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INTRODUCTION

Wave propagations in liquid-filled pipe systems is a long standing research topic, having attracted significative research efforts for more than hundred years [START_REF] Allievi | Teoria del colpo d'ariete, atti collegio ing. arch[END_REF]; [START_REF] Budny | The Influence of Structural Damping on Internal Pressure During a Transient Pipe Flow[END_REF]; [START_REF] Burmann | Water hammer in coaxial pipe systems[END_REF]; [START_REF] Holmboe | The Effect of Viscous Shear on Transients in Liquid Lines[END_REF]; [START_REF] Joukowski | Memoirs of the imperial academy society of st[END_REF]; [START_REF] Korteweg | Ueber die fortpflanzungsgeschwindigkeit des schalles in elastischen röhren (on the speed of sound propagation in elastic tubes )[END_REF]; [START_REF] Résal | Note sur les petits mouvements d'un fluide incompressible dans un tuyau élastique[END_REF]; [START_REF] Skalak | An extension of the theory of waterhammer[END_REF]. Several review papers can be found on this subject [START_REF] Ferras | One-dimensional fluid-structure interaction models in pressurized fluid-filled pipes: A review[END_REF]; [START_REF] Li | FSI research in pipeline systems -A review of the literature[END_REF]; [START_REF] Tijsseling | Fluid structure interaction in liquid filled pipe systems: a review[END_REF] where it is established that the propagation of water-hammer waves is mainly governed by three coupling mechanisms : (i) Poisson coupling, (ii) friction coupling and (iii) junction coupling. (i) is related to the Fluid-Structure-Interactions (FSI) arising at the wave passage from the coupled deformations of the solid in the radial and axial directions (for axi-symmetric "breathing mode" vibrations). (ii) result from the viscous dissipation within the unsteady boundary layer propagating at the wave speed. (iii) results from the applied boundary conditions at pipes ends (for a single pipe). In fact, in the case of unconstrained pipes for which vibrations can arise at frontiers, FSI produce an additional elastic wave distinct from the fluid pressure wave into the pipe. This additional wave also called precursor wave, has a distinct propagating velocity from the fluid pressure one. Furthermore both waves, the fluid pressure wave and the elastic wave are coupled. This coupling is called "Poisson coupling" because it arises from off-diagonal coupling terms proportional to the Poisson coefficient in the general wave equation associated with the pressure/stress vector.

Given the complexity of this coupled waves system, and since the governing equations have been established from several decades (at least without considering friction coupling models), a large part of the literature has considered numerical solutions in time-domain either combining the Method of Characteristic (MOC) [START_REF] Lavooij | Fluid-structure interaction in liquid-filled piping systems[END_REF] or finite volume formulation [START_REF] Daude | A finite-volume approach for compressible single-and two-phase flows in flexible pipelines with fluid-structure interaction[END_REF] in the fluid with finite elements in the solid. On the other hand, explicit analytical solutions have been developed in more restrained configurations : single pipe, curved pipe [START_REF] El-Raheb | Vibrations of three-dimensional pipe systems with acoustic coupling[END_REF], extended blockage [START_REF] Duan | Extended Blockage Detection in Pipelines by Using the System Frequency Response Analysis[END_REF] or simple three-like metric graphs Yang et al. (2004a) using the Transfer Matrix Method (TMM) [START_REF] Aliabadi | Frequency response of water hammer with fluidstructure interaction in a viscoelastic pipe[END_REF]; Keramat and Duan (2021a); Keramat et al. (2021); [START_REF] Li | Frequency domain analysis of fluid-structure interaction in liquid-filled pipe systems by transfer matrix method[END_REF]; [START_REF] Liu | Vibration analysis of liquid-filled pipelines with elastic constraints[END_REF]; [START_REF] Zhang | FSI analysis of liquid-filled pipes[END_REF] pressure and the longitudinal stress, so that when = 0, no such phenomenon arise. On the contrary, when > 0, the fast elastic wave propagation back and forth in the pipe produce highfrequency perturbations in the pressure signal. These high-frequency components of pressure signal can also be useful for other indirect purposes such as leak or defect detection in pipe systems Keramat and Duan (2021b); Keramat et al. (2021); [START_REF] Wang | Factorized wave propagation model in tree-type pipe networks and its application to leak localization[END_REF]; [START_REF] Zanganeh | Fluid-Structure Interaction in Transient-Based Extended Defect Detection of Pipe Walls[END_REF]., Nevertheless, the link between time-domain analytical solutions and the more established TMM Laplace domain ones has not been discussed yet. In this contribution, we establish and discuss the relation between time-domain discrete mode decomposition solutions and the classical TMM approach. From the derived one-to-one mapping between these two approaches, we discuss how the resulting discrete mode spectrum can also be obtained from TMM solutions. This feature is useful for comparison with numerical predictions in specific configurations. Furthermore, for three specific sets of boundary conditions, the inverse Laplace-transform of the TMM solutions is performed and compared with numerical solutions. The paper is organized as follow. Parameters and governing equations are provided 2 (some additionnal informations are also given in Appendix 4). TMM Laplace domain solution for general boundary conditions are provided in 2. The inverse Laplace transform of these solutions are given in section 2 where the relation with the time-domain 3 Bayle, July 24, 2023 discrete mode decomposition is also discussed. Three specific sets of boundary conditions are then considered in section 3 for which explicit Laplace domain and time domains solutions are obtained and compared with previous numerical solutions of the literature. Finally, convergence of the obtained solutions to mode truncation is finally analyzed in 3.

THEORETICAL FRAMEWORK

This section discusses the Laplace-domain TMM formulation of the water-hammer wave FSI problem for general classes of boundary conditions. TMM is hereby derived for the two-wave FSI propagating problem rather than the classical FSI four -equations one, but these two formulations are exactly equivalent as discussed in Bayle and Plouraboué (2023a). Here we nevertheless consider a less general formulation as the one considered in Bayle and Plouraboué (2023a) where a 2D unknown vector is considered for the pressure-axial stress 2D-vector P = ( , ) and not a 4D one.

This choice comes from considering boundary conditions independent on the velocity, so that, in this case, the general four equation FSI problems boils-down to equivalent and independent twowaves coupled propagation problems. This section discuss the relation between TMM solutions and time-domain analytical solution obtained in Bayle and Plouraboué (2023a) and their discrete spectrum of mode decomposition.

Governing wave-vector equation

Since governing equations and notations are the same as in Bayle and Plouraboué (2023a) there are not repeated here but given in appendix 4. The dimensionless water-hammer FSI wave-equation system with initial condition at rest (Cf (65) and ( 69) for more details) expressed in the eigenvector base reads 2 -C 2

P 2 P = 0 , with, P ( , 0) = P ( , 0) = 0, (1) 
where the change of basis relations

= 2 D 2 --1 2 D 2 + -1 1 1 , C 2 P = 2 - 0 0 2 + ≡ C 2 P -1
, and, P = -1 P,

have been used. is the Poisson's modulus and D the fluid to solid density ratio (provided in (64)) 4 Bayle, July 24, 2023 and ± the eigenvalue velocity (68). The pressure-axial stress 2D-vector P = ( , ) is transformed into a linear combination of those in 2D-vector P from (2).

The initially coupled pressure/stress wave propagation problem now looks decoupled into two distinct wave propagation modes associated with 2D-vector P. Nevertheless the coupling between P's components persists from the resulting coupled upstream and downstream boundary conditions associated with P. For the sake of simplification let us introduce four 2 × 2 matrices N , M, Q, R and S ( ) as a four-dimensional column vector corresponding to the perturbation with respect to the imposed steady-state ( ( ) being Dirac distribution). Boundary conditions can be formally written as a rectangular 8 × 4 linear system

N M 0 0 0 0 Q R 8×4 • P (0, ) P (0, ) P (1, ) P (1, ) 8×1 = S 4×1 ( ), (3) 
where S ( ) is a source term exciting the system for the impulse response. Specific sets of boundary conditions will hereafter be investigated and corresponding resolution using diagonalised vector wave-equation system (1), are handled in the Laplace domain in section 2.

Laplace resolution of the FSI wave equation

Let us introduce L, the Laplace transform operator, its Laplace variable and P the Laplace transform of P:

P ( , ) = L (P ( , )) . ( 4 
)
The Laplace transform of (1) then leads to

2 -C 2 P 2 P = 0, (5) 
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C 2 P being diagonal given (2). A solution can be found for the spatial ODE system leading to

P ( , ) = E( , ) PD ( ) + F( , ) PN ( ), (6) 
with 2 × 2 diagonal matrices

E( , ) = cos - 0 0 cos + , F( , ) = sin - 0 0 sin + , (7) 
and P D ( ), P N ( ) 2D-vectors yet to be found. P D ( ), P N ( ) provide the mode-dependent amplitude of P ( , ) respectively associated with the Dirichlet or the Neumann boundary condition imposed at location = 0. This is a transposition of the transfer matrix method used by [START_REF] Li | Frequency domain analysis of fluid-structure interaction in liquid-filled pipe systems by transfer matrix method[END_REF][START_REF] Li | FSI research in pipeline systems -A review of the literature[END_REF]; [START_REF] Tijsseling | Exact solution of linear hyperbolic four-equation system in axial liquid-pipe vibration[END_REF]; [START_REF] Zhang | FSI analysis of liquid-filled pipes[END_REF], to the wave operator formulation. Combining the expression of ( 6) and ( 7) with the Laplace transform of the boundary condition system (3) (into which the Laplace transform of the Dirac distribution ( ) being equal to one is used), leads to

P D P N ( ) = B -1 ( )S, (8) 
with

B = N MC -1 P QE(1) -RC -1 P F(1) QF (1) + RC -1 P E(1) (9) 
In the following development, the inverse of ( 9) is needed to find P. It is interesting to note that the general solution for arbitrary closure law can easily be deduced from solution (8) by multiplying the hereby considered source term S by the Laplace transform of the closure law. Alternatively, in time-domain, the general closure law solution are found from a convolution product with the impulse response solution as detailed in [START_REF] Bayle | Spectral properties of Fluid Structure Interaction pressure/stress waves in liquid filled pipes[END_REF]. This is why the hereby considered impulse response is interesting to study as a generic solution. By introducing the adjugate matrix of B, namely adj [B] one can formally see that

B -1 ( ) = adj [B( )] det B( ) , (10) 
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Let us furthermore introduce the two matrices e 1 = 1 0 0 0 0 1 0 0 , and, e 2 = 0 0 1 0

0 0 0 1 , (11) 
vector P ( , ) can then be found using ( 6), ( 8) and ( 10) to reach

P ( , ) = ( , ) det B( ) , (12) 
with

( , ) = [E( )e 1 + F( )e 2 ] (adj [B] S) . (13) 
(12)-( 13) is the formal solution for the 2D-vector P ( , ) in the frequency domain. For specific sets of boundary conditions, this formal solution can be further developed. Nevertheless, there is one salient feature of this solution not yet discussed but of uppermost importance : this solution diverges for specific values of complex variable . These locations are called the poles of function P ( , ). These poles provide deep physical insights since they give the specific natural resonant frequencies of the wave system or, equivalently the specific oscillating modes of the solution in time-domain. The ensemble of these discrete resonant frequencies is called the spectrum of the solution. The reason for this equivalence is found from the inverse Laplace transform which is now discussed. Next section 2 also discusses how to establish the spectrum condition and how it is related to matrix B( ).

Laplace inversion and time-dependent solution

The pole of ( 6) are investigated in order to perform the inverse Laplace transform using Cauchy's theorem.

Regarding the structure of ( 6), it immediately appears that the poles are located within the expressions of P D ( ) and P N ( ) and, consequently using ( 8)-( 10), within the root of det B( ). The adjugate matrix, by definition, does not contribute to the pole set of P D ( ) and P N ( ). The condition det (B( )) = 0 is exactly similar to the spectrum condition derived in [START_REF] Bayle | Spectral properties of Fluid Structure Interaction pressure/stress waves in liquid filled pipes[END_REF] and leads to

S P = { ∈ C | det B( ) = 0}. ( 14 
)
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The resulting transcendental equation for root is specific to each boundary condition set and has to be computed numerically. In the following, three configurations are considered for which, in each case, the root is purely imaginary, i.e.

=

, with, ∈ R.

(15) provides the one-to-one mapping between the Laplace domain TMM solutions and the time domain ones provided in [START_REF] Bayle | Spectral properties of Fluid Structure Interaction pressure/stress waves in liquid filled pipes[END_REF] because each purely imaginary pole in the frequency domain = provides the corresponding exponential exp ( ) in the time domain from Cauchy theorem, as now discussed. It is interesting to mention that purely imaginary poles are found for the three specific considered configurations examined in section 3, without stating that it is a general result. This remark goes along with the consideration obtained for the operator spectrum in [START_REF] Bayle | Spectral properties of Fluid Structure Interaction pressure/stress waves in liquid filled pipes[END_REF]. The pole set of P ( , ), S P , being found, Cauchy's residue theorem is used to derive a time-domain solution for vector wave problem (1), leading to

P ( , ) = R S P lim → ( - ) ( , ) det (B( )) . (16) 
(16) has been established using a closed countour being a semi-circle of infinite radius in the complex plane, the semi-axis of which being parallel to the imaginary axis with a strictly positive abscissa. This semi-circle has the imaginary axis included in it, and thus all poles [START_REF] Duffy | Transform methods for solving partial differential equations[END_REF]. Then, using the classical Taylor expansion of det B( ) at poles = ,

P ( , ) = R S P ( , ) det (B( ))
.

(

) 17 
The previous expression completes the frequency-domain analysis for the time-domain solution of (1). A variety of spatial boundary conditions is then investigated. The associated spectrum will be described and analyzed in detail. Natural frequencies, , found from transcendental spectrum equation roots, , read

( ) = 2 = 2 , ( 18 
)
where is the pipe's length introduced in §1. The reservoir-pipe-anchored valve system: : case (i)

In the following configuration depicted in Fig. ??a, the pipe is supposed perfectly anchored both upstream and downstream. One thereby supposes an homogeneous Neumann condition for the axial stress at = 0 & = 1. Furthermore the reservoir impedes any pressure fluctuation upstream which can be interpreted as an homogeneous Dirichlet condition for the pressure field. Finally, downstream, the instantaneous valve closure is modeled with a Dirac distribution ( ) acting on the axial pressure spatial gradient. The four boundary conditions thereby read

(0, ) = 0 , (1, ) = ( ), (0, ) = (1, ) = 0. ( 19 
)
Invoking the change-of-basis relationships (2) whilst introducing

= + - 2 --1 2 + -1 , (20) 
the boundary condition matrices (3) can then be determined 

N = 1 - + 0 0 , M = 0 0 1 1 , Q = 0, R = N + M, S = 2 --1 2 D 0 0 1 0 . ( 21 
The determinant of B( ) can be easily found leading to

det (B( )) = -3 --+ 3 + - sin - cos + -sin + cos - , (23) 
and,

det (B( )) = 3 det (B( )) + 3 --+ 2 + - 2 + -- --+ cos - cos + -sin + sin - . (24) 
Let = , with ∈ R, be a root of ( 23). The spectrum associated with the reservoir-pipe-anchored valve configuration arises from transcendental equation

S P = ∈ R, sin - cos + = sin + cos - . (25) 
As previously stated (25) exactly matches with the spectrum condition found by [START_REF] Bayle | Spectral properties of Fluid Structure Interaction pressure/stress waves in liquid filled pipes[END_REF] for the very same configuration within a time-domain approach. It remains to establish the expression of ( , ) in ( 13) to provide P in (17). After considerable algebra efforts (cross-checked with symbolic computation) one finds

adj [B( )] S = 2 2 --1 2 D 2 + cos --cos + -1 + -cos --cos + 1 2 + sin --sin + -1 + - sin --sin + . ( 26 
)
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At this stage, the solution of the vector wave equation ( 1) can be expressed in either frequency-domain, combining ( 23) and ( 26) in ( 12), or time-domain, combining ( 24) and ( 26) in ( 17). When evaluating the derivative of the determinant ( 24) at = , it turns out to be purely imaginary while the term adj [B( )] S in ( 26) turns out to be real, as matrix E( , ) and F( , ) in ( 7) do. In other words, when performing the inverse Laplace transform over P only the temporal sinus mode in (17) contributes and read :

P ( , ) = 2 --1 ∈S P sin ( ) 2 2 + D --+ 2 + - 2 + -- --+ cos -cos + -sin + sin -       cos - -cos + cos - -+ -cos + + sin - -sin + sin - -+ -sin +       . ( 27 
)
Pressure/stress components can then be deduced from ( 27) using base-change (2). Figures 1 &2 illustrate both time-domain solution and its spectrum. It is interesting to observe in Figure 1a the influence of the Poisson coupling coefficient onto the rise of high-frequency components of the pressure signal in the case = 0.3 (orange continuous curve of Figure 1a). It is important to stress that these high-frequency peaks do not result from some numerical noise nor computational approximation. They result from accurate computation, the underlying physics relying onto the fast bouncing of elastic wave modes into the solid.

Since each traveling mode has its own velocity being much faster than the main pressure wave, they manifest themselves into small pressure overshoots the number of which depends on the number of bouncing of each elastic mode each having its own amplitude. The richness of this signal is interesting since it carries important informations about the system's mechanical properties and boundary conditions. The inspection of Figure 2 illustrates how well the hereby presented analytical solutions match with previous numerical results. Also visible in Figure 1a and 2a are small overshoots arising both for Mei and Jing (2016)'s solution as well as ours, at the edge of each wave-front at discrete time 2, 4, 6, .... These small overshoots result from the aliasing effect resulting from high-frequency cutt-off of the Laplace transform as encountered from

Nyquist frequency cutt-off in Fourier transforms.

The reservoir-pipe-free valve system : case (ii) Downstream, the static equilibrium of forces at the valve location combined with velocity continuity leads to

(2 + ) (1, ) = (1, ), (28) 
(1, ) + D (1, ) = ( ). (29) 
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Considering change of basis (2) whilst introducing parameters

± = D + 2 D 2 ± -1 , (30) 
= (2 + ) -2 D 2 + -1 (2 + ) -2 D 2 --1 , (31) 
the boundary condition matrices (3) can be found leading to

N = 1 - + 0 0 , M = 0 0 1 1 , Q = 0 0 1 , R = - + 0 0 , S = 0 0 1 0 . ( 32 
)
Using definition ( 9), B can be found as

B = 1 - + 0 0 0 0 - + -- -sin - -+ + sin + - -cos - + + cos + cos - cos + sin - sin + (33) 
With parametric relation

- + = + - . (34) 
The determinant of B( ) and its derivative with respect to are

det B( ) = - 2 2 - 2 + + 2 + 2 + cos + cos - 1 + - + 2 + sin + sin - 1 + - + 2 , ( 35 
) det B( ) = 2 + sin - cos + + -cos - sin + + 2 det B( ) , (36) 
with

± = + 2 + 1 ± 1 + - + 2 - ∓ 1 + - + 2 , (37) 
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, with ∈ R, be a root of (35). The spectrum associated with the reservoir-pipe-free valve configuration is governed by the following transcendental equation, cos

+ cos - 1 + - + 2 + 1 + - + 2 sin + sin - = 2 - + . (38) 
Figure 3 illustrate the obtained spectrum (more precisely the first 24 eigenvalues) found from solving the transcendental equation ( 38) both versus the Poisson coefficient and the dimensionless pipe thickness. These results are interesting for providing explicit values for the natural frequencies when varying the FSI parameter and the pipe thickness. Here again, the cumbersome determination of adj (B( )) S is performed with the help of symbolic computation and leads to

adj [B( )] S = - 2 + -sin --+ sin + -1 -+ -sin --+ sin + -1 2 + -cos --+ cos + 1 -+ -cos --+ cos + . (39) 
From this, the solution of the vector wave equation (1) can either be expressed in frequency-domain, combining ( 35) and ( 39) in ( 12), or in time-domain, combining (36) and ( 39) in ( 17). In time domain, the solution reads

P ( , ) = - ∈S P -sin - -+ sin + cos - -+ -cos + 2 + + sin -cos + + -cos -sin + sin ( ) + ∈S P -cos - -+ cos + sin - -+ -sin + 2 + + sin -cos + + -cos -sin + sin ( ) . ( 40 
)
Here again, pressure/stress components can then be obtained from (40) using base-change (2). Figure 4 illustrates the time domain solution (40), with again very good comparison with previous numerical results. 13 Bayle, July 24, 2023

The impact induced water hammer : case (iii)

The third configuration of Figure ??c is now investigated associated with the over-pressure produced from the impact of a steel rod on a closed liquid-filled pipe system. This ingenious experiment was designed by [START_REF] Vardy | Water hammer in a closed tube[END_REF] to reveal intrinsic FSI coupling occurring in liquid-filled pipes while minimizing external disturbing contributions. This system has been analytically investigated in [START_REF] Li | Frequency domain analysis of fluid-structure interaction in liquid-filled pipe systems by transfer matrix method[END_REF][START_REF] Li | Analytical Solution for Fluid-Structure Interaction in Liquid-Filled Pipes Subjected to Impact-Induced Water Hammer[END_REF]. At the upstream pipe end, a steel rod impacts the pipe sleeve producing an over-stress which propagates within the fluid/solid system. While the impact time of the rod over the upstream sleeve is supposed negligible, one nevertheless considers the sleeve's inertia, as illustrated in Fig. 10 of [START_REF] Tijsseling | Characterization of the Ionic Wind Induced by a Sine DBD Actuator Used for Laminar-to-Turbulent Transition Delay[END_REF] which

shows measured "impact times".

The dynamic equilibrium of forces along with the velocity continuity at both pipe's upstream and downstream ends leads to

0 D (0, ) = F ( ) + (2 + ) (0, ) -(0, ), (41) 
D (0, ) + (0, ) = 0, (42) 
-D (1, ) = (2 + ) (1, ) -(1, ), (43) 
D (1, ) + (1, ) = 0. ( 44 
)
where

0 = 0 2 , (45) 
F = 2 . ( 46 
)
Considering change of basis relations (2) and introducing parameters 0 for the analytical solutions of case (i) and (ii). A linear convergence -1 is depicted in (red) continuous line. 35 Bayle, July 24, 2023

= 0 D (2 + ) -2 D 2 --1 , (47) 
F = F (2 + ) -2 D 2 --1 , (48 

  However, TMM has seldomly been used for comparison and/or validation with time-domain numerical solutions. Since most numerical solutions are provided in time-domain (except those developed in[START_REF] Zhang | FSI analysis of liquid-filled pipes[END_REF]), they can indeed hardly benefit from comparison with TMM analytic solutions provided in Laplace domain. This is why a time-domain approach has recently been developed by[START_REF] Bayle | Spectral properties of Fluid Structure Interaction pressure/stress waves in liquid filled pipes[END_REF] using discrete mode decomposition of the FSI water-hammer. FSI effects can indeed significantly alter the high-frequency response of pressure signal Gerosa et al. (2021); Hosoya et al. (2012); Tijsseling et al. (2014) as well as the spectrum of the pressure (frequency shift) in elastic Duan et al. (2013); Henclik (2021); Keramat et al. (2020) as well as viscoelastic pipes Aliabadi et al. (2020); Covas et al. (2004); Gong et al. (2016); Keramat et al. (2021); Meniconi et al. (2012); Soares et al. (2008). The origin of those high-frequency component in the pressure signal comes from the Poisson coupling between the

  boundary conditions are analyzed: (i) the reservoir-pipe-anchored valve system (Fig.??a), (ii) the reservoir-pipe-free valve system (Fig.??b), (iii) pipe impacted by a rod (Fig.??c). Explicit physical parameters associated with these test cases are provided in table 1.

  matrices are useful to derive an expression for cornerstone matrix B. Invoking the definition of the latter in (9

Figure ??b configuration

  Figure ??b configuration is now investigated. Upstream, the same conditions (19) are applied, with homogeneous Neumann condition for the axial stress and homogeneous Dirichlet condition for the pressure.

  (iii). (a) Comparison between[START_REF] Zhang | FSI analysis of liquid-filled pipes[END_REF]'s pipe velocity spectrum at valve and eigenvalues obtained from the root of (55). Investigation of natural frequencies with (blue dashed line) or without (red dotted line) considering the sleeves masses is depicted. (b) first 21 eigenvalues versus the pipe's thickness / radius ratio . As varies, some eigenvalues come close to one-another, but a careful inspection shows no cross-over between the depicted eigenvalues. . . . . . 34 6 Log-log plot of the truncation error E defined in (59) versus mode truncation for the analytical solutions of case (i) and (ii). A linear convergence -1 is depicted in (red) continuous line. .
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 1234567 Fig. 1. Boundary condition sets investigated for the liquid-filled pipe problem.
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the boundary conditions matrices (3) can be determined

Cornerstone matrix B can now be evaluated using ( 9)

with 

Furthermore adj [B( )] S is evaluated and reads

In time domain, the transformed pressure/stress 2D vector P P ( , ) = -

where det B( ) is given by ( 55) and vector P ( ) components are

Finally, as previously noted the pressure and longitudinal stress components can be found from applying the base-change matrix defined in (2) to vector P ( , ). The spectrum associated with this configuration is found using (55) from solving transcendental equation det B( ) = 0. The spectrum numerical evaluation is carried-out to investigate the shift of natural frequencies caused by the geometrical parameter in figure 5b for a wide range of dimensionless pipe thickness parameter . The natural frequencies are also compared in Fig. 5a with the ones found by [START_REF] Zhang | FSI analysis of liquid-filled pipes[END_REF]. Again a very good match is found from comparing 16 Bayle, July 24, 2023 analytical results with the natural frequency of the previous numerical simulations. This results also illustrates the importance of considering the sleeve masses in such systems. The fourth and eighth frequencies are considerably affected by the oscillations of the pipe's end masses.

Modal convergence analysis

Even if the hereby presented solutions are analytical, they can only be numerically approximated since the spectrum's eigenvalues needs to be numerically computed and a finite number of node can only be evaluated, out of the theoretically infinite series. This is why this section investigates how much mode are needed in order to produce a sensible approximation of the exact solution. The mode truncation convergence of our analytical solution is checked by evaluating the quadratic error

where ( , ) ≡ (1000, 5000) are the space and time numerical uniform grid point number whereas P ( , ) is a reference solution with very-high mode truncation (2000 modes). For each configuration analyzed the analytical solution is truncated to modes (with 2000). Figure 6 shows a linear convergence of mode truncation, i.e the L 2 -norm of the error decays as ∼ -1 . Furthermore figure 6 indicates that both in case (i) and (ii), the L 2 -norm can be as small as 2.10 -9 when taking only the first hundred modes. This illustrates that albeit high frequencies are needed in order to describe the sharp time variation of the pressure solution, they are not contributing much for most of the pressure signal shape.

Furthermore, in practice, since any real "impact time" has a finite time decay, not every high frequency mode can be excited, providing physical relevance to mode truncation.

SUMMARY AND CONCLUSION

The paper considers analytical solutions for FSI wave propagation in liquid-filled pipes using TMM method in frequency-domain. Transposing the TMM method to the 2 × 2 wave system associated with the pressure/stress coupled unknown, the formal solution in frequency-domain is provided for general (linear)

sets of boundary conditions. The poles of this frequency-domain solutions give the natural vibrating frequencies of the system, i.e the discrete spectrum of the vibrating modes. The spectrum has been found associated with the zeros of the determinant of a transfer matrix (denoted B) which encapsulates both FSI and boundary conditions couplings. The resulting spectrum is found consistent with the one found 17 Bayle, July 24, 2023 previously using time-domain analysis. Considering three sets of boundary conditions, the diagonalized pressure-stress wave equation has been analyzed by a frequency-domain Laplace transform approach. For all configurations investigated, an explicit transcendental spectrum equation has been obtained. A detailed analysis of the spectrum variations versus constitutive parameters , i.e the Poisson modulus or the pipe's thickness radius ratio ) has then been carried out. The determined natural frequencies were successfully compared with previous contributions found in the literature. For the pipe-reservoir-valve (free or not) system, a straightforward time dependent solution has been derived and compared to numerical benchmarks.

The modal convergence of the time dependent solutions have been analyzed showing a good convergence to mode truncation. We hope that these analytical solutions providing the explicit natural frequency spectrum dependence upon mechanical and geometrical parameters can be useful for testing and validating FSI numerical methods. Also, this contribution provides a one-to-one mapping between frequency-domain solutions and time-domain ones. It should then permit to find explicit natural frequency spectrum using TMM method in frequency-domain in more complex configurations.

Appendix

Notations regarding the pipe geometry and mechanical properties are given in this appendix. A cylindrical tube having inner radius 0 , wall thickness , length , is considered so that the dimensionless pipe thickness can be defined as

The tube is entirely filled with a fluid having density , bulk modulus K . The elastic solid response is associated with Young's modulus , Poisson's modulus , and density . [START_REF] Tijsseling | Water hammer with fluid-structure interaction in thick-walled pipes[END_REF] derived the classical pulse wave speed within the fluid, , distinct from the elastic pulse wave speed within the solid,

their respective ratio being The physical time is furthermore re-scaled with respect to the fluid acoustic advective time scale, i.e.

=

, whereas the axial coordinate is non-dimensionalysed by the pipe's length, i.e. = / . Finally, the dimensionless density ratio is introduced

The derivation of the wave-vector equation governing the space-time distribution of the dimensionless perturbed pressure and dimensionless axial stress has been provided in Bayle and Plouraboué (2023b) so that it is not repeated here. It results in the following wave-operator acting on the pressure/stress 2D-vector:

where

, and, P = .

(66)

As mentionned in the introduction, it is interesting to notice that the off-diagonal terms of matrix C 2 P are proportional to the Poisson coefficient so that the fluid pressure and the solid stress decouple as → 0.

Furthermore, as → 0 the remaining diagonal terms are 1 and C 2 , the two eigenvalues of the resulting diagonal matrix. These eigenvalues are providing the two distinct wave-velocities of the uncoupled limit:

1 which is the dimensionless pressure pulse velocity whereas C 2 is the dimensionless elastic wave solid one. When ≠ 0 the eigenvalues of matrix C 2 P provide the velocities of the coupled system. The vector homogeneous wave-equation resolution will be handled within the eigenvectors basis of C 2 P as in [START_REF] Zhang | FSI analysis of liquid-filled pipes[END_REF]. The eigenvalues of C 2 P , denoted 2 ± > 0, associated with diagonalized matrix C 2 P correspond to the wave speed mode propagation. They are the solution of the following polynomial characteristic problem 4
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The fluid pressure and the axial solid stress as well as their respective time-derivatives will be assumed initially at rest so that