zpxq R
M`pdq. The case when the optima are on the bounds will be discussed in Section 5.1. For
now we focus on the interior of X, to integrate as prior knowledge that the gradient will be
zero and the matrix of curvatures positive definite at the local minima of y, the EI criterion
defined by Eq. (5) can be replaced by:
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deriv-EINpxq :“ E
“
1RN pxqBYN pxqPBpεq,B2YN pxqPM`pdq maxp0, ymin ´ YNpxqq

‰
, (12)

where for any ε ą 0, Bpεq :“
 

9y P R
d, } 9y} ď ε

(
is the d-dimensional hypersphere of radius

ε, RNpxq is a matrix such that

RNpxqCovpBYNpxqqRN pxqT “ Id, (13)

and for any event a, 1a is equal to 1 if a is true and to 0 otherwise. The term RN pxqBYNpxq P
Bpεq guarantees that the GP gradient, normalized by the square root of its covariance, has
a small enough norm. Equivalently, we can write the criterion deriv-EIN as

deriv-EINpxq :“ E
“
1BYN pxqPEpx,εq,B2YN pxqPM`pdq maxp0, ymin ´ YNpxqq

‰
, (14)

with Epx, εq :“
 

9y P R
d, 9yTRNpxqTRNpxq 9y ď ε2

(
a d-dimensional ellipsoid. In connection

with theoretical decision under uncertainty [42], deriv-EINpxq is the expectation of a utility
of the function model (the GP trajectories) at x. Here, the utility is defined as the progress
of the stochastic model below the best observation knowing that the function model has a
minimum at x i.e., it has null first order derivatives and positive curvatures. The key idea
of deriv-EI is to account only for minima of the possible functions. On the contrary, EI
accounts for any value of the possible functions which is below the best observation, which
is less consistent with the goal of minimization. Because it characterizes the behavior of the
minima of the GP realizations, deriv-EI can be seen as a criterion between EI and information
theoretic criteria based on the expected reduction in entropy of the optima [13].

By considering deriv-EIN rather than EIN as a new acquisition criterion in Algorithm 1,
we expect to improve its exploitation capabilities, without degrading its exploration capa-
bilities too much. Like EIN , deriv-EIN needs only evaluations of the true function,
ypxp1qq, . . . , ypxpNqq through YN , BYN and B2YN . It does not need derivatives of the true
function, y. Only the GP is differentiated. However, this acquisition criterion can no longer
be calculated simply, and in the general case it will require the use of sampling techniques for
its evaluation, which may complicate its use. Nevertheless, if we choose ε small, if we neglect
the off-diagonal terms of the Hessian (as it was already proposed in [13]) while assuming a
well-chosen conditional independence of its diagonal terms, we obtain the following relaxed
acquisition criterion (see A for a detailed derivation):

deriv-EINpxq « LikelyMinNpxq ˆ cond-EIN pxq, (15)

LikelyMinNpxq :“ VolpEpx, εqq ˆ exp

˜
´ 9mT 9S

´1

9m

2

¸
ˆ

dź

i“1

Φ

˜
:τia
1 ´ r2i

¸
, (16)

cond-EIN pxq :“ s ppzmin ´ aqΦpzminq ` φpzminqq , (17)

where VolpEpx, εqq is the volume of Epx, εq , and where the following notations have been
introduced to simplify the expressions:
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BYNpxq „ N

´
9m, 9S

¯
, D2YN :“

`
pB2YNq1,1, . . . , pB2YNqd,d

˘
, (18)

pYNpxq, D2YNpxqqq|BYNpxq “ 0 „ N

¨
˚̊
˚̋

¨
˚̊
˚̋

m

:m1

...
:md

˛
‹‹‹‚,

»
———–

s2 ρ1,1 ¨ ¨ ¨ ρ1,d

ρ1,1 :s1
. . . ...

... . . . . . . ρd´1,d

ρd,1 ¨ ¨ ¨ ρd,d´1 :sd

fi
ffiffiffifl

˛
‹‹‹‚, (19)

zmin :“ ymin ´ m

s
, ri :“

ρ1i

s:si
, :τi “ :mi

:si
, a “

dÿ

i“1

ria
1 ´ r2i

φ

ˆ
:τi?
1´r2i

˙

Φ

ˆ
:τi?
1´r2i

˙ . (20)

Finally, we note that the volume of Epx, εq is proportional to detpCovpBYNpxqqq´1{2, and
that the constant of proportionality depends on ε without depending on x. The precise
choice of ε has thus no impact.

3.3. Comments on the proposed acquisition criterion

Analysis of the terms in deriv-EI .
Comparing the criteria EINpxq and deriv-EINpxq, we first notice the presence of the function
x ÞÑ LikelyMinNpxq, whose role is to concentrate the search of the new point to be evaluated
around the points x that are likely to lead to a zero gradient of y (small values of 9mT 9S

´1

9m),
while favouring the areas of positive second derivatives (high values of Φp:τi{

a
1 ´ r2i q for all

i). The second function x ÞÑ cond-EINpxq estimates the expected improvement assuming
that the function has a minimum at x, and looks particularly like the expression given by Eq.
(5). The more the second derivatives of YN will be positive in probability, which translates
into large values of :τi, the more this similarity will be important because, in this case, the
constant a tends towards 0. In addition, as the statistical properties of YNpxq, BYNpxq
and D2YNpxq are known explicitly, it is important to notice that the evaluation cost of
deriv-EINpxq is of the same order of magnitude as that of the classical EINpxq. Importantly,
there is no need to use sampling methods to estimate it.
In addition, if µ is chosen to be constant and C is a stationary covariance kernel (which
remains the most common configuration in BO), then BY pxq is statistically independent of
Y pxq and D2Y pxq for any x in X. In particular, if we focus on the first iteration of the BO
procedure (N “ 0), and put aside the constraint on the Hessian, it can be noted that for
any ε ą 0 and any x P X,

E
“
1R0pxqBY pxqPBpεq maxp0, ymin ´ Y pxqq

‰
“ pε ˆ EI0pxq, (21)

where pε :“ PpR0BY pxq P Bpεqq is a constant independent of x as the statistical properties
of BY pxq do not depend on x (stationarity). In that case, EI0 is very close to deriv-EI0 (up
to the influence of the second derivatives), and maximizing either of these criteria should give
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close results. Then, the more the process Y is conditioned by observations of y, the more
Y , BY and B2Y are correlated, and the more chances there are for deriv-EINpxq and EINpxq
to propose different points. After many observations, it is anticipated that the interesting
areas from the EI point of view will have low gradients, so that the two criteria should again
propose close new evaluation points. The a priori interest of the deriv-EIN pxq criterion thus
lies in intermediate values of N , in the exploration of the various local minima of y, and the
search for the smallest zone of X likely to contain the global minimum of y.
At last, when the dimension d increases, one of the classical difficulties of BO based on EIN
is to favor exploration over exploitation, by placing a very large number of points on the
edges of the domain, which effectively represent the majority of the volume of X when d is
large [33]. This effect should be limited by substituting deriv-EIN for EIN , i.e., by requiring
that each partial derivative of YN be close to 0 and that each main curvature be positive
through the factor LikelyMinpxq, which becomes more restrictive as d increases.

A more exploratory deriv-EI .
In return, by trying to quickly visit potential high-performance local minima, it is possible
that the deriv-EIN criterion explores fewer regions of X than EIN , which could be penalizing
for the minimization of functions with multiple local minima. If this were the case (this kind
of phenomenon was not observed on the test cases studied in Section 4), several techniques
could be proposed to rebalance the exploration/exploitation ratio. For instance, the control
of the exploration-exploitation balance by changing target values has been studied in [16]
for the probability of improvement and a likelihood criterion. Such a shift in target around
ymin was included in the EI criterion in [1, 21]. Another way of reinforcing exploration
with respect to exploitation consists in maximizing the expected improvement at a certain
power p ě 1. Indeed, by taking p greater than 1, we further encourage low-probability high
improvements compared to more probable small improvements. This idea was pursued in
[31] where expressions for the generalized EIN criterion with p ě 2 can be found. The new
EI with derivatives can also benefit from elevating the improvement at a given power. It
becomes,

deriv-EIppq
N :“ E

“
1BY pxqPEpx,εq,B2YN pxqPM`pdq maxp0, ymin ´ YNpxqqp

‰
.

For p “ 2 (see A for more details) and using the same notations as in Section 3.2, such a
criterion can again be approximated under an analytical form close to the one of Eq. (15):

deriv-EIp2q
N pxq « LikelyMinpxq ˆ cond-EIp2qpxq, (22)

cond-EIp2qpxq :“ s2
`
p1 ` z2min ´ 2azminqΦpzminq ` pzmin ´ 2aqφpzminq

˘
. (23)

4. Numerical experiments

In this Section, we first illustrate the way the proposed criterion works, and the differences it
implies with the classical EI criterion. In particular, it will be seen that iterates stemming
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from the maximization of deriv-EIN are more concentrated inside the search domain than
EIN iterates. Then, by considering functions with minima inside the search domain, we
show that deriv-EIN allows faster average convergence than EIN does. This is particularly
visible with highly multimodal functions. In the experiments, deriv-EIN is calculated
through the approximation of Eq. (15).

4.1. Analysis of the deriv-EIN criterion in dimension 1 and 2

Test functions and experimental protocol

We analyze the behavior of the deriv-EIN criterion through the study of an oscillating func-
tion in dimension d “ 1, noted y1D, and of a modified Branin function in dimension d “ 2,
noted y2D (see Figure 1 for a graphical representation of these functions, and Appendix B for
their definitions). In order to focus exclusively on the effects of the acquisition criterion, we
fix the hyperparameters (length scales, variance, trend parameters) of the Gaussian predictor
to their maximum likelihood estimate for a large number of points. The maximization of
the acquisition criteria is performed by an exhaustive search on a fine grid, which is possible
in such low dimensions.

Visualizing the terms making the new acquisition criterion

We illustrate the roles of the LikelyMinN and cond-EIN functions (which are defined in
Section 3.2), by evaluating y1D at N0 “ 5 points and y2D at N0 “ 12 points randomly chosen
in X. The evolutions of LikelyMinN and cond-EIN associated to these evaluations are given
in Figures 1-a and b. As expected, the function LikelyMinN is large at the points the most
likely to correspond to local minima, while the function cond-EIN highlights the areas the
most likely to lead to GP trajectories that have a null gradient while having values lower
than the current minimum. For these particular examples, the product of the two functions,
which yields the deriv-EIN criterion, favors new points inside the input domain, when the
EIN criterion encourages to evaluate y1D (resp. y2D) on an edge of X. We also notice that
by concentrating the search at areas of low gradient for y1D or y2D, we limit the significant
values of deriv-EIN to sub-regions of X that are smaller than what EIN would give.

Performance of deriv-EIN over one step

The performance of the deriv-EIN criterion is now analyzed in terms of minimization of y1D

and y2D.
We start with a single step. For each j P t1, 2u, and each k ě 2d´ 1, we generate 500 space-

filling LHS made of k points in X [25], which are written
!
X

pjq
k,i

)500

i“1

. For each 1 ď i ď 500,

we then construct a Gaussian predictor of yjD based on its evaluations at each point in X
pjq
k,i ,

and we denote by x
pjq,deriv-EI

k,i and x
pjq,EI

k,i the points of X maximizing the criteria deriv-EIk
and EIk, respectively. Let pypjq,EI

k,i and pypjq,deriv-EI

k,i be the smallest value of yjD that we obtain:

pypjq,EI

k,i :“ min
xPX

pjq
k,i

Ytxpjq,EI

k,i u
yjDpxq, pypjq,deriv-EI

k,i :“ min
xPX

piq
k

Ytxpjq,deriv-EI

k,i u
yjDpxq. (24)
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(b) LikelyMinN and cond-EIN for y2D
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Figure 1: The function y1D is shown in black thick solid lines in plots (a) and (c) where the grey areas
correspond to 95% confidence intervals of the Gaussian predictor. Identically, the black solid lines in plots
(b) and (d) are the contours of function y2D. In each plot, the global minimum is indicated by a cyan
triangle, while the green dots show the points where the function has been evaluated. Plots (a) and (b)
show, for the two considered functions, the evolution of x ÞÑ LikelyMinN pxq in orange solid line, and of
x ÞÑ cond-EIN pxq in magenta dotted line. Plots (c) and (d) compare the evolution of x ÞÑ EIN pxq (in blue
solid line) to that of x ÞÑ deriv-EIN pxq (in red dotted line). For ease of reading, the functions LikelyMinN ,
cond-EIN , EIN , and deriv-EIN are normalized in such a way that their maximum value is fixed to 1.

11



By construction, the lower these values are, the better the acquisition criteria should be.
In this prospect, for j P t1, 2u, Figure 2 compares the evolution of the 25%, 50% and 75%

empirical quantiles of pypjq,EI

k,i and pypjq,deriv-EI

k,i as a function of k. As announced in Section 3.3,
the interest of the proposed criterion lies in the intermediate (about r5, 18s ˆ d) values of
k. For too low values, as the Gaussian predictor and its first-order derivatives are not very
correlated, the criteria deriv-EIN and EIN are very close, and lead to similar results in terms
of minimization of the objective function. For k large, the Gaussian predictor approaches
the objective function with little uncertainty, and the criteria deriv-EIN and EIN are equally
capable of identifying the global minimum. For intermediate values of k, we observe on this
Figure that deriv-EIN yields better, lower, values of y1D (left subfigure) and even more so of
y2D (right subfigure) than EIN does.

Performance of deriv-EIN over many steps

In the above numerical experiments, one step was studied and the new evaluation points
were independent of each other. Getting closer to a BO algorithm, we now quantify the
effect of the acquisition criteria when defining a sequence of points where yjD is evaluated.
To this end, for j P t1, 2u, we generate 500 new space-filling LHS in X composed of 3

points each , which are written
!
rX pjq
3,i

)500

i“1

. For each j P t1, 2u and each repetition of the

experiment 1 ď i ď 500, the function yjD is evaluated at each point of rX pjq
3,i , and Algorithm

1 presented in Section 2 is run twice, taking as acquisition criterion deriv-EI first, then the
classical criterion EI. At each iteration k ě 1 of the algorithm, we note y

pjq,deriv-EI

k,i and y
pjq,EI

k,i

the obtained current minima of yjD. The empirical estimates of the median and the mean of
these current minima is shown in Figure 3. The interest of the deriv-EI acquisition criterion
is again underlined by these results. Indeed, for all iterations k, the median and the mean of
the current minima associated with the deriv-EI criterion are lower than those of the current
minima associated with the EI criterion. Again, the advantage of deriv-EI over EI takes
place in the middle of the iterations k. Note that the median is well below the mean for the
minimization of y1D. It comes from the fact that, for both EI and deriv-EI, some of the runs
have taken a significant number of iterations to identify the area of the global minimum.

4.2. Performance analysis in dimensions 2, 3 and 5

Test functions construction

The EI and deriv-EI acquisition criteria are now compared on a larger set of test functions.
To define this set of functions, we elaborate on the idea of using GPs [12] which are by
construction compatible with the working assumptions. We start by noting Z

pdq
θ the Gaussian

process defined on X “ r0, 1sd such that for any x,x1 P X and any θ ą 0

E

”
Z

pdq
θ pxq

ı
“ 0, CovpZpdq

θ pxq, Zpdq
θ px1qq “

dź

i“1

κ

˜c
2

d

|xi ´ x1
i|

θ

¸
, (25)

where κ is the Matérn-5/2 covariance function of Equation (9), which is such that Z
pdq
θ is

twice differentiable in the mean-square sense. Notice the normalization of the length scales
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Figure 2: Influence of the acquisition criterion deriv-EIN and EIN when minimizing y1D and y2D. For
k ě 2d ´ 1, the lower and upper parts of the black rectangles correspond to the 25% and 75% quantiles

of pypjq,EI

k,i , while the black circles show the median value. Similarly, the lower and upper parts of the red

rectangles correspond to the 25% and 75% quantiles of pypjq,deriv-EI

k,i , while the red triangles show the median
value.
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Figure 3: Influence of the acquisition criterion deriv-EIN and EIN when minimizing y1D and y2D. For k ě 1,

the filled black circles (resp. the filled red triangles) represent the empirical median of
!
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pjq,EI

k,i

)500

i“1

(resp. of
!
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pjq,deriv-EI

k,i

)500

i“1

), and the empty black circles (resp. empty red triangles) indicate the empirical means.
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in
a

d{2, allowing to define Gaussian processes in any dimension d with close dependence
structures. This normalization can also be understood by seeing that distances (between
the two farthest points, or the expected distance of two points randomly drawn in X) grow
in

?
d, therefore the length scales have to grow in

?
d. We consider as test function class

the set F
pdq
θ of realizations of Zpdq

θ that admits a global minimum strictly inside X (i.e., at a
point of zero partial derivatives). The following numerical tests then focus on two particular
values of θ: θ “ 0.2 will characterize strongly oscillating functions admitting a large number
of local minima, while θ “ 0.5 will refer to more regular functions presenting a smaller
number of local minima. For θ P t0.2, 0.5u and d P t2, 3, 5u, we generate 100 functions from

F
pdq
θ in a random and independent way. These functions are call

!
y

pdq
i,θ

)
100

i“1

(see Appendix C

for a detailed description of their construction). We finally subtract from each function its
minimum value so that

min
xPX

y
pdq
i,θ pxq “ 0, (26)

and we proceed to the same shifting on the Y process. Figure 4 shows four examples of such
functions belonging to F

p2q
0.2 and F

p2q
0.5 in the case d “ 2.

Experimental protocol

The global minimum of these functions is then searched twice with Algorithm 1 by, first,
taking deriv-EI and, then, EI as the acquisition criterion. The total number of calls to the
objective function of each optimization run is equal to budget “ 100. The two types of
searches are initialized with the evaluation of ypdq

i,θ at the same space-filling LHS of dimension
N0 “ 3 (a different design is generated for each function minimization). The size of the
design is small and does not depend on d. As observed in [20, 14], small random designs
at the beginning of BO searches are more efficient. Moreover, the effect of the acquisition
criterion is more visible for small initial random designs. The growth of the length scales
in

?
d (Equation 25) guarantees that the correlation between the N0 points is the same,

independently of d. In order to investigate the influence of the acquisition criterion only on
the optimization but not on the learning of the GP, the properties of the Gaussian process
Y used to guide the search are chosen equal to those of Zpdq

θ . As explained in Section 2, the
maximization of the acquisition criteria is performed in two steps: each acquisition criterion
is first evaluated in 105 points randomly chosen in X, and 10 Nelder-Mead algorithms starting
from the 10 most promising points among the random points are then launched in parallel
to identify the new point at which to evaluate the objective function.

Two quantities of interest are then extracted from these Bayesian optimizations. For each
1 ď k ď budget, each d P t2, 3, 5u, and each θ P t0.2, 0.5u, we first note pypdq,deriv-EI

θ pkq
(resp. pypdq,EI

θ pkq) the empirical mean of the current minimum (mean best-so-far performance)
obtained at the kth iteration on all the tested functions when taking deriv-EI (resp. EI) as the
acquisition criterion. Second, we define pkpjq,deriv-EIpθ, sq (resp. pkpjq,EIpθ, sq), the mean time-
to-target that is the average number of iterations necessary for the best-so-far observation
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Figure 4: Representation of 4 particular elements of F
p2q
0.2 and F

p2q
0.5 , the set of test functions to be minimized.

In each function instance, the global minimum location is indicated with a cyan triangle.

to be lower than a threshold s ą 0 when using deriv-EI (resp. EI). Note that for both
quantities of interest, the average is done on the different test-functions, which have the
same kind of variations and the same minimum equal to 0, which makes them comparable
although potentially very different.

Optimization results

The evolution of these quantities of interest are shown in Figure 5 for θ “ 0.2 and Figure 6
for θ “ 0.5. In all of these figures, a substantial gain is brought by the deriv-EI criterion with
respect to the EI criterion. The gain is visible both in terms of the mean best-so-far objective
function (plots (a) to (c)) and the mean time-to-target (plots (d) to (f)). We notice, as we
had hoped in Section 3.3, that the observed improvements brought by the deriv-EI criterion
are greater as the dimension d of the input space increases. As expected, we also observe
that choosing deriv-EI rather than EI is of more interest for more multimodal functions, i.e.,
when the length scale θ is small. Indeed, it is in these configurations with a large number of
local minima that adding information about null first order derivatives and positive definite
Hessian matrices is useful.

Remark. For all the test functions studied in this section, the condition numbers of the
covariance matrices of the observation points were all between 103 and 2 ˆ 106.

15



5 10 15 20 25 30 35 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Iteration k

M
ea

n
of

th
e

cu
rr

en
t

m
in

im
um

(a) d “ 2, θ “ 0.2

10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

Iteration k

M
ea

n
of

th
e

cu
rr

en
t

m
in

im
um

(b) d “ 3, θ “ 0.2

20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Iteration k

M
ea

n
of

th
e

cu
rr

en
t

m
in

im
um

(c) d “ 5, θ “ 0.2

0.005 0.020 0.100 0.500

5
10

15

Threshold s

M
ea

n
nu

m
be

r
of

fu
nc

ti
on

ev
al

ua
ti

on
s

(d) d “ 2, θ “ 0.2

0.005 0.020 0.100 0.500 2.000

5
10

15
20

25
30

Threshold s

M
ea

n
nu

m
be

r
of

fu
nc

ti
on

ev
al

ua
ti

on
s

(e) d “ 3, θ “ 0.2

0.005 0.020 0.100 0.500 2.000

10
20

30
40

50
60

70
80

Threshold s

M
ea

n
nu

m
be

r
of

fu
nc

ti
on

ev
al

ua
ti

on
s

(f) d “ 5, θ “ 0.2

Figure 5: Plots (a), (b), and (c) show the mean best performance, k ÞÑ pypdq,EI

θ pkq (in black solid line) and

k ÞÑ pypdq,deriv-EI

θ pkq (in red dotted line) for strongly multimodal functions (θ “ 0.2) and d P t2, 3, 5u. Plots

(d), (e), and (f) give the mean time-to-target s ÞÑ pkpjq,EIpθ, sq (in black solid line) and s ÞÑ pkpjq,deriv-EIpθ, sq
(in red dotted line).
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(e) d “ 3, θ “ 0.5
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(f) d “ 5, θ “ 0.5

Figure 6: Plots (a), (b), and (c) compare the mean best-so-far performances for the two acquisition criteria,

k ÞÑ pypdq,EI

θ pkq (in black solid line) and k ÞÑ pypdq,deriv-EI

θ pkq (in red dotted line), for moderatly multimodal
functions (θ “ 0.5) and and d P t2, 3, 5u. Plots (d), (e), and (f) compare the mean time-to-target, s ÞÑ
pkpjq,EIpθ, sq (in black solid line) and s ÞÑ pkpjq,deriv-EIpθ, sq (in red dotted line).
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5. Extensions and conclusions

5.1. Management of minima on bounds

The article has assumed until now that the minimum is inside the search space X. If this is
not the case, orienting the search towards areas with a zero gradient can actually be coun-
terproductive, as the global minimum will typicallybe associated with a nonzero gradient.
Denoting by BX the boundary of X, a first possibility to circumvent this problem is to penal-
ize the objective function so that optima on the boundary are pushed inside the domain but
arbitrarily close to the boundary, and therefore are associated to a null gradient and positive
definite Hessian. This is the idea of the barrier functions of the interior point methods [40].
With barrier functions, the objective x ÞÑ ypxq is replaced by x ÞÑ ypxq ` λcpxq, where
λ is a positive constant and c is a continuously twice-differentiable positive function such
that cpxq would be close to zero when x is far from the boundaries of X, and would take
potentially infinite values when x P BX. For instance, if X “ r0, 1s, the function c can be
chosen as:

cpxq “ 1

minpx, 1 ´ xq or cpxq “ ´ logpminpx, 1 ´ xqq , 0 ď x ď 1. (27)

The larger λ is, the further from BX the global minimum of y ` λc is, whether the global
minimum of y is on BX or not. And by making λ progressively tend towards 0, we make
this global minimum, which will be well associated to a zero gradient of y ` λc, tend to the
global minimum of y. Such an approach is well-studied for convex optimization problems,
with bounds linking the choice of λ to the degradation in the optimal value of the objective
function [40]. In general however, the effect of the λ decay law is difficult to understand.
And the penalty adds a steep function increase at the edge of X that GPR-based metamodels
will have difficulty to learn.

Alternatively, we propose to evaluate a priori the likelihood, noted ℓN , that the minimum
of y lies on the boundary of X.
The ℓN likelihood can be evaluated through a three-step procedure. Starting from the GP-
based surrogate model of y, noted YN , the first step would be to look for positions that may
correspond to local minima of y, by running in parallel M " 1 regularized Newton descent
algorithms on the trajectories of YN . These minimizations would be in that case initialized
at randomly chosen points xm

0
P X, 1 ď m ď M , and we would denote by xm

˚ the obtained
minimum when starting from xm

0
. Then, we generate Q " 1 random samples of the Gaussian

random vector pYNpx1

˚q, . . . , YNpxM
˚ qq, which we denote by

pY ωq

N px1

˚q, . . . , Y ωq

N pxM
˚ qq, 1 ď q ď Q. (28)

The indicator ℓN is finally estimated by counting how often the minima of the draws are on
the bounds,

ℓN :“ 1

Q

Qÿ

q“1

1
x
m‹

q
˚ PBX

, x
m‹

q

˚ P arg min
1ďmďM

Y
ωq

N pxm
˚ q. (29)
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Depending on the value of ℓN , the method described in the rest of the article can be com-
plemented in one of the two following fashions. If ℓN is too large, the traditional EIN
acquisition criterion should be used instead of deriv-EIN . Alternatively, ℓN can be calcu-
lated specifically for each bound and if it is likely that some specific bounds are hit, then
the corresponding variables can be set to these bounds, the BO iteration being carried out
with the deriv-EIN criterion in the lower dimensional space.
Nonetheless, the objective of this work was to come up with an acquisition criterion applicable
when the minimum of y is not on the boundary of X. We leave the continuation of the above
analysis, based on the likelihood to have the optimum at a bound, as a perspective to this
work.

5.2. Summary and further perspectives

In the context of Bayesian optimization, this work proposes a novel acquisition criterion
allowing to integrate as additional a priori the fact that interior minima are associated to
zero first order derivatives and positive definite Hessians. With this addition, a classical
acquisition criterion such as the expected improvement takes on a feature of information the-
oretic criteria by characterizing the distribution of potential optima when the plain expected
improvement accounts for all improving values of the function model. The new expected
improvement with derivatives, called deriv-EI, does not need the derivatives of the true
function. A computationally efficient approximation to deriv-EI is proposed in the article.
It has been observed through several test cases that the new criterion allows significant gains
in terms of function minimization at intermediate budgets of function evaluations. This ben-
efit is larger when the function to minimize presents several local minima or the dimension is
high , since in these cases the classical expected improvement is too exploratory in particular
in areas near the bounds [33] .

All the consequences of the proposed acquisition criterion could not be investigated in this
paper. In order to simplify the interpretation of the results, all the comparisons between the
classical EI and the deriv-EI criteria have been carried out in ideal configurations in the sense
that the test functions are realizations of the Gaussian process guiding the minimization.
The hyperparameters of the GP characterizing its statistical properties are always known by
construction of the test functions. Therefore, it will be interesting to study the sensitivity of
Bayesian optimization with deriv-EI to the iterative estimation of the GP hyperparameters,
as it happens in practice. In the same manner, only problems in moderate dimensions are
implemented (d ď 5), as it seems important to restrict ourselves to cases for which the
maximization of the EI and deriv-EI criteria can be sufficiently well solved. During the
analysis of configurations in higher dimensions (d ě 10), the maximization of these criteria
becomes a problem in itself and the performances of the EI and deriv-EI criteria turned out
to be too dependent on our ability to correctly maximize them. Working at the definition
of efficient methods to maximize the deriv-EI criterion would therefore be an appropriate
continuation to this work.
Finally, this work has focused exclusively on the EI acquisition criterion because it is a stan-
dard in BO, but other acquisition criteria should also benefit from the predictor’s derivatives.
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For example, the EI criterion of Equation (12) can be adapted to the related probability of
improvement [18]: instead of maximizing x ÞÑ Ppypxq ă YNpxqq “ E

“
1ypxqăYN pxq

‰
, we could

maximize

x ÞÑ E
“
1ypxqăYN pxq ˆ 1RN pxqBYN pxqPBpεq,B2YN pxqPM`pdq

‰
. (30)

In the same manner, the well-known upper confidence bound acquisition criterion [36] could
be adapted by adding a penalty term on the derivatives, which would make it possible to
explicitly play on the exploitation vs. exploration tradeoff in the same way as the standard
deviation. The new point to be evaluated could for instance be sought as a solution to the
following problem:

xpN`1q P argmin
xPX

µNpxq ´ λ1σN pxq ` λ2 }E rBYNpxqs} , (31)

with λ1 and λ2 two positive constants.
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A. Approximation of the EI with derivatives information

Using the notations of Equations (19) and (20),

YNpxq|BYNpxq “ 0 „ N
`
m, s2

˘
, (A.1)

pD2YNpxqqi|BYNpxq “ 0, YNpxq “ y „ N p :mi ` ρ1ipy ´ mq{s2, :s2i ´ ρ2
1i{s2q, (A.2)

where D2YN is the random vector gathering the diagonal elements of random matrix B2YN .
For p P t1, 2u, let us assume that ε is sufficiently small and that the off-diagonal terms of
B2 :YN can be neglected, such that

deriv-EINpxq “
ż ymin

y“´8

ż

9yPEpx,εq

ż

:Y PM`pdq

pymin ´ yqpdPpy, 9y, :Y q

«
ż ymin

y“´8

ż

9yPEpx,εq

ż

:yPr0,`8rd
pymin ´ yqpfBYN pxqp 9yqfYN pxq,D2YN pxq|BYN pxq“ 9ypy, :yqdyd 9yd:y

« VolpEpx, εqqfBYN pxqp0q
ż ymin

y“´8

ż

:yPr0,`8rd
pymin ´ yqpfYN pxq,D2YN pxq|BYN pxq“0py, :yqdyd:y.

(A.3)

Then, assuming that for any y P R, the components of D2YNpxq conditioned by the event
pBYNpxq “ 0, YNpxq “ yq are statistically independent, we deduce:
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ż ymin

y“´8

ż

:yPr0,`8rd
pymin ´ yqpfYN pxq,D2YN pxq|BYN pxq“0py, :yqdyd:y

“
ż ymin

y“´8

ż

:yPr0,`8rd
pymin ´ yqpfYN pxq|BYN pxq“0pyqfD2YN pxq|BYN pxq“0,YN pxq“yp :yqdyd:y

«
ż ymin

y“´8

pymin ´ yqp

p2πq d`1

2

exp

ˆ
´py ´ mq2

2s2

˙¨
˝

dź

i“1

ż `8

:yi“0

exp

ˆ
´p:yi ´ p :mi ` ρ1ipy ´ mq{s2q2

2:s2i p1 ´ ρ2
1i{ps2:s2i qq

˙
d:yi

:si

b
1 ´ ρ1i

s:si

˛
‚dy

s

« sp
ż zmin

z“´8

pzmin ´ zqp

p2πq d`1

2

exp

ˆ
´z2

2

˙˜
dź

i“1

ż `8

:zi“´:τi

exp

ˆ
´p:zi ´ rizq2

2p1 ´ r2i q

˙
d:zia
1 ´ r2i

¸
dz

« sp
ż zmin

z“´8

pzmin ´ zqp?
2π

exp

ˆ
´z2

2

˙ dź

i“1

Φ

˜
:τi ` riza
1 ´ r2i

¸
dz,

(A.4)

with zmin :“ pymin ´ mq{s, ri :“ ρ1i{ps:siq and :τi “ :mi{:si. The former expression can be
further simplified by Taylor expansion and by truncation to the first polynomial orders:

ż zmin

z“´8

pzmin ´ zqp?
2π

exp

ˆ
´z2

2

˙ dź

i“1

Φ

˜
:τi ` riza
1 ´ r2i

¸
dz

«
ż zmin

z“´8

pzmin ´ zqp?
2π

exp

ˆ
´z2

2

˙ dź

i“1

˜
Φ

˜
:τia
1 ´ r2i

¸
` riza

1 ´ r2i
φ

˜
:τia
1 ´ r2i

¸¸
dz

«
dź

i“1

Φ

˜
:τia
1 ´ r2i

¸ż zmin

z“´8

pzmin ´ zqpp1 ` zaq?
2π

exp

ˆ
´z2

2

˙
dz ,

(A.5)

where

a “
dÿ

i“1

ria
1 ´ r2i

φ

ˆ
:τi?
1´r2

i

˙

Φ

ˆ
:τi?
1´r2

i

˙ . (A.6)

It finally comes
deriv-EINpxq « LikelyMinpxq ˆ cond-EIppqpxq, (A.7)

with

LikelyMinpxq :“ VolpEpx, εqqfBYN pxqp0q
dź

i“1

Φ

˜
:τia
1 ´ r2i

¸
, (A.8)

cond-EIppqpxq :“
#
s ppzmin ´ aqΦpzminq ` φpzminqq if p “ 1,

s2
`
p1 ` z2min ´ 2azminqΦpzminq ` pzmin ´ 2aqφpzminq

˘
if p “ 2.

+
(A.9)
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d θ mean of R2 standard deviation of R2

2 0.2 0.94 0.04
2 0.5 0.96 0.03
3 0.2 0.96 0.02
3 0.5 0.96 0.06
5 0.2 0.93 0.04
5 0.5 0.97 0.03

Table A.1: Coefficients of determination R2 between the proposed, fast, approximation of deriv-EIN and a
Monte-Carlo approximation.

The expression when the constraint on the second order derivatives is not considered can

be recovered by making :τi tend to infinity. In this case, a tends to 0 and
śd

i“1
Φ

ˆ
:τi?
1´r2i

˙

tends to 1.

Numerical assessment of the proposed approximation

In order to numerically evaluate the quality of the approximation of deriv-EIN , we implement
a second Monte-Carlo based approximation :

deriv-EIN pxq « pdpxq :“ VolpEpx, εqqfBYN pxqp0q 1

M

Mÿ

m“1

1Ymďymin
1 :Y mPM`pdqpymin ´ Ymq,

(A.10)

where
!
Ym, :Y m

)M

m“1

gathers M independent realizations of pYNpxq, B2YNpxqq|BYNpxq “ 0

The term VolpEpx, εqqfBYN pxqp0q is explicitly calculated in the same way in both approxima-
tions.

Focusing on the test functions listed in Section 4.2 in dimensions d P t2, 3, 5u, and limiting
ourselves to N “ 2d, we uniformly sample 1000 points x1, . . . ,x1000 in r0, 1sd. We compute

the coefficient of determination R2 between the values of
!
LikelyMinpxjq ˆ cond-EIppqpxjq

)M

j“1

(the proposed and fast approximation of deriv-EIN) and the values of
!
pdpxjq

)M

j“1

(the time

consuming Monte-Carlo approximation of deriv-EIN ). The mean value and standard de-
viation of these coefficients of determination obtained when repeating 10 times the whole
process are finally summarized in Table A.1. In each case, we observe high coefficients of
determination, which justifies the use of the fast approximation.

B. Expression of the analytical test functions

The functions y1D and y2D which were considered in Section 4.1 have the following expressions
(Notice the offset made such that the minimum of the functions is 0):
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y1D
0

:

"
r0, 1s Ñ R

x ÞÑ cosp6πx ` 0.4q ` px ´ 0.5q2

y1Dpxq “ y1D
0

pxq ´ min
zPr0,1s

y1D
0

pzq, x P r0, 1s,

y2D
0

:

# r0, 1s2 Ñ R

px1, x2q ÞÑ 10 ` x1 `
´
15x2 ´ 5p15x1´5q2

p4π2 ` 5p15x1´5q
π

´ 6
¯2

` 10 cosp15x1 ´ 5q
`
1 ´ 1

8π

˘

y2Dpxq “ y2D
0

pxq ´ min
zPr0,1s2

y2D
0

pzq, x P r0, 1s2.

C. Generation of test functions as realizations of a Gaussian process

We describe here how deterministic functions are defined as particular realizations of a
centered Gaussian process Z indexed by x P X, where X is a compact subset of Rd and the
covariance function of Z is denoted by C. The process consists of the following steps.

1. We start by generating a design of experiments X :“ tx1, . . . ,xNu of large size N

covering as much as possible X.
2. We then project Z on this design of experiments, and we note z “ pz1, . . . , zNq the

vector containing the values of Z realized at x1, . . . ,xN .
3. By Gaussian conditioning, the function x ÞÑ rpxqTR´1z can thus be seen as the

continuous extension of a realization of Z whose projection in X is equal to z, where
for all x P X,

rpxq “

¨
˚̋

Cpx,x1q
...

Cpx,xN q

˛
‹‚, R :“

»
—–

Cpx1,x1q ¨ ¨ ¨ Cpx1,xNq
... ¨ ¨ ¨ ...

CpxN ,x1q ¨ ¨ ¨ CpxN ,xNq

fi
ffifl .

It is clear that this type of construction strongly depends on the dimension of X . Indeed, the
larger the size of X , the closer the constructed function will look like a particular realization
of Z. In addition, the larger the input space dimension, d, the more points will be needed in
X for the continuous extension to be relevant. For the examples treated in Section 4.2, X is
defined as the concatenation of a two-level factorial design (in order to cover all the vertices
of X “ r0, 1sd) and a space filling LHS design of size 100 ˆ d.
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