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SIMILARITY SURFACES, CONNECTIONS, AND THE MEASURABLE RIEMANN MAPPING THEOREM

This article studies a particular process that approximates solutions of the Beltrami equation (straightening of ellipse fields, a.k.a. measurable Riemann mapping theorem) on C. It passes through the introduction of a sequence of similarity surfaces constructed by gluing polygons, and we explain the relation between their conformal uniformization and the Schwarz-Christoffel formula. Numerical aspects, in particular the efficiency of the process, are not studied, but we draw interesting theoretical consequences. First, we give an independent proof of the analytic dependence, on the data (the Beltrami form), of the solution of the Beltrami equation (Ahlfors-Bers theorem). For this we prove, without using the Ahlfors-Bers theorem, the holomorphic dependence, with respect to the polygons, of the Christoffel symbol appearing in the Schwarz-Christoffel formula. Second, these Christoffel symbols define a sequence of parallel transports on the range, and in the case of a data that is C 2 with compact support, we prove that it converges to the parallel transport associated to a particular affine connection, which we identify.
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Introduction

More than fifty years later, Chapter II of [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF] remains an excellent introduction to the theory of quasiconformal mappings and we highly recommend it. 1 This book also includes in Chapter V a proof of the measurable Riemann mapping theorem (see Section 5 here for a statement). This proof makes use of integral operators with singular kernels (Ahlfors-Beurling operator), a good dose of L p spaces for p > 2, letting p -→ 2, and a subtle inequality due to Calderón and Zygmund. There has been prior and posterior proofs with different approaches in special cases or in the general case, depending on the data µ in the statement (the article [START_REF] Alexey | Simple proofs of uniformization theorems[END_REF] gives a short historical overview and references):

-Gauss (1825) for an R-analytic µ, by complexifying R 2 into C 2 and using a clever trick that does not extend to the C ∞ class; -Korn (1914) and Lichtenstein (1916) for Hölder-continuous µ; Lichtenstein's method already involves integral operators. Korn uses a fixed point method involving solving the Laplacian; -Lavrentiev (1935) for a continuous µ, by constructing approximations to the solution using conformal geometric methods (we sum-up the method in Part 2) [START_REF] Lavrentieff | Sur une classe de représentations continues[END_REF][START_REF] Lavrentieff | On a class of continuous representations[END_REF]; -Morrey (1936) for a general, measurable, µ, using a density argument to reduce to solving the case where µ is analytic; to cite only a few. According to [START_REF] Bojarskij | Verallgemeinerte Lösungen eines Systems von Differentialgleichungen erster Ordnung vom elliptischen Typus mit unstetigen Koeffizienten[END_REF] (translated in [START_REF] Bojarski | Generalized solutions of a system of differential equations of the first order and elliptic type with discontinuous coefficients[END_REF]), the idea to introduce the Ahlfors-Beurling operator (it did not bear that name at that time) for this problem is due to Vekua [START_REF] Vekua | The problem of reduction to canonical form of differential forms of elliptic type and the generalized Cauchy-Riemann system[END_REF]. Concerning the holomorphic dependence on the data µ, all the proofs that the authors of the present article know use the Ahlfors-Beurling operator. These works include:

-Ahlfors and Bers, via L p spaces -Buff-Douady, via L 2 spaces only and the Fourier transformation -Glutsyuk, via a limit of a version for the torus, which is proved using Fourier series. Part 2 in the present article is an addition to this list, with the difference that we do not use the Ahlfors-Beurling operator. Our proof uses distributions and L 2 spaces for the definition of quasiconformal maps, a classical compactness argument via an L 2 estimate, a new ingredient that is similarity surfaces, and the Poincaré-Koebe theorem. 2 . It bears resemblance with the approach of Lavrentiev and in fact the article of Lavrentiev avoids the use of the Poincaré-Koebe theorem so it is not impossible that the proof we present may be adapted too to avoid this use, but this seems not obvious.

Structure and content of the article

Part 1 is an introduction to the subject of similarity surfaces with a focus on ones that are conformally equivalent to punctured Riemann spheres and obtained by gluing finitely many convex polygons, possibly unbounded (Section 2). In Section 3 we draw a link with a generalization of the Schwarz-Christoffel formula: it expresses straightening charts. We believe this fact was known before but we do not have references for this. In the formula a particular rational map appears, which is the Christoffel symbol (expression in a chart) of a particular conformal connection. Section 4 is devoted to a proof of holomorphic dependence of the rational map appearing as a Christoffel symbol, when the polygons that are glued are modified by letting the vertices vary holomorphically. A key point is to completely avoid using the measurable Riemann mapping theorem in this proof. Such an insistance induces complications that are dealt with in Appendix C.

Part 2 states the measurable Riemann mapping theorem (solution of the Beltrami equation associated to a Beltrami form µ) and details our proof. A crucial point is the holomorphic dependence, which relies on the holomorphic dependence of the Christoffel symbol proved in Part 1. We first describe an (already known) density method with some amount of generality. Then we apply the results of the previous section to finalize the proof.

The density method does not involve the Ahlfors-Beurling operator nor L p spaces beyond L 1 , L 2 . It involves the notion of distribution and the Sobolev space W 1,2 loc , which serve in particular for the definition of quasiconformal maps. It also involves compactness statements for quasiconformal maps: one about normal families, which is proved in [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF] by conformal geometry techniques; one about L 2 bounds, which is proved in [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF] by proving differentiability almost everywhere and bounding the differential with the Jacobian.

The presentation of our proof is not completely self contained: part of the book of Ahlfors, [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF][START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF], is considered as a basic reference. In particular several lemmas of this book are used here without proof, the interested reader will have to check such proofs there. 3 Details about others aspects, proofs, or prerequisite knowledge are given in appendices here.

While Part 2 presents an original approach to known results, Part 3 is prospective and contains new results. In Part 2, the solution f of the Beltrami equation in the measurable Riemann mapping theorem is obtained as a limit of approximations f n . Each approximation is associated to a particular abstract similarity surface S n , with (2n 2 + 1) 2 + 1 singularities. Uniformizing the underlying Riemann surfaces to the Riemann sphere gives rise to a meromorphic conformal connection on C, whose associated Christoffel symbol ζ n is a rational map with (2n 2 + 1) 2 poles. A natural question arises: is there a limit to these similarity surfaces? In the particular case where the Beltrami form µ is C 2 with compact support, we state and prove limit theorems concerning the sequence of connections ζ n . In particular, it tends in some sense to a conformal connection, but whose Christoffel symbol ζ, which we characterize, is not anymore a holomorphic function. In some sense, we gave an answer to the above question: the limit of the similarity surfaces S n is the plane endowed with the connection ζ.

Part 1

Similarity surfaces

Similarity surfaces are also known under other names. In [START_REF] Thurston | Three-dimensional geometry and topology[END_REF] they are called affine surfaces (but for other authors the term affine manifold may refer to other notions), and also G-manifolds (of dimension 2) for G = the group of similarities of the Euclidean plane (this is a different notion from the G-structures of Elie Cartan4 ) In [START_REF] Mandelbaum | Branched structures on Riemann surfaces[END_REF] they are called branched affine surfaces (with an emphasis on some type of singularities). They also have an interpretation in terms of flat symmetric conformal connections on Riemann surfaces, see Section 6.

Definitions and basic properties

Definition

A similarity surface is a two dimensional topological manifold together with an atlas whose transition maps are locally C-affine maps z → az + b, i.e. on each connected component of the domain of a transition map there is a map z → az + b that coincides with it.

Since C-affine maps are holomorphic, it follows that similarity surfaces are special cases of one dimensional analytic manifolds, a.k.a. Riemann surfaces. 5Translation surfaces (transition maps are translations) are example of similarity surfaces, as are half translation surfaces (transition maps are of the form z → a±z).

The best illustration of a similarity surface is M.C. Escher's lithograph Print gallery where C * is endowed with the atlas that consists of the branches of z → z α with α = (2πi + log 256)/(2πi), see [START_REF] Smit | Artful mathematics: the heritage of M. C. Escher[END_REF].

Morphisms

A map between open subsets of similarity surfaces is called affine if its expression in charts is locally C-affine. The set C is a similarity surface with a global chart that is the identity, this is called the canonical atlas of C. A map from a similarity surface to C is called affine if it is affine for the canonical atlas.

Monodromy

Let a germ of chart at a point M ∈ S be an equivalence class in E/ ∼, where E is the set of non-constant affine maps s : V → C defined in neighbourhoods V of M , and s 1 ∼ s 2 whenever there is a neighbourhood of M on which they are equal.

Given a path γ : [0, 1] → S and a germ of chart s0 at γ(0), there is a unique way to follow the germ along γ so that for all t, st is a germ of chart at γ(t) and so that the germs locally match,6 i.e. for all t, ∃η > 0 and a representative s t of st such that for |t -t | < η, γ(t ) is in the domain of s t and st is the germ of s t at γ(t ). Existence can be proved by using an open cover of the image of γ by coincides with some Caffine self map φ : C → C in a neighbourhood of s 0 (M ) ∈ C. The map φ and the point s 0 (M ) are independent of the choice of the representatives s 0 and s 1 of s0 and s1 of the germ. The monodromy of γ is defined as the conjugacy class of φ in the group of non-constant affine self-maps of C. This class depends only on the free 7 homotopy class of γ. By abuse of language, we will say that the monodromy is z → z or z → z + 1 in the translation case and z → λz in the other cases. The monodromy factor is defined as 1 in the translation case and λ in the other cases.

An equivalent point of view, which we will not develop here, is to endow the universal cover U S of S based on M with a similarity atlas compatible with that of S, and to extend the initial germ s 0 to a global affine map U S → C.

Polygons

Gluing bounded convex polygons

Assume we are given a finite collection (P j ) j∈J of bounded convex polygons. Each polygon must have finitely many sides (aka. edges) and their vertices are the end of these sides. As subsets of C, we will choose that polygons include their sides, i.e. they are closed for the topology of C. We allow flat angles (π radians) at a vertex, so keep in mind that the data of the polygon as a subset of C does not necessarily characterize the set of its vertices. Each edge is naturally oriented by following the polygon's boundary anticlockwise. See Figures 1 and2. 7 Without basepoint.

Consider the collection of all the sides e with their polygons P j and denote them e : j. Assume we are given a pairing 8 of them. From this, one can define a compact oriented topological manifold S of dimension 2, as follows: for each pair, choose an ordering of the pair as e 1 : j 1 , e 2 : j 2 ; note that the case j 1 = j 2 is allowed by the pairing, but not the case e 1 : j 1 = e 2 : j 2 ; there is a unique complex affine map s sending e 1 to e 2 and reversing their orientations. Let P be the disjoint union of all polygons, whose elements will be denoted z : j to distinguish two elements of differently indexed polygons with the same affix, which may happen. Let S be P quotiented by z : j 1 ∼ s(z) : j 2 for all the paired edges as above. Call π : P → S the quotient map. 9 Interior points of polygons are not identified with any other points. An interior point z : j of an edge is identified with exactly one other point s(z) : j , which sits in the interior of the matching edge. Depending on the situation, a vertex can be matched with any finite number of other vertices.

Local model at vertices

Let us look at what the quotient looks like at a vertex π(v 0 : j 0 ). Consider all the v : j such that π(v : j) = π(v 0 : j 0 ): these are the vertices of the P j that project to the same point. (Note that it is quite possible that a P j has several vertices with the same image by π.) Near these vertices the polygon P j looks like a sector with some opening angle and the point v belongs to two edges, one termed "before" and the other one "after" so that the sequence before → sector → after follows the anticlockwise order. Consider the data (v, e, j), that we will call flag, where e is the edge that is termed "before". Denote e the edge termed "after": it is glued via some affine map s to some edge of some other polygon P j and we call successor of (v, e, j) the flag (s(v), s(e ), j ). Following the consecutive gluings, we get from flag to flag and eventually back to the initial flag since there are finitely many polygons. By explicit transformations, we can map homeomorphically each sector to sectors of the same opening with apex of affix 0 and so that the gluings, except maybe one, become the identity. This shows that the quotient is indeed a manifold at the vertices.

Removing vertices and getting a similarity surface

Let V ⊂ S denote the set of all vertices (after passing to the quotient). On S = S -V one can define an atlas of a similarity surface as follows: inside each polygon π(Int P j ), take π -1 as a chart. Near an edge e = π(e 1 : j 1 ) = π(e 2 : j 2 ) with endpoints removed (call this Int e), we consider two cases. If P 1 = P 2 then take the neighbourhood V = π(Int P 1 ) ∪ Int e ∪ π(Int P 2 ) and the chart φ : V → s(Int P 1 ) ∪ Int e 2 ∪ Int P 2 mapping π(z : P 1 ) to s(z) and π(z : P 2 ) to z (this coincides in Int e). If P 1 = P 2 we do the same but using only non-overlapping neighbourhoods of Int e 1 and Int e 2 in P 1 instead of the full polygon. In both cases, the sets s(Int P 1 ) and Int P 2 cannot overlap because we took convex polygons and s reverses the orientation of edges. See Figure 3.

Conformal erasability of the singularities

Seeing S as a Riemann surface, 10 the vertices could be either punctures (the Riemann surface can be extended by adding the point and an appropriate chart) or holes (no such extension can be done; this happens iff the vertex has a neighbourhood in S conformally isomorphic to a ring of finite modulus: 1 < |z| < 1 + ε). Let us prove that we are in the first case by completing the Riemann surface S at 8 A partition into sets of cardinality 2. 9 We use the same notation for Archimedes' constant, context should prevent confusion. 10 Or a finite union thereof, see footnote 5. 1; by gluing the polygons along their paired edges with appropriate C-affine maps, we get local chart of a similarity surface in neighbourhoods of the edges minus their endpoints. the vertices, thus promoting S to a Riemann surface. Let p ∈ S be a vertex. Consider the circularly ordered sequence of flags (v, e, j) associated to p as described earlier in this section, and their associated angular sectors. Let θ > 0 denote the sum of the angle of the sectors. When we pass from a flag (v, e, j) to its successor (s(v), s(e ), j ), there is an affine map s(z) = az + b performing the transition. Let λ denote the inverse of the product of the dilation factors |a|. This product is not necessarily 1. The monodromy 11 of the similarity surface for an anticlockwise loop winding once around the vertex is equal to z → λe iθ z.

Remark. It is easy to get confused and believe that the monodromy would be the inverse of this function. If we scale an rotate the different sectors to attach them successively, we get a big sector (living in the universal cover of C * if θ > 2π) of which there remains only one pair of sides to glue together by some similitude. Call them "before" and after so that what we successively meet in the anticlockwise order is "before", sector, "after". Then the monodromy is the similitude that sends "before" to "after", not the other way round. Figure 4 illustrates an example and also illustrates the construction of a Riemann chart that we now explain. Map each sector to a horizontal band, infinite on the left, by a branch of z → log(z -v). The gluing map from a band to its successor is then a translation. Let us move them around in C and stack them according to these gluings. We obtain a band B of height θ, on which the last gluing goes from the top line to the bottom line and is the translation by the complex vector u = log(λ) + iθ. Now, for a well-chosen complex number α, the similarity z → αz send this vector to 2πi and the band to a band that is not necessarily horizontal any more, yet is still infinite on the left, and whose two sides are glued by the translation by 2πi. A uniformizing map for this quotient is just the exponential map exp from αB to a neighborhood U of 0 in C * . (If we would have sent u to -2πi instead of 2πi, the band would be infinite towards the right, and its exponential 11 Defined at the end of Section 1. Applying z → iτ u z + const turns this set (the small copy) into a bigger one and the vector u into iτ .

a b

Last we apply the exponential, which performs the gluing of the side pair b, and gives us a Riemann chart near the vertex p.

Figure 4: Riemann chart near a vertex for a specific example. We have λ = 1/2 and θ = τ /4, the monodromy is z → i 2 z. (For convenience we used τ = 2π in this figure .) would be a neighbourhood of infinity.) Adding {0} to U we get an analytic chart near the vertex p. We have turned S into a compact Riemann surface. 12 

Unbounded polygons

We will need to include unbounded polygons P into the game. As above, we start by including only convex ones. They are assumed closed as subsets of Ĉ, i.e. they include the vertex ∞. We call finite vertex a vertex that is in C, i.e. different from ∞. We only consider unbounded polygons that have exactly two edges reaching infinity, we call them unbounded edges, and require that these edges are half-lines, i.e. that each reach to a finite vertex, possibly the same. Our requirement rules out in particular the case where an edge is a whole straight line, but still allows the two unbounded edges to have a union that is a whole straight line (iff. they end at the same finite vertex and make there an angle of π).

This assumption implies that there are at least two edges, so rules out the case P = C, which has no edge, and also rules out a half plane with no finite vertex. It also rules out the case where the complement of P would have more than one components. Such a polygon would be bounded by two parallel lines and there would either be at least an edge from infinity to itself or four edges reaching infinity. However, we can recover all these cases by pasting appropriate polygons satisfying our assumptions (see also the last paragraph of the present section).

With these conditions each unbounded polygon has only one infinite vertex and each unbounded edge is a half line. We now consider the previous constructions, but allowing the presence of unbounded polygons that satisfy the conditions. We have to assume that the pairing between edges satisfies that unbounded edges are paired with unbounded edges. Moreover, the orientation reversing C-affine map sending an unbounded e 1 : j 1 to an unbounded e 2 : j 2 exists but is not anymore unique. So the data that must be given prior the construction has to include the choice of this map for each such pair (for a visual way to do this, one can mark unbounded edges with supplementary non-vertex points, that must match under the gluings, as in Section 4.4).

Then the construction can be carried out and we still get a topological surface S, but the set of vertices V ⊂ S now includes a new kind of element: infinite vertices. These are the vertices which come from the vertex at infinity of an unbounded polygon.

Again something new may happen: conformally, infinite vertices are not anymore necessarily punctures. An example is given in Appendix B. To the infinite vertex of an unbounded convex polygon satisfying our restrictions, one can associate the angle between the two edges reaching to infinity. It is a non-negative number. In the example of Appendix B this angle is 0.

To a infinite vertex v of the quotient let us again associate the sum of the angles at infinity of the unbounded polygons whose infinite vertex projects to v. Then a sufficient condition for an infinite vertex to be a puncture is that this sum is positive. The uniformizing map is obtained in a similar way as for finite vertices, with a few complications. We will provide indications but leave details to the reader.

An infinite (closed) sector is of the form a + [R, +∞) ,θ2] for some R ≥ 0 and some a ∈ C that we will call its focus. An half infinite strip is the image of the set [0, 1] × [0, +∞) ⊂ R 2 C by a complex affine map. Here is a list of complications. The angle of an unbounded polygon could be 0. The total angle at an infinite vertex could be 0. The focuses of the infinite sectors do not necessarily coincide with the finite vertices of the unbounded edges. The focuses of the infinite sectors do not necessarily match under the gluing maps of these edges. Taking a logarithm based on a focus would not conjugate the gluing (a similarity) to a map as simple as a translation (and if the two finite vertices of the two unbounded edges do not coincide, we of course cannot base the log on both).

• e i[θ1
Instead we take subsets of the sectors and strips that are neighbourhoods of infinity and glue them in a universal cover U C * of C * into one big set sitting in finitely many sheets of the cover (one sheet is enough near ∞ if θ < 2π). A neighbourhood of infinity in this set is a sector or a strip. Its two sides must be glued together according to some C-affine map (the vertices are now excluded from of the picture, except the one at infinity) whose factor is the monodromy factor (or its inverse, depending on the which side is the domain and which side is the range). If we order the two sides of the infinite sector/strip in the clockwise order (this is the opposite of the ordering we chose for finite vertices) then the monodromy sends the first one to the second one (as in the finite case). The monodromy factor must be of the form λe -iθ for some λ > 0. Now there are several cases (1) θ > 0.

(a) Either the affine map s has a unique fixed point. Then we can take a logarithm based on this fixed point. The image of the two sides will be almost horizontal curves 13 that extend infinitely to the right and that we must glue by a translation of vector v = log λ -iθ. Multiplication by 2πi/v followed by exp realizes this gluing. (b) Or the affine map s is the identity. Then the total angle is a multiple of 2π, and the two curves to be glued together have the same projection by φ : U C * → C * . The quotient is a k-fold cover of a punctured neighborhood of infinity. A uniformization is given by a determination of z → z -1/k . (c) Or the affine map s is a translation by a non-zero vector a. In this case λ = 1, and θ must be a multiple of 2π:

θ = k2π.
By composing everything with z → a -1 z we can assume that a = 1. By cutting and pasting we can assume that the edges to glue have their infinite direction of argument 0. We provide explicitly a formula whose inverse realizes the gluing:

φ(z) = z -k + 1 2πi log z
near infinity, where one takes the branch of log z whose imaginary part lies in [0, 2π]. We omit the details. (2) θ = 0.

(a) Either the gluing map is a translation, which can be taken as z → z + 2πi by an appropriate C-affine change of coordinate. Then a uniformization is provided by z → exp(z).

13 Because we work close to infinity. If bothered by that, one can make these curves actual horizontals by shifting the original edges, which can, in a neighbourhood of infinity, be achieved by cutting and pasting pieces of the sectors.

(b) Or the gluing map is of the form z → az + b for some a ∈ R with a > 0 and a = 0. Then the vertex at infinity is not a puncture but a hole.

Signed angle and monodromy factor

To unify the formulas for the monodromy we define the signed angle σ ∈ R of a vertex as σ = θ if the vertex is finite and σ = -θ if the vertex is infinite, where θ ≥ 0 is the total angle defined in the previous paragraphs. Then the factor of the monodromy of a small loop winding anticlockwise around the singularity is in both cases of the form λe iσ for some λ > 0. Note that the monodromy factor determines λ completely but only determines σ modulo 2πi.

Even fancier polygons

In fact we can use polygons that are non-convex, or not simply connected, and without restrictions on the type of unbounded edges or their number, still finite. Indeed such polygons can be cut further, possibly introducing auxiliary finite vertices (in which case, obviously, the resulting similarity surface structure will have an erasable singularity at these vertices), so as to respect the previous restrictions and yield the same objects S and S once we give back to the latter the auxiliary vertices. Then one thing will have to be kept in mind: that if a polygon P ⊂ C has n unbounded complementary components in C, then it must be considered as having n distinct infinite vertices (before the gluing; after, this number may get reduced).

One could also use polygons that overlap themselves, i.e. are spread over C in an non-injective way, but this section is already long enough. 

φ 2 = a φ 1 + b hence φ 2 = a φ 1 thus φ 1 φ 1 = φ 2 φ 2 .
For any holomorphic function on an open subset of C we now use the notation

N φ = N (φ) := φ φ .
Assume we are given a subset U of S . Note that for every point M ∈ U there are similarity charts defined in a neighbourhood of M but there may fail to exist 14 We can always restrict a chart to an open subset of its domain and add it to the atlas, this gives the same structure on S . a similarity chart that would be defined on the entirety of U , even if there is a Riemann chart r defined on U .

If we are given a Riemann chart r : U ⊂ S → C, we can use it to endow r(U ) with the similarity atlas {φ = s • r -1 } where s varies in the similarity atlas of S . Note that if we denote V the domain of s then the domain of φ is r(U ∩ V ).

We will thus momentarily study open subsets O of C with a similarity surface atlas whose charts φ are holomorphic. By the above computation, all similarity charts have the same quantity N (φ) at a given z ∈ O, so even if there may fail to be a single chart φ on O, there is a well-defined holomorphic function ζ : O → C such that for all similarity charts s : 

V ⊂ O → C, then N φ = ζ on V . It
λ = exp γ ζ(z)dz .
Let us come back to abstract similarity surfaces S . Up to now we only expressed similarity charts in one Riemann chart, but what happens if we change the Riemann chart? Assume r 1 and r 2 are both defined on U ⊂ S and let ψ = r 1 • r -1 2 . Then the expressions φ (i) = s • r -1 i of a similarity chart s via the maps r i are related by φ (2) = φ (1) • ψ. It is easy, for holomorphic functions, to compute N (φ • ψ):

(1)

N (φ • ψ) = ψ × N (φ) • ψ + N (ψ).
For our situation let us write this as

(2)

ζ (2) = ψ × ζ (1) • ψ + ψ ψ .
where ζ (i) is the function of the previous paragraph, for the similarity atlas φ (i) on the subset r i (U ) of C.

Remark. Equation (1) is reminiscent of the formula of a change of variable for a 1-form. In fact N φ does not express a 1-form on the Riemann surface S but a Christoffel symbol in complex dimension one. Christoffel symbols are the coefficients that appear in the infinitesimal expression of affine connections in charts, see Section 6.2. Equation (1) is also reminiscent of a similar formula for the Schwarzian derivative Sφ. In fact if we look at surfaces with atlases whose change of charts are homographies instead of affine maps, the operator S will play the role of the operator N .

If we have an isolated point in C -U , then by eq. (2) the polar part of ζ behaves under a change of variable exactly like the polar part of a holomorphic 1-form. In particular the residue "res" is an invariant. This is coherent with the fact that the monodromy of the similarity surface around this singularity is independent of any choice of Riemann surface charts and is a conjugacy class of affine map whose linear factor is equal to exp(2πi res).

3.2.

Polygon gluings and residue of the Christoffel symbol near puncture type singularities. We place ourselves here in the situation of Section 2 where a topological surface S and a similarity surface S = S -V were constructed by gluing bounded or unbounded polygons, where V is the set of vertices, and we make the assumption that all infinite vertices have an angle sum θ that is non-zero. We saw that in this case that the atlas associated to S extends to a Riemann surface atlas of S. Let us study more closely the Christoffel symbol near the vertices.

For any finite vertex we constructed a Riemann chart whose image is a neighborhood of 0 and in which the similarity charts are branches of z → z α for the complex number α = (log λ + iθ)/2πi where θ is the sum of the angles of the polygons at this vertex and λ is such that the monodromy factor at the vertex is λe iθ . For any branch of z → z α , a direct computation gives

N z α = α -1 z .
It follows (see eq. ( 2) and the consequence on the polar part explained after it) that in any other Riemann chart, the Christoffel symbol ζ will have a simple pole at the vertex, of residue

(3) res = α -1 = log(λ) + iθ 2πi -1.
In particular Re res > -1. A similar construction was done for infinite vertices for which θ > 0. The conclusion was similar: the monodromy has factor λe -iθ for some λ > 0 and there is a Riemann chart mapping a neighbourhood of this vertex to a neighbourhood of 0 and for which similarity charts are given by branches of z → z α with α = (log λ -iθ)/2πi or, if the monodromy is a non-identity translation (hence λ = 1 and θ = k2π), by branches of z → z -k + 1 2πi log z. The Christoffel symbol has in both cases a simple pole at the vertex, of residue

(4) res = α -1 = log(λ) -iθ 2πi -1
in this chart and thus in any other Riemann chart. In particular Re res < -1.

Remark. The notion of signed angle σ in Section 2 allows to unify Equations (3) and (4): in both cases res = log(λ) + iσ 2πi -1.

The monodromy factor λe iσ has a unified expression in terms of res:

λe iσ = exp(2πi res).

3.3.

Polygons gluing to a sphere and the Schwarz-Christoffel formula. We now make the supplementary assumption that the topological surface S is homeomorphic to a sphere. (We still place ourselves in the situation of Section 3.2, which we recall: S is obtained by gluing together finitely many bounded or unbounded polygons; all infinite vertices are moreover required to have an angle sum θ that is non-zero, so that all singularities are punctures and the Riemann surface atlas of S extends to S.) Then by the Poincaré Koebe theorem, S is isomorphic as a Riemann surface to the Riemann sphere Ĉ. Let F : S → Ĉ be such an isomorphism. Let {z 1 , . . . , z m } ⊂ Ĉ be the image by F of the vertices. The point ∞ ∈ Ĉ may or may not be one of them. For each vertex v k , let θ k be the total angle, σ k = ±θ k the signed angle, and λ k the dilation ratio of this vertex. Note that F gives us a global chart of the Riemann surface S -F -1 (∞). Removing vertices, F is a global Riemann chart for S -F -1 (∞). The associated Christoffel symbol ζ is a holomorphic function from C -{z 1 , . . . , z m } to C. Let res k denote the residue of ζ at the vertex z k .

Theorem 1. We have 

ζ(z) = m k=1 z k =∞ res k z -z k . Moreover m k=1 res k = -2.
ζ(z) = -z -2 ζ(z -1 ) -2z -1 . If ∞ is not a vertex then ζ(z) = -2z -1 + O(z -2 ) as z → ∞. If ∞ is a vertex z k then ζ(w) = res k w + O(1) as w → 0, from which: ζ(z) = (-res k -2)z -1 + O(z -2 )
as z → ∞. In all cases: ζ tends 0 to at ∞. Let f (z) denote the sum of res k /(z -z k ) as in the statement of the theorem. The difference ζ -f is a holomorphic function on C minus finitely many points, whose singularities are erasable and which tends to 0 at infinity. It follows that ζ -f = 0. This proves the first claim. Moreover, from the above it follows that ζ(z) -f (z) = (-2 -res k ) z -1 + O(z -2 ) as z → ∞, whence the second claim.

Remark. That the sum of residues is -2 (in the case of Ĉ) and not 0 is another difference between the Christoffel symbol and 1-forms. It can be proved more generally for all Christoffel symbol on Ĉ with finitely many singularities (polar or essential) by using Equation (2) as above and expressing ζ(z)dz on a big circle in two ways, using the residues on each side. Another (equivalent) way is to use that the difference of two Christoffel symbols is a 1-form and to use that the sum of residues of a 1-form is always 0 to reduce the computation to a particular symbol (for instance ζ = 0). Last, let us remark that this formula generalizes to genus g compact Riemann surfaces: the sum of the residues is then equal to 2g -2.

From Theorem 1, the similarity charts φ satisfy locally that

φ = a + b m k=1 z k =∞ (z -z k ) res k .
Remark. This is a generalization of the Schwarz-Christoffel formula. See [START_REF] Chéritat | Beltrami forms, affine surfaces and the Schwarz-Christoffel formula: a worked out example of straightening[END_REF] for more details. total angle and λ the monodromy factor (using τ = 2π on the left to clarify the computations):

A : θ = τ 6 + τ 8 = 7 24 τ λ = √ 2 res = 7 24 -1 + log √ 2 2πi B : θ = τ 6 + τ 8 = 7 24 τ λ = 1/ √ 2 res = 7 24 -1 - log √ 2 2πi C : θ = τ 6 + τ 4 = 5 12 τ λ = 1 res = 5 12 -1
In the global chart Ĉ where C is at ∞, A at -1 and B at 1 we get

ζ = res A z + 1 + res B z -1 .
On Figure 6 we see on the left the two triangles with two different hatchings (think of them as a kind of coordinate systems); on the right the corresponding Riemann surface S 0 has been mapped to Ĉ as above and we drew the image of the hatchings using the methods of [START_REF] Chéritat | Beltrami forms, affine surfaces and the Schwarz-Christoffel formula: a worked out example of straightening[END_REF], Section 4.3.2 to follow the geodesics associated to ζ. Lemma 1. Under the conditions above, if res / ∈ {-1, -2, . . .} then there is a holomorphic change of coordinate z → w sending z 0 → 0 such that similarity charts are expressed as branches of w → w res +1 , up to affine maps, and hence the Christoffel symbol takes the expression

ζ(w) = res w .
Proof. By a translation we can assume that z 0 = 0. We have the power series expansion as z → 0: for some holomorphic function R of z (i.e. without singularity at 0). Then

ζ(z) = res z + a 0 + a 1 z + a 2 z 2 + . . .
w = z exp R(z)
res +1 does the job. Note that we did not claim local uniqueness of the coordinate w that satisfies the conclusion of the lemma. We do not wish to study the uniqueness problem in this article.

Remark. Let us state how to deal with the remaining cases (we give them without proofs because we will not use these normal forms). In the case where res = -1 we can also get ζ(w) = -1/w, which has branches of w → log w as similarity charts up to affine maps. In the case res = -k ∈ {-2, -3, . . .}, we can reduce to either ζ(w) = -k/w or to ζ(w) = -k/w + w k-2 , and these two cases are mutually exclusive. The first one has w → 1/w 1-k as similarity charts but the similarity charts of the second one has a complicated expression. We may prefer an alternative form, for example one which gives branches of w → -1 w k-1 + log w as similarity charts up to affine maps, in which case

ζ(w) = -k w + w k-2 1 + w k-1 (k-1)
.

An isolated singularity of a Christoffel symbol with a simple pole with Re (res) > -1

is called bounded. It is called unbounded if Re (res) < -1.
We do not give a particular name to the case Re (res) = -1.

According to the lemma above, near any bounded isolated singularity of a similarity surface, the latter is isomorphic to a bounded sector of apex 0 and opening θ = 2π(Re (res) + 1) (if θ > 2π, the sector sits in the universal cover of C * ) endowed with the canonical atlas of C, and whose two sides are glued by the similarity z → e 2πi res z from arg z = θ 0 to arg z = θ 0 + θ.

Near any unbounded singularity of non-integer residue, this is the same but the sector is a neighbourhood of infinity and has opening θ = -2π(Re (res) + 1), and the similarity is still z → e 2πi res z and maps arg z = θ 0 to arg z = θ 0 -θ.

We leave to the reader the task to determine local models for the remaining cases if they wish. Such models will not be used here.

A convenient change of variables for the unbounded type singularities

Assume that 0 is a simple pole of ζ of unbounded type (Re res < -1) and consider the Laurent series expansion

ζ(z) = res z + a 0 + a 1 z + a 2 z 2 + . . . .
Close to 0 the term res z is dominant, so it is natural to try and compare the affine charts φ of ζ to the affine charts z → z 1+res of the "ideal" Christoffel symbol res z . For this we make the change of variable it is delimited by a straight line that is not vertical and this half plane contains a neighbourhood of +∞ in R, because Re (1 + res) < 0. In any cases, we have |z| -→ 0 iff z enters and stays in every HU (r).

z-sectors Since z ∈ U C * , there is a well defined function arg z taking values in R. The sector in z coordinates defined by arg z ∈ (α 0 , α 1 ) corresponds in log u coordinate to the strip Im log z ∈ (α 0 , α 1 ). In this strip, the subset for which the corresponding z belongs to B(0, r) is the intersection with log HU (r). In z coordinate, this intersection is a subset of the sector with a spiralling neighbourhood of 0 removed, see Figure 7. We call this set

U (α 0 , α 1 , r) = z ∈ U C * α 0 < arg u < α 1 , |z| < r ⊂ U C *
where arg z = Im log z is well-defined on U C * and z → z also. For any given U = U (α 0 , α 1 , r) we have

log |z| = Re 1 1 + res log |z| + O(1)
where O(1) is quantity bounded over all U with a bound that depends continuously on (α 0 , α 1 , r) for α 0 < α 1 and 0 < r. In particular, under the constraint z ∈ U (α 0 , α 1 , r), we have |z| -→ 0 ⇐⇒ |z| -→ +∞. Finally, note that U contains the sector defined by arg z ∈ (α 0 , α 1 ) and |z| > R where R = R(α 0 , α 1 , r, res) can be computed easily. Lemma 2. Assume that Re res < -1. There is some r > 0 that depends on ζ and such that the following holds. Let φ be any solution 15 on the part of U C * on which |z| < r, of φ (z)/φ (z) = ζ(z). The quantity φ can be interchangeably considered as depending on z or log z or z, etc. Then there exists a ∈ C * such that:

(1) there exists a holomorphic function z → r 1 (z) on B(0, r) such that

∂φ ∂ log z = a × z × (1 + r 1 (z))
and r 1 (0) = 0;

(2) for all α 0 , α 1 ∈ R with α 0 < α 1 , there exists C, C ∈ R and a holomorphic function r 2 : U (α 0 , α 1 , r) → C such that we have, ∀z ∈ U (α 0 , α 1 , r),

φ = az + r 2 (z) with |r 2 (z)| ≤ max (|z|×|z|, 1) (C + C log |z|).
In particular φ ∼ |z|→∞ az.

Proof. We restrict ζ to some B(0, r) so that

ζ(z) = res z + h(z)
15 They exists since B(0, r) -{0} lifts to a simply connected subset of U C * Let φ(v) = φ(z). Then φ is a solution of φ / φ = ζ. Integrating on the half plane Re v < log r we get that

log( φ (v)) = c 0 + (1 + res)v + g(e v )
where g is the antiderivative of h mapping 0 to 0 and c 0 ∈ C is a constant. Hence

∂φ ∂ log z = 1 1 + res φ (v) = az(1 + r 1 (z))
for a = e c0 ∈ C * and for the holomorphic bounded function r 1 : B(0, r) → C mapping 0 to 0 and defined by r 1 (z) = exp(g(z)) -1. This proves the first point.

We have |r 1 (z)| ≤ c|z| for some c > 0 and thus

(6) ∂φ ∂ log z -az ≤ c |z| × |z| with c = c|a|. Let us abbreviate U = U (α 0 , α 1 , r).
The set of z ∈ ∂U such that |z| = r is a compact set for which φ is hence bounded. Any element z ∈ U satisfies log z = t + log z0 for a t > 0 and a z0 as above. We have that |z| and e t are comparable in the sense that their quotient is bounded away from 0 and ∞ by factors depending only on U . Similarly |z| and e -αt are comparable where α = -Re (1/(1 + res)) > 0.

Consider the path t → z(t) = e t z0 and the corresponding path log z(t) = log z0 + t.

Let us integrate eq. ( 6) along the latter path. Note that an antiderivative of z with respect to log z is z. We have |z If α ≥ 1 then e s e -αs ≤ 1 whence t 0 e s e -αs ds ≤ t. If α ≤ 1 then e s e -αs ≤ e (1-α)t whence t 0 e s e -αs ds ≤ t ≤ te (1-α)t . The sector in z coordinates defined by arg z ∈ (α 0 , α 1 ) corresponds in log z coordinate to the strip Im log z ∈ (α 0 , α 1 ). In this strip, the subset for which the corresponding z belongs to B(0, r) is the intersection with log HU (r). In z coordinate, this intersection is a subset of the sector with a spiralling neighbourhood of 0 removed, see Figure 7. We call this set

U (α 0 , α 1 , r) = z ∈ U C * α 0 < arg z < α 1 , |z| < r ⊂ U C *
where arg z = Im log z is well-defined on U C * and z → z also. Note that it contains the sector defined by arg z ∈ (α 0 , α 1 ) and |z| > R where R = R(α 0 , α 1 , r, res) can be computed easily.

Corollary 3. In the conditions of Lemma 2, for any α 0 < α 0 < α 1 < α 1 there exists 0 < r < r ≤ r such that for any θ ∈ R, if one denotes S the (simply connected) set of z ∈ U C * for which z ∈ U (α 0 , α 1 , r ), then the restriction of φ to S avoids 0, and has a lift to U C * that is analytic, injective and whose image contains a × U (α 0 , α 1 , r ), where a is the factor of Lemma 2.

Proof. It follows from the definitions and from the estimate of the second point in Lemma 2 using, for instance, the argument principle on φ if α 1 -α 0 < 2π or for the general case the argument principle on log φ. 16 For the next lemma, we call bounded resp. unbounded sector of apex 0 subsets of C the form z ∈ C * α 0 < arg z < α 1 and |z| < r resp.

z ∈ C * α 0 < arg z < α 1 and |z| > r with α 1 -α 0 ∈ (0, 2π] and r > 0.

Lemma 4. For any geodesic parametrized by t and tending to a bounded resp. unbounded singularity z 0 :

(1) The geodesic takes a finite time to reach the singularity in the bounded case, and an infinite time in the unbounded case. (2) There exists r > 0 and a simply connected subset U of B(z 0 , r) -{z 0 }, and an (injective) affine chart φ : U → C whose image is a bounded resp. unbounded sector with apex 0, and such that φ sends the geodesic, for t large enough, into the bisecting line of the sector, tending to 0 for a bounded singularity and to ∞ for an unbounded one.

Note that the hypotheses exclude the case Re res = -1.

Proof. We distinguish two overlapping cases: res / ∈ {-2, -3, . . .} and Re res < -1. In the case res / ∈ {-2, -3, . . .} the lemma follows from the local model deduced from Lemma 1, both in the bounded and unbounded case. In the bounded case, this model is the quotient of a sector (with the canonical atlas of C) by a similarity fixing its apex, and a geodesic is a locally straight line in the atlas, hence one tending to the singularity must end up being a ray through the apex, as can be seen by the same trick as the fact that a billiard trajectory in a sector can only undergo finitely many bounces: if we have a a straight line geodesic that is not aimed at the apex then patching finitely many copies of the sector by the similarity covers a sector of angle > π that will contain the geodesic until it escapes. In the unbounded case, tending to 0 in the z coordinate corresponds to tending to infinity in the model, hence the time tends to infinity, and similarly to the previous case, one see that the geodesic eventually remains in one fundamental domain, then we apply a translation to the chart so that the geodesic radiates from 0, then the fundamental domain still contains an unbounded sector with apex 0.

In the case Re res < -1 we first focus on proving that the time tends to infinity. For this we recall the first point of the conclusion of Lemma 2:

∂φ ∂ log z = a × z × (1 + r 1 (z))
where r is holomorphic and bounded in z ∈ B(0, r) and r 1 (0) = 0. By taking r smaller we can assume that r (z) is bounded too. We have

arg ∂φ ∂ log z = arg a + Im log z + Im log(1 + r 1 (z)).
By taking r small enough we can assume that this quantity has modulus < 1/10 for all z ∈ HR(r). We have

∂ Im log(1 + r 1 (z)) ∂ log z = Im r 1 (z) 1 + r 1 (z) × z 1 + res .
By taking r small enough we can assume that this quantity also has modulus < 1/10 for all z ∈ HR(r). We let t 0 for which for all t ≥ t 0 then |z(t)| < r and we now only consider times t ≥ t 0 . As t varies and z varies accordingly along the geodesic, the variables z, and φ can be considered as depending on t. The geodesic has the property that ∂φ ∂t remains constant, in particular the argument of this quantity remains constant. Since ∂ log z ∂t = ∂φ ∂t ∂φ ∂ log z we have that, as a function of t, the quantity log z follows a field line of a vector field whose direction is given by

θ(log z) = c -Im log z -Im log(1 + r 1 (z))
for some constant c ∈ R that depends on a and on the direction of the geodesic in the φ coordinate. Isoclines of this vector field are given by the level lines of θ mod 2π. By the estimates on log(1 + r 1 (z)) and its derivative with respect to log z we have that:

-the isocline of angle β is a union of curves I β+2kπ , k ∈ Z, each contained within distance < 1/10 of the horizontal line of ordinate c -β; -the tangent to I β at every point makes an angle < asin 1 10 with the horizontal direction; -each of these curves extends from ∂HU (r) to infinity; -each is asymptotic at infinity to the horizontal curve of imaginary part c-β. We have that θ(log z) strictly decreases when log z moves upwards along a vertical line; we will say that log z is above I β if θ(log z) < β and below if θ(log z) > β (note the inversion). We have asin 1 10 < π/4 which, together with the above points, implies the following: Consider the isocline I β with β = 2kπ -π/4. If log z(t 0 ) is below I β then for t > t 0 the curve log z(t) is disjoint I(β) so log z(t) stays below I β . Similarly if log z(t 0 ) is above I β with β = 2kπ -π/4 then after t 0 , log z stays above I β . Let β * denote the isocline on which the geodesic starts. We take the smallest β 0 ∈ 2πZ -π/4 such that β 0 ≤ β * and the biggest β 1 ∈ 2πZ + π/4 such that β 1 ≥ β * then log z(t) has to remain between the isoclines of index β 0 and β 1 . Note that the value of β 1 -β 0 is either 2 π 4 or 2π + 2 π 4 , depending on α * . In particular, log z(t) stays within a horizontal strip of height ≤ 2π + 2 π 4 + 2 10 . Now the only way for z(t) to tend to 0 while log z(t) has bounded imaginary part is that Re log z(t) -→ +∞. By the second point of Lemma 2, we have that φ(t) tends to infinity, hence the geodesic is defined for an infinite amount of time. This proves the first claim.

With similar arguments the estimates on r 1 (z) for z small imply that log z(t) is asymptotic to a horizontal line of imaginary part α ∞ = c -2kπ for some k ∈ Z. Let α 0 = c -β 1 -1/10 and α 1 = c -β 0 + 1/10. Then α 0 < α ∞ < α 1 . We choose any α 0 and α 1 such that α 0 < α 0 < α ∞ < α 1 < α 1 and apply Corollary 3: the set z ∈ U (α 0 , α 1 , r) corresponds bijectively to a set of φ ∈ U C * that contains a × U (α 0 , α 1 , r ). (If one would need a definite margin between α ∞ and α 0 and α 1 , it is always possible to change the value of α 0 to a smaller value and α 1 to a bigger value.) We saw that z(t) remains in the domain U (α 0 , α 1 , r ) and since φ(t) ∼ az(t), φ(t) eventually enters and remains in the domain a × U (α 0 , α 1 , r ). We have φ(t) = a t + b for some a ∈ C * and b ∈ C and U (α 0 , α 1 , r ) contains a sector with apex 0 and central direction a . We can replace φ by φ -b so that φ(t) = a t is now a radial line. Then the image of this φ still contains an unbounded sector with apex 0 and central direction a , possibly with smaller angle.

3.6. Resting place and paths to a bounded singularity. As explained in Section 1, given a continuous path γ : [0, 1] → S and a germ of chart [φ 0 ] (the square brackets refer to the fact that the germ is an equivalence class) at the beginning of the path γ(0), there is a way to follow this germ along the path γ(t) as [φ t ]. The value φ t (γ(t)) is well-defined and the function γ : t → φ t (γ(t)) is called the development of the path γ w.r.t. [φ 0 ]. Let us call the point φ 1 (γ 1 ) the resting place of the development (principal value could be a nice alternative denomination).

Can this be done for a path tending to a bounded singularity? The germ will in general degenerate, but the development will have a limit, provided we take some precaution. To see this, let us work in a Riemann chart where the singularity is at 0 and where for some α ∈ C with Re α > 0, the similarity charts include the branches of z → z α . Then if Im α = 0 and z winds along a circle around 0 many times in the sense opposite to the sign of Im α, then z α tends to infinity. Or if z spirals down to 0 too slowly, winding this way, then z α still tends to ∞. On the other hand, if z tends to 0 along a well-defined tangent direction, then z α tends to 0, and this limit 0 does not depend on the direction. Hence the development γ of the path γ may or may not converge, but if we replace its last moments by a straight line (in any given Riemann chart), its development has a limit that is independent of the replacement done, and we can thus associate to γ and [φ 0 ] a well-defined resting place.

Consider two paths [0, 1] → S that both start from the same point and end at the same bounded singularity. Assume that they take their values in S except at t = 1 and assume that they are homotopic in S by a homotopy rel. {0, 1} (i.e. that fixes the ends) and that takes value in S between the ends. Then their developments starting from the same germ [φ 0 ] have the same resting place (indeed the development can be followed under the homotopy and the resting place stays immobile).

Holomorphic dependence

4.1. Holomorphic dependence of special coordinates. We now state and prove a holomorphic dependence statement related to Lemma 1. We will restrict to parameter spaces of dimension one to simplify the presentation and since in the application in Part 2 we only need that.

Let ζ 0 be a particular map satisfying the conditions of Lemma 1. We assume that r > 0 and that we are given complex numbers res t and z t that depend holomorphically on t ∈ B(0, r). We assume that ε > 0, that z t ∈ B(z 0 , ε) and that we have a family (t, z) → ζ t (z) for t ∈ B(0, r) and z ∈ B(z 0 , ε) -{z t } given by

ζ t (z) = res t z -z t + h t (z)
where the map (t, z) ∈ B(0, r) × B(z 0 , ε) → h t (z) ∈ C is analytic.

Lemma 5. Under these conditions, for η small enough, there exists r > 0 such that for t ∈ B(0, r ), one can choose the change of variable (z → w) of Lemma 1 to be defined on B(z 0 , η) and depend holomorphically on t.

Proof. In Appendix A.1.

If for t = 0 we have res 0 ∈ {-2, -3, . . .} then ζ 0 is not in the situation of Lemma 1. Instead we adapt Corollary 3. Recall the definition of the z-coordinate given before Corollary 3: z = z 1+res , which is well-defined if z and z are considered as elements of the universal cover U C * of C * . Recall also the definition of the sets

U (α 0 , α 1 , r) = z ∈ U C * α 0 < arg z < α 1 , |z| < r . Complete U C * into a topological space U C * = U C * ∪ { 0}
by adding a point 0 whose neighbourhoods consists in the sets containing V ε = { 0}∪ the set of points whose projection to C * has modulus < ε. Lemma 6. Assume that Re res < -1. Denote z = z 1+rest ∈ U C * where z ∈ U C * . Then there exists ε > 0 and 0 < r < r < r such that for any θ ∈ R and any The variable log z depends analytically on t and by looking at the proof of Lemma 2, one sees that r 1 (z) and thus a also depend analytically on t. Moreover, in Lemma 2, all estimates can be taken uniform provided t is small enough and α 0 and α 1 are fixed. The same holds for Corollary 3. 4.2. Holomorphic dependence: resting place. Let U be an open subset of C. Consider two distinct points z 0 = z 1 . Consider the set G(z 0 , z 1 ) of paths γ : [0, 1] → U from z 0 to z 1 such that γ(s) = z 1 when s = 1. Consider a homotopy class [γ] in the set above, i.e. a path-connected component of this set. To state the next lemma we endow the set Γ of all (z 0 , z 1 , [γ]) with a complex manifold structure. For this we need to determine when two homotopy classes are close when their endpoints do not match, i.e. we need a topology on Γ.

Given two paths γ, γ in C, let

d(γ, γ) = sup s∈[0,1] |γ(s) -γ(s)|.
Let G be the set of paths γ in U that satisfy ∀s ∈ [0, 1], γ(s) = γ(1): it is the disjoint union of the G(z 0 , z 1 ) for z 0 = z 1 , both in U . For all ε > 0 and all γ ∈ G, let V γ,ε be the set of (z 0 , z1 , [γ]) where γ ∈ G, d(γ, γ) < ε, z0 = γ(0) and z1 = γ(1). We will use the following facts, see Appendix D for proofs.

-There exists17 a topology on Γ such that for all γ ∈ G, the collection of V (γ, ε) forms a basis of neighbourhoods. -For this topology the sets

V (γ, ε) are open. -It is Hausdorff separated. -The map (z 0 , z 1 , [γ]) ∈ Γ → (z 0 , z 1 ) ∈ C 2 is a local homeomorphism.
This allows to endow the set Γ of all (z 0 , z 1 , [γ]) with a two dimensional complex manifold structure, locally given by the position of the points z 0 and z 1 .

Lemma 7. Let U be an open subset of C (or of a Riemann surface). Consider a moving point z 0 (t) and a family of Christoffel symbols t ∈ B(0, r) → ζ t of the form

ζ t (z) = h t (z) + res t z -z 1 (t)
with z 0 (t), z 1 (t) and res t holomorphic in t, h t (z) holomorphic in z ∈ U and t, and for all t: z 0 (t) = z 1 (t) and Re res t > -1 (i.e. the singularity z 1 (t) of ζ t is bounded, possibly removable). Choose a t ∈ C * and b t ∈ C holomorphic in t. Consider the unique germ of similarity chart φ t of ζ t with φ t (z 0 (t)) = b t and φ t (z 0 (t)) = a t . Let X t := (z 0 (t), z 1 (t), [γ t ]) ∈ Γ vary continuously (hence holomorphically) with t. To all this data, associate the resting place c t (see Section 3.6) of the development of φ t along γ t . Then c t depends holomorphically on t.

Proof. See Appendix A.2. 4.3. Holomorphic dependence: following a saddle connection when varying ζ. A notion of geodesic can be defined on similarity surfaces: as parametrized curves which in similarity charts have a constant speed vector, a condition that is indeed independent of the chosen similarity chart. Geodesics do not need to be injective. A geodesic from a singularity to another one is called a saddle connection by analogy with dynamical sytems.

A geodesic reaching a bounded singularity does it in finite time: see Lemma 4. A saddle connection between bounded singularities is hence parametrized by a bounded interval. We can reparametrize it by the segment (0, 1) if needed, by a real affine change of variable.

Proposition 8. Let U be an open subset of C and z * 0 , z * 1 two distinct points in U . Assume ζ * is a Christoffel symbol holomorphic on U -{z * 0 , z * 1 } and that ζ * (z) = h * (z) + res * 0 z -z * 0 + res * 1 z -z * 1
with h holomorphic and bounded on U . Assume that Re res * k > -1 for k ∈ {0, 1} (i.e. the singularities z k are either bounded or better: removable). Last, assume that a saddle connection f * : (0, 1) → U exists between the two singularities. Then there exists ε > 0 such that for all Christoffel symbols ζ of the form

ζ(z) = h(z) + res 0 z -z 0 + res 1 z -z 1 with h : U → C holomorphic, sup z∈U |h(z) -h * (z)| < ε, and for all k ∈ {0, 1}, |z k -z * k | < ε and | res k -res * k | < ε,
then there exists a saddle connection f : (0, 1) → U -{z 0 , z 1 } from z 0 to z 1 , and if h, res k , z k depend analytically on a complex parameter τ then f depends analytically on τ .

Proof. In Appendix A.3.

We extend the notion of saddle connection to include geodesics from a bounded singularity to an unbounded one (or in the opposite direction), under the assumption that the unbounded singularity has positive total angle. Such a geodesic can be parametrized by t ∈ (0, +∞), but there is no more uniqueness of the parametrization: it can be reparametrized by a linear change of the variable t. Moreover, since the total angle of the infinite vertex is positive, it follows that one can vary in some extent the direction, in a similarity chart, along which ∞ is reached. There are at least two ways to recover uniqueness: either by specifying the initial speed at the bounded singularity. Or by specifying a marked point which it has to go through, and which must be the image of t = 1 by the parametrization. We choose the second approach here and in Section 4.4.

Proposition 9. Let U be an open subset of C and z * 0 , z * 1 , z * 2 three distinct points in U . Assume ζ * is a Christoffel symbol holomorphic on U -{z * 0 , z * 2 } and that ζ * (z) = h * (z) + res * 0 z -z * 0 + res * 2 z -z * 2
with h holomorphic and bounded on U . Assume that Re res * 0 > -1 and Re res * 2 < -1 (i.e. z 0 is a bounded singularity and z 2 is an unbounded one). Last, assume that a saddle connection f * : (0, +∞) → U exists from z * 0 to z * 2 with f * (1) = z * 1 . Then there exists ε > 0 such that for all Christoffel symbols ζ of the form

ζ 0 (z) = h(z) + res 0 z -z 0 + res 1 z -z 2 with h : U → C holomorphic, sup z∈U |h(z) -h * (z)| < ε, for all k ∈ {0, 1, 2}, |z k -z * k | < ε and for all k ∈ {0, 2}, | res k -res * k | < ε,
then there exists a saddle connection f : (0, +∞) → U -{z 0 , z 2 } from z 0 to z 2 , with f (1) = z 1 , and if h, res k , z k depend analytically on a complex parameter τ then f depends analytically on τ .

Proof. See Appendix A.3. 4.4. Holomorphic dependence with respect to the polygons. Let us come back to our example of similarity surface S constructed by gluing polygons, and its completion into a Riemann surface S that is isomorphic to the Riemann sphere via F : S → Ĉ. The map F is unique up to an automorphism of Ĉ, i.e. a homography. We recall that the group of homographies is sharply 3-transitive.

In this section we allow unbounded polygons but we assume that their angle at infinity is always > 0, which rules out for instance vertices with residue of real part -1.

We can always subdivide the polygons further (adding vertices is allowed) to meet the following conditions:

(1) All polygons are strictly convex, (2) every unbounded polygon has exactly two unbounded edges, and their angle is > 0, (3) S has at least three vertices. The space of bounded strictly convex polygons with n indexed vertices is endowed with a complex structure, which is simply given by the affix of its vertices. For (strictly convex) unbounded polygons satisfying (2), we need to add a supplementary information: a marked point in the interior of the unbounded edges, but this marked point is not considered as a vertex. For any paired unbounded sides, there is a unique orientation reversing affine map sending one to the other and matching their marked points. Reciprocally, for any orientation reversing affine map sending one to the other we can choose (non unique) pairs of matching marked points.

Remark. The non-injectivity of this representation, due to this non-uniqueness, is not seen as a problem. It can be recovered by replacing the marked points by the dilation factor a ∈ C * of the affine map z → az + b pairing the unbounded sides. Note that, anyway, the space of polygons can be factored further by considering polygons up to affine transformations.

In the two statements below, we fix the type of each polygon P j -number of edges, boundedness thereof-but not the position of their vertices or marked points, and we fix the combinatorial data of which edges are paired together.

Lemma 10. Under these conditions, the residues res k depend holomorphically on the bounded polygons and marked unbounded polygons.

Proof. Recall Equations (3) and (4) in their unified version:

res = log λ + iσ 2πi -1
for some σ ∈ R, and that the monodromy factor of a small loop winding anticlockwise around the vertex is λe iσ . The claim follows.

Choose three distinct vertices v 1 , v 2 , v 3 and choose the unique F as above that sends them respectively to ∞, 0 and 1. Label the other vertices up to v p for some

p ≥ 3. Let z k = F (v k ).
Proposition 11. Under these conditions and the ones stated before Lemma 10, the points z k depend holomorphically on the bounded polygons and marked unbounded polygons.

Proof. In Appendix C.

We will also use the following complement. To state it, denote P the finite collection of the polygons that we are gluing together. Let us note that the polygons, their edges and vertices define after the gluing a cell complex on S. Under F , the cell complex decomposition maps to a cell complex decomposition of Ĉ. Let us focus on its 1-skeleton Sk (F ), together with the marked points. The edges in this skeleton are geodesics of the similarity structure, and they are saddle connections (they run from vertices to vertices, possibly through marked points).

Proposition 12. Under the same conditions, the 1-skeleton Sk (F ) moves holomorphically, and this motion extends to an isotopy matching the 2-cells.

Proof. See Proposition 18 and lemma 19 in Appendix C. By this we mean that there is a family of homeomorphism S P : Sk (S 0 ) → Sk (F ) where P varies in the set of allowed polygons and marked unbounded polygons, and where S 0 is the abstract surface, and a cell complex, associated to some arbitrary basepoint P 0 , such that S P matches corresponding vertices and marked points and ∀x ∈ Sk (S 0 ), S P (x) depends holomorphically on P. Moreover if one uses a geodesic parametrization of the edges (minus endpoints) by (0, 1), or by (0, +∞) sending the marked point to 1, then S P preserves the parametrization. Last, the 2-cells cut by the skeletons also match in a continuous fashion.

Remark. Propositions 8 and 9 already imply that saddle connections can be followed holomorphically. The point of Proposition 12 is to prove that they form, as expected, Sk (F ).

Appendix A Proofs

A.1. Holomorphic dependence of special coordinates: proof of Lemma 5

We do not provide every detail here as it would be tedious to read. We assume that we have a change of variable for ζ 0 as in Lemma 1 on B(z 0 , ε). For t small enough, z t remains in B(0, ε) and res t remains in C -{-1, -2, . . .}. Let us note that a first change of variable z → z -z t obviously depends holomorphically on ζ, which allows us to restrict to the case where z t does not change and is equal to 0. We go through the computations of Lemma 1 again:

ζ t = res t log z + h t
where h t is the antiderivative of h t that vanishes at the origin. This map h t depends holomorphically on t and z. Then

exp ζ t = z rest exp h t .
Denote g t = exp h t and let g t (z) = b n (t)z n be its power series expansion with respect to z. We have

z rest g t (z)dz = z rest +1 +∞ n=0 b n (t)z n res t +n + 1 = z rest +1 f t (z) res t +1 with f t (z) = +∞ n=0 res t +1 res t +n + 1 b n (t)z n = a n (t)z n .
This series has at least the radius of convergence of g t . By using Cauchy's estimates

|b n (t)| ≤ η -n sup B(0,η) |g t | and that |g t (z)
| is uniformly bounded for (z, t) small enough we get that t → f t (z) is for each fixed z a convergent series of holomorphic functions of t, hence holomorphic. Then we take R t (z) = log ft(z) rest +1 . For η and r small enough the map f t will be non-vanishing and we can choose the branch of the log to be analytically varying with (z, t). It follows that w = z exp(R t (z)/(res t +1)) is holomorphic in t.

For t = 0, z → w it is the restriction of a change of variable defined on B(0, ε). By a theorem of Hurwitz, it will still be injective on B(0, η) for |t| < r provided r is small enough.

A.2. Following the resting point: Proof of Lemma 7

Holomorphy is a local property and by a change of parameter it is enough to prove the claim on a subset B(0, r ) ⊂ B(0, r) of values of t. Let B = B(z 1 (0), R) with R small enough so that B ⊂ U -{z 0 (0)}. Choose also R small enough so that we can apply Lemma 5 to get a special coordinate z → w on B for the singularity z 1 (t) provided t is small enough. Choose 18 a representative γ 0 of [γ 0 ] that reaches ∂B for the first time for some s = s 1 and then goes down to z 1 along a radial segment of B. In particular the ball B(z

1 (0), R) is disjoint from γ 0 ([0, s 1 ]).
The resting place c for small t will be computed by patching a finite number of local solutions f of f /f = ζ t as follows. Choose η > 0. For N ≥ 2 big enough the intervals [s 1 k/N, s 1 (k + 1)/N ], 0 ≤ k ≤ N -1, are mapped by γ 0 to subsets of the balls B k = B(u k , η) where for convenience we denote

u k = γ 0 s 1 k N .
For η small enough these balls are contained in U . Note that [0,

s 1 ] ⊂ [0, 1). Choose some ε > 0 so that ε < min(η, ε < R/2, ε 0 )
, where ε 0 is the ε given by Lemma 22 applied to γ 0 . For t small enough, X t belongs to the neighbourhood

V (γ, ε) of X 0 : z 0 (t) ∈ B(z 0 (0), ε), z 1 (t) ∈ B(z 1 (0), ε)
, and by Lemma 22, γ t is homotopic to γ = δ • (ψ • γ 0 ) for any path δ from z0 (t) to z 0 (0) within B(z 0 (0), ε), and any homeomorphism ψ of U that maps z 1 (0) to z 1 (t) and which is the identity outside B(z 1 (0), ε). We choose δ = δ t to be a straight segment and ψ t to send the rays [z 1 (0), u] of the disk B = B(z 1 (0), ε) to the segments [z 1 (t), u] and let

γ t := δ t • (ψ t • γ 0 )
18 Project γ 0 (s) radially to the boundary of a slightly bigger disk, until s is big enough that the rest of the path is inside and then replace by a radial semgent: one gets a homotopic path.

U z * 1 z * 0 saddle connection Sketch in Riemann coordinates for ζ * . w * 1 w * 0 W L(t 0 ) L(t 1 )
Picture in developped similarity coordinates, before perturbation. W and the two sectors are contained in the domain of ψ * .

If the perturbation is small enough, there is still a segment between the sector apexes in the domain of ψ. The sectors have scaled and rotated but the central bar has not changed. In partiuclar

ψ t • γ(s) follows the straight segment [γ 0 (s 1 ), z 1 (t)] for s ∈ [s 1 , 1]. For a fixed t, for all 0 ≤ k ≤ N -1 let inductively φ k,t denote the solution of φ k,t /φ k,t = ζ t on B k such that -the germ of φ 0,t at z 0 (t) is φ t , -for k ≥ 1, φ k,t and φ k-1,t coincide in a neighbourhood of u k .
The maps φ k,t , as solutions f of f /f = ζ t with initial conditions f (u) = v and f (u) = w, depend holomorphically on t, u, v and w. It follows by induction that the points φ k,t (u k ), φ k,t (u k+1 ) and the derivatives φ k,t (u k ), φ k,t (u k+1 ), for 0 ≤ k ≤ N -1, are holomorphic functions of the data.

For the last patch recall that ψ t • γ is a straight segment from γ 0 (s 1 ) to z 1 (t). We use a branch of z → w rest +1 on a straight sector S in z coordinate with apex z 1 (t) and containing the segment [u N , z 1 (t)), post-composed with an appropriate C-affine map σ t so as to match with φ N -1,t in a neighbourhood of u N . The map σ t depends holomorphically on the data and c = σ t (0).

A.3. Following saddle connections: proof of Propositions 8 and 9

We will say that ζ depends analytically on τ whenever h, res k , z k do.

Let us call ε-close (to ζ * ) the maps ζ as in the statement of Proposition 8. For ε small enough the two singularities remain of residue of real part > -1, i.e. bounded.

Since geodesics go straight with constant speed in affine charts and since the extent of times on which f is defined is finite, by pasting inverses of local charts, and of those of Lemma 1 at the extremities, one can prove that there exists an open segment (w * 0 , w * 1 ) ⊂ C, a neighbourhood V of it, and a map

ψ * : V → U -{z * 0 , z * 1 } such that -for all t ∈ (0, 1), ψ * ((1 -t)w * 0 + tw * 1 ) = f (t), -ψ * is
analytic, locally invertible with local inverses being similarity charts for ζ * , -V contains a sector based on each end of [w * 0 , w * 1 ] and having this segment as a symmetry axis (see also Lemma 4). Since f is not necessarily injective, ψ * is not either.

Let

L(t) = (1 -t)w * 0 + tw * 1 . By a compactness argument, for all compactly contained open subset W of V containing the middle point M = L(1/2) = (w * 0 + w * 1 )/2, there is ε > 0 such that a map ψ persists on W for all ε-close ζ such that, -ψ(M ) = ψ * (M ), ψ (M ) = (ψ * ) (M ),
-ψ is analytic, locally invertible with local inverses being similarity charts for ζ. Moreover, ψ depends analytically on τ if ζ does. This comes from the expression of local similarity charts in terms of ζ (or as a variant: from the fact that ψ is a solution of the complex ODE -ψ /ψ 2 = ζ • ψ.)

Near singularities, according to Lemma 5, the formula for the holomorphic change of variable z → w in Lemma 1 depends holomorphically on τ if ζ does. Recall that branches of w 1+res are similarity charts. We can thus choose for ε small enough some times t 0 close to 0 and t 1 close to 1, independent of ζ, such that there are similarity chart inverses ψ 0 , ψ 1 defined on the sector u = re iθ 0 < r < 2, -η < θ < η for some η independent of ζ, and such that, as u → 0, ψ 0 (u) -→ z 0 , ψ 1 (u) -→ z 1 , ψ 0 (1) = ψ(L(t 0 )) and ψ 1 (1) = ψ(L(t 1 )).

Choose W as above to contain the sub-segment [L(t 0 ), L(t 1 )] of [w * 0 , w * 1 ]. We can patch together ψ, ψ 0 and ψ 1 by replacing ψ i with ψi : w → ψ i (s i (w)) where

s i is is the C-affine map such that ψi (L(t i )) = ψ(L(t i )) (i.e. s i (L(t i )) = 1), ψ i (L(t i )) = ψ (L(t i ))
, and possibly reducing η and W . We obtain an extended map ψ defined on the union of a fixed neighbourhood W of [L(t 0 ), L(t 1 )] and of two sectors centred on points w 0 and w 1 that depend on ζ, of symmetry axis [w i , L(t i )], of opening angle η independent of ζ, and of radius 2|w i -L(t i )|. See Figure 8.

Everything in this construction depends holomorphically on τ if ζ does. For ε small enough, the segment [w 0 , w 1 ] (which depends on ζ) is contained in the domain of ψ (which also depends of ζ) and we can take f (t) = ψ((1 -t)w 0 + tw 1 ) as a map satisfying the conclusion of Proposition 8.

The proof of Proposition 9 is very similar, with one of the sectors replaced by an unbounded sector, using Lemmas 4 and 6 for this part. See Figure 9.

Appendix B Example of a hole type infinite vertex

Consider the strip P : "Re z ∈ [1, 2]" and pair the left unbounded edge with the right one by sending z → 2z, i.e. 1 + iy → 2 + 2iy. (To respect the temporary restrictions of the section Unbounded polygons on page 8 one can cut P in two pieces along R and pair the two bounded edges together.) Then the quotient S is homeomorphic to a sphere and there are two vertices, both unbounded. It is then easy to uniformize the Riemann surface S : it is isomorphic to H/ ∼ where H is the half plane "Re z > 0" and z ∼ 2z. Mapping the situation by z → log z the set H becomes the infinite band "|Im z| < π/2" and the equivalence relation becomes z ∼ z + log 2. See Figure 10. Hence the Riemann surface S is isomorphic to a cylinder of finite height, i.e. to a round annulus via the transformation z → e 2πiz/ log 2 , and both vertices are holes.

w * 0 w * 1 L(t 0 ) L(t 1 )

Appendix C Proof of holomorphic dependence (Proposition 11)

This appendix introduces a lot of notations, and we apologize in advance to the reader. However, most, if not all, will only be used here.

Adding the image of the marked points

For each paired unbounded edges there was a marked point on the interior of each. We extend the sequence z k by appending the image by F : S → Ĉ of the marked points, to get an (injective) element of Ĉm for some m ≥ p and we will prove that this extended sequence depends holomorphically on the polygons.

Summary of the proof

Before entering in a fully detailed argument, let us give an overview of the proof. The construction of Proposition 11 starts from a collection of polygons and gluings. We will define a space S-Conf of collections of strictly convex polygons up to C-affine transform, which represent the possible geometric shapes that can take each of the polygons when they vary while remaining strictly convex. (For unbounded polygons, marked points are taken into account.) The space S-Conf is a complex manifold, on which the construction can be carried out and yields in particular the points z k ∈ Ĉ and their associated residues res k . We already know by Lemma 10 that the res k depend holomorphically on the polygons and marked points.

In fact we will see that one can get from the construction not only the position of the points z k (up to an automorphism of Ĉ) but an element of the Teichmüller space T of the Riemann sphere Ĉ with m marked points. So we consider the map Glu : S-Conf → T R that sends a collection to the Teichmüller space element thus constructed, together with the collection of residues. The name of the map reflects the fact that it is defined by a process that starts by gluing polygons. A priori we do not know anything on Glu, and even its continuity should not be considered as a trivial statement.

To prove analytic dependence of the z k we will prove the stronger statement that Glu is analytic. For this, we will introduce sort of a reciprocal map

Per : T R → Conf
where Conf is a space containing S-Conf. The name Per is an abbreviation of periods. It is defined as follows. An element of T R consists in an element of T , in particular points z k , and the specification of complex numbers res k associated to each z k with some compatibility conditions. One can associate the unique Christoffel symbol having these residues at the z k , and we thus get a similarity surface structure on Ĉ -{z k } n k=1 . To the element of T corresponds a decomposition of the sphere into topological polygons, unique up to isotopy of the sphere fixing the marked points. Local straightening maps of the Christoffel symbol can be extended to these topological polygons into holomorphic maps, which are not necessarily anymore injective. However, one can look at the image of those topological polygons by these extended straightening maps, and the position of the vertices in these images, up to a C-affine map, is independent of the isotopy. This collection of positions, up to C-affine maps, is what Per associates to the element of T R we started from.

The name periods of the map has been chosen because the relative position can be computed by integrating an O.D.E. along paths between the z k (those that are bounded vertices or marked point) and the result only depends on the homotopy class of the path; this is akin to computing translation vectors between branch points of a translation surface by integration of a one-form, and those vectors are sometimes called periods by extension of the notion of period of a one-form along a closed loop.

One immediately gets that

Per • Glu = Id S-Conf .
The space Conf is not an analytic manifold but we identify a subset Conf * that carries an analytic manifold structure and such that S-Conf ⊂ Conf * ⊂ Conf, S-Conf is an open subset of Conf * and their analytic structures match. We then check in Lemma 16 that Per is continuous on T R, and analytic on Per -1 (Conf * ).

Let

Eff := Glu(S-Conf) ⊂ T R.
The name Eff is an abbreviation for effective. From Per • Glu = Id S-Conf it immediately follows that

Glu • Per | Eff = Id Eff .
Intuition tells us that Eff must be an open subset of T R but this is a non-trivial fact. Recall that at this point of the proof, we do not even know that Glu is continuous, so Eff could just be be any kind of uncountable subset of T R. On the other hand, it is immediate that the subset Per -1 (S-Conf) of T R is open, since Per is holomorphic hence continuous.

A key point (see below), which will require some effort, will be to prove that each point in Eff has a neighbourhood W in Per -1 (S-Conf), on which the equality

Glu • Per | W = Id W
holds. This implies that W ⊂ Eff and proves that Eff is an open subset of T R.

To conclude, we use a theorem that if one has an analytic map φ : U → V between open subsets of complex manifolds of dimensions a and b, and if φ is a bijection, then a = b and φ -1 is analytic too. We apply this to φ = Per

| Eff : U = Eff → V = S-Conf.
The aforementioned key point follows from Lemma 17 and the paragraph after it. An effective element x of T R corresponds to a collection of strictly convex polygons P j . Nearby elements x of T R will map by Per, which is continuous, to configurations of points for which there exists strictly convex polygons P j having these points as vertices and marked points. The difficulty is to prove that gluing these new polygons indeed gives back x . For this we follow the saddle connections as a function of x . This defines a cellular decomposition of the sphere and we check that the cells actually map to the P j by the straightening maps of x , provided it is close to x. Since the cellular decomposition for x is obtained by deformation of the one for x, we can check that gluing the P j also gives the right isotopy class for the Teichmüller part of x .

Polygon space

Consider strictly convex bounded polygons P ⊂ C: they are assumed with nonempty interior and have at least three vertices. Let us orient the boundary of P in the counter clockwise way, and index its vertices accordingly as follows: w 1 , . . . , w n . The set of strictly convex polygons with indexed vertices thus forms an open subset of C n .

For the unbounded polygons, recall that we assumed: that they are strictly convex; that there are exactly two unbounded edges; that they make a positive angle (this is a supplementary assumption made in Proposition 11); that we consider ∞ as a vertex; that we include a marked point in the interior of each of the two unbounded edges. We still orient the boundary in the anti-clockwise way and index the vertices and marked points accordingly but omitting ∞: w 1 , . . . , w n . We still get an open subset of C n , where now n is the number of edges plus one, so n ≥ 3.

Quotienting the polygon space

Changing one polygon by mapping it under an affine map does not change the quotient surfaces S, S (there are trivial canonical isomorphisms), nor the sequence (z k ), hence we can work in the space of (possibly marked) polygons P j up to the action of affine maps: this is still a complex manifold (it amounts to fixing the affix of two particular vertices/marked points of P j ) and the quotient map is analytic and open.

In fact we will use later larger spaces. Let Aff C denote the group of C-affine maps w → aw + b of C and let it act on C n component-wise:

for (w k ) ∈ C n , s • (w k ) := (s(w k )). Denote AC n = C n / Aff C.
The quotient map C n → AC n is open for the quotient topology. 19 Let A * C n ⊂ AC n be the quotient of C n -∆ where ∆ = (w, . . . , w) w ∈ C i.e. ∆ represents the case where all points have merged into a single point. The space A * C n holds a complex manifold structure such that the quotient map C n -∆ → A * C n is analytic. Locally, charts of A * C n are given by fixing the affix of two distinct points. The space AC n has only one point more than A * C n and we do not seek to extend the complex structure to this point. For the quotient topology AC n is not Hausdorff separated: indeed the special point has only one neighbourhood, which is the whole space AC n (this is sometimes called a focal point).

Recall that we indexed the collection of polygons P j by a finite set J. Let n j be the number of vertices on P j (including marked points, excluding infinity). Let

Conf = j∈J AC nj Conf * = j∈J A * C nj
For each j, the number n j is fixed and we also fix the set of j for which the w k include marked points, whose indexes we fix and must be two integers that are consecutive modulo n j . Let S-Conf ⊂ Conf denote the elements such that for each j without marked point, the (w k ) are given by the anti-clockwise indexed vertices of a strictly convex bounded P j , and in the case with marked point, the (w k ) are given as explained in the paragraph above called "Polygon space". Then the subset S-Conf of Conf is open and

S-Conf ⊂ Conf * ⊂ Conf.
As a product of analytic manifolds, Conf * is an analytic manifold and this makes S-Conf an analytic manifold too.

Moduli space and Teichmüller space of the sphere with marked points

We fix a particular polygon configuration in S-Conf, which we will call [P 0 ]. Denote S 0 , V 0 = v 0 k 1 ≤ k ≤ m , and (S ) 0 = S 0 -V 0 the respective Riemann surface, vertices, and similarity surface associated to P 0 .

A quick reminder on the moduli and Teichmüller spaces of the sphere with marked points can be found in Appendix E. However, for the reader's convenience, we copy here some of the definitions given there.

The moduli space is the subset M ⊂ Ĉn of n-uplets (z k ) ∈ Ĉn for which the z k are distinct and z 1 = 0, z 2 = 1, z 3 = ∞. It is a complex manifold of dimension n-3. To a configuration P ∈ S-Conf we associate the image in Ĉ of its vertices and marked points: Z = (z k ) = (F (v k )) ∈ M for the associated conformal isomorphism F : S → Ĉ sending v 1 to 0, v 2 to 1 and v 3 to ∞ (as defined before Proposition 11), and we let Z = z k 1 ≤ k ≤ n . To P we also associate the Christoffel symbol ζ P on Ĉ -Z that our construction yields. Naturally, we denote F 0 , Z 0 and Z 0 the objects associated to P 0 .

Let T be the Teichmüller space associated to S 0 , V 0 defined (without the use of quasiconformal maps) as follows:

T = F/H 0
where F is the set of orientation preserving homeomorphisms f : S 0 → Ĉ sending respectively v 0 1 , v 0 2 and v 0 3 to 0, 1 and ∞ and H 0 is the set of orientation preserving self homeomorphisms of S 0 that are isotopic to the identity rel. V 0 , i.e. by an isotopy fixing each vertex v 0 k . If f ∈ F, its equivalence class modulo right composition with H 0 will be denoted

[f ] ∈ T . Hence, [f 1 ] = [f 2 ] iff ∃φ ∈ H 0 such that f 2 = f 1 • φ. But note that this is equivalent to: f 2 is isotopic to f 1 rel. Z = {z k = f 1 (v 0 k )}.
Let us endow Ĉ with a spherical metric 20 d and the set F with the metric

d(f 1 , f 2 ) = sup d(f 1 (x), f 2 (x)) x ∈ S 0 .
The space T is endowed with the quotient topology. It is separated (distinct points have some disjoint neighbourhoods). The projection Π : F → T is open and has continuous local sections (it is a fibre bundle, see Appendix E). Since Π is open, a subset of T is a neighbourhood of [f ] ∈ T iff for some ε > 0 it contains the set of [f ] for which d(f, f ) < ε. We will use the following topological lemma. Endow S 0 with a distance d inducing its topology and H 0 with the the distance

d(φ 1 , φ 2 ) = sup d(φ 1 (x), φ 2 (x)) x ∈ S 0 .

Then (see Appendix E, Lemma 29):

Lemma 13. There exists ε > 0 such that for every orientation preserving selfhomeomorphism φ of S 0 , if φ fixes every point in V 0 and satisfies d(φ, id S 0 ) < ε then φ ∈ H 0 (i.e. φ is isotopic to the identity rel. V 0 ).

Stating the objective in terms of analyticity of a function Glu

The different objects that will be introduced and their relation are summed up in Figure 11.

For a polygon configuration in S-Conf, let us explain why our gluing construction not only gives us an element of M but in fact an element of T . For this, given a polygon configuration [P] ∈ S-Conf we build below a homeomorphism ψ : S 0 → S. It is not unique but its class modulo H 0 will be unique.

Consider a collection φ = (φ j ) of homeomorphisms φ j : ∂P 0 j → ∂P j that send vertices and marked points of P 0 j to their corresponding points in P j (in particular, they are orientation preserving) and such that the φ j are compatible with the identification of paired edges: if (e : j) and (e : j ) are paired in P 0 , and s is the C-affine map matching them, calling (ẽ : j), (ẽ : j ) and s the corresponding objects in P, we ask that φ j • s = s • φ j . Such a collection exists, but is not unique. Then φ j can be extended to an orientation preserving homeomorphism φ j : P 0 j → P j . Let us join all these maps into a map φ : j P 0 j → j P j . This join descends to an orientation preserving homeomorphism ψ : S 0 → S that depends only on φ such that π • φ = ψ • π 0 , where π : j P j → S and π 0 :

j P 0 j → S 0
are the projection to the respective quotients. This is summed up in the following commutative diagram:

j P 0 j j P j S 0 S φ π 0 π ψ
Different choices for φ yield different maps ψ but they are all equivalent modulo H 0 . 21 This follows from the following topological facts, via a homeomorphism from P 0 j to D: the set of orientation preserving self-homeomorphisms of a segment is connected (it is convex!), an isotopy of the circle can be radially extended to an isotopy of the closed unit disk D (immediate), the set of self-homeomorphisms of D that are the identity on ∂D is connected (easy thanks to Alexander's trick [START_REF] Alexander | On the deformation of an n-cell[END_REF]).

Recall that F denotes a specific Riemann surface isomorphism from S to Ĉ. Then the map

f := F • ψ is an element of F.
(By what we proved in the previous paragraph,) its class modulo pre-composition by elements of H 0 is independent of the choice of φ and is the element of T we associate to P. This independence is used in the proof of Lemma 17. We partition the index set {1, . . . m} into three subsets as follows: let F ⊂ {1, . . . m} denote the set of those indices k for which the vertex v 0 k of the base surface S 0 is bounded, I ⊂ {1, . . . m} those for which it is unbounded and M ⊂ {1, . . . m} be the marked points. Let 21 This is directly seen to be equivalent to: the maps ψ -1 are all isotopic rel. the vertices and marked points of S 0 . Actually by taking inverse this is also equivalent to stating that the maps ψ are isotopic rel the vertices and marked points of S.

(7) R =        (r k ) ∈ C m r k = -2 ∀k ∈ F, Re r k > -1 ∀k ∈ I, Re r k < -1 ∀k ∈ M, r k = 0        and T R = T × R.
We saw earlier that res k = -2, and the types of the singularities (bounded or unbounded) of ζ are the same as for S 0 according to Section 3.2 and for marked points there is no singularity, so res ∈ R. We denote

Glu : S-Conf → T R [P] → ([f ], res)
where f and res are defined above. We call Glu the gluing map. We want to prove that Glu is analytic. But we do not even know yet that it is continuous.

An analytic inverse candidate Per

Consider any element

([f ], res) of T R, f : S 0 → Ĉ and (res k ) ∈ R. Let z k = f (v 0
k ) be the affixes that any map in [f ] gives to the vertices and let Z = z k 1 ≤ k ≤ n denote their set. Consider the unique Christoffel symbol ζ that is holomorphic on Ĉ -Z and whose singularities are at most simple poles and have residues res k at z k . By definition of R if the type of v 0 k is finite (F), infinite (I), marked (M) then the corresponding singularity z k of ζ is respectively bounded (Re res k > -1), unbounded (Re res k < -1), erasable (Re res k = 0). Consider a polygon P 0 j of P 0 , choose any point w * in the interior of P 0 j , and let z * = f • π 0 (w * ) (recall that π 0 : j P 0 j → S 0 ). Choose any germ φ 0 of similarity chart for ζ at z * . For all bounded vertices and all marked points w of P 0 j , the germ can be developed along any path within f • π 0 (P 0 j ) going to z = f • π 0 (w) without hitting the vertices (except at the end) and the associated resting place (see Section 3.6) is independent of the choice of the path since P 0 j is simply connected. Let R ∈ C nj be the indexed collection of all these resting places.

Lemma 14. The projection of R in AC nj is independent of the representative of f in [f ], of the choice of w * and of the choice of φ 0 .

Before proving it, let us gather all those projections for the different j ∈ J: we have hence defined a map Per : T R → Conf that we call the periods map.

To prove Lemma 14, and for further uses, we extend the definition of R. Assume that z * ∈ Ĉ -Z is any point, that φ 0 is a germ of straightening chart at z * , that

γ i : [0, 1] → Ĉ, i ∈ {1, . . . , p}, p ∈ N are paths such that γ i (0) = z * , γ i ([0, 1)) ⊂ Ĉ -Z and γ i (1) ∈ Z is a bounded singularity of ζ (i.e. corresponds to a v 0
k that is either a finite vertex or a marked point). Develop φ 0 along each γ i and call c i ∈ C its resting point. Let R = (c i ) p i=1 , which depends on all the choices above. Lemma 15. Consider two choices of z * , φ 0 , γ i and z * , φ 0 and γ i as above and assume that there exists a path δ from z * to z * such that each path γ i is homotopic to the concatenation δ • γ i by a homotopy leaving fixed the starting and endpoints, and avoiding Z except at the endpoint. Then the projections of the corresponding R and R in AC p are identical.

Proof. Let us develop φ 0 along δ. We obtain at the end a germ φ0 at z * . This germ takes the form φ0 = s • φ 0 for some C-affine map s. The development of s • φ 0 along γ i is the post-composition by s of the development of φ 0 along the same path γ i and its resting place is s(c i ). By the homotopy assumption and properties of resting places (see Section 3.6) the resting places c i composing R are the same as the resting places obtained from z * , φ 0 , δ • γ i . The development of φ 0 along δ • γ i is the concatenation of the development of φ 0 along δ and the development of φ0 along γ i . Hence the c i are the same as the resting places obtained from z * , s • φ 0 , γ i , i.e. c i = s(c i ).

Proof of Lemma 14. Assume that [f ] = [f ], that w * and w * are in the interior of P 0 j and that φ 0 and φ 0 are germs of straightening coordinates of ζ at these points. Let z * = f (w * ) and z * = f (w * ). Consider paths η i , i ∈ {1, . . . , n j }, in P 0 j from w * to the finite vertices and marked points and a path β from w * to w * within P 0 j . Let

γ i = f • η i . Let γ i = f • (β • η i ) = (f • β) • (f • η i ). Since [f ] = [f ]
there is an isotopy s ∈ [0, 1] → f s from f to f fixing the images of all vertices and marked points. 22 In particular f 0 = f and

f 1 = f . Let α : t ∈ [0, 1] → α(t) = f t (w * ) which goes from α(0) = f (w * ) to α(1) = f (w * ) = z * . Let δ be the concatenation (f • β) • α.
Then the conditions of Lemma 15 are satisfied, with the following homotopy from δ

• γ i to γ i : first f • η i is homotopic to α • γ i via (s, t) ∈ [0, 1] 2 → α(2t) if t ≤ s/2 and f s η i t-s 2 1-s 2 if t ≥ s/2. Then δ •γ i = ((f •β)•α)•γ i is homotopic to (f •β)•(α •γ i ) hence to (f •β)•(f •η i ) = γ i .
The conclusion of Lemma 15 proves Lemma 14.

Recall that we have put a complex manifold structure on Conf * but not on Conf.

Lemma 16. The subset Per -1 (Conf * ) ⊂ T R is open and on it, the map Per is analytic.

Proof. We will work locally so we consider an element (τ , res ) ∈ T R = T ×R such that Per(τ , res ) ∈ Conf * , and we will allow ourselves to restrict a finite number of times to smaller and smaller neighbourhoods of this element. Let us focus on one polygon P 0 j and the collection of resting places R ∈ Ĉnj used in the definition of Per.

Fix any f ∈ F such that τ = [f ]. Fix a point w * ∈ P 0 j and let

z * = f • π 0 (w * ) ∈ Ĉ.
We recall that the collection R ∈ C nj is associated to ([f ], res) ∈ T R and to a choice of point w * in the interior of P 0 j and of an initial germ φ 0 of similarity chart at z * = f • π 0 (w * ).

We want to keep z * fixed and equal to z * , and hence we want to define w * = (f • π 0 ) -1 (z * ). This poses several problems. For one thing, f is only defined up to isotopy rel. the vertices and marked points, and thus w * depends on the choice of the representative f of [f ], and for some representatives, the point w * is not even in P 0 j . We could prove that the construction can be carried out for such w * and work from that, but by simplicity we prefer here to use that the map F → T : f → [f ] has local sections (Proposition 33 in Appendix E). So we restrict to a neighbourhood V of τ in F on which there is a continuous map

V → F : τ → f τ with [f τ ] = τ . We then define w * (τ ) = (f τ • π 0 ) -1 (z * ).
By making V smaller, we ensure that w * (τ ) remains in the interior of P 0 j . Note that τ → w * (τ ) is continuous.

We fixed z * . We also want to keep fixed the value and derivative at z * of the initial germ used in the definition of R. Hence given any point (τ, res) ∈ T R such that τ ∈ V , we choose, as initial germ of straightening coordinate φ at z * for the Christoffel symbol associated to (τ, res), the unique one satisfying φ(z * ) = φ 0 (z * ) and φ (z * ) = φ 0 (z * ). Note that z * = z * = ∞, because ∞ is one of the vertices or marked points by the convention that z 3 is always ∞.

Let us prove that (τ, res) ∈ V ×R → R(τ, res) is analytic (recall that T R = T ×R and that R is defined by eq. ( 7)). We will take advantage of a theorem of Hartogs that asserts that a function F from a finite dimensional complex manifold X to another is analytic if and only if F • ξ is analytic for all one complex variable analytic map ξ taking values in X. The space T R is finite-dimensional. By Hartogs' theorem, it is enough to prove that t → R(τ t , res(t)) is analytic for all analytic map t → τ t ∈ V and all analytic map t → res(t) ∈ R, where t is a complex number.

Let us show how this follows from Lemma 7. Since R(τ t , res(t)) is an element of C nj , we focus on one of its components. This component corresponds to some vertex or marked point v ∈ P 0 j , more precisely it is the resting place of any path γ t of the form γ t = f τt • π 0 • δ t where δ t is a path in P 0 j from w * (τ t ) to v that avoids the vertices and marked points of P 0 j except at the end. We choose δ t to depend continuously on t (for instance a segment, linearly parametrized, works since P 0 j is convex and w * (τ ) is in its interior). Then γ t depends continously on t.

Let (z k ) = M (τ ), i.e. z k = f (v 0 k ). Let z k0 be the one that corresponds to the specific vertex we called v. The set U on which we will apply Lemma 7 is the complement in Ĉ of the union of a small closed disk around each z k , except z k0 .

The holomorphy hypotheses of Lemma 7 are immediately seen to be satisfied. Continuity of t → X t = (γ t (0), γ t (1), [γ t ]) ∈ Γ follows from the continuity of t → γ t and Lemma 26.

We have thus proved that the R, normalized as described earlier in this proof, depends analytically on (τ, res) near (τ , res ). Since we assumed that R(τ , res ), which is an element of C nj , does not have all its components equal, this is still the case for nearby (τ, res). Hence Per

-1 (Conf * ) ⊂ T R is open.
Analyticity of Per follows from the analyticity of R.

Left inverse property of Per

We have

(8) Per • Glu = Id S-Conf .
Indeed, we defined Glu([P]) = ([f ], res) for some, non-unique yet specific, f ∈ F.

Using this specific f in the definition of Per above immediately yields, from the way f is defined, that for all P = P 0 j ∈ P 0 there is a similarity chart on f • π 0 (P ) whose image is exactly P j (minus the vertices). The resting places hence correspond to the vertices/marked points of P j , whence Per([f ], res) = [P].

Right inverse property of Per and conclusion

Let Eff = Glu(S-Conf) where the notation Eff stands for effective. Proof. Let eff 1 = Glu([P 1 ]) = ([f 1 ], res 1 ) for some f 1 ∈ F, res 1 ∈ R and P 1 = (P 1 j ) ∈ S-Conf. We recall that the homeomorphism f 1 : S 0 → Ĉ is obtained by mapping each polygon P 0 j to P 1 j and passing to the quotients, then composing with a uniformization of the Riemann surface S 1 to Ĉ. By Equation (8) we have Per(eff 1 ) = [P 1 ]. Since S-Conf is open and Per is continuous at eff 1 , there is some neighbourhood W of eff 1 such that Per(W ) ⊂ S-Conf, so Glu • Per is defined in particular on W .

There remains to check that, for a possibly smaller W , for all ([f ], res) ∈ W , denoting [P] = Per([f ], res) we have Glu([P]) = ([f ], res). By taking W small we

S 0 S 0 S 0 P 1 1 P 1 2 P 1 3 P 1 F 1 • π 1 Glu f 1 f Per P f Glu
Figure 12: Illustration of the proof of Lemma 17. Solid lines on the sphere depict geodesics while dashed lines are not necessarily geodesics. We are given f close to f 1 and from this we construct P = Per([f ]) close to P 1 and we must justify that we can choose a representatife f of Glu(P) that is close to f 1 too. Since the vertices z k are at the same place on the bottom sphere, this will prove that [f ] = [ f ] = Glu([P]). The map f is actually defined by following the saddle connections on the 1-skeleton on and then by some interpolation in the 2-cells, and we prove that [ f ] = Glu([P]). can ensure that the strictly convex polygon configuration [P] is close to [P 1 ]. For any ε > 0, by taking W small we also know that for any (

[f ], res) ∈ W , there is a representative f of [f ] that is ε-close to f 1 (see Proposition 30 in Appendix E).
Let ζ be the Christoffel symbol associated to ([f ], res) and ζ 1 the one associated to ([f 1 ], res 1 ). The image by F 1 of an edge of S 1 is a saddle connection of ζ 1 . Let us recall our notation: P 1 = (P 1 j ) j∈J and P = (P j ) j∈J .

Let Q 1 j = F 1 • π 1 (P 1 j ). This forms a cellular decomposition of Ĉ. By Propositions 8 and 9, we can follow continuously (analytically) all the saddle connection mentioned earlier as a function of ([f ], res) ∈ W provided W is small enough. Since the saddle connections are disjoint in the case of [P 1 ], except at the vertices, a continuity argument proves they are still disjoint away from any neighbourhood of the vertices provided W is small enough. Saddle connections tend to finite vertices along a straight line to the vertex in the similarity charts whose images are sectors based on the vertex and whose sides are glued by a similarity. Hence distinct saddle connections remain disjoint near the finite vertices too. The same is true near infinite vertices because the direction at which the different connections converge to infinity make a non-zero angle with respect to each other, because of the restriction we put on the unbounded polygons. It follows that the saddle connections remain disjoint in their interiors. They hence define a cellular decomposition of Ĉ, with cells Q j corresponding to deformations of the cells Q 1 j . More precisely let Sk 1 ⊂ Ĉ denote 1-skeleton of this cell decomposition for (Q j ) and Sk the same for (Q 1 j ). Matching the saddle connections as parametrized curve defines a homeomorphism h : E 1 → E that is ε-close to the identity provided W is small enough. It extends to a homeomorphism h of the sphere that is η-close to the identity, with η -→ 0 as ε → 0: this claim follows from a general theorem of topology. 23 We then let

Q j = Q 1 j and f = h • f 1 .
See the following footnote for an alternative approach. 24 The map f is an orientation preserving homeomorphism from S 0 to Ĉ and maps each cell

π(P 0 j ) to Q j . Let h : S 0 → S 0 be such that f = f • h, i.e. h = f -1 • f = f -1 • h • f 1 .
The map h fixes every vertex and marked point (but it does not send the edges and polygons of S 0 to themselves), and is close to the identity. By Lemma 13 we have h ∈ H 0 , i.e.

[f ] = [ f ]. Since our polygons are simply connected, there is a solution φ j = φ of φ /φ = ζ defined on Q j -{z k }. This solution maps the edges to straight lines and between two finite vertices or a vertex and a marked point, the image is a bounded open segment whose ends are the resting place of the paths used to define Per(

[ f ], res). But recall that [ f ] = [f ] hence Per([ f ], res) = Per([f ], res) = [P]
. The image by φ j of an edge of Q j from a marked point to an infinite vertex is a half-line tending to ∞. Hence all these straight lines form the boundary the strictly convex, possibly marked, polygon P j composing [P] (up to a C affine map). Replacing φ j by its postcomposition with an affine map and adding the vertices to its domain of definition, we may assume that φ j (Q j ) = P j :

φ j : Q j → P j .
By the winding number theorem, the map φ j is a bijection from Q j to P j , holomorphic in the interior.

Hence f realizes the gluing of the P j . More precisely let S be the abstract surface constructed from the P j and π : P j → S the quotient map. Let S be S minus the vertices. The maps φ j • f send π 0 (P 0 j ) to P j in a way that is compatible 23 For instance apply on the image of each polygon the isotopy extension theorem of a circle imbedding in the plane, see for instance Corollary 1.4 of [START_REF] Edwards | Deformations of spaces of imbeddings[END_REF]. 24 Another way to proceed would be to use the regularity of the curves and a control on how they reach the vertices, to identify which region Q j correspond to Q 1 j , then to prove, in a way similar to what we do below, that Q j is mapped bijectively by any solution of φ /φ = ζ to a C-affine image of P j , then to exploit continuous dependence of φ w.r.t ζ to reduce to finding homeomorphisms close to the identity between P 1 j and P j .

with the gluings of the P j (recall that f = h • f 1 , and h and φ j respect the linear parametrization of geodesics) and define a map

ψ : S 0 → S such that ψ = π • φ j • f on each π 0 (P 0 j ). Let now F := f • ψ -1 : S → Ĉ which satisfies F • π| Pj = φ -1 j . Claim:
The map F : S → Ĉ is an analytic isomorphism. We first prove it on S , where it coincides with φ -1 j • π -1 on π(P j ), which is immediately seen to be holomorphic in the interior of π(P j ) since π and φ j are holomorphic. On a an edge minus endpoints e * , recall that charts are given as follows: let π(P j ) and π(P k ) be the cells adjacent to e * in S. There is a neighbourhood V of e * and a similarity chart φ : V → C for which φ(π(z)) = z when z ∈ P j ∩ π -1 (V ) and φ(π(z)) = s(z) when z ∈ P k ∩ π -1 (V ) where s is the C-affine map gluing the corresponding edges of P k and P j . The image of this chart is the open neighbourhood W = W 1 ∪ W 2 of the appropriate edge of P j where W 1 = P j ∩ π -1 (V ) and

W 2 = s(P k ∩ π -1 (V )). Then the expression of F from this chart is F • φ -1 , which is equal to φ -1 j on W 1 and to φ -1 k • s -1 on W 2 .
These two maps are holomorphic and coincide on the (straight) edge of P j , hence their join is holomorphic. We have thus proved that the map F = f •ψ -1 is an analytic isomorphism from S to Ĉ minus a finite number of points. These singularities are erasable since F is continuous, hence actually F is an analytic isomorphism from S to Ĉ.

The surface S carries a similarity surface structure (an atlas) coming from the polygons under the quotient map π, and F sends this structure to Ĉ -Z where Z is the set of images of the vertices. To this structure corresponds a Christoffel symbol ζ, and we claim that this symbol is exactly ζ. Indeed, it is given by ζ = φ /φ for any similarity chart φ. We can take φ = φ j and by definition φ j /φ j = ζ holds on Q j . We conclude by analytic continuation of identities that ζ = ζ.

Coming back to the definition of the map Glu, all this implies that Glu([P]) = ([ f ], res). We then conclude as follows: Glu This proves Proposition 11.

• Per([f ], res) = Glu([P]) = ([ f ], res) = ([f ], res).
Remark. As an interesting consequence we got that dim C S-Conf = dim C T R. We can also check this identity directly: let a i be the number of cells of dimension i in the cellular decomposition of S induced by the polygons P j (not including the marked points). Let a 2 be the number of unbounded polygons: a 2 ≤ a 2 . Let a 0 be the number of marked points in S. Each unbounded polygon has two marked points but the marked points are paired under the gluing, hence a 0 = a 2 . We have dim S-Conf = j∈J dim A * C nj = (n j -2) (note that each n j ≥ 3). If P j is a bounded polygon then n j is its number of vertices hence its number of edges. If P j is unbounded then n j is one plus its number of edges. Adding up, each edge will be counted twice. It follows that dim S-Conf = 2a 1 + a 2 -2a 2 . On the other hand, dim T R = dim M + dim R = (a 0 + a 0 -3) + (a 0 -1). The equality dim C S-Conf = dim C T R then follows from cancellation of a 2 = a 0 and from Euler's identity a 0 -a 1 + a 2 = 2.

We state a direct corollary of the proof of Lemma 17.

Proposition 18 (holomorphic motion of the 1-skeleton). In Lemma 17, one can choose W so that there is a continuous family (S f r ) f r∈W where S f r is a homeomorphism from the 1-skeleton of S 0 to the 1-skeleton of the surface S associated to Per(f r), matching corresponding edges, vertices and marked points, and such that F f r •S f r depends holomorphically on f r where F f r is the analytic isomorphism from S to Ĉ that sends v 1 , v 2 , v 3 to 0, 1 and ∞. They map geodesic parametrization of these curves to geodesic parametrizations.

By geodesic parametrization we mean parametrizations for which the curve has locally constant speed in charts. By matching we mean the following. The surface S is built by gluing polygons P j that are deformations of the polygons P 0 j forming S 0 , the gluing map being denoted π in both cases. We say that the 2-cells π(P j ) and π(P 0 j ) correspond. The polygons P j and P 0 j have the same number of vertices and marked points, which are indexed similarly w 1 , . . . , w nj and w 0 1 , . . . , w 0 nj we say that the 0-cells π(w j ) and π(w 0 j ) correspond. Similarly we define a correspondence between 1-cells. Consider corresponding objects O and O that are 0, 1 or 2-cell. We say that the f :

S 0 → S matches them if f (O) = O .
The homeomorphism in Proposition 18 is necessarily unique under the condition of mapping geodesic parametrization.

Lemma 19. The homeomorphisms S f r can be extended into homeomorphisms of the sphere matching the 2-cells and varying continuously with f r.

Proof. At the level of the original polygons, S f r lifts to homeomorphisms of their matching sides which are linear and match vertices and marked points. They form homeomorphisms ∂P 0 j → ∂P j (we include ∞ in the boundary for unbounded polygons). It is enough to extend these homeomorphisms to the inside of the polygons, in a way that depends continuously on f r. Then the union of these homeomorphisms will pass to the quotient and yield the sought-for extension of S f r . It is possible to triangulate P 0 j by triangles whose vertices are only vertices or marked points of P 0 j . Consider the corresponding triangulation of P j . There is a unique R-affine map mapping matching triangles and matching their vertices. These extensions are not unique.

Appendix D Topologizing a space of paths

Let U be an open subset of C. Denote G the set of paths γ in U that satisfy ∀s ∈ [0, 1], γ(s) = γ(1). For z 0 = z 1 , both in U , denote G(z 0 , z 1 ) the subset of G of paths γ with γ(0) = z 0 and γ(1) = z 1 . Given two paths γ, γ in C, let

d(γ, γ) = sup s∈[0,1] |γ(s) -γ(s)|.
As in Section 4.2, we define Γ as the quotient space of G under the relation that γ ∼ γ if and only if γ and γ have the same endpoints z 0 and z 1 and belong to the same path-connected component of G(z 0 , z 1 ). We denote [γ] the equivalence class of γ.

We could use this distance on G to topologize G and define the topology on Γ as the quotient under the natural map G → Γ and leave to the reader the work to check that it has all the properties stated in Section 4.2. Instead, we choose the following more concrete approach (in the end, we get the same topology, see the end of the present appendix).

For all ε > 0, we denote V γ,ε as the image by the quotient map G → Γ of the ball B(γ, ε) ⊂ G for the distance d introduced above. In other words, V γ,ε is the set of (z 0 , z1 , [γ]) where γ is a path in U , d(γ, γ) < ε, z0 = γ(0) and z1 = γ(1).

We will use the notation

d(γ, ∂U ) := inf s∈[0,1],z∈∂U d(γ(s), z).
In all the statements below, we assume that all the paths take value in U .

Lemma 20. For all γ there is ε > 0 such that if γ(0) = γ(0), γ(1) = γ(1) and

d(γ, γ) < ε then [γ] = [γ].
Proof. A linear interpolation works except near z 1 : the condition that the path cannot hit z 1 = γ(1) at times s = 1 may fail to hold for the interpolation. To solve this, let r > 0 be such that

B(z 1 , r) ⊂ U . Let s 1 ∈ (0, 1) such that γ([s 1 , 1]) ⊂ B(z 1 , r/2). Let ε = min(r/2, d(γ, ∂U ), d(γ| [0,s1] , {z 1 })).
As in the statement we assume d(γ, γ)

< ε. Let δ(s) = (1 -s)γ(s 1 ) + sγ(s 1 ). Since ε < r/2, δ is contained in B(z 1 , r). The path γ is homotopic within G(z 0 , z 1 ) to (γ| [0,s1] •δ)•(δ -1 •γ| [s1,1]
) where the restrictions are appropriately reparametrized.

Dealing with γ| [0,s1] • δ: We have a homotopy from γ| Dealing with δ -1 • γ| [s1,1] : Denote γ this part and note that it is contained in B(z 1 , r). Since ε < r/2 the path γ| [s1,1] is also contained in B(z 1 , r). Both γ and γ| [s1,1] are thus contained in B(z 1 , r), they have the same starting point and they avoid z 1 except at the end. A linear interpolation in (lifted) polar coordinates provides a homotopy between them.

[0,s1] • δ to γ| [0,s1] by t ∈ [0, 1] → ((1 -t)γ + tγ)| [0,s1] • δ| [t,
Lemma 21. Let z 0 = γ(0). If 0 < ε < d(z 0 , ∂U ) and δ is any path in B(z 0 , ε) that avoids z 1 = γ(1) and with δ(1)

= z 0 then [δ • γ] ∈ V γ,ε .
Proof. Let t 0 ∈ (0, 1) and consider the path γ that sends s ∈ [0, t 0 ] to δ(s/t 0 ) and s

∈ [t 0 , 1] to γ s-t0 1-t0 . Then [γ] = [δ•γ].
For t 0 small enough we have d(γ, γ) < ε.

In the next statement we denote z 0 = γ(0), z 1 = γ(1), z0 = γ(0), z1 = γ(1).

Lemma 22. Given γ, there exists ε > 0 with ε < d(γ, ∂U ) and ε < |z 0 -z 1 | such that for all γ, if d(γ, γ) < ε, if δ is any path within B(z 0 , ε) from z0 to z 0 and if ψ is a self homeomorphisms of U that is the identity outside B(z 1 , ε) and such that

ψ(z 1 ) = z1 then [γ] = [δ • (ψ • γ)].
Proof. Let ε 0 be the ε given by Lemma 20. Choose any ε > 0 with ε < min(ε 0 /4, |z 1 -

z 0 |/2, d(γ, ∂U )). The relation to prove [γ] = [δ • (ψ • γ)] is equivalent to [ψ -1 • (δ -1 • γ)] = [γ]. We have ψ -1 • (δ -1 • γ) = (ψ -1 • δ -1 ) • (ψ -1 • γ). Since ε < |z 1 -z 0 |/2, it follows that ψ -1 • δ -1 = δ -1 . By Lemma 21, [δ -1 • (ψ -1 • γ)] = [α] for some path α with d(α, ψ -1 • γ) < ε. We have d(ψ -1 • γ, γ) < 2ε. Hence d(α, γ) < 4ε < ε 0 so we can apply Lemma 20: [α] = [γ]. Lemma 23. If [γ] = [γ ] then for all ε < d(γ , ∂U ), there exists ε < d(γ, ∂U ) such that V γ,ε ⊂ V γ ,ε .
Proof. Indeed take ε < min(ε /3, d(γ, ∂U ), |z 1 -z 0 |). Consider any [γ] ∈ V (γ, ε), for which by definition we can take a representative γ with d(γ, γ) < ε. By Lemma 22 (explicit objects δ and ψ exist that satisfy the hypotheses), we have

[γ] = [δ •(ψ •γ)].
By post-composing a homotopy from γ to γ with ψ we get that [ψ

• γ] = [ψ • γ ]. Hence [γ] = [δ • (ψ • γ )]. By Lemma 21, [δ • (ψ • γ )] is homotopic in G(z 0 , z1 ) to a path α with d(α, ψ • γ ) < ε < ε /3. Moreover, d(ψ • γ , γ ) < 2ε < 2ε /3. Hence d(α, γ ) < ε .
It follows from Lemma 23 that if we define a "neighbourhood" of [γ] as a set that contains V (γ, ε) for some ε > 0, then this definition is independent of the choice of representative γ of [γ]. Declare a subset of Γ "open" if for all of its points it contains a "neighbourhood" of it.

Note that "neighbourhoods" of [γ] exist, contain [γ], the intersection of two "neighbourhoods" is still a "neighbourhood" (they both contain V (γ, ε) for the min of their ε). It follows that the collection of "open" subsets of Γ forms a topology. We can thus remove the quotes on the word: open. Moreover V (γ, ε) is open: all its elements are of the form [γ] with d(γ, γ) < ε and thus [γ] ∈ V (γ, ε -d(γ, γ)) ⊂ V (γ, ε). It follows that our notion of "neighbourhood" coincides with the notion of neighbourhood associated to the topology: we can remove the quotes here too.

Lemma 24. This topology is Hausdorff separated.

Proof. If (z 0 , z 1 ) = (z 0 , z 1 ) then it is enough to take ε < 1 2 max(|z 0 -z 0 |, |z 1 -z 1 |) for V ε,γ ∩ V ε,γ = ∅ to hold.
If (z 0 , z1 ) = (z 0 , z 1 ) but [γ] = [γ] then consider the value ε that Lemma 22 associates to γ and the value ε that it associates to γ . Let ε 0 = min(ε, ε , |z 1z 0 |/2). Then we claim that V ε0,γ ∩ V ε0,γ = ∅. Otherwise there are two paths γ and γ with [γ] = [γ ] and d(γ, γ) < ε 0 and d(γ , γ ) < ε 0 . Let δ be a segment from γ(0) = γ (0) to z 0 = γ(0) = γ (0) and ψ be a self homeomorphism of U that sends z1 = γ(1) = γ (1) to z 1 = γ(1) = γ (1) and is the identity outside B(z 1 , ε). Then by Lemma 22,

[γ] = [δ • (ψ • γ)] from which it follows that [γ] = [δ -1 • (ψ -1 • γ)]. Similarly [γ ] = [δ -1 • (ψ -1 • γ )].

From the homotopy between γ and γ one defines a homotopy between [δ

-1 • (ψ -1 • γ)] and [δ -1 • (ψ -1 • γ )]. hence [γ] = [γ ], leading to a contradiction. Consider the map (z 0 , z 1 , [γ]) ∈ Γ → (z 0 , z 1 ) ∈ C 2 . It is continuous: indeed on V (γ, ε) it takes values in B(z 0 , ε) × B(z 1 , ε).
Lemma 25. For the ε of Lemma 22 the map above is a homeomorphism from

V (γ, ε) to B(z 0 , ε) × B(z 1 , ε).
Proof. We saw continuity. Injectivity follows from Lemma 22: for two γ with the same extremities z0 and z1 we can choose the same δ and the same ψ. Surjectivity can be achieved by letting γ = δ•(ψ•γ), choosing any δ from z0 to z 0 and choosing ψ sending z 1 to z1 so that it moves each point of B(z 1 , ε) by at most ε (this is possible for the Euclidean distance 25 ). Continuity of the inverse is achieved by definining explicit δ (a straight segment) and ψ that continuously depend on respectively z0 and z1 (i.e. we have explicit sections taking values in V (γ, ε)). 25 This may look specific to the distance we are working with on the plane. The reader may find more satisfying the weaker statement that for the ε of Lemma 22, the map above is a homeomorphism from an open subset of V (γ, ε) containing γ to B(z 0 , ε) × B(z 1 , ε/2). Then any ψ works. The map Q is continuous: It is equivalent to: for all γ ∈ G for all neighbourhood of Q(γ), its preimage by Q is a neighbourhood of γ. This is immediate as we saw that the sets V (γ, ε) forms a basis of neighbourhoods at [γ] and that

Consider the natural surjective map

Q : G → Γ that sends γ to (z 0 , z 1 , [γ]).
B(γ, ε) ⊂ Q -1 (V (γ, ε)).
As a consequence we obtain the following alternative presentation of the topology.

Corollary 27. The topology we defined on Γ coincides with the quotient topology under Q.

Appendix E Teichmüller space

We only focus here on the Teichmüller space of a sphere with marked points. There are several points of view on Teichmüller spaces: sometimes they are seen as spaces of hyperbolic metrics, or spaces of conformal structures, spaces of deformations, spaces of marked points, etc. Most references on Teichmüller space 26 study this space using quasiconformal maps and the Measurable Riemann Mapping Theorem (MRMT), and its version with holomorphic dependence. But in the present article, we want to prove the MRMT's, so we cannot follow this approach. Fortunately, for the study of the Teichmüller space of the sphere with marked points, the MRMT is not required to define and prove the basic properties that we need in the present article. In particular, instead of defining the Teichmüller space via equivalence classes of quasiconformal maps, we use equivalence classes of homeomorphisms. 27 All the material here is classical, but it is hard to find references not involving the use of quasiconformal maps. Let S 0 be a topological sphere and v 0 k for 1 ≤ k ≤ m be m distinct points of S 0 . We assume that m ≥ 3. Let V 0 denote the m-uplet (v 0 k ) and V 0 denote the set {v 0 k }. Let F be the set of orientation preserving homeomorphisms h : S 0 → Ĉ such that h(v 0 1 ) = 0, h(v 0 2 ) = 1 and h(v 0 3 ) = ∞. Let us endow Ĉ with a spherical metric 28 d and the set F with the metric

d(f 1 , f 2 ) = sup d(f 1 (x), f 2 (x)) x ∈ S 0 .
This defines a topology on F. The space F is path connected [START_REF] Kneser | Die Deformationssätze der einfach zusammenhängenden Flächen[END_REF], in particular connected. 26 There are a lot of books treating the subject. See for instance [START_REF] Gardiner | Quasiconformal Teichmüller theory[END_REF][START_REF] Hamal | Teichmüller theory and applications to geometry, topology, and dynamics[END_REF]. 27 The proof of some classical theorems that we use about spaces of homeomorphisms may look hard. It is likely that the use of another space of maps, like smooth maps, would make the theory a bit easier, but we have not checked that. 28 A metric for which the circles are geometric circles via a stereographic projection.

Let H 0 be the group of orientation preserving self homeomorphisms of S 0 that are isotopic to the identity rel. V 0 , i.e. by an isotopy fixing each marked point v 0 k . It follows immediately from this definition that H 0 is path connected. The group H 0 acts on the right on the set F by composition: for φ ∈ H 0 and f ∈ F we let

f • φ = f • φ.
Definition 28. The Teichmüller space T associated to S 0 , V 0 is the quotient of F for this action:

T = F/H 0 .
We endow T with the quotient topology. We denote Π : F → T the quotient map.

A useful lemma

Let us endow S 0 with a metric d compatible with its topology and the set H(S 0 ) of self homeomorphisms φ of S 0 with the metric

d(φ 1 , φ 2 ) = sup d(φ 1 (x), φ 2 (x)) x ∈ S 0 .
This endows H 0 with a topology, 29 for which it is a topological group. 30 We copy here for convenience Lemma 13:

Lemma 29. There exists ε > 0 such that for all orientation preserving self homeomorphism φ of S 0 , if φ fixes every point in V 0 and satisfies d(φ, id S 0 ) < ε then φ ∈ H 0 (i.e. φ is isotopic to the identity rel. V 0 ).

It follows for instance from [START_REF] Roberts | Local arcwise connectivity in the space H n of homeomorphism of S n onto itself[END_REF], which states in particular that the space of self-homeomorphisms of S 2 is locally arcwise connected, together with the use of an explicit correction to leave the points in V 0 fixed, for instance using the tool described later here.

Moduli space M

Let M be the set of m-uplets (z k ) of pairwise distinct points in Ĉ such that z 1 = 0, z 2 = 1 and z 3 = ∞. It is a complex manifold of dimension m -3. For f ∈ F we define

M : F → M f → (f (v 0 k )
) which is a continuous map. There are many ways 31 to see that the map M is surjective, i.e. that for all Z = (z k ) ∈ M there exists an orientation preserving homeomorphism from S 0 to Ĉ sending each v 0 k to z k . We also define π : T → M as follows: to [f ] ∈ T we associate M (f ), which does not depend on the representative

f of [f ]. So π • Π = M Since M is surjective, π is surjective too.
29 The metric d is not complete on H 0 . A complete metric would be d(φ

1 , φ 2 ) + d(φ -1 1 , φ -2 2
). Yet, these two metrics induce the same topology on H 0 .

30 By uniform continuity of φ ∈ H 0 , left multiplication by φ is continuous. Right multiplication by φ is an isometry. It follows that multiplication is continuous. Inversion is continuous at φ by uniform continuity of φ -1 . 31 We leave it as an exercise to the reader. Igor Belegradek pointed to us an interesting generalization that can be found in [START_REF] Ancel | On homogeneous locally conical spaces[END_REF]. Lemma 31. The quotient space T is separated.

Proof. Consider f 1 and f 2 in T and ε > 0. Assume that the associated neighbourhoods defined in Proposition 30 intersect. Call them V (f 1 , ε) and V (f 2 , ε). This means that [g 1 ] = [g 2 ] for some g i in F with d(g i , f i ) < ε. Hence g 2 = g 1 • h 0 with h 0 ∈ H 0 . In particular g 2 (v 0 k ) = g 1 (v 0 k ). Let us assume that V (f 1 , ε) and V (f 2 , ε) intersect for all ε > 0. So for all ε > 0 we get maps g 1 , g 2 and h 0 as above, that depend on ε. By passing

g 2 (v 0 k ) = g 1 (v 0 k ) to the limit as ε -→ 0 we get f 2 (v 0 k ) = f 1 (v 0 k ) for all k. Now write f 2 = f 1 • h with h := f -1 1 • f 2 . We have h(v 0 k ) = f -1 1 (f 2 (v 0 k )) = v 0 k . Hence h 0 • h -1 fixes all v 0 k too. We also have h 0 • h -1 = (g -1 1 • f 1 ) • h • (f -1 2 • g 2 ) • h -1 .
So by continuity of composition and inversion, the map h 0 • h -1 is close to the identity when ε is small (h does not depend on ε). It follows from Lemma 29 that h 0 • h -1 ∈ H 0 (i.e. it is isotopic to the identity rel V 0 ). Since h 0 ∈ H 0 and H 0 is a group, we get h ∈ H 0 . Since

f 2 = f 1 • h, we get [f 2 ] = [f 1 ]. Complex structure on T Recall that F Π -→ T π -→ M.
Lemma 32. The map π is a local homeomorphism.

Proof. The map π is continuous: indeed, given an open subset U of M, we have There remains to check that the map π is locally injective. That is, using the neighbourhoods of Proposition 30, to check that for every f , there is ε > 0 small enough such that for all

π -1 (U ) = Π • M -1 (U ) (Π is
f 1 , f 2 with d(f i , f ) < ε, if π([f 1 ]) = π([f 2 ]) then [f 1 ] = [f 2 ]. So we assume π([f 1 ]) = π([f 2 ]), i.e. M (f 1 ) = M (f 2 ). Let us write f i = f •φ i with φ i := f -1 • f i ∈ H(S 0 ). Then the hypothesis M (f 1 ) = M (f 2 ) says that φ 1 = φ 2 on V 0 . Since φ i = f -1 • f i , by uniform continuity of f -1
, for all ε we can choose ε > 0 such that d(φ i , id S 0 ) < ε . The map φ -1 2 • φ 1 fixes every point of V 0 and is close to the identity, hence by Lemma 29 belongs to H 0 provided we chose ε small enough. Since

f 1 = f 2 • φ -1 2 • φ 1 , we get [f 1 ] = [f 2 ].
The fact that π : T → M is a local homeomorphism allows to endow T with a complex manifold atlas, of dimension m -3, for which π is analytic.

Actually the map π is a covering (better: a universal covering) but we do not use this fact in the present article.

A useful tool

Consider an indexed set of points Z * = (z * k ) ∈ M (so z * 1 , z * 2 and z * 3 are fixed to 0, 1 and ∞) and recall that we have put a spherical metric on Ĉ. Choose ε > 0 so that the balls B k = B(z * k , ε), for k ≥ 4, are pairwise disjoint. The product

U = {0} × {1} × {∞} × k≥4 B k
is an open subset of M. The set B k is a spherical disk on the Riemann sphere. It is easy to construct an explicit orientation preserving homeomorphism of the disk B k such that z * k is mapped to a given z k ∈ B k and that depends continuously on z k . See for instance Figure 13. By taking the join over k and completing with the identity, we obtain an orientation preserving homeomorphism andd(ψ -1 Z , Id) ≤ 2ε. This family depends on Z * and ε but we chose to omit them in the notation ψ Z .

ψ Z : Ĉ → Ĉ that depends continuously on Z = (z k ) ∈ U and such that -ψ Z (z * k ) = z k for all k, -ψ Z * = Id, -d(ψ Z , Id) ≤ 2ε
Proposition 33. The map Π is a fibre bundle.

Proof. Let τ * = [f * ] ∈ T . We saw in Proposition 30 that for any η > 0, the set

V = [f ] f ∈ F, d(f , f * ) < η is an open a neighbourhood of τ . Let Z * = M (f * ) = π(τ *
) and for ε small enough consider the set U ⊂ M and the family ψ Z , Z ∈ U , introduced above. We choose η = ε/2, so η < ε. Then ∀τ ∈ V, π(τ ) ∈ U.

Consider the continuous map Θ :

V

× H 0 → F (τ, h) → ψ π(τ ) • f * • h
We claim that Θ is a local trivialization of Π provided ε is small enough.

We must first check that Π

• Θ(τ, h) = τ . We have Π • Θ(τ, h) = [ψ π(τ ) • f * • h] and τ = [f ] for some f ∈ F with d(f , f * ) < η < ε. We must check that (f ) -1 • ψ π(τ ) • f * ∈ H 0 .
Note that this composition fixes every point in V 0 . By Lemma 29 is is enough to prove that the composition is close enough to the identity. Now, d(f , f * ) < η < ε and d(ψ π(τ ) , Id) < ε so by continuity of composition and inversion, if ε is small enough, (f

) -1 • ψ π(τ ) • f * is close to (f * ) -1 • Id •f * = Id.
Then we must check that the image of Θ is equal to Π -1 (V ) (the latter is automatically an open set since Π is continuous). By the previous paragraph it is contained in Π -1 (V ). Let us prove the converse inclusion. Let f ∈ F with Π(f ) ∈ V , i.e. there exists f ∈ F and h 0 ∈ H 0 such that d(f , f * ) < η and

f = f • h 0 . Let τ = [f ], so π(τ ) = M (f ) ∈ U . Then f = ψ π(τ ) • f * • g for the map g = (f * ) -1 • ψ -1 M (f ) • f = (f * ) -1 • ψ -1 M (f ) • f • h 0 and because H 0 is a group, it is enough to check that (f * ) -1 • ψ -1 M (f ) • f ∈ H 0
. This is checked using Lemma 29 exactly as in the previous paragraph.

Last, the reciprocal of Θ is given by

Ξ : Π -1 (V ) → V × H 0 f → ([f ], (f * ) -1 • ψ -1 M (f ) • f ) which is a continuous expression.
Fibre bundles have in particular the homotopy lifting property and local sections. Let us make this last statement explicit.

Proposition 34. For all τ * ∈ T , for all representative f * of τ (i.e. τ = [f * ]), there exists ε > 0 such that for the open neighbourhood V = [f ] f ∈ F, d(f , f * ) < η of τ and for the family Z → ψ Z described before Proposition 33, the following map is a local section of Π:

V → F τ → ψ π(τ ) • f * Part 2

Beltrami forms

The presentation here is not self contained. In particular some lemmas of [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF] are used without proof: the interested reader will have to check there (we will give precise reference in the second edition [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF]) but it is not necessary to do this to follow the arguments of the present article: required material is recalled in the text and in Appendices I and J. Complementary information on other aspects is given in three other appendices to the present part.

The measurable Riemann mapping theorem

Let D denote the unit disk in C. Let B denote the complex Banach space of complex-valued L ∞ functions defined on C, endowed with the essential supremum norm. Elements of B are not functions but classes of functions, for the equivalence relation of being equal almost everywhere. -f is a homeomorphism from C to C, -the distribution derivative of f is locally L 2 , -the following holds almost everywhere: 32 ∂f (z) = µ(z) ∂f (z).

Such a map is called a quasiconformal homeomorphism of C and µ is called the Beltrami differential of f . The map f is also said to straighten µ. Sometimes, µ is also called a Beltrami form.

The second condition in the list means that the distribution partial derivatives ∂f /∂x and ∂f /∂y have locally L 2 representatives f x and f y and we let df = f x dx + f y dy which is a 1-form (a current), but a priori not the differential of f (see Remark 1). There are too many good introductions and reference books to distributions to be cited here. Beyond the seminal [START_REF] Schwartz | Théorie des distributions[END_REF], let us cite [START_REF] Israel | Generalized Functions[END_REF] and [START_REF] Lieb | of Graduate studies in mathematics[END_REF]. Let us also cite [START_REF] Strichartz | A guide to distribution theory and Fourier transforms[END_REF], which is pleasant to read (but is, on purpose, sweeping details under the carpet). See Appendix I for information on distributions with locally L 1 or locally L 2 derivatives.

Bear in mind that we are asking that µ is in the unit ball of B and that this means that there exists ε > 0 such that |µ(z)| ≤ 1 -ε for almost every z.

Remark. In his definition of a quasiconformal map, Definition B in [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF] page 19, Ahlfors only asks df to be locally L 1 . He proves, and this is remarkable, (bottom of page 18) that df is actually locally L 2 , so Definition 35 is equivalent. However, we will not need that implication here and we will work directly with the L 2 version of the definition, which is also the most commonly used.

In the third condition the complex numbers ∂f (z) and ∂f (z) are defined by

df (z) = ∂f (z) • dz + ∂f (z) • dz
where • is the multiplication of two complex numbers. This coincides with the classical operators ∂ and ∂ if f is C 1 . See Section 7.1 for a geometric interpretation of the ratio ∂f /∂f . The usual partial derivatives of f and the quantities above are related as follows:

∂f ∂x = ∂f + ∂f ∂f ∂y = i(∂f -∂f ) ∂f = 1 2 ∂f ∂x -i ∂f ∂y ∂f = 1 2 ∂f ∂x + i ∂f ∂y
Remark 1. Note that we did not claim that f is differentiable almost everywhere.

It turns out that it is true ([Ahl06], Lemma 1 page 17). We believe that this result is not needed to prove our main result, but that it is needed when one want to prove useful properties of quasiconformal maps in order to actually use them for deformation, surgeries, and other applications. Note also that we did not define df as the differential of f in the classical sense, but via the partial derivatives of f . Of course in the particular case where f is C 1 then this coincides with the classical differential.

Theorem 2 (Measurable Riemann Mapping Theorem, existence). The Beltrami equation ∂f = µ ∂f has a solution.

It is due to Gauss in the case µ is real-analytic, to Lavrentiev in the continuous case, to Morrey in the general case, with alternative proofs by Bers, Nirenberg, Boyarskii and others. These authors possibly use other formulations of the Beltrami equation. See the introduction to the present article and [START_REF] Alexey | Simple proofs of uniformization theorems[END_REF] for more references.

Definition 36. A solution of the Beltrami equation is called normalized if moreover

-f (0) = 0 and f (1) = 1.

From any solution f , one easily defines a normalized solution

f (z) = f (z) -f (0) f (1) -f (0) .
Theorem 3 (Uniqueness, not proved here). The normalized solutions of the equation ∂f = µ ∂f are unique.

The proof of Theorem 3 is out of the scope of the present article, see [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF], Theorem 2 page 16 together with the implication "B =⇒ A" page 20.

Definition 37. We will say that a function µ : t ∈ D → µ t ∈ B is holomorphic if there is a power series expansion µ t = t n a n , where n ∈ N and a n ∈ B, whose radius of convergence is at least one, i.e. lim sup a n 1/n ≤ 1.

In this definition the sum is assumed to converge in the Banach space B. For all t ∈ D, µ t is a well-defined element of B, in particular it is an equivalence class of L ∞ function from C to C. For the reader's interest, equivalent definitions of holomorphy are given in Appendix G, but not used in this article.

Theorem 4 (Holomorphic dependence). Under the holomorphy condition of Definition 37, assuming moreover that for all t ∈ D, µ t ∞ < 1, then there is a function

(t, z) ∈ D × C → f t (z) ∈ C such that:
(1) for every t ∈ D, f t is a normalized solution of the Beltrami equation associated to µ t , (2) for every z ∈ C, the function t ∈ D → f t (z) ∈ C is holomorphic. This is due to Ahlfors and Bers [START_REF] Ahlfors | Riemann's mapping theorem for variable metrics[END_REF], and possibly others. They also studied other kind of smooth dependence. Of course by Theorem 3, f t is unique, so in fact the theorem can be stated as follows: the unique normalized solution f t is, pointwise in z, holomorphic in t.

In this section we propose a proof of Theorem 2 and of Theorem 4 which uses the density argument and similarity surfaces. The maps f of Theorem 2 and f t of Theorem 4 will be obtained as extracted limits of maps f n straightening Beltrami forms that are piecewise constant with polygonal pieces. The proof bears resemblance with Lavrentiev's approach [Lav35, Lav20], which we sum up in Section 5.1.

Remark. Actually, using uniqueness (Theorem 3) one can prove that the full sequence f n converge to the solution of the Beltrami equation. See Appendix F.

Remark. This hence defines an approximation scheme f n -→ f for solving the Beltrami equation. However, we do not claim that this scheme is efficient. 5.1. Lavrentiev's approach. We sum up here [START_REF] Lavrentieff | Sur une classe de représentations continues[END_REF], whose translation in English can be found in [START_REF] Lavrentieff | On a class of continuous representations[END_REF].

The Beltrami form µ is assumed continuous.

A notion of ε-near-solution to the Beltrami equation is defined with a parameter ε > 0, by asking that asymptotically near each point, small ellipses defined by µ are nearly mapped to small circles, up to ε (see the precise definition in Lavrentiev's article). It is proved with relatively simple computations (including an equicontinuity statement on a class of C 1 diffeomorphisms that are quasiconformal) that if ε n -→ 0 then a sequence of ε n -near-solutions tends to a solution for µ.

Then a sequence of near-solutions is constructed by -taking simple ε-near solutions defined on small squares: for instance by choosing f : z → az + bz; this is one of the places where the continuity assumption on µ is used; -proving that one can patch together these ε-near solutions into a global ε-near-solution; this is done by proving a sewing lemma (sewing two rectangles along an edge with a real and analytic sewing function) with an astute use of the Schwarz reflection principle. In fact the second point could be proven by just invoking the Poincaré-Koebe theorem. What Lavrentiev does, besides the sewing lemma, is to argue (without giving details) that one can slightly modify the near-solutions before patching so that the sewing map is always analytic, while keeping a near-solution.

Moreover, if one chooses to takes the R-linear functions az + bz on small squares, finding a global sewing is equivalent to uniformizing the surface S defined by gluing together linearly the many parallelograms that are the images of each square by the corresponding R-linear function; though this is not what Lavrentiev does since he changes the maps slightly before each sewing. The method that we are about to describe uses the uniformization of S and our proof of analytic dependence uses knowledge about its expression via the Schwarz-Christoffel formula. 5.2. The use of similarity surfaces. An introduction to similarity surfaces built from polygons is given in Part 1.

Assume that we are given a Beltrami form µ that is piecewise constant on C, where the pieces are finitely many bounded or unbounded closed polygons (Q j ) j∈J without restriction, in particular they are not assumed convex nor simply connected, yet we assume that each has finitely many sides. The polygons come with vertices and its boundary is straight between vertices but we allow for consecutive edges to make a flat angle (π radians), so it the set Q j alone is not enough to determine the collection of its vertices. We assume that if a point is a vertex for some Q j then it is also a vertex of any other polygon that contains it (in a polygonal decomposition, there could be a corner of one polygon Q j belonging to the interior of the side of another Q k ; the required condition is easily achieved by just adding this point in the list of vertices of Q k ). We make one more assumption: that no edge bounds the same polygon on its two sides. This is easily achieved by removing any edge with this property.

To the unbounded edges e we add marked points, and we mark the same point of e for the two polygons on each side of e.

All our polygons are considered to be closed subsets of Ĉ. We can associate to this a similarity surface as follows: for each polygon Q j choose an R-affine map a j such that the Beltrami differential of a j , which is constant, coincides with the value µ j of µ on Q j . Now glue the polygons P j := a j (Q j ) along their sides the same way that the polygons Q j were glued together, i.e. on each side with the affine map a k • a -1 j for appropriate (k, j) (the marked points are automatically matched: they are not needed here but later).

As in Section 2 we call S the topological surface thus obtained,

π : P j = a j (Q j ) → S
the quotient map, V the the set of vertices, and S = S -V. To avoid the problem where two polygons P i and P k intersect as subset of C and z belongs to this intersection, we use the notation (z : i) and (z : k) to distinguish them in the disjoint union P j . This is particularly useful since it is likely that π(z : i) and π(z : k) are different.

Let us recall how we defined in Section 2 a similarity surface atlas on S (see the part "Removing vertices and getting a similarity surface"; there are slight differences due to the fact that we allow here more kinds of polygons than there). On the interior of π(P j ) we just use the identity. Now consider an edge e of P j and let P k be the polygon glued to P j along e by a k • a -1 j . Denote e * the edge minus its endpoints. The map a k • a -1 j is a priori only R-affine on C. There is a unique C-affine map s that extends the restriction of a k • a -1 j to e. Then a neighbourhood V of π(e * : j) was identified, of the form V = π(V k : k) ∪ π(V j : j) for some open sets V k ⊂ P k and V j ⊂ P j that intersect ∂P k resp. ∂P j exactly on the corresponding edges minus endpoints. In Section 2 the polygons were convex so one could just take V j to be the interior of P j union e * and similarly for V k . Here we will have to take smaller subsets. A chart φ : V → C can be defined by φ(π(z andφ(π(z : k

: j)) = z if z ∈ V j ,
)) = s -1 (z) if z ∈ V k , provided V j and V k are chosen so that φ(π(V j : j)) ∩ φ(π(V k : k)) = φ(π(e * : j)), which is possible. Note that its image φ(V ) is a neighbourhood of e * in C. See Figure 14.
This atlas on S is in particular a Riemann surface atlas. Using Section 2 we can see that all points in V are punctures, including ∞, which allows to extend the Riemann atlas to S. Indeed, near finite vertices of Q j we get what is called a bounded vertex in Section 2, and all bounded vertices are punctures according to the part called "Conformal erasability of the singularities". Near ∞, we have a positive total angle (negative signed angle), hence we also get a puncture as explained near the end of the part called "Unbounded polygons". Since S is homeomorphic to a sphere, the Poincaré Koebe theorem implies that it is conformally isomorphic to the Riemann sphere Ĉ: call F : S → Ĉ such an isomorphism, chosen so that ∞

Q j Q k P j V j e P k V k P j s -1 (P k )
Figure 14: Left: two polygons Q j , Q k . Middle: images of these polygons by the Raffine maps a j and a k . Right: straightened polygons glued along one edge, together with a neighbourhood in gray of the edge, yielding a chart.

is mapped to ∞. Let now f be defined as follows: on each polygon Q j , f (z) = F • π(a j (z) : j). This definition coincides on the shared edges and vertices.

Lemma 38. The map f thus constructed is a solution of the Beltrami equation associated to µ in the sense of Definition 35.

Proof. See Appendix J.

We can normalize f (i.e. we can impose that f (0) = 0 and f (1) = 0) by choosing the isomorphism F above appropriately.

Lemma 39. Fix the polygons Q j and assume that no unbounded polygon has an infinite vertex with angle 0. Then the normalized solution f constructed above depends holomorphically on the family of values (µ j ) ∈ D J that µ takes on the Q j .

Proof. It is enough to prove the claim locally, in the sense that µ can be restricted to be in a small neighbourhood of a given µ 0 .

We can refine the polygons so that the conditions of Section 4.4 are satisfied, which we recall here:

(1) All polygons are strictly convex, (2) every unbounded polygon has exactly two unbounded edges, and their angle is > 0, (3) S has at least three vertices.

Let us pick three vertices w 1 = ∞ and w 2 and w 3 in the initial polygonal decomposition of the plane C where the Beltrami form µ lives. Number w 4 to w k the remaining ones. They are independent of µ. Let v k be the corresponding points in S. They depend on µ since S does. This gives a consistent labelling of the set of vertices V of S. The isomorphism F : S → Ĉ is normalized so that f = F •π • j a j fixes 0, 1 and ∞. We choose another isomorphism F : S → Ĉ by post-composing F with a homography (fixing ∞, so actually an affine map):

F = h • F , so that F sends v 1 to ∞, v 2 to 0 and v 3 to 1, or equivalently that f := F • π • j a j = h • f sends w 1 = ∞ to ∞, w 2 to 0 and w 3 to 1.
It is enough to prove that:

(A) f depends holomorphically on µ.

Indeed, h(0) = f (0) and h(1) = f (1) vary holomorphically so the affine map h and its inverse h -1 have their coefficients that depend holomorphically on µ, hence f (z) = h -1 • f (z) depends holomorphically on µ for a fixed z.

Let us prove claim (A).

The affine maps a j can be chosen so that the vertices (and marked points for unbounded polygons) of the polygons a j (Q j ) depend holomorphically on µ: for instance, one can choose a j (z) = z + µ j z.

The polygons Q j define a cell complex on Ĉ. Its 1-skeleton consists in its edges. We call its image by f the associated 1-skeleton. This is also the image by F of the edges of the cellular decomposition of S by the P j .

Consider now the Christoffel symbol associated to S in the global chart Ĉ -F (V) = C -F (V). By Theorem 1, we have

ζ(z) = m k=1 z k =∞ res k z -z k .
By Lemma 10 and proposition 11, the quantities res k and z k depend holomorphically on µ and by Proposition 12 the associated 1-skeleton moves holomorphically: we ask the reader to look at the paragraph after Proposition 12 for the precise meaning.

The map f sends linear parametrizations of the (straight) edges of the Q j to affine parametrization of the saddle connections. Let us by convenience denote

U j = f (Int Q j ).
One of the solutions of the (complex) O.D.E.

(9)

φ /φ = ζ on the simply connected set U j maps it to a j (Int Q j ) = Int P j , and the other ones to images of this set by C-affine maps. Since by Proposition 12 the set U j moves continuously as µ varies, and since the term ζ in the O.D.E. depends holomorphically on µ, it follows that there is a solution φ of eq. ( 9) on U j that depends holomorphically on µ in a neighbourhood of µ 0 . The inverse of F • π Int Pj is also a solution, and by simple connectedness of U j , there exists a C-affine map s such that (

F • π Int Pj ) -1 = s • φ holds on U j . Then s(φ(U j )) = a j (Int Q j ).
Since the vertices and marked points of the polygon a j (Q j ) depend holomorphically on µ, since the same holds for those of the polygon φ(U j ) (they are images by φ of the z k , which depend holomorphically on µ), since the map s matches them and since there are at least two vertices or marked points (actually at least three), it follows that s depends holomorphically on µ. Then for z ∈ Q j , we have f (z) = (s • φ) -1 • a j (z), which also depends holomorphically on µ.

Remark. Lemma 39 also holds in the presence of one or several unbounded polygons with zero angle at infinity, as will follow from the MRMT with parameter (theorem Theorem 4). But our approach required us to exclude this case. If one wants to prove this without using Theorem 4 one can proceed by perturbing the polygons Q j so that all angles are strictly positive then taking limits of the solutions as some angles tend to 0, and conclude by the fact that limits of holomorphic functions are holomorphic. One has to prove bounds to justify that limits can be taken and that they are homeomorphisms straightening the intended Beltrami form. Due to the simple form of the situation this should be doable by more direct and simpler methods than the proof of Theorem 4 (in particular no need to use Lemmas 42 and 43, the use of Koebe's distorsion theorems should suffice together with the explicit form of the maps a j ). However, we will not do this here.

and summing up: ∀n ≥ 2/s 0 (ε, η),

S |µ n -µ| ≤ 4πη Leb S + 2ε.
Usually local L 2 convergence is stronger than local L 1 convergence but here it is equivalent because the functions involved have uniformly bounded L ∞ norm:

Corollary 41. For all compact subset S of C,

µ n -µ L 2 (S) -→ 0.
Proof. Almost everywhere |µ| ≤ 1, so |µ n | ≤ 1, and almost everywhere |µ n -µ| 2 ≤ 2|µ n -µ|.

Remark. It is true that µ n tends to µ for the weak topology (against continuous maps with compact support), and the proof is easier (uniform continuity of the test function). It also follows from local L 1 convergence. However, Appendix H gives an example that shows that weak convergence is not enough to extract a correct solution for µ from a sequence of solutions for µ n .

Let f n be the normalized solution of the Beltrami equation for µ n constructed in Section 5.2.

Compactness statements

As announced in the introduction, we do not include here the proof of the following two statements, but indicate where they can be found in [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF] and a few other references.

To match the terminology of references we say that a quasiconformal map f with µ ≤ κ is K-quasiconformal with K = 1+κ 1-κ . The justification of this terminology comes from the geometric interpretations of quasiconformality, see section 7.1 in the present article and [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF][START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF] for complements.

Lemma 42 (Normal family). For a fixed real K > 1, the set of normalized Kquasiconformal homeomorphisms from C to C forms a compact family for the notion of uniform convergence on compact subsets of C. This is Theorem 2 page 33 in Chapter III of [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF]. For the closely related case of quasiconformal maps from D to D or between hyperbolic Riemann surfaces, see [START_REF] Hamal | Teichmüller theory and applications to geometry, topology, and dynamics[END_REF] Section 4.4.

Lemma 43 (L 2 bound for df ). For any K-quasiconformal map f on an open subset

U of C, U ∂f ∂x 2 ≤ K Leb f (U ), U ∂f ∂y 2 ≤ K Leb f (U ).
This is a direct consequence of [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF], Chapter II, last line of page 18 and the formulas ∂f /∂x = ∂f + ∂f and ∂f /∂y = i(∂f -∂f ). An alternative method can be found in [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF], via Theorem 3 page 22 (which uses Lemma 2 page 19 and the assumption that f has L 2 distributional partial derivatives). See also in [START_REF] Hamal | Teichmüller theory and applications to geometry, topology, and dynamics[END_REF], Proposition 4.2.4 and Corollary 4.2.6.

Extraction of a limit

From Lemmas 42 and 43 it follows that we can extract a subsequence of f n (more generally from any subsequence of f n ) such that:

(1) f n uniformly converges on every compact subset of C to a K-quasiconformal map f , (2) u n = ∂f n /∂x and v n = ∂f n /∂y converge to some locally L 2 functions u and v, for the weak convergence defined as follows: for all L 2 function φ with compact support, (u n -u)φ -→ 0 and (v n -v)φ -→ 0. The first claim is an immediate consequence of Lemma 42 and the second claim is obtained by a further extraction justified as follows: for any (compact) rectangle R ⊂ U , by the first claim, the area of f n (R) is a bounded sequence. Hence the L 2 norm on R of ∂f n /∂x and ∂f n /∂y are bounded sequences too by Lemma 43. By the weak-star compactness theorem for L 2 (R) we can extract a subsequence such that the partial derivatives converge weakly in L 2 (R). By varying the rectangle and performing a diagonal extraction, the second claim follows.

Final checks

Let us first check that u and v are the distribution derivatives of the extracted limit f . For any test function φ ∈ C ∞ c (C), denote by S its support

∂f n ∂x , φ = -f n , ∂φ ∂x = S -f n ∂φ ∂x .
On one hand by uniform convergence of

f n to f on S, as n → +∞ S -f n ∂φ ∂x -→ S -f ∂φ ∂x = D x f (φ)
where D x f denotes the distribution partial derivative of f . Hence

∂f n ∂x , φ -→ D x f (φ).
On the other hand by weak convergence on S of ∂f n /∂x to u:

∂f n ∂x , φ = S ∂f n ∂x φ -→ S u φ.
So we proved that for all test functions φ,

D x f (φ) = S u φ.
In other words the distribution derivative ∂f /∂x is represented by the locally L 2 (hence locally L 1 ) function u. The proof for ∂f /∂y and v is similar. There remains to check that f is a solution of the Beltrami equation associated to

µ. Let φ ∈ C ∞ c (C). We know that ∂f n , φ = µ n ∂f n , φ
where by ∂f n , ∂f n we refer to the L 2 functions. The fact that ∂f n , φ -→ ∂f, φ follows from the formulas ∂f n = (u n -iv n )/2, ∂f = (u -iv)/2 and the weak convergence of u n , v n to u, v. We will be done if we can prove that µ n ∂f n , φ -→ µ ∂f, φ . For this let us write

µ n ∂f n -µ ∂f, φ = (µ n -µ) ∂f n , φ A + ( ∂f n -∂f )µ, φ B .
Let S be the support of φ.

The function µφ is L ∞ with support contained in S, hence L 2 with support contained in S, so by the local weak L 2 convergence, we have B -→ 0. of C to a solution of the Beltrami equation for µ(t). Consider a dense countable subset T of D. By a diagonal extraction there is an infinite subset I ⊂ N such that for all t ∈ T , if n ∈ I -→ +∞ then the function z → f n (t, z) converges uniformly on compact subsets of C. In particular, for every z ∈ C and t ∈ T , the sequence of complex numbers f n (t, z) converges as n ∈ I -→ +∞.

Hence for all z ∈ C, as n ∈ I -→ +∞, the sequence of holomorphic functions t ∈ B(0, 1 -ε) → f n (t, z) converges pointwise on the dense subset T . By equicontinuity w.r.t. t (Corollary 45), it converges uniformly on B(0, 1 -ε) for all ε. Denote f (t, z) the limit.

Since the uniform limit of holomorphic functions is holomorphic, the function t → f (t, z) is holomorphic for each fixed z.

There remains to check that for all t ∈ D, the function z ∈ C → f (t, z) is a solution of the Beltrami equation for µ t . By Section 5.3 from the subsequence of functions z → f n (t, z) where n ∈ I, one can extract a sub-subsequence n ∈ J ⊂ I that tends uniformly on compact subsets of C to a solution g of the Beltrami equation for µ t . Since the I-subsequence converges pointwise to the function z → f (t, z), it follows that g(z) = f (t, z).

Method 2.

By Appendix F, for each fixed t, the sequence of functions z → f n (t, z) converges uniformly on compact subset of C to a normalized solution z → f (t, z) of the Beltrami equation for µ t . The function (t, z) → f (t, z) in is in particular the simple limit of the functions (t, z) → f n (t, z). For each z, the function t ∈ D → f n (t, z) is holomorphic. The function t → f (t, z) is hence the simple limit of a sequence of holomorphic functions, and this sequence is equicontinuous by Corollary 45. Hence the convergence is uniform on compact subsets of D, and the limit is holomorphic.

Note: See Section 8 for a study of what happens if we average µ through a (reasonable) function of µ instead of directly taking µ n = S µ/ S 1 on each square S.

(1) (power series expansion) There is a power series expansion f (t) = t n a n over n ∈ N where a n ∈ E, whose radius of convergence is at least one, i.e. lim sup a n 1/n ≤ 1.

(2) (differentiable) The function f is differentiable, i.e. for all t ∈ D, 1 h (f (t + h) -f (t)) has a limit in E as the complex number h → 0.

(3) (weak) Denote E the dual space to E. For any φ ∈ E , the function

φ • f : D → C is holomorphic. (4) (weak*) Assume that E is the dual to some Banach space V . For any v ∈ V , the function t ∈ D → f (t)(v) ∈ C is holomorphic.
(5) (very weak) The function f is bounded and there is a separating subset X ⊂ E (separating means ∀e ∈ E -{0}, ∃φ ∈ X φ(e) = 0) such that ∀φ ∈ X, the function φ • f is holomorphic. In either case, f is called holomorphic.

The implications (1) =⇒ (2) =⇒ (3) =⇒ (4) and (3) =⇒ (5) are immediate or easy. That (3) implies (1) is proved for instance in [START_REF] Mujica | Complex analysis in Banach spaces. Holomorphic functions and domains of holomorphy in finite and infinite dimensions[END_REF], Lemma 8.13. In fact the proof adapts to give (4) =⇒ (1) because the principle of uniform boundedness can still be applied. That (5) implies (1) is proved in [AN00], Theorem 3.1 and is an extension of a result whose proof can be found in [START_REF] Kato | Perturbation theory for linear operators[END_REF] (Remark 1.38, page 139) for which X is assumed with dense span in E .

Let us specialize this to the Banach space B of complex-valued L ∞ functions on C, endowed with the essential supremum norm, which we will denote • , and add one characterization. First note that Definition 37 matches definition (1) above.

Proposition 47. Let µ : t ∈ D → µ t ∈ B be a function.

Then t → µ t being holomorphic in any of the senses of Proposition 46 is equivalent to any of the following criteria:

(1) For every L 1 function τ : C → C, the function t ∈ D → C µ t τ is holomorphic.

(2) The function t → µ t is locally bounded and for every C ∞ function with compact support τ : C → C, the function t ∈ D → C µ t τ is holomorphic. (3) The function t → µ t is locally bounded and there is a function (t, z) → µ t (z) ∈ C defined for t ∈ D and z ∈ C such that for all t ∈ D, z → µ t (z) is a measurable function and is a representative of µ t and for all z ∈ C, the function t → µ t (z) is holomorphic.

Proof. Point (1) is the criterion (4) of Proposition 46 specialized to L ∞ (C) being the dual space to L 1 (C). Point (2) is the criterion (5) of Proposition 46 with the set of smooth function with compact suport known to be separating.

Let us prove that if criterion (1) of Proposition 46 holds, then (3) holds. Indeed, each a n ∈ L ∞ (C) has a representative that we denote z → A n (z). This representative could take values of modulus greater than a n . It can only happen on a set of measure 0 and we modify A n to take value 0 on this set, which does not change its class in L ∞ . Then for all z ∈ C, the power series A n (z)t n converges on D, we call µ t (z) its value. Let us check that z → µ t (z) is a representative of µ t . By the criterion (1) of Proposition 46, µ t satisfies

µ t - n k=0 a k t k -→ n→∞ 0
and this means µ t has a representative for which the partial sums z → n k=0 A k (z)t k tend to it almost everywhere (if a sequence of functions has its essential sup tending to 0 then it tends to 0 almost everywhere). But the sum tends to µ t (z) everywhere, which is hence representative of µ t .

Let us now prove that if (3) holds, then t → µ t satisfies criterion (1) of Proposition 46. By hypothesis, for each z ∈ C, t → µ t (z) is holomorphic, so it has a power series expansion

µ t (z) = A n (z)t n ,
and its radius of convergence is at least 1. Let r = 1/2. We have for all d ∈ N and z ∈ C:

A d (z) = lim N →+∞ 1 N N -1 k=0 µ re ik/N (z) (re ik/N ) d .
As a simple limit of measurable functions, the map A d is thus measurable. This implies that (t, z) → µ t (z) = A n (z)t n is itself measurable (note the passage to two variables).

Let r < 1. Local boundedness implies that t → µ t is bounded on the compact set B(0, r) ⊂ D. Let M = M r be a bound. Consider the set E ⊂ B(0, r) × C of pairs (t, z) for which |µ t (z)| ≥ M . By definition of • , for each t ∈ B(0, r), the section

E t = z ∈ C (t, z) ∈ E ⊂ C has Lebesgue measure 0. Since (t, z) → µ t (z)
is measurable, E is measurable. It follows that if we denote P the set of z for which the section E z = t ∈ D (t, z) ∈ E ⊂ D has positive Lebesgue measure, then the Lebesgue measure of P is 0. For every z ∈ C -P , the function t → µ t (z) takes value of modulus ≤ M for almost every t, hence for every t since it is holomorphic. It follows that for all z ∈ C -P , |A n (z)| ≤ M r -n for all n by Cauchy's integral formula (alternatively, to avoid integration, one can use the average formula given earlier). Then for all t ∈ B(0, r) and all z ∈ C -P ,

|µ t (z) - n k=0 A k (z)t k | ≤ M (|t|/r) n+1 1 -|t|/r .
Since P has measure 0, it follows that, denoting a n the element of B represented by A n : ∀t ∈ B(0, r),

µ t - n k=0 a k t k ≤ M (|t|/r) n+1 1 -|t|/r .
Hence the power series a n t n has a radius of convergence ≥ r and t → µ t is is its sum on B(0, r). Since r can be chosen arbitrary in (0, 1), this concludes.

Appendix H Counterexample to weak continuity

Fix κ ∈ (0, 1). Let Int denote the integer part of a real number. Let µ 1 (z) = 0 if Int Re z is even and µ 1 (z) = κ otherwise. The ellipse associated to µ = κ has vertical major axis and ratio K = h(κ) where

h : [0, 1) → [1, +∞), κ → 1 + κ 1 -κ .
Note that h is non-linear (it is strictly convex). The normalized solution of the Beltrami equation for µ 1 is given by f (x + iy) = g(x) + iy where g is the piecewise C 1 function with g(0) = 0, g (x) = 1 whenever Int(x) is even and g (x) = K otherwise. See Figure 15.

Let µ n (z) = µ 1 (nz). Note that µ n ∞ = κ for all n. A normalized solution of the Beltrami equation for µ n is given by f

n (z) = f (nz)/f (n). As n → ∞, a computation gives f n (x + iy) -→ f (x) := x + iy/K -8 0 -4 -2 0 2 4 4 -4 8
Figure 15: Graph of the function g in Appendix H for κ = 1/2, hence K = 3, in black. In blue the rescaling limit when conjugating by x → nx, i.e. lim g(nx)/n = K x with K = 2. In this example the weak limit of µ n is the constant µ = 1/4 and K = 5/3 = K .

with

K = 1+K 2 = h(0)+h(κ)

2

. On the other hand µ n tends weakly to the constant µ = (0 + κ)/2, whose normalized straightening is x + iy → x + iy/K with K = h( 0+κ 2 ) so

K = K .
Remark. The dependence of f on µ is non-linear and this is essentially the cause of the non-continuity with respect to the weak topology on µ. For instance, the simpler non-linear map µ ∈ L ∞ → µ 2 ∈ L ∞ is not continuous if we take weak topology on both sides.

Appendix I Distributions with L 1 loc derivatives Let U be an open subset of R n . The set of locally L 1 functions f : U → R whose distribution derivatives are also locally L 1 is known as the set of locally Sobolev functions and denoted W 1,1 loc (U ). Recall that such functions are equivalence classes up to modification on a set of Lebesgue measure 0.

Remark. In fact, we may drop the first condition in the definition: a distribution whose partial derivatives are in L 1 loc is necessarily in L 1 loc (and this generalizes, see [START_REF] Vladimir | Transl. from the Russian[END_REF], the theorem of Section 1.1.2 page 7). However we will not need that fact. Moreover the functions f we will consider in the end are maps that are assumed to be homeomorphisms, so they are continuous, which is better than L 1 loc . So we stick with the original definition of W 1,1 loc . More generally for k ∈ N and p ∈ [1, +∞], W k,p loc (U ) denotes the Sobolev space of elements of L p loc whose distributional derivatives up to order k are L p loc . In the version of the definition of quasiconformal maps f that we chose (Definition 35) we assume that f ∈ W 1,2 loc (C) and is continuous. In fact we assume still stronger: that f is a homeomorphism from C to C.

Remark. In one dimension, i.e. if U is a subset of R, then the elements of W 1,1 loc (U ) have continuous representatives (in fact, absolutely continuous), and they are differentiable almost everywhere. 34 If n > 1, it is not true that any W 1,1 loc function has a continuous representative, nor an almost everywhere differentiable one (in the classical sense of being differentiable), not even that for almost every x ∈ U there is a representative that is differentiable at x: a counterexample to these claims is given by the function

f (x) = k ε k g(x -x k )
where x k is a dense sequence in U ⊂ R n , g ≥ 0 is a well chosen function described below and ε k > 0 decreases sufficiently fast. To define g,

let r = x 2 and if n = 2 let g(x) = max(0, log 1 r ) or if n > 2 let g(x) = 1/r n-2 . Then f ∈ W 1,1 loc (U ) but the essential supremum of f is infinite on every open set, because f -1 ((N, +∞]
) is open and dense for all N , hence f is differentiable nowhere even after modification on a set of measure 0. Yet, for any W 1,1 loc function f , on almost every line parallel to the main axes, f is almost everywhere equal to an absolutely continuous function (and this remains true even after a C 1 change of variable ψ: f • ψ is also W 1,1 loc ). This is called the ACL property, but we will not use it. The interested reader may consult [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF][START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF], Chapter II B, and in particular Lemma 2.

Remark. A similar counterexample for W 1,2 loc functions can also be built using g(x) = max(0, log 1 r ). Actually for k ∈ N, p ∈ [1, +∞), then all W k,p loc functions on R n have continuous representatives if and only if n < kp or (p = 1 and n = k) where n is the dimension number and where W k,p loc is the Sobolev space of functions whose distributional derivatives up to order k are L p loc , see [START_REF] Adams | Sobolev spaces[END_REF], Theorem 4.12 page 85 and Sections 4.40 to 4.43.

The next result is [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF], Lemma 3 page 20, we do not reprove it here.

Lemma 48 (Change of variable). Consider a continuous function f : U → C whose distribution derivatives ∂f /∂x i are locally L 1 . Let ψ : V → U be a C 2 diffeomorphism from a subset V of R n to U . Then the function f • ψ has locally L 1 distribution derivatives, and the chain rule holds, i.e.

∂(f • ψ) ∂y j = n i=1 ∂ψ i ∂y j × ∂f ∂x i • ψ.
Remark. Actually f does not need to be continuous: f ∈ W 1,1 loc is enough for the proof in [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF] to work. Weaker conditions on the change of variables can also be made to work, for instance C 1 , using different proofs. Note that we will only need the lemma and its corollary below for f continuous and a change of variable ψ that is a rotation.

Corollary 49. In the previous lemma, if the distribution derivatives of f are locally L 2 then the same holds for f • ψ.

Proof. Locally L 2 functions are in particular locally L 1 so we can apply the previous lemma. The right hand side of the formula in the conclusion of this lemma adds up to a locally L 2 function. This also true with L 2 replaced by L p , p ∈ [1, +∞].

Appendix J Proof of Lemma 38

We already know that f is a homeomorphism. The main technical detail is to check that the distribution partial derivatives of f are locally L 2 . Note that f is smooth inside the polygons Q j , which is even better. There, the differential da j sends the ellipses E associated to µ j to circles while F •π, being holomorphic, sends circles to circles, so df straightens the ellipses E to circles, i.e. satisfies the Beltrami equation on Int Q j . The rest of C consists points that are either interior points of edges or vertices. Since this rest has Lebesgue measure 0, once we know that f ∈ W 1,2 loc the above discussion immediately implies that ∂f = µ ∂f holds almost everywhere.

There remains to check that f ∈ W 1,2 loc . It is obvious inside the polygons: the map f is smooth there, which is even better. Near the edges and vertices we may use some erasability theorem available in the literature. 35 Note that near an interior point of an edge one could also use the decomposition f = F • ψ where ψ is the join of π • (a j : j) and π • (a k : k) and work in the chart in the chart φ of S mentioned in Section 5.2, for which F • φ -1 is holomorphic and φ • ψ is an explicty map that is R-linear on both sides of a line. Checking W 1,2 loc for such a map is easy. It can thus be seen to be quasiconformal and the composition of a holomorphic bijection (or any quasiconformal map) with a quasiconformal map is still quasiconformal. This is not as simple near a vertex.

Alternatively, both near interior points of edges and near vertices, we can directly check that f ∈ W 1,2 loc , as it is rather tractable in our case, and this is what we do in the rest of this section.

Near a point z 0 on an edge, if z 0 is not a vertex, we perform a change of variable z in the domain, more precisely a rotation, so that this edge is vertical, which we assume now: this is enough by Corollary 49. Denote z 0 = x 0 + iy 0 . Let φ be a test function whose support is contained in a square S ε of equation max |Re z -

z 0 |, |Im z -z 0 | < ε for ε small enough. Then ∂f ∂y , φ = f, - ∂φ ∂y = ε -ε da × - ε -ε db × f (z) ∂φ ∂y (z)
where in the inner integral: z = (x 0 + a) + i(y 0 + b).

Claim: Let e be an edge of Q j and e * the edge without its endpoints. Then f is on Q j the restriction of a smooth function defined on Q j ∪ W where W is a neighbourhood of e * . Indeed, recall that for every edge e of P j = a j (Q j ) there is a chart ψ : V → C on a neighbourhood V of π(e : j) that satisfies ∀z ∈ P j , ψ(π(z : j)) = z. Then the map ψ -1 • a j is defined on U = a -1 j (ψ(V )), its image is V , it is smooth and coincides with π on Q j . Since F is holomorphic on S , the composition

F • ψ -1 • a j is thus smooth and coincides with f = F • π • a j on U ∩ Q j .
In particular we can integrate by parts without problem for all a ∈ (-ε, ε):

- ε -ε db × f (z) ∂φ ∂y (z) = ε -ε db × v(z)φ(z)
where v is defined as follows: let Q j be the polygon on the right of the vertical segment, and Q k the one on the left. Let f j and f k be corresponding smooth

extensions of f . If a ≥ 0, let v(z) = v j (z) = ∂fj ∂y (z) and if a ≤ 0 let v(z) = 35 Like [Ahl54]
, Theorem 4 page 9 (quasiconformal erasability of analytic arcs, here the arc is an open straight segment, so f is q.c. at least on the complement of a finite set; a fortiori isolated points are erasable so f is actually q.c.) or by repeated use of Rickman's lemma [START_REF] Rickman | Removability theorems for quasiconformal mappings[END_REF], Theorem 1 page 6 (near an inner point on an edge let D be neighbourhood in C and E the intersection of this neighbourhood with a closed polygon on one side of the edge; near a vertex use Rickman's lemma repeatedly to add the polygons one by one in trigonometric order, the last polygon added allows to include the vertex).

v k (z) = ∂f k ∂y (z). These two continuous maps coincide on the vertical line with the derivative of f along this line, hence v is continous. The map v is a representative of the distribution derivative of f on S ε , since by Fubini's theorems we can finish the computation and get f, -∂φ ∂y = v, φ . As a continuous map on S ε , v is even better than locally L 2 . This is similar for ∂f ∂x . Write

∂f ∂x , φ = f, - ∂φ ∂x = ε -ε db × - ε -ε da × f (z) ∂φ ∂x (z) with z = (x 0 + a) + i(y 0 + b) and - ε -ε da × f (z) ∂φ ∂x (z) = - 0 -ε [• • • ] - ε 0 [• • • ]. Now ±ε 0 da × f (z) ∂φ ∂x (z) = f (z 0 + ib)φ(z 0 + ib) - ±ε 0 da × u(z)φ(z)
where

u(z) = u j (z) = ∂fj ∂x if a > 0 and u(z) = u k (z) = ∂f k ∂x if a < 0.
This time u j and u k do not match anymore on the vertical axis so we cannot join them into a continuous function. Nevertheless, let u = u j inside the polygons and 0 on the vertical edge: then u is measurable and bounded, hence locally L 2 , and the formula f, -∂φ ∂x = u, φ holds by Fubini and cancellation of the term f (z 0 + ib)φ(z 0 + ib). This cancellation can be seen as a consequence of the continuity of f . That f is also W 1,2 loc at vertices z 0 is proved similarly by decomposing the integral f ∂φ ∂xi over the square neighbourhood S ε of z 0 with Fubini and cutting each horizontal or vertical segment on which the inner integral is taken into pieces cut by the edges (recall the edges are straight segments in the domain of f ). We can omit the vertical/horizontal segment going through z 0 since its contribution to the integral is 0. On each piece an integration by parts can be taken and cancellations of boundary terms will occur thanks to the continuity of f . We thus get a function u i that is 0 on the edges and is on Int Q j the restriction of a function that is continuous on Q j -{vertices} and such that the distribution derivative ∂f /∂x i is represented by u i by Fubini's theorems. There remains to check that u i is locally L 2 at z 0 and in fact to use Fubini above it was already necessary to check that it is locally L 1 , as a condition for Fubini's theorem is that the integrand has an absolute value of finite integral. To check this, recall that as explained in Section 2, a local conformal coordinate is given by a composition of a j with the complex logarithm log(a j (z -z 0 )) followed by well-chosen translations followed by multiplication by a complex constant α independent of j followed by the exponential. Another way to express it is branches of z → c j ×a j (z-z 0 ) αj where c j ∈ C * . Moreover α j = 2πi iθ+log λ for some θ > 0 and λ ∈ (0, +∞), in particular Re (α j ) > 0.

The map f near z 0 is the composition of such maps on finitely many sectors followed by holomorphic map ψ defined near 0 and independent of j (of course it depends on z 0 ). Its derivative is bounded. We have d(z α ) = αz α dz/z and |z α | ≈ |z| Re α in the sense that their quotient remains bounded when z remains in the sector indexed by j. So on each sector, using polar coordinates and dx ∧ dy = rdr ∧ dθ, we have

d(z α ) dz 2 ≈ R 0 r (2 Re α-1) dr,
which is convergent since Re α > 0.

Part 3

A connection as a limit of the similarity surfaces

In Part 2 we introduced a series of approximations of the normalized solution of the Beltrami equation associated to a Beltrami form µ. They straighten a Beltrami form µ n that is constant on small squares and equal to the average of µ on these squares.

Together with each of these approximations came a similarity surface, with many puncture type singularities, that are erasable for the underlying Riemann surface. These surfaces were conformally mapped to the Riemann sphere, yielding a global Riemann chart of the similarity surface, on which the similarity charts are recovered via a Christoffel symbol ζ n . The function ζ n is rational with simple poles, and the number of poles is of order n 4 . As n tends to infinity, the poles get close to each other and the residues get small. In this part we make regularity assumptions on µ (in particular it is C 2 ) and prove that the sum of Dirac masses at the poles weighted by the residues converges weakly to a limit complex measure m that we relate to µ and its first two derivatives (Proposition 51). We prove that ζ n converges weakly to a complex valued (but not holomorphic) function ζ that is a convolution product involving m (Proposition 53). This function ζ defines a symmetric and conformal affine connection that is not flat. To an affine connection is associated a notion of parallel transport. Part 3 culminates with the proof that the parallel transport associated to ζ n converges in some sense to the parallel transport associated to ζ (Theorem 5).

Section 6 introduces the necessary notions from the domain of affine connections in what we hope is a gentle way.

In Section 7 we prove the theorems mentionned above.

In Section 8 we make comments on the influence of changing the averaging process in the definition of µ n from µ.

In this more investigative part, we insist less on being self-contained and on using low level methods. In particular we allow ourselves to use results proved by other authors using the Ahlfors-Beurling operator.

6. Affine connections 6.1. A quick introduction. Consider a (real) d-dimensional differentiable manifold M . An affine connection (abbreviated as a connection in most of the remainder of the article) is a differential object on M closely related to a notion of parallel transport. It is difficult to honestly motivate the precise formulation of affine connections (equivalently of the parallel transport) so as to make them appear natural notions, so we will not try to do that, but instead define them with their expressions in charts. Let us just mention that they generalize notions that occur in Riemannian manifolds.

Remark. A short introduction to affine connections can be found in the encyclopedic article [START_REF] Hazewinkel | Encyclopedia of mathematics[END_REF]. The book [START_REF] Chern | Lectures on differential geometry[END_REF] is a classic treating differential geometry, and contains a presentation of affine connections that rapidly focuses on coordinates. Similar remarks hold for [START_REF] Spivak | A comprehensive introduction to differential geometry[END_REF], Vol II, Chapter 6. A standard and thorough reference for the subject is [START_REF] Sh | Foundations of differential geometry. I[END_REF], which bases the approach on the notion of connection on principal bundles, so reading the definitions and statements require absorbing part of this theory and going back and forth between the chapters. A nice, progressive and motivated presentation can be found in [START_REF] Sharpe | Differential geometry: Cartan's generalization of Klein's Erlangen program[END_REF], however the theory is formulated in the framework of Cartan geometries and the link with the material explained here is even less direct. There are many other books on the subject. We end this paragraph by pointing out the fact that what we today call affine connections were initially called linear connections, and affine connections used to be a related but slightly different notion.

Directional derivative. Consider a chart of M , with image the open subset U ⊂ R d . Consider a differentiable object • of a type T that is a function, a vector field, a form, or more generally any object type that is expressed in the chart as a function from U to a fixed vector space E (tensors, for instance). In U the directional derivative of • at a point x ∈ U , given a vector v ∈ T

x U = R d is ∂ x,v • = d i=1 v i ∂ • ∂x i {x}
where {x} means to evaluate the quantity at point x. Note that we use the exponent notation v i for the i-th coordinate of the vector v, a convention that is traditional in tensor calculus. If X is a vector field over M , we can define in the chart

∂ X • = d i=1 X i ∂ • ∂x i
where the X i are the components of X, and every term is a function of x with values in R or in E. This is a function from U to E. It is to be stressed that, if • is not a function (0-form), then ∂ X • does not satisfy the same formula of change of coordinates as objects of type T . Or if one insists anyway on defining an object of type T using ∂ X •, then this object will depend on the chart. Note: The classical Lie derivative of a vector field is recovered as

L X Y = ∂ X Y -∂ Y X
and is independent of the chart as a vector field.

Affine connection. Denote (e 1 , . . . , e d ) the canonical basis of R d . In the chart, an affine connection ∇ is expressed as follows: to vector fields X, Y it associates

∇ X Y = ∂ X Y + Γ(X, Y )
where Γ is a bilinear endomorphism of

R d = T x U for each x ∈ U : Γ(X, Y ) = ijk Γ i jk X j Y k e i
where the coefficients Γ i jk are d 3 functions of x and are called the Christoffel symbols of the connection.

The canonical connection of R d is defined by Γ = 0, i.e.

∇ X Y = ∂ X Y.
A connection on M that is canonical in one chart will fail to be in many other charts. A connection for which there are local charts where it is canonical is called locally trivializable.

Parallel transport. For a curve t → γ(t) whose differential does not vanish, the parallel transport of a vector v along γ with respect to the connection ∇ is a vector v(t) attached to γ(t) and that is locally a solution of

∇ X Y {x} = 0
for all x along the curve γ and for any vector fields X, Y such that X(γ(t)) = γ (t) and Y (γ(t)) = v(t). This elaborate definition amounts the simple ODE

v (t) = -Γ{γ(t)} γ (t), v(t)
which, omitting t, reads as v = -Γ{γ} γ , v . This formula allows to generalize parallel transport to paths whose derivative vanishes for some values of t. The map that associates v(t) to v(0) can be seen as a map from the tangent space of M at the point represented by γ(0) to the tangent space of M at the point represented by γ(1). This map is linear and is also called parallel transport along γ.

Symmetric connections (a.k.a. torsion free connections). The connection is symmetric whenever the bilinear form Γ is symmetric, i.e. ∀i, j, k, Γ i jk = Γ i kj . This is independent of the chart and can be defined in a coordinate-independent form by the cancellation of an associated tensor called the torsion, but we will not use this here. 36 Holonomy. The parallel transport along a closed curve is called a holonomy and is a self-map of the tangent space at γ(0).

A connection is called flat if, locally, its holonomies are all the identity. By this we mean that every point has a neighbourhood U such that the holonomy of every path contained in U is the identity. This is equivalent to asking that the curvature tensor vanishes everywhere. 37 A connection is locally trivializable if and only if it is symmetric and flat. 38 Note that there exist connections that are flat but not symmetric. For instance one can take on R 2 the connection whose symbol Γ 1 12 = 1 and all other Γ i jk = 0. The connection whose only non-vanishing symbol is Γ 1 21 = 1 is another example. Geodesics. The famous geodesic equation for a path γ asks that γ (t) be a parallel transport along γ, i.e. γ = -Γ{γ} γ , γ ). It depends only on the quadratic vector form associated to the bilinear vector form Γ. It has the same geodesics as the symmetrized connection with Γ sym (u, v) = 1 2 (Γ(u, v) + Γ(v, u)). Riemannian metrics. Given a C 1 riemannian metric g, there is a unique symmetric connection whose parallel transport preserves g. 39 It is called the Levi-Civita connection of g. Its holonomies are isometries of each tangent space.

36 See in Chapter III of [START_REF] Sh | Foundations of differential geometry. I[END_REF], Theorem 5.1 page 133 together with Proposition 7.6 page 145. 37 See [BG68], Theorem 5.10.3 page 236. On page 232/233 one finds a definition of the curvature tensor and equation 5.10.10 page 234 gives a formula for the expression in coordinates. The statements in this reference depend on some differentiable function µ between manifolds and here we just take µ : M → M to be the identity.

38 See [START_REF] Bishop | Tensor analysis on manifolds[END_REF], the corollary on page 238. 39 This is called the fundamental lemma/theorem of Riemannian geometry. See for instance [START_REF] Chern | Lectures on differential geometry[END_REF] Chapter 5, [START_REF] Spivak | A comprehensive introduction to differential geometry[END_REF], Chapter 6 or [START_REF] Sh | Foundations of differential geometry. I[END_REF], Chapter IV.

6.2. Affine and conformal connections in two dimensions. If d = 2, a connection has 8 independent coefficients, and a symmetric connection has 6 independent coefficients.

Assume now that M is a Riemann surface (not to be confused with Riemannian surface) and see it as a two dimensional manifold. Then the parallel transport associated to a connection ∇ preserves the conformal structure (angle between vectors) iff in a conformal chart, each map v → Γ{x}(u, v) is a similitude for all u, iff v → Γ{x}(e 1 , v) and v → Γ{x}(e 2 , v) are two similitudes for each x. There are thus 4 independent coefficients.

Finally, a symmetric connection that preserves the conformal structure has two independent coefficients and it takes the following nice expression in a conformal chart, identifying R 2 with C and using complex multiplication:

∇ X Y = ∂ X Y + ζXY
where ζ is a complex valued function of x. We call this a conformal symmetric connection and ζ is called its Christoffel symbol.

Remark. This is an abuse of language since we also call Christoffel symbol the coefficients Γ i jk . Context should make clear which one we mean. We can motivate this abuse as follows. If one takes the definition of connections in one dimension (they have only one coefficient Γ 1 11 ) and complexifies it, i.e. interprets it on a complex curve, then one obtains exactly the formula above in charts, with the difference that a priori ∇ is only defined to operate on holomorphic vector fields X and Y (because they are assumed complex-differentiable).

In this case the parallel transport equation takes the following nice form: 

v = -ζ(γ)γ v
ζ w = φ × ζ z • φ + φ φ .
This is the same formula as for the symbol ζ appearing in Equation (2) on page 12, with the difference that, here, ζ is not assumed holomorphic. In fact the symbol ζ here is the same as the symbol ζ there. The effect of the change of variable on the curvature form is the same effect as on any 2-form on a 2-dimensional real manifold. 

z ∂ z = 1 4 ∆, assuming ρ is C 2 the curvature form is ∆ log ρ i dx ∧ dy.
Note that it is purely imaginary. Holonomies are rotations, and the holonomy around the oriented boundary of a simply connected zone S ⊂ M is the rotation whose angle, in radians, is given by the imaginary part of the integral of the curvature form over S: it is the integral of the form defined in charts by -(∆ log ρ) dx∧dy.

The curvature is the quotient of -i times the curvature form by the area form ρ 2 dx ∧ dy naturally associated to g, and takes the following expression

K = ∆ log ρ ρ 2
which is purely real.

Lemma 50. If the curvature form of a symmetric conformal connection vanishes identically, then there are local coordinate systems that trivialize the connection: ζ = 0 in these charts.

Proof. Its local holonomies are the identity, i.e. it is flat. We mentionned earlier that locally trivializable connections are those that are flat and symmetric. notion of pull-back and push-forward of Beltrami forms under conformal maps and also justifies the notation µ(z) dz dz in charts.

A second point of view is ellipse fields. This one works for any differentiable manifold M of dimension 2. For each p ∈ M , we look a the space of all ellipses centred on 0 in T p M , modulo multiplication by a positive real. This defines a bundle whose sections are the ellipse fields. This notion transports well under the differential of a differentiable function between two dimensional manifolds as long as the differential remains invertible. This allows to define pull-backs and pushforwards of ellipse fields under diffeomorphisms.

On C consider the global circular ellipse field O, whose ellipses are all circles. For a given f : S → C that is almost everywhere differentiable with invertible differential preserving the orientation, there is a one to one correspondence between the pull-back f * O and the Beltrami differential of f . Indeed, in a chart the differential of f at a point z takes the form -the ratio of the major and minor axes is equal to 1+|µ| 1-|µ| , -the direction of the minor axis is 1 2 arg µ modulo π. One sees that this defines a bijection between the set of all ellipses centred on 0 quotiented by the group of homotheties, and the set of all µ ∈ D.

For a function z → µ(z) defined on an open subset of C (more generally for a Beltrami form µ defined on a Riemann surface), the Beltrami equation Bf (z) = µ concerning the differentiable or quasiconformal map f , is equivalent to f * O = E where E is the ellipse field defined by µ (the equality is required to hold almost everywhere in the case of quasiconformal maps).

We will use the following facts:

-Quasiconformal maps are Lebesgue regular in that the image of a set of Lebesgue measure 0 has Lebesgue measure 0. [Ahl06], Theorem 3 page 22. -The inverse (reciprocal) of a quasiconformal map is quasiconformal. The composition of two quasiconformal maps is quasiconformal. [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF] "trivial" properties 3 and 4 page 15 together with the equivalence between definitions A page 15 and B' page 19. -A quasiconformal map is differentiable almost everywhere and its differential is invertible almost everywhere. [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF] Lemma 1 page 17 and Corollary 3 page 22. As a consequence, a coherent notion of pull-back and push-forward of ellipse fields by quasiconformal maps can be defined. It satisfies g * (f * E) = (f • g) * E for all f , g quasiconformal and E ellipse field.

Since there is a perfect correspondence between Beltrami forms (with µ(z) < 1) and ellipse fields, one can extend the notion of pull-back and push forward of Beltrami forms to non-holomorphic orientation preserving differentiable or quasiconformal maps. An interesting alternative point of view can be found in [START_REF] Hamal | Teichmüller theory and applications to geometry, topology, and dynamics[END_REF], Section 4.8. 7.2. Setup. From here onwards, we assume that µ : C → D is C 2 with compact support.

We recall the straightening method of Part 2, Section 5.3: for n > 0 we define µ n by dividing the square defined by |Re z| < n, |Im z| < n into small squares of side 1/n and we let µ n be constant in the interior of each of those 4n 4 squares, equal to the average of µ on this square, and elsewhere we let µ n (z) = 0. We saw in Appendix F that the normalized solution f n of the Beltrami equation associated to µ n converges to the normalized solution f of the Beltrami equation associated to µ. 7.3. A sequence of atomic complex measures. To µ n we associated a similarity surface S n with singularities corresponding to corners of the squares (and infinity): it is obtained by mapping each square S to a quadrilateral by any real affine map that straightens the constant Beltrami form µ n on S, then gluing together all the obtained quadrilaterals, and gluing this to the complement of the big square of side 2n. The similarity surface S n was completed at its singularities to form a Riemann surface S n homeomorphic to a sphere. An isomorphism S n → Ĉ was chosen, sending ∞ to ∞. On the target Ĉ, a meromorphic Christoffel symbol z → ζ n (z) was defined on Ĉ minus ∞ and minus the images s of the other singularities, with simple poles at s of residue res = res(s) such that in particular exp(2πi res) is the monodromy factor of the similarity surface at s. The precise determination of res depends on the sum of angles of the quadrilaterals at the singularity, see Section 3.2. Consider the complex-valued measure m n in the range C ≡ R 2 defined by the sum of Dirac masses at each square corner c with complex weight res(s) where s = f n (c). The measure m n can also be considered as complex-valued 2-form on R 2 that is singular (a.k.a. a current). Moreover, the total mass converges:

|m n | -→ |m|.
Proof. Let c ∈ C and consider the following four squares:

C 0 = "Re (z -c) ∈ [0, ε] and Im (z -c) ∈ [0, ε]" C 1 = "Re (z -c) ∈ [-ε, 0] and Im (z -c) ∈ [0, ε]" C 2 = "Re (z -c) ∈ [-ε, 0] and Im (z -c) ∈ [-ε, 0]" C 3 = "Re (z -c) ∈ [0, ε] and Im (z -c) ∈ [-ε, 0]"
Consider also the Taylor expansion

µ(c + z) = µ 0 + µ x x + µ y y + µ xx x 2 + 2µ xy xy + µ yy y 2 + o(z 2 ) Let for c ∈ C h(c) = 1 2π lim ε→0 log p Λ(c) ε 2 and let m = h × Leb.
The rest of the proof is standard but we include it anyway. Let C denote the (finite) set of squares S of horizontal and vertical sides of length 1/n, centred on the points s of coordinates (i/n, j/n), i, j ∈ Z, and C the (finite) subset of those for which 2S has non-empty intersection with the support of µ, where 2S denotes the square of the same centre but double side length. Note that C and C depend on n. The square 2S is formed of the four little squares that have s as a vertex and the condition ensures that every point in the support of m n is the centre of some S ∈ C. In facy if s ∈ C -C then m n and m are zero on S so in particular S m n τ = 0 = S mτ . Let R > 0 big enough so that B(0, R) contains the support of µ.

Note that if S ∈ C then S ⊂ B(0, R + √ 2/n) ⊂ B(0, R + √ 2).
Let τ be a continuous function on C. Let η > 0. Then by uniform continuity of h (it is continuous with compact support) and of the restriction of τ to B(0, R + √ 2), for all n, for all square S ∈ C , denoting s its centre, we have:

sup z∈S |h(z) -h(s)| < η, sup z∈S |τ (z) -τ (s)| < η, res(s) Leb S -h(s) < η.
The third inequality is a consequence of the uniform convergence mentioned above. For all s ∈ C we have S m n τ = res(s)τ (s) and thus for S ∈ C we get

S m n τ - S mτ ≤ z∈S res(s) Leb S τ (s) -h(z)τ (z) × Leb ≤ z∈S res(s) Leb S τ (s) -h(s)τ (s) + |h(s)τ (s) -h(s)τ (z)| + |h(s)τ (z) -h(z)τ (z)| ≤ z∈S (η τ ∞ + η h ∞ + η τ ∞ ) × Leb ≤ Kη Leb(S)
for some K > 0 independent of n and of η.

We saw that for S ∈ C-C then m n and m are zero on S. Hence C m n τ -C mτ is bounded from above by the sum of S m n τ -S mτ over the squares S ∈ C . Summing the upper bound of the previous paragraph, over this finite collection of squares, we get

C m n τ - C mτ ≤ Kη Leb W where W = B(0, R + √ 2
). The proof for the total mass is based on an almost identical computation. We take the constant 1 instead of τ and use uniform continuity of |h| and uniform convergence of | res s|/ε 2 to |h|.

We are also interested in the images (push-forward) of the measures m n by the straightening maps f n .

Corollary 52. The measure (f n ) * m n weakly tends to f * m in the same sense.

Proof. This follows from f n tending locally uniformly to f . Let τ be continuous over C. The proof is easy but we detail it here.

(f n ) * m n × τ -f * m × τ = m n × τ • f n -m × τ • f = m n × (τ • f n -τ • f ) + (m n -m) × τ • f.
The second term tends to 0 by a direct application of the second part of Proposition 51. The first term is bounded by

|m n | × sup B(0,R) |τ • f n -τ • f |
where R is independent of n and is taken big enough so that all m n and m have support in B(0, R). We have seen that |m n | is bounded. By uniform continuity of τ on compact sets, we have sup

B(0,R) |τ • f n -τ • f | -→ 0.
Note: In Section 8 we show that if we average µ through a (reasonable) function of µ instead of directly taking µ n = S µ/ S 1 on each square S, we still get the same limit.

On the (lack of ) invariance of the limit measure m We denote m[f ] to emphasize the dependence of m on the C 2 function f .

(1) The limit m is invariant under a rescaling of the following form g(x + iy) = ax + biy + c with a > 0, b > 0 and c ∈ C, i.e. m[g • f ] = g * m[f ] where g * refers to the push forward of measures; (2) it is invariant under rotation by a fourth of a turn: for all linear map

g(Z) = iz + c with c ∈ C, m[g • f ] = g * m[f ];
(3) it is not generally invariant under a rotation by an angle α such that α = 0 mod π/2; (4) and it is not generally invariant under a non-conformal orientation-preserving R-linear map. These claims are easy to check from the formula given in Proposition 51. Another way to state them is that if instead of small squares directed by the main axes of R 2 we had chosen (identical) rectangles with the same directions, it would still give the same limit m. But if we had chosen other (identical) quadrilaterals or rectangles directed by different axes, we would obtain a different limit m for most choices of µ, even though the corresponding maps f n converge to the same solution f of µ.

Hence, the weak limit m of the residues m n attached to our approximation scheme for the solution of the Beltrami equation is less canonical than one would think from first examination, because not only it depends on µ, but it also depends on the choice of a horizontal/vertical direction in R 2 .

Remark. We chose to cut the plane in small squares. If we had chosen for instance small hexagons, we would get a different formula for the limit m of m n . The exploration of all the possibilities goes beyond the scope of this article. 7.4. A limit for S n . Do the similarity surfaces S n converge in some sense?

Consider the meromorphic Christoffel symbol ζ n on Ĉ associated to the construction. It is the symbol of a locally flat symmetric conformal connection with singularities at the poles of ζ n .

Consider also the push-forward by f of the measure m: f * m.

It is quite easy to deduce from Corollary 52 that ζ n has a weak limit:

Proposition 53. The sequence ζ n weakly tends on C to the following convolution product:

ζ n -ζ := (f * m) * 1 z the weak limit is understood against continuous test functions, compactly supported in C.

Proof. According to Theorem 1, denoting κ(z) = 1/z and neg(z) = -z we have

ζ n = ((f n ) * m n ) * κ. Now τ × (ζ n -ζ) = τ × ((f n ) * m n -f * m) * κ = ((f n ) * m n -f * m)(τ * (κ • neg))
The last identity comes from the Fubini-Tonelli theorem for the product measure Leb ×(|m n |+|m|), remarking that κ is locally L 1 and that both integration variables remain bounded because τ , m n and m have compact support. The function τ * (κ • neg) is continuous (because τ is continuous and κ is locally L 1 ). By Corollary 52 the integral tends to 0.

Lemma 54. If µ is a C 1 Beltrami form on C and has compact support, then its straightening is a C 1 diffeomorphism.

Proof. The condition is too strong, but this statement is enough for our purposes. One can check that the conditions of Theorem 7.2, page 235 of [START_REF] Lehto | Quasiconformal mappings in the plane[END_REF] hold, and its conclusion directly give that f is a C 1 -diffeomorphism. 42

In particular, f is at least C 1 (actually, it is better 43 ). Recall that m = h Leb for some continuous function h. It follows that f * m = g Leb where g is a continuous function:

g(z) = h(f -1 (z))/ det Df (f -1 (z)). As a consequence, the convolution product ζ = (f * m) * 1
z , defines a continuous function ζ. We sum this up in the following statement.

Corollary 55. The function f is C 1 and the function ζ is continuous.

We now propose an interpretation of the limit ζ with Theorems 5 and 6 below.

Taking a limit of the parallel transport

We saw above that even though the singularities of ζ n form a more and more dense set, their decreasing residues have a sufficiently small influence so that the sequence ζ n weakly converges. In the theorem below, we prove that the influence is small enough to allow the convergence of the parallel transport, provided we make a small modification near the beginning and the end of the path.

We will prove in Theorem 5 a result about parallel transport along sequences of paths that are C 1 by parts. Note that parallel transport of a vector is well-defined for such paths when they avoid the singularities, and we have the formula

v(t) = v(0) exp t u=0 ζ n (γ(u))γ (u)du .
In Theorem 5 we will assume that γ stays away from 0: inf |γ | > 0 and we will use a sequence of paths γ n tending to γ, to allow for more flexibility (for instance to dodge the singularities in the case the limit γ hits some singularities of ζ n for some n). The formula above reads

v(t) = v(0) exp(τ ) with τ = t 0 ζ n (γ n (u))γ n (u)du.
42 According to [Bo], in [START_REF] Vekua | A boundary problem with oblique derivative for an equation of elliptic type[END_REF] one finds a proof of the C 1 character of the solution if µ is Hölder.

43 According to Theorem 15.6.2 of [START_REF] Astala | Elliptic partial differential equations and quasiconformal mappings in the plane[END_REF], since our µ is C 2 , the map f is C 2+α for all α ∈ (0, 1).

The convergence of parallel transport can thus be stated purely in terms of this quantity. If γ n does not run through a singularity, τ is a path-integral in the sense used in holomorphic functions theory:

τ = ζ n (γ n )dγ n .
Path integrals can also be defined as follows for non-holomorphic functions like ζ and paths that are C 1 by parts:

ζ(γ)dγ = t 0 ζ(γ(u))γ (u)du
but note that, unless ζ is holomorphic, it does not depend only on the homotopy class of γ. It would be natural to conjecture the convergence of the path integrals against ζ n to the one against ζ. However, there is a subtlety. We have a problem when the path starts or ends too close to a singularity s: first note that if the path starts or ends on a singularity then integral is the sum of a converging term and of res(s) log(γ -s), and the imaginary part of log(γ -s) has a limit if γ does not vanish but not the real part. If the path ends or starts close to a singularity for which res s = 0, the integral will take big values, which may prevent convergence. We will deal with this case, and also with the case where the ending or starting points are too close to a singularity, by ignoring the singularity, i.e. subtracting res s z-s from ζ n . Before giving the criterion for "too close" above, let us gauge the influence of the closest singularity. Assuming n large and γ n bounded, and because µ is C 2 , we expect the singularities to sit at the vertices of a grid that is not too distorted and whose sides have lengths of order 1/n (see Lemma 58). Recall that the residues are a O(1/n 2 ). Hence res s z-s dz = -res s log(z -s) is a O((log n)/n 2 ) at the midpoints between two singularities s = f (c) and s = f (c ) corresponding to adjacent points c and c in the grid of small squares. Now if we take a point z and let s be the closest singularity to z and call r = |z -s|, we get -res s log(z -s) = O((log r)/n 2 ). If we let r n = exp(-n), we have that r n is much smaller than the grid size, and that | log r n |/n 2 = 1/n -→ 0. We thus make the following definition.

Definition 56. Let ζ n , which depends on γ n , be the rational map ζ n , which is expressed as the sum ζ n (z) = s res s z-s , from which we subtract all the terms for which s is at distance < r n from γ n (0) or γ n (1).

For n big enough, since r n is much smaller than the distance between the residues by the forthcoming Lemma 58, at most two terms are subtracted above, whatever the path γ n is. Moreover, typically none will be subtracted and we will have

ζ n = ζ n in this case.
Theorem 5. The parallel transport has a limit in the following sense. Consider a sequence of C 1 by parts paths γ n : [0, 1] → U that converges to a C 1 path γ in the sense that both γ n -γ ∞ -→ 0 and γ n -γ ∞ -→ 0 as n → ∞. Assume that for all n, γ n avoids the singularities of ζ n . Assume that ∀t, γ (t) = 0. Consider the meromorphic function ζ n as above. Then

ζ n (γ n )dγ n -→ ζ(γ(t))γ (t)dt.
The proof of this theorem comes after preparatory statements.

Proposition 57. If we endow the set of homeomorphisms of the Riemann sphere Ĉ with the metric d(f, g) = max d(f (z), g(z)) + max d(f -1 (z), g -1 (z)) where d is the spherical metric, then the set of K-quasiconformal homeomorphisms of the Riemann sphere Ĉ fixing 0, 1 and ∞ is compact. This follows from Theorem 2 in Chapter III of [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF] (see [START_REF] Ahlfors | Lectures on quasiconformal mappings[END_REF] page 33), remarking that f -1 is also K-quasiconformal.

Let us come back to our situation, with a grid of step 1/n and the quasiconformal maps f n that tend to f . Lemma 58. For all compact subset K of C, there exists C, C such that for all n, for any two grid corners a, b that sit in K, we have

C |b -a| ≤ |f n (a) -f n (b)| ≤ C|b -a|. Proof. Let us write f n = fn • f with fn = f n • f -1 .
Like f and f n , the map fn is normalized. Since µ is C 2 , hence C 1 , it follows that f is also a C 1 diffeomorphism by Lemma 54. Since it is holomorphic near infinity, and since f is a homeomorphism from C to itself, it follows by classical arguments that f (z) has a limit a ∈ C * as z → ∞. Hence f is actually globally bi-Lipschitz for the Euclidean metric on C. In particular there exists κ > 0 such that for any n and for any two distinct grid corners u and v , we have and denote u n = fn (u) and v n = fn (v). We claim that

|f (u ) -f (v )| > κ/n.
1 a n ≤ |u n -v n | |u -v| ≤ a n
where a n depends on κ but is independent of u and v and a n -→ 1 as n → +∞.

Once the claim is proved the lemma follows, using the bi-Lipschitz character of f . To prove the claim, let us introduce a holomorphic motion parametrized by

λ ∈ B(0, R n ), R n = 1/ μn ∞ ≥ n/M,
the normalized straightening fn (λ, z) of λμ n . For a fixed z, λ → f n (λ, z) is holomorphic. Let us restrict to λ ∈ B(0, R n /2), then z → fn (λ, z) is a normalized 3-quasiconformal map. In particular there exists R > 0 such that for any z ∈ K and λ ∈ B(0, R n /2), fn (λ, z) ∈ B(0, R) (see Proposition 57). Consider the function Φ : λ ∈ B(0, R n /2) → fn (λ, v)-fn (λ, u). It takes its values in B = B(0, 2R)-{0}. We can use then the hyperbolic metric of B whose expression is |dz| 2|z| log |2R/z| because a universal cover thereof is given by Re z < 0, z → 2R exp(z). The distance in B between two concentric circles C(0, r) and C(0, r ) is 1 2 log log(2R/r ) log(2R/r) .

Here and below, each occurrence of cst refers to a (possibly) different constant, which is independent of u, v and n. The hyperbolic distance in B between Φ(1) = v n -u n and Φ(0) = v-u is at most the hyperbolic distance from 0 to 1 in B(0, R n /2) so it is at most cst /n. It follows that

e -cst n log |2R/Φ(0)| ≤ log |2R/Φ(1)| ≤ e cst n log |2R/Φ(0)|. Hence (e cst n -1) log |Φ(0)/2R| ≤ log |Φ(1)/Φ(0)| ≤ (e -cst n -1) log |Φ(0)/2R|. Hence cst n log Φ(0) 2R ≤ log Φ(1) Φ(0) ≤ - cst n log Φ(0) 2R . Now |Φ(0)| ≥ cst n hence log Φ(1) Φ(0) ≤ cst cst + log n n ≤ cst .
The claim follows.

Proof of Theorem 5. We have

ζ n (z) = s∈Sing res s z -s
where Sing is the set of all actual (with non-zero residue) singularities of ζ n (with ∞ omitted), which is the same as the set Sing of actual singularities of ζ n with 0, 1 or 2 points removed and ∞ omitted. Let us write

I n := ζ n (γ n )dγ n = s∈Sing res(s) dγ n γ n -s .
Then,

I n = s∈Sing res(s)Ψ n (s) = m n , Ψ n
where Ψ n (s) = dγn γn-s , and is a determination of log γn(1)-s γn(0)-s and where m n is the sum of Dirac masses at points s ∈ Sing ponderated by res s; note that m n is also equal to (f n ) * m n with at most two residudes removed.

We have for n big enough |Im Ψ n | ≤ C 0 where C 0 is independent from ε and n.

Proof. There exists a real m > 0 such that for all n, min |γ n | ≥ m. There exists η > 0 such that for all n big enough, |t -s| ≤ η =⇒ |γ n (t) -γ n (s)| ≤ m/10 (by uniform convergence of γ n to a continuous function). For any z ∈ C, on an interval [t 0 , t 1 ] of values of t of size η (or less), the argument of γ n (t) deviates less than asin(1/10) from its value at t = t 0 and it follows that the variation of argument of γ n (t)-s is at most π +asin(1/10) on [t 0 , t 1 ]. Slicing [0, 1] into at most 1 η intervals of length at most η, we get |Im Ψ n | ≤ 1 η (π + asin(1/10)).

Let ε > 0 and consider the set G n = V ε (γ n ) defined as the ε-neighbourhood γ n . By Proposition 57, the sets f -1 n (G n ) are all contained in some common closed ball K = B(0, R). By increasing R, we also assume that K contains for all n the corners of the litte squares on which the average of µ is not 0. In particular, f n (K) contains Sing and G n .

Let us write

I n = J n + J n where J n = s∈Gn∩Sing res(s)Ψ n (s) J n = s∈Tn res(s)Ψ n (s)
where T n = Sing -G n . Note: In the rest of this proof, inequalities involving constants C k for some k ∈ N will appear. They will be valid for all ε and n subjected to the conditions ε < ε k and n > n k , where ε k and n k are constants that will be implied.

Bound on J n :

We have Leb G n ≤ C 1 ε for some C 1 , and for all s ∈ Sing,

| res s| ≤ C 2 /n 2
for some C 2 . Because of Lemma 58, the disks of radius C 3 /2n around the actuals singularities are disjoint, because their preimage by f n lie in K. So this is the case for the s ∈ G n ∩ Sing . Moreover, as soon as C 3 /2n < ε then these disks are contained in G n (2ε), so the sum of the areas of these disks is at most 2C

1 ε. It follows that #(G n ∩ Sing ) ≤ 2C 1 ε π(C 3 /2n) 2 = C 4 εn 2 for some C 4 .
Case 1: γ n (0) = γ n (1). Then Ψ n is purely imaginary and hence is bounded, according to one of the remarks above. Hence

|J n | ≤ s∈Sing ∩Gn | res(s)Ψ n (s)| ≤ #(Sing ∩ G n ) × max | res s| × max |Ψ n (s)| ≤ C 4 εn 2 × C 2 n 2 × C 0 = C 4 C 2 C 0 ε. Case 2: γ n (0) = γ n (1). We have |Ψ n (s)| < log 1 |γ n (0) -s| + log 1 |γ n (1) -s| + C 5
for some C 5 .

Proof. We have already seen that |Im Ψ n (s)| ≤ C 0 . The real part is easier to deal with, since

Re Ψ n (s) = log |γ n (1) -s| |γ n (0) -s| = log 1 |γ n (0) -s| -log 1 |γ n (1) -s| .
For any t, log For the other ones, let k be the smallest integer such that 2 k C3 2n > ε. Recall that we assume that n is big enough so that C 3 /2n < ε, hence k > 0. We have Let us put it all together (assuming ε ≤ 1): using max | res s| ≤ C 2 /n 2 we have

|J n | ≤ C 2 n 2 log 1 |γ n (0) -s| + log 1 |γ n (1) -s| + C 5 ;
separating the sum of log 1 |γn(0)-s| according to whether or not |γ n (0) -s| ≥ ε, and then regrouping the terms and using that there are at most C 4 εn 2 values of s as we saw earlier:

|J n | ≤ C 2 n 2 C 4 εn 2 × 2 log 1 ε + C 5 + n + C 6 n 2 ε 2 + C 7 n 2 ε 2 log 1 ε = C 2 × C 4 ε × 2 log 1 ε + C 5 + 1 n + C 6 ε 2 + C 7 ε 2 log 1 ε .
Hence lim sup |J n | ≤ C 8 ε log 1 ε for some C 8 . The important fact is that this bound tends to 0 as ε -→ 0.

Bound on J n :

Similarly to the definition of G n as the ε-neighbourhood of γ n , we let G be the ε-neighbourhood of γ. For s / ∈ γ([0, 1]), let Ψ(s) = If we collect all the results, we know that for all η > 0, by taking ε small enough, then for all n big enough, the quantity I n to be evaluated, differs from C m Ψ by at most η, i.e. is convergent (g is bounded with compact support, z → 1/|z| is L 1 on any compact set) and bounded for z ∈ γ([0, 1]), so we are in the conditions of the Fubini Tonelli theorem.

Remark. In the statement of Theorem 5, we decided to restrict to pathes avoiding the singularities and to remove the 0, 1 or 2 singularities that are too close to the extremities of the path. We could have proceeded differently. For instance we could have allowed for every paths by either:

-removing the 0, 1 or 2 aforementioned singularities, and for every other singularity s crossed by γ n , give a meaning to res(s) dγn γn-s if γ n is continuous at all t for which γ n (t) = s, or if the jump of arg γ n at t is smaller than, say, π/2; -chopping off ζ n close to some/all poles, for instance by setting ζ n (z) = 0 when ∃s singularity such that |z -s| < r n , for an appropriate sequence r n ; -there are several choice in r n and the way ζ n is chopped off; for instance one can arrange so that ζ n remains continuous; -one could instead subtract all the poles of ζ that are at distance < r n to γ, for an appropriate sequence r n . Other approaches are possible.

Interpreting the limit

Let us sum up what we have done up to now. Recall the similarity surfaces S n associated to our approximating Beltrami forms µ n , and recall their completions S n into a Riemann surface isomorphic to Ĉ. To this global chart Ĉ we associated a singular connection, of symbol ζ n that is a meromorphic function 44 all whose poles are all simple, but get more and more densely packed as n tends to infinity. We proved that ζ n has a weak limit 45 and that this weak limit is the function ζ introduced in Proposition 53 via a convolution product. Theorem 6. Let (e 1 , e 2 ) be the canonical basis of R 2 . Let A be the push-forward by f of the constant vector field e 1 of R 2 , and B the push-forward of the constant vector field e 2 . Note that A and B commute. Incidentally, if A and B commute, then

- ∂ A B AB = - ∂ B A AB ,
i.e. the unique conformal symmetric connection such that the parallel transport under integral lines of A leaves B invariant coincides with the unique conformal symmetric connection such that the parallel transport under integral lines of B leaves A invariant. We will also need the following, harder to get, result. Let, as earlier,

r n = exp(-n)
and recall that f is C 1 (Lemma 54).

Proposition 60. sup dist(z, 1 n Z)>rn

D z f n -D z f -→ n→∞ 0
where the norm is any operator norm on the set of R-linear self-maps of C.

Proof. In Appendix K. 45 In the previous section, Theorem 5, we improved the weak limit statement into a statement in terms of limit of associated parallel transport. Proof of Theorem 6. By Lemma 59, to prove the claim, it is enough to prove that for ζ, the associated parallel transport along integral lines of A leave B invariant, where A = f * e 1 and B = f * e 2 . We will use the fact that this parallel transport is the limit of the parallel transport associated to ζ n (Theorem 5). Let γ : [0, 1] → C defined by γ(z) = f (x 0 + (x 1 -x 0 )t + iy 0 ) for some > 0 and let for n big enough γ n (t) = f n (x 0 + (x 1 -x 0 )t + iy n ) where y n is chosen so that y n -→ y 0 and d(y n , 1 n Z) > r n : for instance y n = (0.5 + ny 0 )/n.

The path γ is C 1 and the path γ 1 is C 1 by parts. By Appendix F, γ n -→ γ uniformly, and by Proposition 60 γ n -→ γ uniformly. Now, recall that the parallel transport for ζ n is also the parallel transport associated to the similarity surface S n built from gluing together the images of the small squares by maps of the form az + bz where a and b are any complex constants such that b/a ∈ D is the value of µ n on this square. The image of such a square is a parallelogram The horizontal line x 0 + (x 1 -x 0 )t + iy n runs through a row of those squares. Consider the corresponding parallelograms. We can place the initial parallelogram so that the image of the vertical edge of the square is a vertical edge with the same orientation and same size 1/n. Then its opposite side is parallel and has the same size. If we scale rotate and place the other parallelograms in this row so as to match this side, all the images of the vertical sides remain vertical with the same length 1/n. See Figure 16. One deduces that if we define the vector v n as the image by f n of the vertical unit vector e 2 attached to x 0 + iy n , then the parallel transport by ∇ ζn of v n along γ n remains for all t the image v n (t) by f n of the vertical vector e 2 attached to x 0 + (x 1 -x 0 )t + iy n . Now by Proposition 60 and continuity of Df , for each fixed t, the vector v n (t) tends as n -→ +∞ to the push-forward v(t) by f of e 2 attached to x 0 + (x 1 -x 0 )t + iy 0 . Note that v(t) = B(γ(t)).

We can now invoke Theorem 5: at the limit, the parallel transport along γ of v(0) = B(γ(0)) is the vector v(t) = B(γ(t)).

Unlike the case of ζ, we have not been able to give an interesting expression of the curvature form ω = ∂ ζ in terms of A and B: a direct application of ∂ to the expression (∂ B A)/AB seems to give rise to a complicated expression.

On averaging the Beltrami form

In this article, up to now we used the average of the complex-valued function µ(z), assumed L ∞ in Part 2 or C 2 in Section 7, over the Lebesgue measure on squares. But the Beltrami differential is just one way to represent ellipse fields. We could have taken another quantity ν = ν(µ), like (1 + µ)/(1 -µ), or even functions of µ that are not holomorphic like 1+|µ| 1-|µ| e i arg µ . So, what if we averaged ν instead of µ? In other words, given n, we take µ n on each small square S in the construction to be constant equal to ν -1 ν•µ 1

, where the integrals are still against the Lebesgue measure on S. Note that the quantity ν•µ 1 belongs to the convex hull of the image of ν. We assume that µ → ν(µ) is a C 1 -diffeomorphism from the unit disk to a convex open subset of R 2 and ask two questions:

(1) Does the sequence f n of normalized straightenings of µ n still converge to the straightening of µ? (2) Assuming that ν is C 2 , in the setting of Section 7, are the limit complex measure m, curvature form ω and Christoffel symbol ζ the same, and does the parallel transport still converge?

The answer to both questions is: yes. For point (1), the proof of convergence (Appendix F) relied on uniqueness of the straightening of µ (Theorem 3) and on the sole facts that µ n ∞ is bounded away from 1 and that locally, the L 1 norm of µ n -µ tends to 0 (Lemma 40), which still hold: indeed ν • µ n is the average of the bounded measurable function ν • µ on the little squares of the n-the generation; using the same proof as in Lemma 40 we get that for all compact subset S of C, ν •µ n -ν •µ L 1 (S) -→ 0 as n -→ +∞. The set ν • µ(C) in C is compactly contained in the image of ν hence its convex C hull too. It follows that µ n ∞ is bounded away from 1. It also follows that the map ν -1 is uniformly Lipschitz on C, hence µ n -µ L 1 (S) = ν -1 • ν • µ n -ν -1 • ν • µ L 1 (S) ≤ C ν • µ n -ν • µ L 1 (S) for some constant C > 0 independent of n.

For point (2), recall that µ is in this case also C 2 , hence continuous. So in four squares around a corner, µ takes values that remain close to the value µ 0 of µ at the corner. Below, all the o(•) are uniform in |m| small enough, µ 0 subject to |µ 0 | < κ < 1 and z 0 ∈ C. Let ν(µ 0 + m) = ν 0 + Q 1 (m) + Q 2 (m) + o(|m| 2 ) be an expansion where Q k is a degree-k R-homogeneous polynomial in (Re m, Im m) taking values in C seen as a dimension 2 R-vector space. Let µ(z 0 + z) = µ 0 + P 1 (z) + P 2 (z) + o(|z| 2 ) with a similar convention. Note that P 1 and Q 1 are R-linear endomorphisms of C and that Q 1 is invertible by hypothesis that ν is a diffeomorphism. Then

ν -1 (ν 0 + v) = µ 0 + Q -1 1 (v) -Q -1 1 • Q 2 • Q -1 1 (v) + o(|v| 2 ),
and

ν • µ(z 0 + z) = ν 0 + Q 1 • P 1 (z) + Q 1 • P 2 (z) + Q 2 • P 1 (z) + o(|z|) 2 .
Let M j be the average of µ on the squares C j of side length ε appearing in the proof of Proposition 51. We have Glue the four sectors thus obtained together along three of the four boundary pairs, using C-affine maps. For instance use the identity for k = 0, then

z → i + μ0 ī i + μ1 ī z for k = 1, then z → -1 -μ1 -1 -μ2 • i + μ0 ī i + μ1 ī z for k = 2 and z → -i -μ2 ī -i -μ3 ī • -1 -μ1 -1 -μ2 • i + μ0 ī i + μ1
ī z for k = 3. Note that each of these maps is close to the identity because the μk are close to each other, as averages of the continuous function µ on nearby small squares, and their modulus is never close to 1 since µ ∞ < 1. We obtain a sector of angle close to 2π (it may be bigger than 2π). The sector is then closed appropriately as explained in Section 2 by applying z → z α = exp(α log z)

for the branch of log z whose imaginary part belongs to [0, 2π), where α = 2πi 2πi + log τ and τ = 1+μ3 1+μ0 • -i-μ2ī -i-μ3ī • -1-μ1 -1-μ2 • i+μ0ī i+μ1ī , i.e.

τ = 1 + μ3 1 -μ3 • 1 -μ2 1 + μ2 • 1 + μ1 1 -μ1 • 1 -μ0 1 + μ0
which is close to 1, and where the determination of log τ is the principal one. In the proof of Proposition 51 we have in fact evaluated τ (it corresponds to Λ in that proposition) and found that log τ = O(1/n 2 ), uniformly. As a consequence, α is close to 1 and Lemma 63. There exists η n -→ 0 such that for all n big enough, for all c as above, the differential of the corresponding Φ n on z ∈ F |z -c| > r n varies less than η n , in the sense that for any two points z, z in this set, the corresponding differentials L z and L z satisfy 46 L z • L -1 z -Id < η n .

46 Where • is any operator norm on chosen in advance on the set of R-linear endomorphisms of C. The model map Φ n is (voluntarily) only defined on the four small squares depicted in gray. Circled are the places where the derivative of fn is not controlled, and the image of the places where the derivative of f n and f n is not controlled. These places are of size of order r n = exp(-n), so in fact much smaller than the grid step 1/n, so one should imagine the circles nearly invisible. Dashed is the image by Φ n of the gray square scaled about its centre by a factor of 0.75.

Proof. Of course the differential of z → z -c is the identity. Each z → z + μk z is R-linear and close to z → z + µ(c)z, because |μ k -µ(c)| < cst /n where cst is independent of c and n. The differential of z → z α is αz α-1 dz. Recall that α is close to 1 and z α-1 = exp((α -1) log z) is close to 1 provided (α -1) log |z| is close to 0. Since (α -1) = O(1/n 2 ) uniformly, it is enough that |z| > r n = exp(-n) (we see that we could even have taken a much smaller r n ).

Though we do not formally need it, it helps, for a clearer mental picture of the situation, to realize that, as we can see from the proof, Φ n is close to the similitude z → a(z -c) + b in some sense that we do not need to make explicit.

It follows from Lemma 63 that the differential of Φ -1 n also varies less than η n on the image by Φ n of z ∈ F |z -c| > r n . The image Φ n (F ) of Φ n is close to be a parallelogram and the part that must be removed is contained in a very small disk near its centre, of size of order r n times L z , which is of the order of |a| where a is the constant yet to be chosen in the definition of Φ n , whereas the parallelogram has a diameter of order |a|/n, and bounded geometry (recall that µ ∞ < 1). In the sequel we denote

F = Φ n ( z ∈ F |z -c| > r n ). Let fn = f n • Φ -1
n so that f n = fn • Φ n . Then fn is an injective holomorphic map because it is a composition of quasiconformal maps that sends the circle ellipse field to itself. Moreover,

fn = f n • (f • Φ -1 n ).
In the definition of Φ n there was to choose constants a and b. We choose b = f (c), so that Φ n (c) = f (c). Consider the point z * = c + 1+i 2n , which is the centre of one of the four squares. We choose a so that f n (Φ n (z * )) = 1. Since f is C 1 (actually C 2 ) and F has small diameter, the differential of f is nearly constant on F . It follows that the map f • Φ -1 n has a nearly constant differential on F . In particular, 47 pairs of points u, v in F have images u , v by f • Φ -1 n such that (u -v )/L(u -v) is close to 1, where L is some R-linear map that depends on n and c but not on u and v.

We have also seen that f n maps pairs of points u, v ∈ K at distance > r n to pairs of points u , v whose associated vector is nearly the same: (u -v )/(u -v) is close to 1, uniformly.

It follows that pairs of points u, v in F with distance at least |a|r n /M for some M > 0 independent of n and c, have images u , v by fn such that (u -v )/L(u-v) is close to 1. But recall that fn is holomorphic and that its derivative at Φ n (z * ) is equal to 1. It follow by properties of univalent maps that fn is close to the identity on the compact subset of Φ n (F ) of Φ n (F ) where F is defined by the equations |Re z -c| < 0.75/n and |Im z -c| < 0.75/n, and that f n is close to 1 on that set. It also follows that L is actually close to the identity.

Recall that f •Φ -1 n has a differential nearly constant and close to L on F . Hence f • Φ -1 n has actually a differential close to the identity on F . Since, f n = fn • (f • Φ -1 n ) -1 we get Proposition 60 by the chain rule.
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 12 Figure 1: An example of polygon gluing pattern. The letters indicate the edge pairing.Here the quotient is homeomorphic to a sphere and has three vertices and three edges.

Figure 3 :

 3 Figure 3: Continuation of Figure 1; by gluing the polygons along their paired edges with appropriate C-affine maps, we get local chart of a similarity surface in neighbourhoods of the edges minus their endpoints.

u

  Assume the vertex p is shared by these two triangles and no other. Here we glued the side pair labelled a together and added a exp-polar grid. We ignore what the dashed sides are attached to. b b Image by z → log z. Blue vector has affix u = -log 2 + iτ /4 and gluing of sides b becomes translation by u. iτ

Figure 5 :

 5 Figure 5: Example of an unbounded polygon with the two unbounded sides glued together by a similitude whose center c is different from the focus f of the unbounded sector.

3.

  The Schwarz-Christoffel formula 3.1. Christoffel symbol. Consider any similarity surface S . Recall that it is in particular a Riemann surface. Assume that we are given a similarity chart s : U → C and a Riemann chart r : U → C on the same 14 open subset U ⊂ S . Consider the map φ = s • r -1 : it expresses a similarity chart in a Riemann chart. Note that φ is holomorphic, by definition of a Riemann surface atlas. Now if we are given two similarity charts s 1 and s 2 on U and if U is connected then by definition of a similarity atlas, there must exist a ∈ C * and b ∈ C such that s 2 = a s 1 + b. (In fact the definition ensures the existence of a and b locally, and analytic continuation ensures they are constant on the connected set U .) It follows that

  is easy to recover φ from ζ, as the equation φ /φ = ζ is equivalent to log φ = ζ (locally), so φ = exp ζ holds locally. The integration constants make φ known locally only up to postcomposition by C-affine maps, which is coherent with the fact that we have a similarity atlas: φ = b + exp c + ζ = b + a exp ζ with a = e c . Note also that, for a loop γ contained in a single chart O the monodromy factor of a loop will be equal to the exponential of the integral of ζ along this loop:

Proof.

  By the above discussion, ζ has at most a simple pole at each vertex z k = ∞ and we know the corresponding residue res k . To analyse what happens at infinity we use the change of variable w = ψ(z) = 1/z, call ζ the expression of the Christoffel symbol in the coordinate w and use Equation (2):
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 46 Figure 6: The example of Section 3.4. Left: the edges with the same label are glued together. Right: image under a uniformization.

3. 5 .

 5 Any Christoffel symbol. Given an open subset U of C and a holomorphic function ζ : U → C, we can define an atlas of similarity surface whose Christoffel symbol is ζ, by solving locally N φ = ζ. Assume that ζ has an isolated singularity z 0 ∈ C which is a simple pole of residue res.

  from which one antiderivative satisfies ζ = res × log z + o(1) hence exp ζ = z res exp(o(1)) = +∞ n=0 b n z res +n for some sequence b n ∈ C with b 0 = 1. Since z res +n has several values, we need to specify a meaning: we temporarily work in the universal cover of C * , let log z be a global branch and define z res +n = exp((res +n) log z) = exp(res × log z)z n . This generalized power series expansion has complex exponents but positive radius of convergence and we can integrate term by term to get exp ζ = +∞ n=0 b n z res +n+1 res +n + 1 = z res +1 exp(R(z))

  z = z 1+res and express ζ in the u coordinate. Note that the correspondence z ←→ ũ is a bijection (and usually only well defined) from the universal cover U C * of C * to U C * , via log z = (1 + res) × log z where log : U C * → C is a well-defined bijection. Tending to 0 If res ∈ R then |z| -→ 0 ⇐⇒ |z| -→ +∞. But if res / ∈ R then the set |z| < r, where r > 0, correspond to a set of z ∈ U C * whose boundary spirals inward to 0 as (Im res) × (arg z) → -∞ and outward to ∞ as (Im res) × (arg z) → +∞: indeed the set of values of log z is the half plane (5) HU (r) := z ∈ U C * Re log z 1 + res < log r ,

UFigure 7 :

 7 Figure 7: Example of domain U (α 0 , α 1 , r) = z arg z ∈ [-α 0 , α 1 ] and |z| < r in the case Re res < -1. Dots correspond to arg z ≡ π mod 2π, dashes to arg z = α 0 or α 1 .

  with h bounded, say |h| ≤ M . Let v = log z and let us express the Christoffel symbol ζ in the v coordinate: since z = e v , formula (2) gives ζ(v) = e v ζ(e v ) + 1 and using the development of ζ above we get ζ(v) = 1 + res +e v h(e v ).

  (t)| = |u 0 | t 0 e t and |z(t)| = |v 0 |e -αt . Hence |φ(z(t)) -az(t) -φ(z(0)) + az 0 | ≤ c |z 0 ||z 0 | t 0 e s e -αs ds

For a finite

  vertex, σ = θ is the total angle of the vertex. The monodromy is also a product of quotients a -a b -b where a, a , b, b are vertices. For an infinite vertex σ = -θ and the monodromy factor is also a product of quotients a -a b -b where a, b are vertices and a , b are vertices or marked points.

Figure 8 :

 8 Figure 8: Objects in the proof of Proposition 8. The sector boundaries are not glued together (they are strict subsets of the sectors defining a neighbourhood of the vertices).

Figure 9 :Figure 10 :

 910 Figure 9: Adaptation of Figure 8 for the proof of Proposition 9

Figure 11 :

 11 Figure 11: This commuting diagram sums up the objects involved in the construction of Glu. For a fixed P, the descending maps are not unique but π, F and [f ] are.

  To a polygon configuration [P] ∈ S-Conf let us associate the element [f ] of T that the construction above yields. Let us also associate the set of residues res k of the Christoffel symbol ζ P at the m vertices/marked point and temporarily denote res = (res k ) ∈ C m .

Lemma 17 .

 17 Every point in Eff has an open neighbourhood W in T R on which Glu • Per is defined (i.e. Per(W ) ⊂ S-Conf) and equals the identity of W .

  Consider the union W of the open sets W in Lemma 17. We claim that W = Eff. Indeed, the lemma states that for each point in Eff there is such a W containing it. Conversely, each such W is contained in Eff = Glu(S-Conf) because Glu(Per(W )) = W and Per(W ) ⊂ S-Conf. This proves the claim. So Eff is open and the restriction Per | Eff is an injective analytic map that satisfies Glu • Per | Eff = Id Eff . By Equation (8), Per | Eff • Glu = Id S-Conf . Hence Per | Eff is an analytic bijection between open subsets of complex manifolds and Glu is its inverse. It follows that these manifolds have the same dimension and that Per | Eff and Glu are analytic isomorphisms ([Gun90], Theorem I.11).

  1] (with δ| [t,1] appropriately reparametrized) ending on the concatenation of γ| [0,s1] with a constant path, and this is homotopic to γ| [0,s1] . The two homotopies avoid z 1 because ε < d(γ| [0,s1] , {z 1 }) and stay in U because ε < d(γ, ∂U ).

Lemma 26 .

 26 The map Q is continuous and open. Proof. Let B(γ, ε) denote the ball of center γ and radius ε for the distance d on G. The map Q is open: The elements V (γ, ε) form a basis of open neighbourhoods for Γ and V (γ, ε) = Q(B(γ, ε)).

Figure 13 :

 13 Figure13: Example of a homeomorphism h a of a Euclidean disk in the plane that is the identity on its boundary, sends its center to a and depends continuously on a. It is defined by h a (re iθ ) = (1 -r)a + re iθ . For a closed disk on the Euclidean sphere, conjugacy of h a by one's preferred homeomorphism to a Euclidean disk can be used.

  surjective), and since Π is open and M continuous, it follows that π -1 (U ) is open. The map π is also open: indeed, consider an open subset O ⊂ T . By continuity of Π, the set O = Π -1 (O) is open. Since π(O) = M (O ) (Π is surjective) and M is open, it follows that π(O) is open.

Definition 35 (

 35 Beltrami equation, quasiconformal map). Given µ in the unit ball of B, and z → µ(z) a representative, a function f : C → C is called a solution of the Beltrami equation associated to µ if:

  Its solution is v(t) = v(0) exp τ (t) with τ (t) = -t 0 ζ(γ(s))γ (s)ds = -t 0 ζ(γ(s))dγ(s). As we did not assume ζ holomorphic, this path integral usually does not only depend on the homotopy class of γ. If ζ is at least C 1 then by Stoke's formula, the holonomy for a path equal to the oriented boundary of a simply connected zone S ⊂ U ⊂ R 2 is v → exp(τ )v with τ = -2i ∂ζ dx ∧ dy where ∂ζ := ∂ z ζ := ∂ζ/∂ z is the anticonformal part b ∈ C of the decomposition of the differential dζ = a dz + b dz. The curvature form is the form appearing in the formula above: ω = -2i ∂ζ dx ∧ dy. This is a 2-form, well defined on the Riemann surface M and the holonomy formula extends to C 1 Jordan domains in M . It can also be expressed as follows, using dz ∧ dz = (dx + idy) ∧ (dx -idy) = -2idx ∧ dy: ω = ∂ζ dz ∧ dz. Change of variable. Let z = φ(w) be a holomorphic change of variable and ζ w denote the Christoffel symbol of the connection in the variable w. Then

  Conformal metrics. A conformal metric on a Riemann surface is a Riemannian metric of the form ρ(z)|dz| in conformal charts, with ρ > 0, in other words g = ρ 2 (dx 2 + dy 2 ). It will be convenient to writeρ 2 = e hfor some function h. Assume h is C 1 . Then the Levi-Civita connection of g is conformal and we have 40ζ = ∂ z hwhere ∂ z h := ∂h/∂z is the conformal part a ∈ C of the decomposition of the differential dh = a dz + b dz. Since ∂

7.

  A limit of the similarity surfaces used in the construction of a solution to the Beltrami equation 7.1. Preliminary notions. We shall use the notions of Beltrami form and of ellipse field, which are two equivalent ways of defining a differential object on differentiable manifolds of dimension 2. In the first case the manifold is a Riemann surface.On a Riemann surface S it is designed to represent the Beltrami differential of a differentiable or quasiconformal mapping f : S → C and takes formB z (f ) = ∂ z f /∂ z f = µ(z) in charts. If z = φ(u) is a change of Riemann chart on S, then φ is holomorphic and B u (f ) = ∂u f /∂ u f = µ(φ(u))φ (u)/φ (u), which defines the40 The motivated readers can deduce it from [KN69], Chapter IX, section 5. Or they can check it directly using the formula expressing the Levi-Civita connection in terms of the metric; for an expression in terms of coordinates and the coefficients of the Christoffel symbols, see for instance[START_REF] Sh | Foundations of differential geometry. I[END_REF], Corollary 2.4, Chapter 4, page 160 or[START_REF] Chern | Lectures on differential geometry[END_REF], formula (1.35), Section 5-1, page 139.

  v ∈ C → a v + b v with a = ∂ z f and b = ∂ z f . The preimage of circles have equation |a v + b v| = cst for various constants cst, which is the same as the equation |v + µ v| = cst for another constant and where µ = ba -1 = B z f . If µ = 0 these preimages are homothetic circles. Otherwise these are homothetic ellipses with:

Proposition 51 .

 51 Under the conditions of Section 7.2, m n weakly tends to a complex valued finite measure m on C with continuous density w.r.t. the Lebesgue mea-Leb in the following sense: for every continuous function τ on C, τ m n -→ τ m.

  The map fn straightens a Beltrami form μn = f * µ n which satisfies sup C |μ n | ≤ M/n for some M > 0. Indeed, µ n is on each little square the average of µ = f * 0. Since µ is C 2 with compact support, hence C 1 with compact support, we have µ n -µ ∞ ≤ cst /n. The value of |μ n |(f (z)) is given by the smooth formula a-b 1-ab that depends only on a = µ n (z) and b = µ(z) and defined for (a, b) ∈ D 2 . Since |µ n | and |µ| are uniformly bounded away from 1, the variables a, b remain in a compact set and hence sup C |μ n | ≤ M/n for some M , as claimed. Let κ > 0 and consider two points u, v ∈ f (K) with |u -v| > κ /n

1

  |γn(t)-s| ≤ log 1 |γn(t)-s| + C for C = max(0, 2 log diam B) where B is a compact set containing all the curves γ n and the singularities of non-vanishing residue of ζ n for all n. The constant C is independent of ε and n. For any singularity s at distance ≥ ε from γ n (0) we have log 1 |γ n (0) -s| ≤ log 1 ε . For the singularities s ∈ Sing at distance < ε from γ n (0) we have r n ≤ |sγ n (0)| < ε with r n = exp(-n). Recall that the disks B(s, C 3 /2n) are disjoint. There is hence at most one s 0 ∈ Sing with |s 0 -γ n (0)| < C 3 /2n and since |s 0 -γ n (0)| > e -n we have log 1 |γ n (0) -s 0 | ≤ n.

2 k ≤ 4nε C 3 .

 3 Let j ∈ N ∩ [0, k). The number of s ∈ Sing such that |γ n (0) -s| belongs to [2 j C 3 /2n, 2 j+1 C 3 /2n) is at most π (2 j+1 + 1) 2 -(2 j -1) 2 = π(3 × 4 j + 6 × 2 j ≤ 9π × 4 j ,because the union of the disjoint disks B(s, C 3 /2n) is contained in the round annulus of z ∈ C such that (2 j+1 + 1)C 3 /2n < |z -s| < (2 j -1)C 3 /2n. For such an s, we have log 1 |γ n (0) -s| ≤ log 2n 2 j C 3 . Hence s∈Sing ∩B(γn(0),ε) log 1 |γ n (0) -s| ≤ n + Hence s∈Sing ∩B(γn(0),ε) log 1 |γ n (0) -s| ≤ n + C 6 n 2 ε 2 + C 7 n 2 ε 2 log 1 ε .

  dγ γ-s , which is also the limit of the functions Ψ n . Similarly as for G n we have that |Im Ψ| ≤ C 0 and Re Ψ(s) = log |γ(1) -s| |γ(0) -s| = log 1 |γ(0) -s| -log 1 |γ(1) -s| . Note that |Ψ(z)| and |Ψ n (z)| tend to 0 as |z| -→ +∞. There exists a sequence Ψn of continuous extensions of the restriction of Ψ n to the closed set C -G n and a continuous extension Ψ of the restriction of Ψ to the closed set C -G, such that moreover Ψn tends to Ψ uniformly on compact subsets of C and such that Ψ ∞ = Ψ| C-G ∞ . This follows from the Tietze extension theorem (Theorem 35.1 page 219 of [Mun00]). Apply it first to extend Ψ| C-G into Ψ. Then apply it again to the metric space X = ({0} ∪ 1/n n ∈ N * ) × C, the continuous function that is the disjoint union of Ψ and the restrictions of the Ψ n (the disjoint union of the domains of these maps is indeed a closed subset of X). Now J n -m n Ψn = s∈Gn∩Sing res(s) Ψn (s)HenceJ n -m n Ψn ≤ max s∈Sing | res(s)| × #(G n ∩ Sing ) × max Gn Ψn ≤ C 2 n 2 × C 4 n 2 ε 2 × max n max Gn | Ψn | ≤ C 7 ε 2for some C 7 . Also,m n Ψnm n Ψ ≤ m n Ψn -Ψ ∞and as n -→ +∞, the left factor stays bounded and the right one tends to 0. Let m = f * m. By Corollary 52 (removing two singularities does not change the convergence, since the total mass removed is O(1/n 2 )) we havem n Ψ -→ m Ψ when n -→ +∞. Recall that Ψ ∞ = Ψ| C-G ∞ . Since Ψ is a branch of log γ(1)-s γ(0)-s ,and since on C -G the distance to γ is at least ε, we get for all s ∈ C -G: |Re Ψ(s)| ≤ C 8 + log 1 ε for some C 8 > 0. Since, as we saw, |Im Ψ| ≤ C 0 we get Ψ ∞ ≤ C 0 + C 8 + log 1 ε . Now m = h Leb where h is a continuous function so m = f * m = g Leb with g(f (z)) = h(z)/ det Df is continuous too. In particular g is bounded, say by C 9 . We have Leb G ≤ C 1 ε, like for G n . It follows that G m Ψ ≤ C 9 ε log 1 ε for some C 9 , and this quantity tends to 0 as ε -→ 0. Concerning the original function Ψ, from the expression of Re Ψ and the bound on Im Ψ, we get G m Ψ ≤ C 10 ε + C 9 ε 2 log 1 ε .

  I n -C m Ψ < η. This integral C m Ψ is equal to ζ(γ(t))γ (t)dt: indeed, recall that ζ = m * 1 z , whence ζ(γ(t))γ (t)dt = t∈[0,1] s∈C 1 γ(t) -s dm (s) γ (tthe integral is justified because the integral of the absolute value

  Consider the conformal symmetric connection of symbol ζ(z) = -∂ A B AB defined on U . Then ζ is equal to the symbol ζ introduced in Proposition 53: ζ = ζ.The connection of symbol ζ expresses as∇ X Y = ∂ X Y -∂ B A XY AB .Before we prove the theorem, let us introduce an easy lemma.Lemma 59. Let A and B be two vector fields in an open subset U ⊂ R 2 ≡ C. Assume that they vanish nowhere. Then there is a unique conformal symmetric connection ∇ such that the parallel transport under integral lines of A leaves B invariant. The symbol of ∇ in the chart U is-∂ A B AB .Proof. A conformal symmetric connection ∇ takes the form∇ X Y = ∂ X Y + ζXYwhere ζ is a continuous function from U to C. The condition expresses as the pair the equation ∇ A B = 0, i.e.∂ A B + ζAB = 0.

Figure 16 :

 16 Figure 16: Illustration of an argument in the proof of Proposition 60.

M

  j = µ 0 + P 1 avg Cj z + avg Cj P 2 (z) + o(ε 2 )then on each quadrant based on 0, indexed by k ∈ {0, 1, 2, 3}, consider the map z → z + μk z.

  |α -1| = O(1/n 2 ), uniformly. Last we apply z → az + b where a and b will be chosen later. Denote Φ n this composition of maps:Φ n : F → C where F = z ∈ C |Re (z -c) < 1/n, |Im (z -c)| < 1/nis the interior of the union of the four square. The purpose of Φ n is to serve as a model of the map f n near c. Note that Φ n is quasiconformal, and is R-differentiable inside each square.

Figure 17 :

 17 Figure17: This commutative diagram shows the objects involved in the end of the proof of Proposition 60. The model map Φ n is (voluntarily) only defined on the four small squares depicted in gray. Circled are the places where the derivative of fn is not controlled, and the image of the places where the derivative of f n and f n is not controlled. These places are of size of order r n = exp(-n), so in fact much smaller than the grid step 1/n, so one should imagine the circles nearly invisible. Dashed is the image by Φ n of the gray square scaled about its centre by a factor of 0.75.

  t ∈ B(0, ε), there exists a simply connected open subset S t ⊂ U C * , a t ∈ C * and a holomorphic function φ t : S t → C such that -z t + π(S t ) ⊂ B(z 0 , r) where π is the projection U C * → C * ; -S t depends continuously on t by an isotopy of U C * ; By the change of variable z = z -z t , possibly reducing r, it is enough to treat the case where z t = 0 for all t. Recall that z → z is well-defined and note that z depends analytically on (z, res). Let ζt be the pull-back of ζ t in z-coordinate: it depends analytically on (t, z) and hence there exists a global solution φ = φt of φ /φ = ζt on HU (r) ⊂ U C * that depends holomorphically on t. Consider any.

	-in z coordinate, the image of S t contains U (θ -π/2, θ + π/2, r );
	-φ t (z)/φ t (z) = ζ t (z t + π(z));
	-φ t depends holomorphically on t;
	-a t depends holomorphically on t;
	-for each fixed t, φ t (z) ∼ a t z when z -→ 0 within S t ;
	-the image of φ t contains a t × U (θ -π/4, θ + π/4, r ).
	Proof.

None of these proofs uses the Ahlfors-Beurling integral operator.

See [Ste83] Definition 2.1 Chapter VII page 310.

Though some authors require Riemann surfaces to be connected, in which case either one can require similarity surfaces to be connected too, or only the connected similarity surfaces will be Riemann surfaces.

This can be expressed by saying that t → st is continuous, for an appropriate topology on the space of germs.

It is easily seen to be unique, since a set is open iff. it is a neighbourhood of all its points.

Write f = f • h for some h ∈ H 0 , let hs be a path from h to Id in H 0 and let fs = f • hs.

Part 3 A connection as a limit of the similarity surfaces 6. Affine connections 7. A limit of the similarity surfaces used in the construction of a solution to the Beltrami equation 8. On averaging the Beltrami form Appendix K Proof of Proposition 60 89 References 5.3. The density argument, without parameter. We start with Theorem 2, i.e. without the parameter t, and explain in Section 5.4 how to adapt the proof for holomorphic families µ t .

Remark. Density arguments like the one presented here have been known for a while. A nice example is given in [START_REF] Hamal | Teichmüller theory and applications to geometry, topology, and dynamics[END_REF], Section 4.6, which presents a proof of the measurable Riemann mapping theorem, and Theorem 4.7.2. Our presentation here is quite similar, with more details. A slightly different type of density argument is performed in [START_REF] Lavrentieff | Sur une classe de représentations continues[END_REF] (translated in [START_REF] Lavrentieff | On a class of continuous representations[END_REF]).

Approximation

We are given some µ ∈ L ∞ (C) whose essential supremum is < 1. Let µ n be the following approximation of µ:

-divide the square defined by |Re z| < n, |Im z| < n into small squares of side 1/n (there will be 4n 4 of them); let µ n be constant in the interior of each of those squares, equal to the average 33 of µ on this square. -elsewhere let µ n (z) = 0. Note that µ n ≤ µ .

Lemma 40. For all compact subset S of C,

Proof. We may as well suppose that S is the square "|Im z| < N , |Re z| < N " with N ∈ N * . The Lebesgue differentiability theorem states that for any L 1 function, a fortiori for µ, almost every z 0 ∈ C is a Lebesgue continuity point in the following sense: the average avg(z 0 , r) of |µ -µ(z 0 )| on B(z 0 , r) tends to 0 as r -→ 0. Fix η > 0 temporarily. For z ∈ C let

(s = 0 is always in the set whose supremum is considered, because the interval (0, 0) is empty). This function is measurable and by the discussion above, r 0 = 0 almost everywhere. So for all ε > 0 there exist s 0 = s 0 (ε, η) > 0 such that Leb(S ∩ r -1 0 ([0, s 0 ])) < ε, i.e. there is a measurable E = E(ε, η) ⊂ C such that Leb E < ε and r 0 (z) > s 0 (ε, η) for all z ∈ S -E. Recall that, to define µ n we divided the square S (actually a bigger square) into squares of side 1/n. Call them little squares. Fix temporarily ε > 0, and let s 0 and E be as above. Assume that 1/n < s 0 /2. For all little square S not contained in E, consider any point z ∈ S -E. Then avg(z , 2/n) < η by definition of E, so we get that

and by definition µ n (z ) = S µ Leb S , so we proved that ∀n > 2/s 0 , sup

On the other hand, since µ has an L ∞ norm less than 1, and hence |µ n | < 1, we get the obvious bound

by the Cauchy-Schwarz inequality

Now µ -µ n L 2 (S) -→ 0 according to Corollary 41, ∂f n φ L 2 (S) ≤ max |φ| × ∂f n L 2 (S) and we have seen that ∂f n L 2 (S) is a bounded sequence (Lemma 43). It follows that A -→ 0 as n → +∞.

Note that if we only had extracted a weakly convergent sequence in L 1 loc , we could still argue that B -→ 0 but not A, because instead of Cauchy-Schwarz we would use

is unlikely to tend to 0. 5.4. Holomorphic dependence. We now explain how to adapt the proofs in Section 5.3 to get Theorem 4.

We start from the hypothesis that ∀t ∈ D, µ t ∞ < 1 and improve this inequality as follows:

It thus reaches a maximum on B(0, 1 -ε), and at this point its value is < 1 by hypothesis.

Let the Beltrami form µ n (t) be defined from µ(t) exactly as in Section 5.3. Denote the square S n : "|Re z| < n, |Im z| < n" and call little square the squares of side 1/n into which we have cut it. In a little square S we have

and the convergence of the series is normal over t ∈ B(0, 1 -ε) for all ε > 0 since lim sup a k 1/k ∞ ≤ 1. This quantity is a holomorphic function of t ∈ D for all little squares S .

By Lemma 39 there are normalized solutions z → f n (t, z) of the Beltrami equation for µ n (t), which vary holomorphically with t for all fixed n, z.

. By Lemma 42 they form a normal family with respect to the variable z. In particular for all compact subset C of C, there is a bound M > 0 such that ∀n ∈ N, ∀t ∈ B(0, 1 -|ε|), and ∀z ∈ C, |f n (t, z)| ≤ M . In particular, for all z ∈ C, the sequence of holomorphic functions t ∈ B(0, 1 -ε) → f n (t, z) is bounded, hence equicontinuous. Since this is valid for all ε ∈ (0, 1), we get the result.

We will give two slightly different ways to conclude. The first one avoids using uniqueness of the normalized solution of the Beltrami equation (Theorem 3).

Method 1.

By Section 5.3 for each fixed t, and every subsequence of the sequence of functions z → f n (t, z), there is a sub-subsequence that tends uniformly on compact subsets

Appendix F Uniqueness and convergence

It is not the point in the present article to prove uniqueness of the solution of the Beltrami equation (Theorem 3), so we admit it (see the references below the statement of that theorem). Let us explain how one deduces from it that the full sequence f n tends to this unique solution f (uniformly on compact subsets of C).

Since µ n ∞ ≤ µ ∞ , the sequence f n is K-quasiconformal for some common K. By Lemma 42, from any subsequence of f n one can extract a sub-subsequence that converges uniformly on every compact subset of C to some function f . The procedure of Section 5.3 can then be applied to this sub-subsequence, which prove that f is a solution of the Beltrami equation. Since the solution is unique, this means that all extracted limits f of the sequence f n are identical. Now in a Hausdorffseparated topological space, if a sequence f n has all its subsequences that contain sub-subsequence converging to f , then the full sequence f n tends to f .

Appendix G Equivalent formulations of the holomorphy condition

In this appendix we recall equivalent definitions of being holomorphic, for functions from the unit disk to a Banach space. The statements in the present section is not used in the article. Later in this proof we will use that the o(z 2 ) is uniform, i.e. that

where r(c n , z n ) -→ 0 as z n -→ 0 and c n ∈ C is any sequence. 41 Let M i be the average of µ(z) for z ∈ C i . Then

where the o(ε 2 ) are uniform as above. Consider the R-affine map

Let θ be the sum of the angles at 0 of the four quadrilaterals A j (C j ). As ε -→ 0, we have θ -→ 2π. Then the monodromy factor Λ = λe iθ around 0, which depends on c and ε, satisfies

We have res = log λ+iθ 2π -1/ As ε -→ 0, the monodromy factor tends to 1. Since θ -→ 2π, we have that log(λ + iθ) -2π = log p Λ where log p denotes the principal branch of the complex logarithm: res = log p Λ 2π As soon as ε is small enough (independently of c). After a moderately complicated calculation involving the expansions of the M j , one finds that

) where the o(ε 2 ) is uniform in the sense explained earlier.

The convergence of (log p Λ)/ε 2 is thus uniform on c ∈ C as ε -→ 0. Note that for ε = 1/n, the denominator ε 2 is the area of each small square.

41 Since µ has compact support and is C 2 , there is a uniform modulus of continuity δ → M (δ) for its second order partial derivatives. By two successive integrations, one finds that |r(c, z)| ≤ M (|z|).

Denote N j the average of ν • µ on C j . We get

Composing the previous formula with the expansion of ν -1 and comparing to M j we get

where B ∈ C depends on z 0 . So

1 (B)ε 2 depends on z 0 but is independent of j. Then the monodromy factor of the singularity for the new scheme is

where L j = (1 + M j )(1 -M j ), whereas for the original one it is

Where B depends on z 0 but not on j. As a consequence,

Hence the limit of log p Λ /ε 2 is the same as the limit of log p Λ/ε 2 . One can check that the convergence is still uniform. The proof of Proposition 53 adapts verbatim to the new situation so we still have 

with compact support, so its variation on a square of side 1/n is O(1/n); hence its average will differ from the central value by at most O(1/n) (in fact we have better than that); the preimage of this average by ν also differs by the same order since everything takes place in a compact subset of the domain of ν -1 which is at least C 1 ). Several of the arguments of Theorem 5, are based on the fact that that the residues are O(1/n 2 ), and this is still the case here. Also, we have seen that f n still tends to f . So Point (2) holds.

Non-holomorphy

On the other hand, in the case of holomorphic families of Beltrami forms, if µ → ν(µ) is not assumed holomorphic, we lose the holomorphic dependence, with respect to the parameter, of µ n . For instance let ν(x + iy) = x + x 3 + iy and µ(x + iy) = tx for |x + iy| < 0.1 where t = u + iv is a complex parameter in D (choose any C 2 extension for |x + iy| > 0.1). Then when n > 100, near 0 we have on the square Re z ∈ [0, 1/n], Im z ∈ [0, 1/n] that µ n = P -1 ( u 2n + u 3 4n 3 ) + v 2n i where P (x) = x + x 3 : R → R. This quantity does not depend holomorphically on u + iv.

This has the consequence that we also loose holomorphic dependence in the parameter of the normalized straightening f n of µ n . Indeed, if f n depends holomorphically on t, then we prove below that µ n = ∂f n /∂f n also depends holomorphically on t, leading to a contradiction.

In fact we will prove a slightly more general lemma, probably already known:

Lemma 61. Let t ∈ B(0, ε) → f t be a family of normalized K-quasiconformal homemomorphisms of C for some K > 1. Assume that for all z, the map t → f t (z) is holomorphic. Then the Beltrami differential µ t of f t , as an element of the Banach space B = L ∞ (C), depends analytically on t in the sense of Proposition 47.

Proof. It is enough to prove holomorphic dependence near t = 0. We fix some ball B in C that we will allow to grow near the end of the proof. B n (z)r n are holomorphic. We define A(z, t) = 0 and B(z, t) = 0 when z ∈ E. The functions A and B are measurable. The partial sums of the series a n t n tend to function z → A(z, t) in L 1 (B) so the latter is a representative of a n t n . A similar statement holds for b n t n . Then for all t, z → A(z, t) is a representative of ∂f t and z → B(z, t) is a representative of ∂f t . Moreover we know by properties of quasiconformal maps (see Section 7.1) that for all t, ∂f t is non-zero on the complement of a set (that depends a priori on t) of measure 0. So the set of z such that the function t → A(z, t) is identically equal to 0 can only have measure 0. So the function B/A is meromorphic in t for almost every z. For all t with |t| < r, the function z → B(z, t)/A(z, t) is the quotient of representatives of respectively ∂f t and ∂f t , so it is almost everywhere equal to µ t , which is bounded by some κ < 1. By measurability, |B/A| > κ defines a measurable set, hence for almost every z, the inequality |B/A| ≤ κ holds for almost every t. In particular the meromorphic function t → B(z, t)/A(z, t) has all its poles removable. Let us extend this function into a holomorphic function of t ∈ B(0, r). Then the extended function is measurable in (z, t) and can serve as the function µ t (z) in criterion (3) of Proposition 47.

Appendix K Proof of Proposition 60

Outside a uniform ball B(0, R ), the maps f and f n are all holomorphic, injective, and tend to infinity at infinity. In particular their derivatives f n (z) and f (z) all have a limit as z → ∞. Moreover f n tends to f uniformly on compact subsets of C, according to Appendix F. It follows, by properties of analytic maps, that f n tends to f n uniformly on C -B(0, R + 1). So the claim is proved near infinity and there remains to prove it on B(0, R + 1).

Consider as in Lemma 58

Since f is a C 1 diffeomorphism, it is enough to prove the following claim: for all ε > 0, and all compact subset K of C, sup z∈K, dist(z,Sing)>εrn

where we recall that Sing is the set of actual singularities of ζ n (with ∞ omitted).

We have the following stronger version of Lemma 58:

Lemma 62. For all compact subset K of C and any sequence ε n satisfying

there exists b n -→ 0 such that for all n big enough, for any two points u, v in K, satisfying |u -v| ≥ ε n we have

Proof. Using the notation of Lemma 58 consider again the function Φ

) from 0 to 1, which is at most cst /n. Let Φ(0) = re iθ and τ = log(2R/r) > 0. We now use the fact that the map z ∈ H + → 2R exp(iθ -τ z) ∈ B preserves the respective infinitesimal hyperbolic metrics and sends 1 to Φ(0). Consider the lift δ of the path t ∈ [0, 1] → Φ(t) starting from δ(0) = 1. We have Φ(1)/Φ(0) = exp(τ δ(0) -τ δ(1)).

The point δ(1) is, in H + , at a hyperbolic distance from δ(0) = 1 that is at most cst /n. So |δ(1) -δ(0)| ≤ cst n for another constant, provided n is big enough (independently of u and v). Multiplying by τ (which depends on u and v), we get We assume that n is big enough so that K is contained in the array formed by the small squares, which we recall is the big square given by |Re z| ≤ n and |Im z| ≤ n.

To get some margin we in fact take n be big enough so that K is contained in |Re z| ≤ n -1/n and |Im z| ≤ n -1/n.

Consider now a set of four small squares around a square corner c. The Beltrami form µ n takes four values on these squares. Consider the four quadrants defined by arg(z -c) belonging to the intervals (kπ/2, (k + 1)π/2), k ∈ {0, 1, 2, 3}. Consider the Beltrami form μ that is constant on each of these quadrants and takes the same value μk as the one of the four small squares with corner c that the quadrant contains (we omit n in these notations). We know an explicit straightening of μ, obtained as follows: first apply z → z -c,