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Abstract

Bayesian optimization algorithms form an important class of methods to minimize functions
that are costly to evaluate, which is a very common situation. These algorithms iteratively
infer Gaussian processes from past observations of the function and decide where new ob-
servations should be made through the maximization of an acquisition criterion. Often, in
particular in engineering practice, the objective function is de�ned on a compact set such as
in a hyper-rectangle of ad-dimensional real space, and the bounds are chosen wide enough
so that the optimum is inside the search domain. In this situation, this work provides a
way to integrate in the acquisition criterion thea priori information that these functions,
once modeled as GP trajectories, should be evaluated at their minima, and not at any point
as usual acquisition criteria do. We propose an adaptation of the widely used Expected
Improvement acquisition criterion that accounts only for GP trajectories where the �rst
order partial derivatives are zero and the Hessian matrix ispositive de�nite. The new
acquisition criterion keeps an analytical, computationally e�cient, expression. This new
acquisition criterion is found to improve Bayesian optimization on a test bed of functions
made of Gaussian process trajectories in dimensions 2, 3 and5. The addition of �rst and
second order derivative information is particularly useful for multimodal functions.

Keywords: nonconvex optimization, Gaussian process regression, statistical learning,
stochastic process derivation

1. Introduction

Over the last 20 years, Bayesian optimization (BO) methods have established themselves
as one of the references for approximating the point(s) minimizing an expensive-to-evaluate
black-box function, from as few calls to this function as possible. This is re�ected in the
existence of many reviews and tutorials on BO in the literature (see for instance [16, 35, 32,
11, 9, 8], as well as many applications of BO in industrial applications, such as aeronautics
[6, 19], agriculture [26] or the optimization of machine learning hyperparameters [34, 41].
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More speci�cally, BO is concerned with minimization problems that can be written in the
following form:

x � Parg min
x PX

ypx q; (1)

wherey is a pointwise observable function de�ned over the compact set X € Rd, d ¥ 1. BO
assumes thaty can be usefully represented as a Gaussian process (GP), whose mean and
covariance functions have been identi�ed from a limited number of calls to functiony. It then
sequentially adds new observations ofy at points maximizing anacquisition criterion whose
objective, in the search for the global minimum, is to make a judicious trade-o� between
the exploration of X and the exploitation of past observations. In the theory of decision
under uncertainty, acquisition criteria are the expectation of autility of the possible function
observations according to the stochastic model of the objective function [42].
Several acquisition criteria have been proposed. The earliest, one-dimensional, version of
BO [17] involved the probability of improvement and an uppercon�dence bound. The up-
per con�dence bound was later theoretically studied in manydimensions in [37]. Another
early BO acquisition criterion was described in [22] which is, since [7], called the knowledge
gradient. It is a one-step-ahead expected progress in GP mean. The Expected Improvement
beyond the current best observation (EI) is the most classical acquisition criterion. The EI
has a simple interpretation and an analytical expression deprived of parameters to tune, two
features which have contributed to its popularity. It was �rst proposed in [28] and popu-
larized in [30, 15, 23]. More recently, acquisition criteria based on information theory have
been suggested which target entropy reductions in the GP model extrema [13] or locations
of extrema [38, 12].
BO is di�cult to beat when the dimension of the search space remains limited (d ¤ 5 to 10)
and when the function is multimodal with some structure [20]. Several adaptations of this
formalism have been proposed to extend the e�ciency of theseapproaches to larger input
spaces, by playing directly on the acquisition criterion [33], on the identi�cation of latent
spaces of reduced dimensions [2, 10], or on the introductionof trust regions [4].
It is nevertheless interesting to note that all of these methods only exploit a limited part
of the information conveyed by the GP. In particular, they donot take into account the
information that the GP derivatives could bring, whether the function y is convex or not.
Indeed, wheny is twice di�erentiable, it is well known that the �rst deriva tives of y become
zero and that its Hessian matrix is positive de�nite at its minimum (unless the minimum
lies at an edge of the domain). It is reasonable to believe that the minimization strategy can
only bene�t from this supplementary knowledge on derivatives.
With this in mind, the main contribution of this paper is to propose an adaptation of the
famous EI criterion so that it integrates the information of zero derivative and positive
de�nite Hessian matrix of the GP trajectories . In other terms, this new criterion only
accounts for possible minima of the GP trajectories, as opposed to the traditional EI that
can confer a utility to any part of a trajectory. We emphasizethat the proposed criterion
does not imply that derivatives of the true function ypx q be calculated. The derivatives
only concern the GP. The new criterion is meaningful if the minimum is located inside
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the search domain, which is a reasonable assumption in most applications where, precisely,
the bounds are chosen as extremes that should not be reached.A complementary idea for
cases where the bounds might be active is nevertheless givenas a perspective: a method is
proposed to estimate the likelihood that the minimum ofy is on the edge of the domain.
The outline of this paper is as follows. Section 2 recalls thetheoretical bases of the Gaussian
process regression (GPR) and its use for the minimization ofblack-box functions. Section
3 introduces the acquisition criterion we propose for taking into account information on the
derivatives of y. Section 4 then illustrates the bene�ts of this new acquisition criterion on
simulated test functions that can be modeled as realizations of Gaussian processes. Section
5 describes how optima on the bounds can be handled and concludes the paper.

2. The EGO general framework

For d ¥ 1, let X be a compact subset ofRd. In this work, we are interested in �nding
the solution(s) x � of the optimization problem de�ned by Eq. (1) using as few pointwise
observations ofy as possible. Anticipating the developments in the following sections ex-
ploiting the gradient of y, we assume thaty is an element ofC2pX; Rq, the set of real-valued
twice-di�erentiable functions de�ned on X. In addition, we treat X as explicit, which means
that the function y cannot be evaluated outside the search region (it is de�ned as a product
of intervals in the applications).
To solve this problem, we consider Bayesian Optimization guided by the Expected Improve-
ment (EI) acquisition criterion. Such methods are often called E�cient Global Optimization
algorithms (EGO) in reference to [15], although implementations (of the GP and of the EI
maximization) vary. EGO relies on the evaluation of the objective function at a sequence of
well-chosen points as summarized hereunder and in Algorithm 1.

Initialization

To begin, the functiony is evaluated atN0 points uniformly chosen inX (typically according
to a space-�lling design of experiments (DoE) [5, 25]). We note px pnq; yn :� ypx pnqqqN0

n� 1 the
obtained pairs. Given this available data, a GP-based surrogate model is trained fory.
To obtain convergence results, a common theoretical assumption is that y is a particular
realization of a Gaussian processY � GPp�; C q, whose prior mean and prior covariance
functions are noted� and C respectively (see [29, 27] for more details about Gaussian process
regression). In practice, it is only required thaty can be observed at a �nite number of points
and the assumption ofy being a sample ofY may not hold. The algorithm then conditions
Y to interpolate the N0 available input-output pairs, resulting in a newYN0 � GPp� N0 ; CN0q;
where:

� N0 px q � � px q � Cpx ; X qCpX ; X q� 1pypX q � � pX qq; x PX; (2)

CN0 px ; x 1q � Cpx ; x 1q � Cpx ; X qCpX ; X q� 1CpX ; x 1q; x ; x 1 PX: (3)
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In the former expressions,X :� r x p1q � � � x pN0qsT is the pN0 � dq-dimensional matrix that
gathers the available input points, and for any functionf and g de�ned on X and X � X
respectively, the following notation is adopted:

pf pX qqn � f px pnqq; pgpX ; X qqnm � gpx n ; x m q; 1 ¤ n; m ¤ N0: (4)

Iteration

Given N ¥ N0 evaluations ofy, an acquisition criterion is introduced to choose at which
point to carry out the pN � 1qth evaluation of y. In the noise-free setting, the classical
acquisition criterion is the Expected Improvement (EI). It is the expectation of a utility at
x de�ned as the progress below the current best observation :

EIN px q:� E rmaxp0; ymin � YN qs �
»

R
maxp0; ymin � yqf YN px qpyqdy

� � N px q pUN px q� pUN px qq � � pUN px qqq:
(5)

Here,UN px q:� p ymin � � N px qq{� N px q, � N px q:�
a

CN px ; x q, ymin is the current minimum of
the N observations ofy, noted ypx p1qq; : : : ; ypx pN qq, � and � denote the probability density
function (PDF) and cumulative density function (CDF) of the standard Gaussian variables,
and f YN px qpyq � � ppy � � N px qq{� N px qq{� N px q is the PDF of the Gaussian random variable
YN px q � N p� N px q; � N px q2q, where

YN :� Y | Ypx p1qq � ypx p1qq; : : : ; Ypx pN qq � ypx pN qq: (6)

By construction, this acquisition criterion seeks a compromise between exploitation (�rst
term) and exploration (second term) for the global search ofthe minimum, and the next
evaluation point is chosen such that

x pN � 1q Parg max
x PX

EIN px q: (7)

Stopping criterion

For most existing implementations of EGO, the stopping criterion is a maximum number of
evaluations ofy. Indeed, unlike gradient-based approaches for minimizingconvex functions,
once a local minimum ofy has been found, there is no theoretical guarantee that it corre-
sponds to the global minimum ofy. While it may be tempting, stopping the search when the
expected improvement drops below a lower bound is unstable in practice as the EI changes
a lot with the GP length scales.

Degrees of freedom

The performance of the EGO method depends on several degreesof freedom that vary
between implementations. The choice for� and C, the way the parameters on which� and
C depend are optimized, the ratioN0{budget, the way the initial DoE is constructed, the
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Algorithm 1: Standard EGO algorithm.
ChooseN0; budget; Y � GPp�; C q ;
Ñ Initialization
Draw at random N0 points x p1q; : : : ; x pN0q in X ;
Compute ypx pnqq, 1 ¤ n ¤ N0, estimate the parameters on which� and C depend ;
De�ne YN0 :� Y |Ypx p1qq � ypx p1qq; : : : ; Ypx pN0qq � ypx pN0 qq ;
Set k � 0 ;
Ñ Iteration
while k   budgetdo

Search forx pN0 � k� 1q :� arg maxx PX EIN0 � kpx q ;
Evaluate y at x pN0 � k� 1q (and potentially adjust the expressions of� and C) ;
De�ne YN0 � k� 1 :� Y |Ypx p1qq � ypx p1qq; : : : ; Ypx pN0 � k� 1qq � ypx pN0 � k� 1qq ;
Update k Ð k � 1

end
Return min1¤ i ¤ N0 � budget ypx pi qq.

way the acquisition criterion is maximized are all important (see [20] for an investigation of
the in�uence of these choices).
However, as the paper studies an adaptation of the acquisition criterion, it is clearer to �x
these parameters to standard values of the literature. To this end, the function � is taken
as a constant, and the functionC is chosen in the class of tensorized Matérn kernels with
smoothing parameter� � 5{2 (see [29] for alternative classes of functions):

� px q:� �; C px ; x 1q:� � 2
d¹

i � 1

�
�

|x i � x1
i |

` i



; x ; x 1 PX; (8)

� puq:�
�

1 �
?

5u �
5
3

u2



exp

�
�

?
5u

	
; u ¥ 0: (9)

The hyperparameter vector� :� p �; �; ` 1; : : : ; `dq will either be considered known (via the
de�nition of test functions to be minimized in the form of a particular realization of a
Gaussian process of chosen parameters), or estimated by itsmaximum likelihood estimator
(see [39] for further details). As we focus on costly functions, we will set the maximal budget
between 10 and 20 times the dimensiond of the problem, whileN0 will be chosen small (most
of the time we will haveN0 � 3). The initial DoE will always be a random space-�lling Latin
Hypercube Sample (LHS) [3, 25]. For objective numerical comparisons, the maximization
of the acquisition criteria, whether it is the EI in Equation (7) or one of the new criteria of
Section 3, is always carried out in the same way. At each iteration, the acquisition criterion
is �rst evaluated at a very large number of points randomly chosen inX (typically of the
order of 10d� 1). The Nelder-Mead algorithm [24] then maximizes the acquisition criterion
starting from the 10 most promising points among the random points.
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3. Extending the Expected Improvement with derivatives

We now show how to extend the Expected Improvement acquisition criterion so that it
accounts for gradient and Hessian information. The principles underlying the calculations
are that GP derivatives are GPs, and that local optima away from the bounds coincide with
canceling derivatives and positive de�nite Hessians. These principles have already been used
in the context of BO in [13] for approximating the entropy of local optima. An independent
and di�ering version, adapted to EI, is described hereafter.

3.1. Reminders on Gaussian process derivation

The acquisition criteria reviewed in the Introduction, in particular the EI, are only based on
the distribution of YN px qand do not include information related to higher derivatives. Yet,
when the functionsx ÞÑ� px q and px ; x 1q ÞÑCpx ; x 1q are su�ciently regular, the statistical
properties of the derivatives ofY can be deduced by simple derivations of� and C. Indeed,
as the Gaussian distribution is stable by linear operations, for any linear operatorL such
that Ly is a function from Rd to RdL , LY is also a Gaussian process, with:

E rLYpx qs � L � px q; CovpLYpx q; LYpx 1qq � LCpx ; x 1qL T : (10)

Here, the notations LCpx ; x 1q and Cpx ; x 1qL T indicate that operator L is applied as a
function of x and x 1 respectively, so that CovpLYpx q; LYpx 1qqis a pdL � dL q-dimensional
matrix. In particular, for dL � 1 � dpd � 3q{2, if we choose

L : Y ÞÑLY :�
�

Y;
BY
Bx1

; : : : ;
BY
Bxd

;
B2Y
Bx2

1
; : : : ;

B2Y
Bx1Bx2

; : : : ;
B2Y
Bx2

d



;

we obtain the joint distribution of Y and its �rst and second order derivatives. For each
twice-di�erentiable function z, we introduce the following notations,

Bz :�

�

�
�

Bz
Bx1
...

Bz
Bxd

�

�
� ; B2z :�

�

�
�
�

B2z
Bx2

1
� � � B2z

Bx1Bxd
...

. . .
...

B2z
Bx1Bxd

� � � B2z
Bx2

d

�

�
�
� ; D 2z :� diagpB2zq �

�

�
�
�

B2z
Bx2

1
...

B2z
Bx2

d

�

�
�
� ; (11)

and we denote byM � pdq the set ofpd � dq-dimensional positive de�nite matrices.

3.2. An acquisition criterion accounting for the derivatives

For any x in X, it is well known that if Bzpx q � 0 and B2zpx q P M � pdq, x is a local
minimum of z. As the input spaceX is bounded, the reciprocal is however not true, since a
local minimum can be found at the boundary ofX with a non-zero gradient and/orB2zpx q R
M � pdq. The case when the optima are on the bounds will be discussed in Section 5.1. For
now we focus on the interior ofX, to integrate as prior knowledge that the gradient will be
zero and the matrix of curvatures positive de�nite at the local minima of y, the EI criterion
de�ned by Eq. (5) can be replaced by:
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deriv-EIN px q:� E
�
1R N px qBYN px qPBp" q;B2 YN px qPM � pdq maxp0; ymin � YN px qq

�
; (12)

where for any" ¡ 0, Bp"q :�
 

9y PRd; } 9y } ¤ "
(

is the d-dimensional hypersphere of radius
" , R N px q is a matrix such that

R N px qCovpBYN px qqR N px qT � I d; (13)

and for any eventa, 1a is equal to1 if a is true and to 0 otherwise. The termR N px qBYN px q P
Bp"q guarantees that the GP gradient, normalized by the square root of its covariance, has
a small enough norm. Equivalently, we can write the criterion deriv-EIN as

deriv-EIN px q:� E
�
1BYN px qPEpx ;" q;B2YN px qPM � pdq maxp0; ymin � YN px qq

�
; (14)

with Epx ; "q:�
 

9y PRd; 9y T R N px qT R N px q9y ¤ "2
(

a d-dimensional ellipsoid. In connection
with theoretical decision under uncertainty [42], deriv-EIN px q is the expectation of a utility
of the function model (the GP trajectories) atx . Here, the utility is de�ned as the progress
of the stochastic model below the best observation knowing that the function model has a
minimum at x i.e., it has null �rst order derivatives and positive curvatures. The key idea
of deriv-EI is to account only for minima of the possible functions. On the contrary, EI
accounts for any value of the possible functions which is below the best observation, which
is less consistent with the goal of minimization. Because itcharacterizes the behavior of the
minima of the GP realizations, deriv-EI can be seen as a criterion between EI and information
theoretic criteria based on the expected reduction in entropy of the optima [13].

By considering deriv-EIN rather than EIN as a new acquisition criterion in Algorithm 1,
we expect to improve its exploitation capabilities, without degrading its exploration capa-
bilities too much. Like EIN , deriv-EIN needs only evaluations of the true function,
ypx p1qq; : : : ; ypx pN qq through YN , BYN and B2YN . It does not need derivatives of the true
function, y. Only the GP is di�erentiated. However, this acquisition criterion can no longer
be calculated simply, and in the general case it will requirethe use of sampling techniques for
its evaluation, which may complicate its use. Nevertheless, if we choose" small, if we neglect
the o�-diagonal terms of the Hessian (as it was already proposed in [13]) while assuming a
well-chosen conditional independence of its diagonal terms, we obtain the following relaxed
acquisition criterion (see A for a detailed derivation):

deriv-EIN px q � LikelyMin N px q � cond-EIN px q; (15)

LikelyMin N px q:� VolpEpx ; "qq � exp

�

�
9m T 9S

� 1
9m

2

�

�
d¹

i � 1

�

�
:� ia

1 � r 2
i

�

; (16)

cond-EIN px q:� sppzmin � aq� pzmin q � � pzmin qq; (17)

where VolpEpx ; "qqis the volume ofEpx ; "q , and where the following notations have been
introduced to simplify the expressions:
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BYN px q � N
�

9m ; 9S
	

; D 2YN :�
�
pB2YN q1;1; : : : ; pB2YN qd;d

�
; (18)

pYN px q; D 2YN px qqq|BYN px q � 0 � N

�

�
�
�
�

�

�
�
�
�

m
:m1
...

:md

�

�
�
�



;

�

�
�
�
�

s2 � 1;1 � � � � 1;d

� 1;1 :s1
. . .

...
...

. . . . . . � d� 1;d

� d;1 � � � � d;d� 1 :sd

�

�
�
�
�

�

�
�
�



; (19)

zmin :�
ymin � m

s
; r i :�

� 1i

s:si
; :� i �

:mi

:si
; a �

d¸

i � 1

r ia
1 � r 2

i

�
�

:� i?
1� r 2

i




�
�

:� i?
1� r 2

i


 : (20)

Finally, we note that the volume of Epx ; "q is proportional to detpCovpBYN px qqq� 1{2, and
that the constant of proportionality depends on" without depending on x . The precise
choice of" has thus no impact.

3.3. Comments on the proposed acquisition criterion

Analysis of the terms in deriv-EI .
Comparing the criteria EIN px qand deriv-EIN px q, we �rst notice the presence of the function
x ÞÑLikelyMin N px q, whose role is to concentrate the search of the new point to beevaluated

around the pointsx that are likely to lead to a zero gradient ofy (small values of 9m T 9S
� 1

9m ),
while favouring the areas of positive second derivatives (high values of� p:� i {

a
1 � r 2

i q for all
i ). The second functionx ÞÑcond-EIN px q estimates the expected improvement assuming
that the function has a minimum at x , and looks particularly like the expression given by Eq.
(5). The more the second derivatives ofYN will be positive in probability, which translates
into large values of:� i , the more this similarity will be important because, in thiscase, the
constant a tends towards 0. In addition, as the statistical properties ofYN px q, BYN px q
and D 2YN px q are known explicitly, it is important to notice that the evaluation cost of
deriv-EIN px qis of the same order of magnitude as that of the classical EIN px q. Importantly,
there is no need to use sampling methods to estimate it.
In addition, if � is chosen to be constant andC is a stationary covariance kernel (which
remains the most common con�guration in BO), thenBYpx q is statistically independent of
Ypx q and D 2Ypx q for any x in X. In particular, if we focus on the �rst iteration of the BO
procedure (N � 0), and put aside the constraint on the Hessian, it can be notedthat for
any " ¡ 0 and any x PX,

E
�
1R 0px qBY px qPBp" qmaxp0; ymin � Ypx qq

�
� p" � EI0px q; (21)

wherep" :� PpR 0BYpx q PBp"qqis a constant independent ofx as the statistical properties
of BYpx q do not depend onx (stationarity). In that case, EI 0 is very close to deriv-EI0 (up
to the in�uence of the second derivatives), and maximizing either of these criteria should give
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close results. Then, the more the processY is conditioned by observations ofy, the more
Y, BY and B2Y are correlated, and the more chances there are for deriv-EIN px qand EIN px q
to propose di�erent points. After many observations, it is anticipated that the interesting
areas from the EI point of view will have low gradients, so that the two criteria should again
propose close new evaluation points. Thea priori interest of the deriv-EIN px qcriterion thus
lies in intermediate values ofN , in the exploration of the various local minima ofy, and the
search for the smallest zone ofX likely to contain the global minimum of y.
At last, when the dimensiond increases, one of the classical di�culties of BO based on EIN

is to favor exploration over exploitation, by placing a verylarge number of points on the
edges of the domain, which e�ectively represent the majority of the volume ofX when d is
large [33]. This e�ect should be limited by substituting deriv-EI N for EIN , i.e., by requiring
that each partial derivative of YN be close to0 and that each main curvature be positive
through the factor LikelyMinpx q, which becomes more restrictive asd increases.

A more exploratory deriv-EI .
In return, by trying to quickly visit potential high-perfor mance local minima, it is possible
that the deriv-EI N criterion explores fewer regions ofX than EIN , which could be penalizing
for the minimization of functions with multiple local minima. If this were the case (this kind
of phenomenon was not observed on the test cases studied in Section 4), several techniques
could be proposed to rebalance the exploration/exploitation ratio. For instance, the control
of the exploration-exploitation balance by changing target values has been studied in [16]
for the probability of improvement and a likelihood criterion. Such a shift in target around
ymin was included in the EI criterion in [1, 21]. Another way of reinforcing exploration
with respect to exploitation consists in maximizing the expected improvement at a certain
power p ¥ 1. Indeed, by taking p greater than 1, we further encourage low-probability high
improvements compared to more probable small improvements. This idea was pursued in
[31] where expressions for the generalized EIN criterion with p ¥ 2 can be found. The new
EI with derivatives can also bene�t from elevating the improvement at a given power. It
becomes,

deriv-EIppq
N :� E

�
1BY px qPEpx ;" q;B2YN px qPM � pdq maxp0; ymin � YN px qqp

�
:

For p � 2 (see A for more details) and using the same notations as in Section 3.2, such a
criterion can again be approximated under an analytical form close to the one of Eq. (15):

deriv-EIp2q
N px q � LikelyMin px q � cond-EIp2qpx q; (22)

cond-EIp2qpx q:� s2
�
p1 � z2

min � 2azmin q� pzmin q � p zmin � 2aq� pzmin q
�

: (23)

4. Numerical experiments

In this Section, we �rst illustrate the way the proposed criterion works, and the di�erences it
implies with the classical EI criterion. In particular, it will be seen that iterates stemming
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from the maximization of deriv-EIN are more concentrated inside the search domain than
EIN iterates. Then, by considering functions with minima inside the search domain, we
show that deriv-EIN allows faster average convergence than EIN does. This is particularly
visible with highly multimodal functions. In the experiments, deriv-EIN is calculated
through the approximation of Eq. (15).

4.1. Analysis of the deriv-EIN criterion in dimension 1 and 2

Test functions and experimental protocol
We analyze the behavior of the deriv-EIN criterion through the study of an oscillating func-
tion in dimension d � 1, noted y1D , and of a modi�ed Branin function in dimensiond � 2,
noted y2D (see Figure 1 for a graphical representation of these functions, and Appendix B for
their de�nitions). In order to focus exclusively on the e�ects of the acquisition criterion, we
�x the hyperparameters (length scales, variance, trend parameters) of the Gaussian predictor
to their maximum likelihood estimate for a large number of points. The maximization of
the acquisition criteria is performed by an exhaustive search on a �ne grid, which is possible
in such low dimensions.

Visualizing the terms making the new acquisition criterion
We illustrate the roles of the LikelyMinN and cond-EIN functions (which are de�ned in
Section 3.2), by evaluatingy1D at N0 � 5 points andy2D at N0 � 12 points randomly chosen
in X. The evolutions of LikelyMinN and cond-EIN associated to these evaluations are given
in Figures 1-a and b. As expected, the function LikelyMinN is large at the points the most
likely to correspond to local minima, while the function cond-EIN highlights the areas the
most likely to lead to GP trajectories that have a null gradient while having values lower
than the current minimum. For these particular examples, the product of the two functions,
which yields the deriv-EIN criterion, favors new points inside the input domain, when the
EIN criterion encourages to evaluatey1D (resp. y2D) on an edge ofX. We also notice that
by concentrating the search at areas of low gradient fory1D or y2D, we limit the signi�cant
values of deriv-EIN to sub-regions ofX that are smaller than what EIN would give.

Performance of deriv-EIN over one step

The performance of the deriv-EIN criterion is now analyzed in terms of minimization ofy1D

and y2D.
We start with a single step. For eachj P t1; 2u, and eachk ¥ 2d� 1, we generate500space-

�lling LHS made of k points in X [25], which are written
!

X pj q
k;i

) 500

i � 1
. For each1 ¤ i ¤ 500,

we then construct a Gaussian predictor ofyjD based on its evaluations at each point inX pj q
k;i ,

and we denote byx pj q;deriv-EI
k;i and x pj q;EI

k;i the points of X maximizing the criteria deriv-EIk
and EIk , respectively. Letpypj q;EI

k;i and pypj q;deriv-EI
k;i be the smallest value ofyjD that we obtain:

pypj q;EI
k;i :� min

x PX pj q
k;i Y t x pj q;EI

k;i u
yjD px q; pypj q;deriv-EI

k;i :� min
x PX pi q

k Y t x pj q;deriv-EI
k;i u

yjD px q: (24)
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(a) LikelyMin N and cond-EIN for y1D
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(b) LikelyMin N and cond-EIN for y2D
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(c) EI N and deriv-EIN for y1D
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(d) EI N and deriv-EIN for y2D

Figure 1: The function y1D is shown in black thick solid lines in plots (a) and (c) where the grey areas
correspond to 95% con�dence intervals of the Gaussian predictor. Identically, the black solid lines in plots
(b) and (d) are the contours of function y2D . In each plot, the global minimum is indicated by a cyan
triangle, while the green dots show the points where the function has been evaluated. Plots (a) and (b)
show, for the two considered functions, the evolution ofx ÞÑLikelyMin N px q in orange solid line, and of
x ÞÑcond-EIN px q in magenta dotted line. Plots (c) and (d) compare the evolution of x ÞÑEIN px q (in blue
solid line) to that of x ÞÑderiv-EIN px q (in red dotted line). For ease of reading, the functions LikelyMin N ,
cond-EIN , EIN , and deriv-EIN are normalized in such a way that their maximum value is �xed to 1.
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By construction, the lower these values are, the better the acquisition criteria should be.
In this prospect, for j P t1; 2u, Figure 2 compares the evolution of the25%, 50% and 75%
empirical quantiles ofpypj q;EI

k;i and pypj q;deriv-EI
k;i as a function ofk. As announced in Section 3.3,

the interest of the proposed criterion lies in the intermediate (about r5; 18s � d) values of
k. For too low values, as the Gaussian predictor and its �rst-order derivatives are not very
correlated, the criteria deriv-EIN and EIN are very close, and lead to similar results in terms
of minimization of the objective function. For k large, the Gaussian predictor approaches
the objective function with little uncertainty, and the cri teria deriv-EIN and EIN are equally
capable of identifying the global minimum. For intermediate values ofk, we observe on this
Figure that deriv-EIN yields better, lower, values ofy1D (left sub�gure) and even more so of
y2D (right sub�gure) than EI N does.

Performance of deriv-EIN over many steps
In the above numerical experiments, one step was studied andthe new evaluation points
were independent of each other. Getting closer to a BO algorithm, we now quantify the
e�ect of the acquisition criteria when de�ning a sequence ofpoints whereyjD is evaluated.
To this end, for j P t1; 2u, we generate500 new space-�lling LHS in X composed of 3

points each , which are written
!

rX pj q
3;i

) 500

i � 1
. For each j P t1; 2u and each repetition of the

experiment 1 ¤ i ¤ 500, the function yjD is evaluated at each point of rX pj q
3;i , and Algorithm

1 presented in Section 2 is run twice, taking as acquisition criterion deriv-EI �rst, then the
classical criterion EI. At each iterationk ¥ 1 of the algorithm, we noteypj q;deriv-EI

k;i and ypj q;EI
k;i

the obtained current minima ofyjD . The empirical estimates of the median and the mean of
these current minima is shown in Figure 3. The interest of thederiv-EI acquisition criterion
is again underlined by these results. Indeed, for all iterations k, the median and the mean of
the current minima associated with the deriv-EI criterion are lower than those of the current
minima associated with the EI criterion. Again, the advantage of deriv-EI over EI takes
place in the middle of the iterationsk. Note that the median is well below the mean for the
minimization of y1D. It comes from the fact that, for both EI and deriv-EI, some ofthe runs
have taken a signi�cant number of iterations to identify thearea of the global minimum.

4.2. Performance analysis in dimensions 2, 3 and 5
Test functions construction

The EI and deriv-EI acquisition criteria are now compared ona larger set of test functions.
To de�ne this set of functions, we elaborate on the idea of using GPs [12] which are by
construction compatible with the working assumptions. We start by noting Z pdq

� the Gaussian
process de�ned onX � r 0; 1sd such that for any x ; x 1 PX and any � ¡ 0

E
�
Z pdq

� px q
�

� 0; CovpZ pdq
� px q; Z pdq

� px 1qq �
d¹

i � 1

�

� c
2
d

|x i � x1
i |

�

�

; (25)

where � is the Matérn-5/2 covariance function of Equation (9), which is such that Z pdq
� is

twice di�erentiable in the mean-square sense. Notice the normalization of the length scales
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Figure 2: In�uence of the acquisition criterion deriv-EI N and EIN when minimizing y1D and y2D . For
k ¥ 2d � 1, the lower and upper parts of the black rectangles correspond to the 25% and 75% quantiles
of pypj q;EI

k;i , while the black circles show the median value. Similarly, the lower and upper parts of the red

rectangles correspond to the25% and 75% quantiles of pypj q;deriv-EI
k;i , while the red triangles show the median

value.
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Figure 3: In�uence of the acquisition criterion deriv-EI N and EIN when minimizing y1D and y2D . For k ¥ 1,

the �lled black circles (resp. the �lled red triangles) repr esent the empirical median of
!

ypj q;EI
k;i

) 500

i � 1
(resp. of

!
ypj q;deriv-EI

k;i

) 500

i � 1
), and the empty black circles (resp. empty red triangles) indicate the empirical means.
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in
a

d{2, allowing to de�ne Gaussian processes in any dimensiond with close dependence
structures. This normalization can also be understood by seeing that distances (between
the two farthest points, or the expected distance of two points randomly drawn in X) grow
in

?
d, therefore the length scales have to grow in

?
d. We consider as test function class

the set F pdq
� of realizations ofZ pdq

� that admits a global minimum strictly inside X (i.e., at a
point of zero partial derivatives). The following numerical tests then focus on two particular
values of� : � � 0:2 will characterize strongly oscillating functions admitting a large number
of local minima, while � � 0:5 will refer to more regular functions presenting a smaller
number of local minima. For� P t0:2; 0:5u and d P t2; 3; 5u, we generate100functions from

F pdq
� in a random and independent way. These functions are call

!
ypdq

i;�

) 100

i � 1
(see Appendix C

for a detailed description of their construction). We �nally subtract from each function its
minimum value so that

min
x PX

ypdq
i;� px q � 0; (26)

and we proceed to the same shifting on theY process. Figure 4 shows four examples of such
functions belonging toF p2q

0:2 and F p2q
0:5 in the cased � 2.

Experimental protocol
The global minimum of these functions is then searched twicewith Algorithm 1 by, �rst,
taking deriv-EI and, then, EI as the acquisition criterion. The total number of calls to the
objective function of each optimization run is equal to budget � 100. The two types of
searches are initialized with the evaluation ofypdq

i;� at the same space-�lling LHS of dimension
N0 � 3 (a di�erent design is generated for each function minimization). The size of the
design is small and does not depend ond. As observed in [20, 14], small random designs
at the beginning of BO searches are more e�cient. Moreover, the e�ect of the acquisition
criterion is more visible for small initial random designs.The growth of the length scales
in

?
d (Equation 25) guarantees that the correlation between theN0 points is the same,

independently ofd. In order to investigate the in�uence of the acquisition criterion only on
the optimization but not on the learning of the GP, the properties of the Gaussian process
Y used to guide the search are chosen equal to those ofZ pdq

� . As explained in Section 2, the
maximization of the acquisition criteria is performed in two steps: each acquisition criterion
is �rst evaluated in 105 points randomly chosen inX, and 10Nelder-Mead algorithms starting
from the 10 most promising points among the random points are then launched in parallel
to identify the new point at which to evaluate the objective function.

Two quantities of interest are then extracted from these Bayesian optimizations. For each
1 ¤ k ¤ budget, eachd P t2; 3; 5u, and each� P t0:2; 0:5u, we �rst note pypdq;deriv-EI

� pkq
(resp. pypdq;EI

� pkq) the empirical mean of the current minimum (mean best-so-far performance)
obtained at thekth iteration on all the tested functions when taking deriv-EI (resp. EI) as the
acquisition criterion. Second, we de�nepkpj q;deriv-EI p�; s q (resp. pkpj q;EI p�; s q), the mean time-
to-target that is the average number of iterations necessary for the best-so-far observation
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