
HAL Id: hal-04259661
https://hal.science/hal-04259661

Submitted on 26 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Laplace-domain Fluid Structure Interaction solutions for
water hammer waves in a pipe

Alexandre Bayle, Franck Plouraboué

To cite this version:
Alexandre Bayle, Franck Plouraboué. Laplace-domain Fluid Structure Interaction solutions for water
hammer waves in a pipe. Journal of Hydraulic Engineering, 2024, 50 (2), �10.1061/JHEND8.HYENG-
13781�. �hal-04259661�

https://hal.science/hal-04259661
https://hal.archives-ouvertes.fr


Laplace-domain Fluid Structure Interaction solutions for water hammer1

waves in a pipe2

ALEXANDRE BAYLE1 and FRANCK PLOURABOUE corresponding author3

Email:fplourab@imft.fr24

1Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS, Toulouse,5

31400, France6

2Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS, Toulouse,7

31400, France8

ABSTRACT9

Numerical methods generally need analytical solutions as test cases and validations in simplified10

problems. This work provides Laplace domain explicit analytic solutions for fluid-structure inter-11

action (FSI) water-hammer waves within a pipe. Rather than applying the Transfer Matrix Method12

(TMM) to the FSI four-equations, it is transposed to the equivalent two-wave propagating problem13

considered instead. Using the classical wave matrix diagonalisation approach permits to decouple14

waves propagation, whilst, at the same time, coupling boundary conditions in the diagonal base.15

This approach permits to provide the transfer matrix for coupled waves boundary conditions so as16

to obtain a Laplace domain solution for the pressure/stress vector solution. This solution is written17

in a general framework which can be adapted for general applied boundary conditions for a single18

pipe. Three sets of boundary conditions are considered as examples and illustrations from solving19

the inverse Laplace transform of the considered explicit solutions. Consistent results with recently20

proposed time-domain solutions are found, and a one-to-one mapping between Laplace domain21

and time domain approaches is also established. This permits to find the discrete spectrum of FSI22

water-hammer waves mode decomposition from TMM solutions.23
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INTRODUCTION24

Wave propagations in liquid-filled pipe systems is a long standing research topic, having attracted25

significative research efforts for more than hundred years Allievi (1913); Budny et al. (1991);26

Burmann (1975); Holmboe and Rouleau (1967); Joukowski (1898); Korteweg (1878); Résal (1876);27

Skalak (1956). Several review papers can be found on this subject Ferras et al. (2018); Li et al.28

(2015); Tĳsseling (1996) where it is established that the propagation of water-hammer waves is29

mainly governed by three couplingmechanisms : (i) Poisson coupling, (ii) friction coupling and (iii)30

junction coupling. (i) is related to the Fluid-Structure-Interactions (FSI) arising at the wave passage31

from the coupled deformations of the solid in the radial and axial directions (for axi-symmetric32

"breathing mode" vibrations). (ii) result from the viscous dissipation within the unsteady boundary33

layer propagating at the wave speed. (iii) results from the applied boundary conditions at pipes34

ends (for a single pipe). In fact, in the case of unconstrained pipes for which vibrations can arise35

at frontiers, FSI produce an additional elastic wave distinct from the fluid pressure wave into the36

pipe. This additional wave also called precursor wave, has a distinct propagating velocity from37

the fluid pressure one. Furthermore both waves, the fluid pressure wave and the elastic wave are38

coupled. This coupling is called "Poisson coupling" because it arises from off-diagonal coupling39

terms proportional to the Poisson coefficient in the general wave equation associated with the40

pressure/stress vector.41

Given the complexity of this coupled waves system, and since the governing equations have42

been established from several decades (at least without considering friction coupling models), a43

large part of the literature has considered numerical solutions in time-domain either combining44

the Method of Characteristic (MOC) Lavooĳ and Tusseling (1991) or finite volume formulation45

Daude and Galon (2018) in the fluid with finite elements in the solid. On the other hand, explicit46

analytical solutions have been developed in more restrained configurations : single pipe, curved47

pipe El-Raheb (1981), extended blockage Duan et al. (2012) or simple three-like metric graphs48

Yang et al. (2004a) using the Transfer Matrix Method (TMM) Aliabadi et al. (2020); Keramat and49

Duan (2021a); Keramat et al. (2021); Li et al. (2002); Liu and Li (2011); Zhang et al. (1999) in50
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Laplace domain. However, TMM has seldomly been used for comparison and/or validation with51

time-domain numerical solutions. Since most numerical solutions are provided in time-domain52

(except those developed in Zhang et al. (1999)), they can indeed hardly benefit from comparison53

with TMM analytic solutions provided in Laplace domain. This is why a time-domain approach54

has recently been developed by Bayle and Plouraboué (2023b) using discrete mode decomposition55

of the FSI water-hammer. FSI effects can indeed significantly alter the high-frequency response56

of pressure signal Gerosa et al. (2021); Hosoya et al. (2012); Tĳsseling et al. (2014) as well as the57

spectrum of the pressure (frequency shift) in elastic Duan et al. (2013); Henclik (2021); Keramat58

et al. (2020) as well as viscoelastic pipes Aliabadi et al. (2020); Covas et al. (2004); Gong et al.59

(2016); Keramat et al. (2021); Meniconi et al. (2012); Soares et al. (2008). The origin of those60

high-frequency component in the pressure signal comes from the Poisson coupling between the61

pressure and the longitudinal stress, so that when aB = 0, no such phenomenon arise. On the62

contrary, when aB > 0, the fast elastic wave propagation back and forth in the pipe produce high-63

frequency perturbations in the pressure signal. These high-frequency components of pressure64

signal can also be useful for other indirect purposes such as leak or defect detection in pipe systems65

Keramat and Duan (2021b); Keramat et al. (2021); Wang et al. (2021); Zanganeh et al. (2020).,66

Nevertheless, the link between time-domain analytical solutions and the more established TMM67

Laplace domain ones has not been discussed yet. In this contribution, we establish and discuss68

the relation between time-domain discrete mode decomposition solutions and the classical TMM69

approach. From the derived one-to-one mapping between these two approaches, we discuss how70

the resulting discrete mode spectrum can also be obtained from TMM solutions. This feature71

is useful for comparison with numerical predictions in specific configurations. Furthermore, for72

three specific sets of boundary conditions, the inverse Laplace-transform of the TMM solutions is73

performed and compared with numerical solutions. The paper is organized as follow. Parameters74

and governing equations are provided 2 (some additionnal informations are also given in Appendix75

4). TMM Laplace domain solution for general boundary conditions are provided in 2. The inverse76

Laplace transform of these solutions are given in section 2 where the relation with the time-domain77
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discrete mode decomposition is also discussed. Three specific sets of boundary conditions are78

then considered in section 3 for which explicit Laplace domain and time domains solutions are79

obtained and compared with previous numerical solutions of the literature. Finally, convergence of80

the obtained solutions to mode truncation is finally analyzed in 3.81

THEORETICAL FRAMEWORK82

This section discusses the Laplace-domain TMM formulation of the water-hammer wave FSI83

problem for general classes of boundary conditions. TMM is hereby derived for the two-wave FSI84

propagating problem rather than the classical FSI four -equations one, but these two formulations are85

exactly equivalent as discussed in Bayle and Plouraboué (2023a). Here we nevertheless consider86

a less general formulation as the one considered in Bayle and Plouraboué (2023a) where a 2D87

unknown vector is considered for the pressure-axial stress 2D-vector P = (%, f) and not a 4D one.88

This choice comes from considering boundary conditions independent on the velocity, so that, in89

this case, the general four equation FSI problems boils-down to equivalent and independent two-90

waves coupled propagation problems. This section discuss the relation between TMM solutions91

and time-domain analytical solution obtained in Bayle and Plouraboué (2023a) and their discrete92

spectrum of mode decomposition.93

Governing wave-vector equation94

Since governing equations and notations are the same as in Bayle and Plouraboué (2023a) there95

are not repeated here but given in appendix 4. The dimensionless water-hammer FSI wave-equation96

system with initial condition at rest (Cf (65) and (69) for more details) expressed in the eigenvector97

base reads98 (
m2g − C2Pm

2
/

)
P = 0 , with, P (/, 0) = mgP (/, 0) = 0, (1)

where the change of basis relations99

� =
©­­«
2aBD
22−−1

2aBD
22+−1

1 1

ª®®¬ , C2P =
©­­«
22− 0

0 22+

ª®®¬ ≡ �C2P�
−1 , and, P = �−1P, (2)

have been used. aB is the Poisson’s modulus andD the fluid to solid density ratio (provided in (64))100
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and 2± the eigenvalue velocity (68). The pressure-axial stress 2D-vector P = (%, f) is transformed101

into a linear combination of those in 2D-vector P from (2).102

The initially coupled pressure/stress wave propagation problem now looks decoupled into two103

distinct wave propagation modes associated with 2D-vectorP . Nevertheless the coupling between104

P’s components persists from the resulting coupled upstream and downstream boundary conditions105

associated with P . For the sake of simplification let us introduce four 2 × 2 matrices N , M, Q,106

R and SX(g) as a four-dimensional column vector corresponding to the perturbation with respect107

to the imposed steady-state (X(g) being Dirac distribution). Boundary conditions can be formally108

written as a rectangular 8 × 4 linear system109

©­­«
N M 0 0

0 0 Q R

ª®®¬8×4 ·
©­­­­­­­­«

P (0, g)

m/P (0, g)

P (1, g)

m/P (1, g)

ª®®®®®®®®¬8×1
= S4×1X(g), (3)

whereSX(g) is a source term exciting the system for the impulse response. Specific sets of boundary110

conditions will hereafter be investigated and corresponding resolution using diagonalised vector111

wave-equation system (1), are handled in the Laplace domain in section 2.112

Laplace resolution of the FSI wave equation113

Let us introduce L, the Laplace transform operator, B its Laplace variable and P̃ the Laplace114

transform of P :115

P̃ (/, B) = L (P (/, C)) . (4)

The Laplace transform of (1) then leads to116

(
B2 − C2Pm

2
/

)
P̃ = 0, (5)
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C2P being diagonal given (2). A solution can be found for the spatial ODE system leading to117

P̃ (/, B) = E(/, B)P̃D (B) + F(/, B)P̃N (B), (6)

with 2 × 2 diagonal matrices118

E(/, B) =
©­­«
cos

(
8B
2−
/

)
0

0 cos
(
8B
2+
/

)ª®®¬ , F(/, B) =
©­­«
sin

(
8B
2−
/

)
0

0 sin
(
8B
2+
/

)ª®®¬ , (7)

and P̃D (B), P̃N (B) 2D-vectors yet to be found. P̃D (B), P̃N (B) provide the mode-dependent amplitude of119

P̃ (/, B) respectively associated with the Dirichlet or the Neumann boundary condition imposed at location120

/ = 0. This is a transposition of the transfer matrix method used by Li et al. (2002, 2015); Tĳsseling (2003);121

Zhang et al. (1999), to the wave operator formulation. Combining the expression of (6) and (7) with the122

Laplace transform of the boundary condition system (3) (into which the Laplace transform of the Dirac123

distribution X(g) being equal to one is used), leads to124

©­­«
P̃D

P̃N
ª®®¬ (B) = B−1(B)S, (8)

with125

B =
©­­«

N 8BMC−1P
QE(1) − 8BRC−1P F(1) QF: (1) + 8BRC−1P E(1)

ª®®¬ (9)

In the following development, the inverse of (9) is needed to find P̃ . It is interesting to note that the126

general solution for arbitrary closure law can easily be deduced from solution (8) by multiplying the hereby127

considered source term S by the Laplace transform of the closure law. Alternatively, in time-domain, the128

general closure law solution are found from a convolution product with the impulse response solution as129

detailed in Bayle and Plouraboué (2023b). This is why the hereby considered impulse response is interesting130

to study as a generic solution. By introducing the adjugate matrix of B, namely adj [B] one can formally131

see that132

B−1(B) = adj [B(B)]
detB(B) , (10)
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Let us furthermore introduce the two matrices133

e1 =
©­­«
1 0 0 0

0 1 0 0

ª®®¬ , and, e2 =
©­­«
0 0 1 0

0 0 0 1

ª®®¬ , (11)

vector P̃ (B, /) can then be found using (6), (8) and (10) to reach134

P̃ (B, /) = �(B, /)
detB(B) , (12)

with135

�(B, /) = [E(/)e1 + F(/)e2] (adj [B] S) . (13)

(12)-(13) is the formal solution for the 2D-vector P̃ (B, /) in the frequency domain. For specific sets of136

boundary conditions, this formal solution can be further developed. Nevertheless, there is one salient feature137

of this solution not yet discussed but of uppermost importance : this solution diverges for specific values138

of complex variable B. These locations are called the poles of function P̃ (B, /). These poles provide deep139

physical insights since they give the specific natural resonant frequencies of the wave system or, equivalently140

the specific oscillating modes of the solution in time-domain. The ensemble of these discrete resonant141

frequencies is called the spectrum of the solution. The reason for this equivalence is found from the inverse142

Laplace transform which is now discussed. Next section 2 also discusses how to establish the spectrum143

condition and how it is related to matrix B(B).144

Laplace inversion and time-dependent solution145

The pole of (6) are investigated in order to perform the inverse Laplace transform usingCauchy’s theorem.146

Regarding the structure of (6), it immediately appears that the poles are located within the expressions of147

P̃D (B) and P̃N (B) and, consequently using (8)-(10), within the root of detB(B). The adjugate matrix, by148

definition, does not contribute to the pole set of P̃D (B) and P̃N (B). The condition det (B(B)) = 0 is exactly149

similar to the spectrum condition derived in Bayle and Plouraboué (2023b) and leads to150

SP = {B ∈ C | detB(B) = 0}. (14)
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The resulting transcendental equation for root B: is specific to each boundary condition set and has to be151

computed numerically. In the following, three configurations are considered for which, in each case, the root152

B: is purely imaginary, i.e.153

B: = 8_: , with, _: ∈ R. (15)

(15) provides the one-to-one mapping between the Laplace domain TMM solutions and the time domain154

ones provided in Bayle and Plouraboué (2023b) because each purely imaginary pole in the frequency domain155

B: = 8_: provides the corresponding exponential exp (8_:g) in the time domain from Cauchy theorem, as156

now discussed. It is interesting to mention that purely imaginary poles are found for the three specific157

considered configurations examined in section 3, without stating that it is a general result. This remark goes158

along with the consideration obtained for the operator spectrum in Bayle and Plouraboué (2023b). The pole159

set of P̃ (/, B), SP , being found, Cauchy’s residue theorem is used to derive a time-domain solution for160

vector wave problem (1), leading to161

P (g, /) = R4
©­«
∑
SP

lim
B→8_:

(
(B − 8_:)

�(B, /)
det (B(B)) 4

Bg

)ª®¬ . (16)

(16) has been established using a closed countour being a semi-circle of infinite radius in the complex plane,162

the semi-axis of which being parallel to the imaginary axis with a strictly positive abscissa. This semi-circle163

has the imaginary axis included in it, and thus all poles Duffy (1994). Then, using the classical Taylor164

expansion of detB(B) at poles B: = 8_: ,165

P (g, /) = R4
©­«
∑
SP

�(8_: , /)
mB det (B(8_:))

48_: g
ª®¬ . (17)

The previous expression completes the frequency-domain analysis for the time-domain solution of (1). A166

variety of spatial boundary conditions is then investigated. The associated spectrum will be described and167

analyzed in detail. Natural frequencies, 5: , found from transcendental spectrum equation roots, B: , read168

5: (�I) =
B:2?

2c8!
=
_:2?

2c!
, (18)

where ! is the pipe’s length introduced in §1.169
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EXPLICIT SOLUTIONS FOR SPECIFIC SETS OF BOUNDARY CONDITIONS170

Three sets of boundary conditions are analyzed: (i) the reservoir-pipe-anchored valve system (Fig. ??a),171

(ii) the reservoir-pipe-free valve system (Fig. ??b), (iii) pipe impacted by a rod (Fig. ??c). Explicit physical172

parameters associated with these test cases are provided in table 1.173

The reservoir-pipe-anchored valve system: : case (i)174

In the following configuration depicted in Fig. ??a, the pipe is supposed perfectly anchored both upstream175

and downstream. One thereby supposes an homogeneous Neumann condition for the axial stress at / = 0 &176

/ = 1. Furthermore the reservoir impedes any pressure fluctuation upstream which can be interpreted as an177

homogeneous Dirichlet condition for the pressure field. Finally, downstream, the instantaneous valve closure178

is modeled with a Dirac distribution X(g) acting on the axial pressure spatial gradient. The four boundary179

conditions thereby read180

%(0, g) = 0 , m/%(1, g) = X(g), m/f(0, g) = m/f(1, g) = 0. (19)

Invoking the change-of-basis relationships (2) whilst introducing181

V =
2+
2−

22− − 1
22+ − 1

, (20)

the boundary condition matrices (3) can then be determined182

N =
©­­«
1 V2−

2+

0 0

ª®®¬ , M =
©­­«
0 0

1 1

ª®®¬ , Q = 0, R = N +M, S =

(
22− − 1

)
2aBD

©­­­­­­­­­«

0

0

1

0

ª®®®®®®®®®¬
. (21)
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The boundary condition matrices are useful to derive an expression for cornerstone matrix B. Invoking the183

definition of the latter in (9), one finds184

B =

©­­­­­­­­­«

1 V2−
2+

0 0

0 0 8B
2−

8B
2+

−8B
sin

(
8B
2−

)
2−

−8B V2−
2+

sin
(
8B
2+

)
2+

8B
cos

(
8B
2−

)
2−

8B
V2−
2+

cos
(
8B
2+

)
2+

−8B
sin

(
8B
2−

)
2−

−8B
sin

(
8B
2+

)
2+

8B
cos

(
8B
2−

)
2−

8B
cos

(
8B
2+

)
2+

ª®®®®®®®®®¬
. (22)

The determinant of B(B) can be easily found leading to185

det (B(B)) = −8B3 2−V − 2+
23+2−

[
V sin

(
8B

2−

)
cos

(
8B

2+

)
− sin

(
8B

2+

)
cos

(
8B

2−

)]
, (23)

and,186

mB det (B(B)) = 3
det (B(B))

B
+ B3

(
2−V − 2+
22+2−

)2 [
2+V − 2−
2−V − 2+

cos
(
8B

2−

)
cos

(
8B

2+

)
− sin

(
8B

2+

)
sin

(
8B

2−

)]
. (24)

Let B: = 8_: , with _: ∈ R, be a root of (23). The spectrum associated with the reservoir-pipe-anchored187

valve configuration arises from _: transcendental equation188

SP =

{
_: ∈ R, V sin

(
_:

2−

)
cos

(
_:

2+

)
= sin

(
_:

2+

)
cos

(
_:

2−

)}
. (25)

As previously stated (25) exactlymatcheswith the spectrum condition found byBayle and Plouraboué (2023b)189

for the very same configuration within a time-domain approach. It remains to establish the expression of190

�(B, /) in (13) to provide P in (17). After considerable algebra efforts (cross-checked with symbolic191

computation) one finds192

adj [B(B)] S =
B2

(
22− − 1

)
2aBD

©­­­­­­­­­«

V

22+

(
cos

(
8B
2−

)
− cos

(
8B
2+

))
− 1
2+2−

(
cos

(
8B
2−

)
− cos

(
8B
2+

))
1
22+

(
V sin

(
8B
2−

)
− sin

(
8B
2+

))
− 1
2+2−

(
V sin

(
8B
2−

)
− sin

(
8B
2+

))
ª®®®®®®®®®¬
. (26)

10 Bayle, July 24, 2023



At this stage, the solution of the vector wave equation (1) can be expressed in either frequency-domain,193

combining (23) and (26) in (12), or time-domain, combining (24) and (26) in (17). When evaluating the194

derivative of the determinant (24) at B = 8_: , it turns out to be purely imaginary while the term adj [B(B)] S195

in (26) turns out to be real, as matrix E(/, B) and F(/, B) in (7) do. In other words, when performing the196

inverse Laplace transform over P̃ only the temporal sinus mode in (17) contributes and read :197

P (/, g) =

(
22− − 1

) ∑
_: ∈SP sin (_: g)

2aB22+D_:
(
2−V−2+
22+2−

)2 [
2+V−2−
2−V−2+ cos

(
_:
2−

)
cos

(
_:
2+

)
− sin

(
_:
2+

)
sin

(
_:
2−

)] 
(
cos

(
_:

2−

)
− cos

(
_:

2+

)) ©­«
V cos

(
_: /

2−

)
− 2+
2− cos

(
_: /

2+

)ª®¬ +
(
V sin

(
_:

2−

)
− sin

(
_:

2+

)) ©­«
sin

(
_: /

2−

)
− 2+
2− sin

(
_: /

2+

)ª®¬
 .

(27)

Pressure/stress components can then be deduced from (27) using base-change (2). Figures 1 & 2 illustrate198

both time-domain solution and its spectrum. It is interesting to observe in Figure 1a the influence of the199

Poisson coupling coefficient onto the rise of high-frequency components of the pressure signal in the case200

aB = 0.3 (orange continuous curve of Figure 1a). It is important to stress that these high-frequency peaks201

do not result from some numerical noise nor computational approximation. They result from accurate202

computation, the underlying physics relying onto the fast bouncing of elastic wave modes into the solid.203

Since each traveling mode has its own velocity being much faster than the main pressure wave, they manifest204

themselves into small pressure overshoots the number of which depends on the number of bouncing of205

each elastic mode each having its own amplitude. The richness of this signal is interesting since it carries206

important informations about the system’s mechanical properties and boundary conditions. The inspection207

of Figure 2 illustrates how well the hereby presented analytical solutions match with previous numerical208

results. Also visible in Figure 1a and 2a are small overshoots arising both for Mei and Jing (2016)’s solution209

as well as ours, at the edge of each wave-front at discrete time g ' 2, 4, 6, .... These small overshoots result210

from the aliasing effect resulting from high-frequency cutt-off of the Laplace transform as encountered from211

Nyquist frequency cutt-off in Fourier transforms.212

The reservoir-pipe-free valve system : case (ii)213

Figure ??b configuration is now investigated. Upstream, the same conditions (19) are applied, with214

homogeneous Neumann condition for the axial stress and homogeneous Dirichlet condition for the pressure.215

Downstream, the static equilibrium of forces at the valve location combined with velocity continuity leads to216

U(2 + U)f(1, g) = %(1, g), (28)

m/%(1, g) + Dm/f(1, g) = X(g). (29)
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Considering change of basis (2) whilst introducing parameters217

^± = D + 2aBD
22± − 1

, (30)

W =

U(2 + U) − 2aBD
22+−1

U(2 + U) − 2aBD
22−−1

, (31)

the boundary condition matrices (3) can be found leading to218

N =
©­­«
1 V2−

2+

0 0

ª®®¬ , M =
©­­«
0 0

1 1

ª®®¬ , Q =
©­­«
0 0

1 W

ª®®¬ , R =
©­­«
^− ^+

0 0

ª®®¬ , S =

©­­­­­­­­­«

0

0

1

0

ª®®®®®®®®®¬
. (32)

Using definition (9), B can be found as219

B =

©­­­­­­­­­«

1 V2−
2+

0 0

0 0 8B
2−

8B
2+

−8B ^−
2−
sin

(
8B
2−

)
−8B ^+

2+
sin

(
8B
2+

)
8B
^−
2−
cos

(
8B
2−

)
8B
^+
2+
cos

(
8B
2+

)
cos

(
8B
2−

)
W cos

(
8B
2+

)
sin

(
8B
2−

)
W sin

(
8B
2+

)
ª®®®®®®®®®¬

(33)

With parametric relation220

^−
W^+

=
2+
V2−

. (34)

The determinant of B(B) and its derivative with respect to B are221

detB(B) = −2B
2V^−

22+
+ B2 ^+

22+

[
V cos

(
8B

2+

)
cos

(
8B

2−

) (
1 +

(
^−
^+

)2)
+ sin

(
8B

2+

)
sin

(
8B

2−

) (
1 +

(
V^−
^+

)2)]
,

(35)

222

mB detB(B) = 8B2
(
j+ sin

(
8B

2−

)
cos

(
8B

2+

)
+ j− cos

(
8B

2−

)
sin

(
8B

2+

))
+ 2 detB(B)

B
, (36)

with223

j± =
^+

22+

(
1
2±

[
1 +

(
V^−
^+

)2]
− V

2∓

[
1 +

(
^−
^+

)2])
, (37)
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Let B = 8_: , with _: ∈ R, be a root of (35). The spectrum associated with the reservoir-pipe-free valve224

configuration is governed by the following _: transcendental equation,225

V cos
(
_:

2+

)
cos

(
_:

2−

) (
1 +

(
^−
^+

)2)
+

(
1 +

(
V^−
^+

)2)
sin

(
_:

2+

)
sin

(
_:

2−

)
=
2^−
^+
. (38)

Figure 3 illustrate the obtained spectrum (more precisely the first 24 eigenvalues) found from solving the226

transcendental equation (38) both versus the Poisson coefficient and the dimensionless pipe thickness. These227

results are interesting for providing explicit values for the natural frequencies when varying the FSI parameter228

aB and the pipe thickness. Here again, the cumbersome determination of adj (B(B)) S is performed with the229

help of symbolic computation and leads to230

adj [B(B)] S = −8B

©­­­­­­­­­«

V

22+

(
2− sin

(
8B
2−

)
− W2+ sin

(
8B
2+

))
− 1
2−2+

(
2− sin

(
8B
2−

)
− W2+ sin

(
8B
2+

))
− 1
22+

(
V2− cos

(
8B
2−

)
− W2+ cos

(
8B
2+

))
1

2−2+

(
V2− cos

(
8B
2−

)
− W2+ cos

(
8B
2+

))
ª®®®®®®®®®¬
. (39)

From this, the solution of the vector wave equation (1) can either be expressed in frequency-domain,231

combining (35) and (39) in (12), or in time-domain, combining (36) and (39) in (17). In time domain, the232

solution reads233

P (/, g) = −
∑
_: ∈SP

(
2− sin

(
_:
2−

)
− W2+ sin

(
_:
2+

)) ©­­«
V cos

(
_:/

2−

)
− 2+
2−
cos

(
_:/

2+

)ª®®¬
_:2

2
+

(
j+ sin

(
_:
2−

)
cos

(
_:
2+

)
+ j− cos

(
_:
2−

)
sin

(
_:
2+

)) sin (_:g)

+
∑
_: ∈SP

(
V2− cos

(
_:
2−

)
− W2+ cos

(
_:
2+

)) ©­­«
sin

(
_:/

2−

)
− 2+
2−
sin

(
_:/

2+

)ª®®¬
_:2

2
+

(
j+ sin

(
_:
2−

)
cos

(
_:
2+

)
+ j− cos

(
_:
2−

)
sin

(
_:
2+

)) sin (_:g) . (40)

Here again, pressure/stress components can then be obtained from (40) using base-change (2). Figure 4234

illustrates the time domain solution (40), with again very good comparison with previous numerical results.235
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The impact induced water hammer : case (iii)236

The third configuration of Figure ??c is now investigated associated with the over-pressure produced237

from the impact of a steel rod on a closed liquid-filled pipe system. This ingenious experiment was designed238

by Vardy and Fan (1986) to reveal intrinsic FSI coupling occurring in liquid-filled pipes while minimizing239

external disturbing contributions. This system has been analytically investigated in Li et al. (2002, 2003). At240

the upstream pipe end, a steel rod impacts the pipe sleeve producing an over-stress which propagates within241

the fluid/solid system. While the impact time of the rod over the upstream sleeve is supposed negligible,242

one nevertheless considers the sleeve’s inertia, as illustrated in Fig. 10 of Tĳsseling and Vardy (1996) which243

shows measured "impact times".244

The dynamic equilibrium of forces along with the velocity continuity at both pipe’s upstream and245

downstream ends leads to246

<0Dm/fII (0, g) = FAX(g) + U(2 + U)fII (0, g) − %(0, g), (41)

Dm/fII (0, g) + m/%(0, g) = 0, (42)

−<!Dm/fII (1, g) = U(2 + U)fII (1, g) − %(1, g), (43)

Dm/fII (1, g) + m/%(1, g) = 0. (44)

where247

< 0
!

=
" 0

!

cd 5 '
2!
, (45)

FA =
�A>3

cd 5 2?+A>3'
2 . (46)

Considering change of basis relations (2) and introducing parameters248

[ 0
!

=
< 0

!
D

U(2 + U) − 2aBD
22−−1

, (47)

F =
FA

U(2 + U) − 2aBD
22−−1

, (48)
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the boundary conditions matrices (3) can be determined249

N = −
©­­«
0 0

1 W

ª®®¬ , M =
©­­«
^− ^+

[0 [0

ª®®¬ , Q = −N , R =
©­­«
^− ^+

[! [!

ª®®¬ , S =

©­­­­­­­­­«

0

F

0

0

ª®®®®®®®®®¬
. (49)

Cornerstone matrix B can now be evaluated using (9)250

B =

©­­­­­­­­­«

0 0 8B
^−
2−

8B
^+
2+

−1 −W 8B[0
2−

8B[0
2+

−8B
^− sin

(
8B
2−

)
2−

−8B
^+ sin

(
8B
2+

)
2+

8B
^− cos

(
8B
2−

)
2−

8B
^+ cos

(
8B
2+

)
2+

B41(B) B42(B) B43(B) B44(B)

ª®®®®®®®®®¬
, (50)

with251

B41(B) = cos
(
8B

2−

)
− 8B[!

2−
sin

(
8B

2−

)
, B42(B) = W cos

(
8B
2+

)
− 8B[!

2+
sin

(
8B
2+

)
, (51)

B43(B) = sin
(
8B

2−

)
+ 8B[!
2−
cos

(
8B

2−

)
, B44(B) = W sin

(
8B
2+

)
+ 8B[!

2+
cos

(
8B
2+

)
. (52)

Introducing parameter k as252

k = V

(
^−
^+

)2
, (53)

the determinant of B(B) can be evaluated253

detB(B) = B2
[0[! (^− − ^+)2 B2 + 22−^2+

(
1 + k2

)
22−2

2
+

sin
(
8B

2−

)
sin

(
8B

2+

)
(54)

+8B3 ^+ (^− − ^+) ([0 + [!)
2−22+

(
k cos

(
8B

2+

)
sin

(
8B

2−

)
− cos

(
8B

2−

)
sin

(
8B

2+

))
+ 2B2k^

2
+

22+

(
cos

(
8B

2−

)
cos

(
8B

2+

)
− 1

)
,
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so does its derivative254

mB detB(B) =
2 detB(B)

B
− B3 cos

(
8B

2−

)
cos

(
8B

2+

)
^+ (^− − ^+) ([0 + [!)

2−22+

[
k

2−
− 1
2+

]
+ 8B2

2−22+
cos

(
8B

2+

)
sin

(
8B

2−

) [
k^+ ((^− − ^+) ([0 + [!) − 2^+) +

[0[! (^− − ^+)2 B2 + 22−^2+
(
1 + k2

)
2−2+

]
+ 8B

2

22+
cos

(
8B

2−

)
sin

(
8B

2+

) [
[0[! (^− − ^+)2 B2 + 22−^2+

(
1 + k2

)
23−

− ^+
(
(^− − ^+) ([0 + [!)

2−
+ 2k^+

2+

)]
+ B3 sin

(
8B

2−

)
sin

(
8B

2+

)
^− − ^+
2−22+

[
2[0[! (^− − ^+)

2−
− ^+ ([0 + [!)

(
1
2−
− k

2+

)]
(55)

Furthermore adj [B(B)] S is evaluated and reads255

adj [B(B)] S = −B2F

©­­­­­­­­­­«

[
−8B[! ^+ (^−−^+) sin

(
8B
2+

)
+2−^2+k cos

(
8B
2+

)]
cos

(
8B
2−

)
+2−^2+

[
sin

(
8B
2−

)
sin

(
8B
2+

)
−k

]
2−22+

^−
^+

[
8B[! ^+ (^−−^+) sin

(
8B
2−

)
+2−^2+ cos

(
8B
2−

)]
cos

(
8B
2+

)
+2−^2+

[
sin

(
8B
2−

)
sin

(
8B
2+

)
k−1

]
2+22−[

−8B[! ^+ (^−−^+) sin
(
8B
2+

)
+2−^2+k cos

(
8B
2+

)]
sin

(
8B
2−

)
−2−^2+ sin

(
8B
2+

)
cos

(
8B
2−

)
2−22+

− ^−
^+

[
−8B[! ^+ (^−−^+) sin

(
8B
2+

)
+2−^2+k cos

(
8B
2+

)]
sin

(
8B
2−

)
−2−^2+ sin

(
8B
2+

)
cos

(
8B
2−

)
22−2+

ª®®®®®®®®®®¬
. (56)

In time domain, the transformed pressure/stress 2D vector P256

P (/, g) = −
∑
_: ∈SP

_2
:
F

mB detB(8_:)
sin_:gP ′(/) (57)257

where mB detB(8_:) is given by (55) and vector P ′(/) components are258

P ′(/) =
©­­«

_:[!^+(^+ − ^−) sin _:2+ cos
_: (/−1)
2−

− ( ^+
2+
)2

(
k cos _:

2+
cos _: (/−1)

2−
+ sin _:

2+
sin _: (/−1)

2−
+ k cos _:/

2−

)
^−

2+22−^+
[_:[!^+(^− − ^+) sin _:2− cos

_: (/−1)
2+

+ 2−^2+
(
−k sin _:

2−
sin _: (/−1)

2+
+ cos _:

2−
cos _: (/−1)

2+
− cos _:/

2+

)
]

ª®®¬
(58)259

Finally, as previously noted the pressure and longitudinal stress components can be found from applying the260

base-change matrix � defined in (2) to vector P (/, g). The spectrum associated with this configuration is261

found using (55) from solving transcendental equation detB(B) = 0. The spectrum numerical evaluation is262

carried-out to investigate the shift of natural frequencies caused by the geometrical parameter U in figure 5b263

for a wide range of dimensionless pipe thickness parameter U. The natural frequencies are also compared264

in Fig. 5a with the ones found by Zhang et al. (1999). Again a very good match is found from comparing265
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analytical resultswith the natural frequency of the previous numerical simulations. This results also illustrates266

the importance of considering the sleeve masses in such systems. The fourth and eighth frequencies are267

considerably affected by the oscillations of the pipe’s end masses.268

Modal convergence analysis269

Even if the hereby presented solutions are analytical, they can only be numerically approximated since270

the spectrum’s eigenvalues needs to be numerically computed and a finite number of node can only be271

evaluated, out of the theoretically infinite series. This is why this section investigates how much mode are272

needed in order to produce a sensible approximation of the exact solution. The mode truncation convergence273

of our analytical solution is checked by evaluating the quadratic error �274

� =
1

#/#g

∫ 1

0

∫ g=5

0

(
P"CA

(I, C) − PA4 5 (I, C)
)2
3I3C, (59)

where (#/ , #g) ≡ (1000, 5000) are the space and time numerical uniform grid point number whereas275

PA4 5 (/, g) is a reference solution with very-high mode truncation (2000 modes). For each configuration276

analyzed the analytical solution is truncated to "CA modes (with "CA � 2000). Figure 6 shows a linear277

convergence of mode truncation, i.e the L2-norm of the error � decays as � ∼ "−1CA . Furthermore figure278

6 indicates that both in case (i) and (ii), the L2-norm can be as small as 2.10−9 when taking only the first279

hundred modes. This illustrates that albeit high frequencies are needed in order to describe the sharp time280

variation of the pressure solution, they are not contributing much for most of the pressure signal shape.281

Furthermore, in practice, since any real "impact time" has a finite time decay, not every high frequency mode282

can be excited, providing physical relevance to mode truncation.283

SUMMARY AND CONCLUSION284

The paper considers analytical solutions for FSI wave propagation in liquid-filled pipes using TMM285

method in frequency-domain. Transposing the TMM method to the 2 × 2 wave system associated with the286

pressure/stress coupled unknown, the formal solution in frequency-domain is provided for general (linear)287

sets of boundary conditions. The poles of this frequency-domain solutions give the natural vibrating288

frequencies of the system, i.e the discrete spectrum of the vibrating modes. The spectrum has been found289

associated with the zeros of the determinant of a transfer matrix (denoted B) which encapsulates both290

FSI and boundary conditions couplings. The resulting spectrum is found consistent with the one found291
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previously using time-domain analysis. Considering three sets of boundary conditions, the diagonalized292

pressure-stress wave equation has been analyzed by a frequency-domain Laplace transform approach. For293

all configurations investigated, an explicit transcendental spectrum equation has been obtained. A detailed294

analysis of the spectrum variations versus constitutive parameters , i.e the Poisson modulus or the pipe’s295

thickness radius ratio U) has then been carried out. The determined natural frequencies were successfully296

compared with previous contributions found in the literature. For the pipe-reservoir-valve (free or not)297

system, a straightforward time dependent solution has been derived and compared to numerical benchmarks.298

The modal convergence of the time dependent solutions have been analyzed showing a good convergence to299

mode truncation. We hope that these analytical solutions providing the explicit natural frequency spectrum300

dependence upon mechanical and geometrical parameters can be useful for testing and validating FSI301

numerical methods. Also, this contribution provides a one-to-one mapping between frequency-domain302

solutions and time-domain ones. It should then permit to find explicit natural frequency spectrum using303

TMM method in frequency-domain in more complex configurations.304

Appendix305

Notations regarding the pipe geometry andmechanical properties are given in this appendix. A cylindrical306

tube having inner radius '0, wall thickness 4, length !, is considered so that the dimensionless pipe thickness307

U can be defined as308

U =
4

'0
. (60)

The tube is entirely filled with a fluid having density d 5 , bulk modulus K 5 . The elastic solid response is309

associated with Young’s modulus � , Poisson’s modulus aB, and density dB. Tĳsseling (2007) derived the310

classical pulse wave speed within the fluid, 2?, distinct from the elastic pulse wave speed within the solid, 2B311

22? =
1
d 5

1
1
K 5
+ 2
U�

(
2(1−a2B )
2+U + U(1 + aB)

) , 22B = �

dB
, (61)

their respective ratio being312

CB =
2B

2?
. (62)

The perturbed fluid pressure %∗, and axial solid stressf∗ (in the followingwe usef∗ to denote the longitudinal313

stress component f∗II), are re-scaled by the Joukowski (1898)’s over-pressure, i.e. $
(
d 5 2?,0

)
where,0 is314
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the flow variation applied within the pipes, so that their dimensionless counterparts are denoted315

% =
%∗

d 5 2?,0
, and, f =

f∗

d 5 2?,0
. (63)

The physical time C is furthermore re-scaled with respect to the fluid acoustic advective time scale, i.e.316

g = C !
2?
, whereas the axial coordinate is non-dimensionalysed by the pipe’s length, i.e. / = I/!. Finally,317

the dimensionless density ratio is introduced318

D =
d 5

dB
. (64)

The derivation of the wave-vector equation governing the space-time distribution of the dimensionless319

perturbed pressure % and dimensionless axial stress f has been provided in Bayle and Plouraboué (2023b) so320

that it is not repeated here. It results in the following wave-operator acting on the pressure/stress 2D-vector:321

(
m2g − C2Pm

2
/

)
P = 0, (65)

where322

C2P =
©­­«
1 2aBD
2aB

U(2+U)
4a2BD
U(2+U) + C

2
B

ª®®¬ , and, P =
©­­«
%

f

ª®®¬ . (66)

As mentionned in the introduction, it is interesting to notice that the off-diagonal terms of matrix C2P are323

proportional to the Poisson coefficient aB so that the fluid pressure and the solid stress decouple as aB → 0.324

Furthermore, as aB → 0 the remaining diagonal terms are 1 and C2B , the two eigenvalues of the resulting325

diagonal matrix. These eigenvalues are providing the two distinct wave-velocities of the uncoupled limit:326

1 which is the dimensionless pressure pulse velocity 2? whereas C2B is the dimensionless elastic wave solid327

one. When aB ≠ 0 the eigenvalues of matrix C2P provide the velocities of the coupled system. The vector328

homogeneous wave-equation resolution will be handled within the eigenvectors basis of C2P as in Zhang et al.329

(1999). The eigenvalues of C2P, denoted 2
2
± > 0, associated with diagonalized matrix C2P correspond to the330

wave speed mode propagation. They are the solution of the following polynomial characteristic problem331

24± −
[
1 + C2B +

4a2BD
U(2 + U)

]
22± + C2B = 0, (67)

19 Bayle, July 24, 2023



the solutions of which are332

22± =
1 + C2B +

4a2BD
U(2+U) ±

√(
1 + C2B + 4a2BD

U(2+U)

)2
− 4C2B

2
. (68)

The fluid pressure and the axial solid stress as well as their respective time-derivatives will be assumed333

initially at rest so that334

P(/, 0) = 0 , mgP(/, 0) = 0. (69)

335
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[Physical properties and configuration for case (i) & (ii)]
Anchored and free valves (i) & (ii) Fig. ??ab

Fluid (water) Solid (steel)
d 5 = 1000 :6 · <3 dB = 7900 :6 · <−3
K 5 = 2.1 �%0 � = 210 �%0

aB = 0.3
'0 = 0.395 <
4 = 0.008 <
! = 20 <

[Physical properties and configuration for case

(iii)]

Impacting rod system (iii) Fig. ??c
Fluid (water) Solid (steel) rod & sleeves (steel)

d 5 = 999 :6 · <3 dB = 7985 :6 · <−3 "0 = 1.312 :6
K 5 = 2.14 �%0 � = 168 �%0 "! = 0.3258 :6

aB = 0.29 �A>3 = 9.4 :#
'0 = 0.02601 < +A>3 = 0.1175 < · B−1
4 = 0.003945 <
! = 4.502 <

TABLE 1. Physical parameters associated with the three configurations depicted in Figure ??.

26 Bayle, July 24, 2023



List of Figures445

1 Time-domain result and spectrum solution of test case (i). (a) Pressure response446

with FSI (aB = 0.3 continuous brown lines) and without FSI modeling (aB = 0 black447

dotted lines) versus Mei and Jing (2016)’s theoretical solution (which does not take448

into account FSI effects, i.e. for which aB ≡ 0). (b) Spectrum (32 first eigenvalues)449

associated with Dirichlet/Dirichlet boundary conditions (19) versus the Poisson450

modulus aB (blue dots for aB = 0 are Mei and Jing (2016)’s spectrum and red dots451

are the pure elastic modes the union of which compose the spectrum (25). As aB452

varies, some eigenvalues come close to one-another, but a careful inspection shows453

no cross-over between the depicted eigenvalues. . . . . . . . . . . . . . . . . . . . 30454

2 Time-domain and frequency-domain results of test case (i). (a) Comparison between pressure field455

analytical solution at valve location (continuous brown lines) with MOC solutions provided by456

Tĳsseling (2003) (dashed blue lines). Non-FSI solutions (i.e aB = 0) are provided for illustration in457

black dotted lines. Insets provide a zoom for detailed check. (b) Comparison between Yang et al.458

(2004b)’s pressure prediction in frequency domain at valve position (continuous black line) and459

discrete spectrum eigenvalues obtained from transcendental equation (25) depicted in dotted (blue)460

lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31461

3 Spectrum of case (ii). (a) first 38 eigenvalues evaluated from (38) versus the Poisson modulus aB .462

(b) first 21 eigenvalues versus the dimensionless pipe’s thickness U. As U varies, some eigenvalues463

come close to one-another, but a careful inspection shows no cross-over between them. . . . . . . 32464

4 Time-domain and frequency-domain results of test case (ii). (a) Comparison be-465

tween pressure field analytical solution at valve location (continuous brown lines)466

with MOC solutions provided by Tĳsseling (2003) (dashed blue lines). Insets pro-467

vide a zoom for detailed check. (b) Comparison between Zhang et al. (1999)’s pipe468

velocity spectrum at valve and eigenvalues obtained from transcendental equation469

(38) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33470

27 Bayle, July 24, 2023



5 Spectrum of case (iii). (a) Comparison between Zhang et al. (1999)’s pipe velocity471

spectrum at valve and eigenvalues obtained from the root of (55). Investigation of472

natural frequencies with (blue dashed line) or without (red dotted line) considering473

the sleeves masses is depicted. (b) first 21 eigenvalues versus the pipe’s thickness474

/ radius ratio U. As U varies, some eigenvalues come close to one-another, but a475

careful inspection shows no cross-over between the depicted eigenvalues. . . . . . 34476

6 Log-log plot of the truncation error E defined in (59) versus mode truncation "CA for the analytical477

solutions of case (i) and (ii). A linear convergence "−1CA is depicted in (red) continuous line. . . . 35478

28 Bayle, July 24, 2023



Fig. 1. Boundary condition sets investigated for the liquid-filled pipe problem.
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Fig. 2. Time-domain result and spectrum solution of test case (i). (a) Pressure response with FSI
(aB = 0.3 continuous brown lines) and without FSI modeling (aB = 0 black dotted lines) versus Mei
and Jing (2016)’s theoretical solution (which does not take into account FSI effects, i.e. for which
aB ≡ 0). (b) Spectrum (32 first eigenvalues) associatedwith Dirichlet/Dirichlet boundary conditions
(19) versus the Poisson modulus aB (blue dots for aB = 0 are Mei and Jing (2016)’s spectrum and
red dots are the pure elastic modes the union of which compose the spectrum (25). As aB varies,
some eigenvalues come close to one-another, but a careful inspection shows no cross-over between
the depicted eigenvalues.
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Fig. 3. Time-domain and frequency-domain results of test case (i). (a) Comparison between pressure field analytical
solution at valve location (continuous brown lines) with MOC solutions provided by Tĳsseling (2003) (dashed blue
lines). Non-FSI solutions (i.e aB = 0) are provided for illustration in black dotted lines. Insets provide a zoom
for detailed check. (b) Comparison between Yang et al. (2004b)’s pressure prediction in frequency domain at valve
position (continuous black line) and discrete spectrum eigenvalues obtained from transcendental equation (25) depicted
in dotted (blue) lines.
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Fig. 4. Spectrum of case (ii). (a) first 38 eigenvalues evaluated from (38) versus the Poisson modulus aB . (b) first
21 eigenvalues versus the dimensionless pipe’s thickness U. As U varies, some eigenvalues come close to one-another,
but a careful inspection shows no cross-over between them.

32 Bayle, July 24, 2023



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time in (s) 1e−1

−10

0

10

20

30
Pr

es
su

re
 P

 in
 (B

ar
)

Comparison with 4-eq. (FSI) solver (Z= 1)
Tijsseling (2003)
Theory νs = 0.3

0.092 0.110
15
16

0 50 100 150 200 250
fk(Hz)

10−5

10−4

10−3

10−2

10−1

Pi
pe

 v
el

oc
ity

 ((
m

/s
)/H

z)

Natural frequencies matching
Zhang (1999)
Theory

Fig. 5. Time-domain and frequency-domain results of test case (ii). (a) Comparison between
pressure field analytical solution at valve location (continuous brown lines) with MOC solutions
provided by Tĳsseling (2003) (dashed blue lines). Insets provide a zoom for detailed check. (b)
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Fig. 6. Spectrum of case (iii). (a) Comparison between Zhang et al. (1999)’s pipe velocity spectrum
at valve and eigenvalues obtained from the root of (55). Investigation of natural frequencies with
(blue dashed line) or without (red dotted line) considering the sleeves masses is depicted. (b) first 21
eigenvalues versus the pipe’s thickness / radius ratio U. As U varies, some eigenvalues come close
to one-another, but a careful inspection shows no cross-over between the depicted eigenvalues.
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of case (i) and (ii). A linear convergence "−1CA is depicted in (red) continuous line.
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