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Abstract 23 

Macroclimatic changes are impacting ecosystems worldwide. The majority of terrestrial species, 24 

however, lives in the shade of trees where impacts of macroclimate change are buffered. Yet, 25 

how microclimate buffering can impact future below-canopy biodiversity redistributions at the 26 

continental scale is unknown. Here we assess the effects of changes in microclimate and forest 27 

density on plant population dynamics under macroclimate change. We built 25-m resolution 28 

mechanistic demographic distribution models at European extent based on plant demography 29 

responses to changes in the environment in a unique cross-continental climate change transplant 30 

experiment. We show that changes in microclimate and light due to canopy opening amplify 31 

macroclimate change impacts on forest biodiversity, while shady forest floors due to dense tree 32 

canopies mitigate severe warming impacts. The microclimate and forest density thus emerge as 33 

powerful tools for forest managers and policy makers to shelter forest biodiversity from climate 34 

change. 35 

 36 

Key words 37 

Climate change experiment, demography, integral projection model, forest, microclimate, 38 

transplant experiment, species distribution, understorey. 39 

40 



3 
 

Main 41 

Numerous species are shifting their distributions towards higher elevations and latitudes due to 42 

the warming of the climate system1–3. Predictive models that quantify range shifts under climate 43 

change almost exclusively rely on projected free-air macroclimatic conditions. Macroclimate 44 

data are estimated from weather stations that record free-air temperatures at 1.5 to 2 m above 45 

short grass, thereby failing to describe the relevant microclimatic conditions that are experienced 46 

by the majority of terrestrial species on Earth4. Moreover, microclimatic conditions are highly 47 

variable at fine spatial grains (typically 100 m to much finer) while macroclimate data are 48 

generally only available at a coarse resolutions (typically 1 km or coarser)5. To date, piling 49 

evidence points towards the importance of microclimatic and other fine-grained environmental 50 

conditions for species’ range shifts under climate change6–12. If we are to improve our predictive 51 

accuracy on future range dynamics, we cannot ignore this important part of the environment13. 52 

 53 

In forests, directional changes towards species adapted to warmer temperatures remain somewhat 54 

elusive, with slower, absent or even disparate trends frequently observed7,8. For instance, many 55 

forest communities are lagging behind predictions based on macroclimatic temperature 56 

increases7,14–16. Next to slow species’ demography and dispersal rates17,18, these ‘climatic lags’ 57 

are attributed to processes operating at fine spatial grains.  58 

Due to their highly complex structure, trees are ecosystem engineers that attenuate variation in 59 

below-canopy climatic conditions (i.e. the forest microclimate) and buffer forest species from 60 

macroclimatic temperature extremes19–22. Microclimates determine major forest ecological 61 

processes such as nutrient cycling23, evapotranspiration24, tree regeneration25, soil seed bank 62 

composition26 and understorey species range dynamics15,27,28.  63 
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The capacity of forests to buffer below-canopy temperature fluctuations is highly heterogenous 64 

in space and time, and inherently links to forest structural complexity, forest density and distance 65 

to the forest edge: simple-structured forests and forest edges usually have less buffered 66 

microclimates19,21 and these conditions typically result in community reordering towards tall, 67 

competitive and warm-affinity generalists16,29–31. However, how and to what extent fine-grained 68 

forest microclimates determine understorey plant responses to climate change across a large 69 

geographic extent remains an open question32. The relevance of considering forest microclimates 70 

is further enhanced since climate change has now initiated the largest pulse of forest disturbances 71 

and canopy opening in at least 170 years in Europe33,34, which takes away a line of defence of 72 

below-canopy biodiversity. 73 

 74 

Here we designed a unique continental-scale transplant experiment along the entire latitudinal 75 

gradient of the European temperate broadleaved forest biome. Using an integral projection 76 

modelling (IPM) framework, we integrated the data to build mechanistic demographic 77 

distribution models (DDMs) at 25 m resolution. DDMs allow to predict mechanistically-78 

informed range-wide population dynamics based on the responses of demographic vital rates of a 79 

species’ life cycle (that is, survival, growth and reproduction) to changes in the environment. In 80 

contrast to the widely used species distribution models35, DDMs facilitate the integration of 81 

biologically relevant mechanisms at ecologically meaningful spatial scales via experimental 82 

research36,37.  83 

 84 

Both manipulative experiments (experimentally changed environmental conditions where species 85 

live) and transplant experiments (translocation of species towards new environments) are 86 
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frequently applied to unravel plant responses to changing environmental conditions29,30,38,39. 87 

Especially when replicated at fine spatial grains (e.g. < 100 m) across several locations covering 88 

a large spatial extent (e.g. > 1,000 km), such experiments are particularly suited to understand of 89 

the effects of environmental drivers in a biogeographical context40. We established transplant 90 

experiments in five contrasting biogeographical areas along a c. 1,750 km latitudinal gradient, 91 

and along two crossed microclimate gradients driven by forest structure and distance to the forest 92 

edge (Methods; Fig. 1a,b). In three of the geographic regions, additional experimental heating 93 

(simulating macroclimate warming using infrared heaters) and irradiation (simulating forest 94 

canopy opening using fluorescent tubes) treatments were applied in a full-factorial design 95 

(Methods; Fig 1c, Extended Data Fig. 1). Integrating the demographic data from the transplant 96 

experiment, DDMs were parameterized to project the current and future distributions of common 97 

understorey plant species, taking into account the effects of forest microclimate and forest cover 98 

density.  99 

 100 

Methodologically, we focused on a set of twelve common understorey plant species native to 101 

European broadleaved forests, selected along a forest specialist – generalist spectrum inferred 102 

from the Colonization Capacity Index (CCI)41. The species can thus be expected to respond 103 

differently to macroclimatic and microclimatic gradients. We transplanted 8,064 individuals into 104 

mesocosm communities that were stratified assemblages of four species from contrasting 105 

ecological groups. A total of 25,997 in situ demographic measurements across six vital rates 106 

(survival probability, growth rate, flowering probability, number of flowers, number of seeds and 107 

seedling sizes) were regressed against plant size – describing each individual’s state42 – and the 108 

environment using mixed-effect models (Methods). The vital rate models were integrated into 109 
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IPMs to infer the effect of the environment on population dynamics43. Demography-based 110 

distribution maps for each species were generated by projecting the IPMs across the study area 111 

(i.e. a broad window around the European temperate broadleaved forest biome) under all 112 

combinations of current and future macroclimatic conditions and forest cover density scenarios 113 

(following the protocol of 36,37). Projections of the DDMs under future macroclimatic conditions 114 

were produced for the period 2070 (i.e. the average macroclimate over the period 2061 – 2080) 115 

for the worst-case climate scenario (i.e. representative concentration pathway [RCP] 8.5). 116 

Projections of the DDM under forest cover density scenarios were based on changes in the 117 

current forest cover density (from minus 50% to plus 50%). In all model predictions, we 118 

assumed temperature offsets to stay constant over time. 119 

 120 

Plant vital rate responses 121 

Across all species, plant size and the environmental variables predicted a substantial part of the 122 

variation in the vital rates (average marginal R² = 0.33; average conditional R² = 0.43; Fig. 2; 123 

Supplementary Table 1). Among all vital rates, the macroclimate variables growing-season 124 

temperature and precipitation were strong predictors of the individual’s survival probability 125 

(after model selection, growing-season temperature and precipitation was included in the vital 126 

rate models of survival of respectively ten, and nine focal species), and in general suggested 127 

lower plant survival in colder and dryer macroclimatic conditions (Fig. 2). Since Darwin’s essay 128 

‘On the origin of species’, abiotic stress brought about by e.g. harsh climatic conditions has been 129 

postulated to dominate poleward (in latitude) and upward (in elevation) limits of species 130 

ranges44. This pattern has already been generally validated45–47, and our results seem to mirror 131 

this pattern (but see 48–50). In line with a similar approach in a South African shrub species36, our 132 
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results furthermore suggest that distribution patterns in the focal species are predominantly 133 

driven by hampered survival rather than reduced growth or fecundity.  134 

 135 

Also local environmental conditions typically variable at fine spatial grains  have been postulated 136 

to drive range dynamics across broad spatial extents48,50,51. Biotic interactions, for example, were 137 

shown to affect range limits through cumulated stress induced by harsh macroclimatic conditions 138 

and competition10,12. Likewise, environmental stress induced by unfavourable forest 139 

microclimates can possibly alter range dynamics in forest species32, but this remained untested. 140 

Our results indeed hint towards the importance of forest microclimatic conditions (in terms of 141 

summer and winter temperature offsets), and forest cover density on multiple vital rates that 142 

contribute to population growth. Interestingly, in contrast to the macroclimate variables, forest 143 

microclimate variables had strong effects on several vital rates from which the direction of the 144 

effect was dependent on the species’ specialism to forests. Among all vital rates, this pattern was 145 

again the most pronounced for survival probability (after model selection, summer and winter 146 

temperature offsets, and forest cover density was included in the vital rate models of survival of 147 

eight, nine, and nine focal species, respectively; Fig. 2).  148 

 149 

Typical forest specialists had the highest survival probability when winter minima (i.e. more 150 

positive winter temperature offset values) and summer maxima (i.e. more negative summer 151 

temperature offset values) were buffered below tree canopies (Fig. 2; Supplementary Table 4). In 152 

contrast, the survival probability of forest generalist species responded to a lesser extent to 153 

buffered temperature extremes but were negatively affected by high forest cover density, 154 

possibly because these species lack physiological adaptations to cope with low light levels52. For 155 
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example, based on our data, we estimated that, on average, an increase of the thermal buffering 156 

during summer from -1°C to -2°C (i.e. what is typically observed along a 100 meter forest edge 157 

to interior transect21), resulted in a 37% increase in the survival probability in Oxalis acetosella, 158 

a typical forest specialist, but only in an 11% increase in the survival probability in Urtica 159 

dioica, a fast-colonizing generalist (Extended Data Fig. 7). Similarly, an increase of the forest 160 

cover density from 50% to 60% resulted in a 13% higher survival probability in Anemone 161 

nemorosa, another emblematic forest specialist in temperate Europe, but a 6% lower survival 162 

probability in the generalist Urtica dioica. Naturally, forest managers cannot manipulate the 163 

forest cover density (and thus light availability) without altering the subcanopy temperature 164 

offsets as both are linked and jointly determine the specific microclimatic conditions that are 165 

experienced by understorey species. Nevertheless, managers can strive to a specific set of 166 

microclimatic conditions (e.g. shady forest-floor conditions that are buffered from free-air 167 

temperature extremes through maintaining a high canopy cover), hereby deploying 168 

microclimates as a tool to “manipulate” species’ turnover in understorey plant communities. 169 

 170 

Demographic distribution model predictions 171 

Integrating the effects of the local and regional environmental drivers on all vital rates that 172 

contribute to the generative population growth allowed us to project the population growth rate 173 

(λ) across Europe (Fig. 3; Extended Data Fig. 12 for geographic uncertainty of λ). We generated 174 

mechanistically-informed distribution maps at 25 m resolution for the extent of temperate 175 

Europe. As expected from the vital rate models (Fig. 2), the DDMs showed substantial variation 176 

in λ, both at the continental-level (area of 28 million km²) and at the landscape-level extent (three 177 

areas of 4 km²), indicating the importance of fine-grained microclimatic conditions (i.e. summer 178 



9 
 

and winter temperature offsets), and forest cover density, next to the coarse-grained 179 

macroclimatic conditions (i.e. growing-season temperature and precipitation) in driving forest 180 

plant population dynamics. While evidently the variation in  λ at the landscape-level represents 181 

only a subtle part of the variation at the continental extent, these results highlight the 182 

fundamental role of forest microclimatic conditions on the local persistence of understorey 183 

populations15. 184 

 185 

Considerable changes were predicted in the spatial distribution for all understorey species due to 186 

macroclimate change (Fig. 4; Extended Data Figs.10,11). Interestingly, and very relevant in light 187 

of the accelerating rates of canopy disturbances beyond historical averages33,53,54, we detected 188 

that changes of the forest cover density (and thus altered light regimes at the forest floor) may 189 

amplify macroclimate change effects on forest understorey plants. We furthermore found that 190 

both the direction (positive or negative) and magnitude of the species’ population responses was 191 

dependent on their specialism to forests (Fig. 5, Supplementary Table 4). For example, in 192 

Anemone nemorosa, a 50% reduction of the forest cover density would likely amplify the 193 

negative impact of macroclimate change by not less than 195%. In contrast, in the generalists 194 

Alliaria petiolata and Urtica dioica, beneficial effects brought about by canopy opening could 195 

far exceeded the negative impacts of macroclimate change on population growth (Extended Data 196 

Figs. 10,11). Mechanistically, the vital rate models suggest that forest specialist species were 197 

negatively impacted by canopy opening due to higher light levels that hamper survival, likely as 198 

an inevitable consequence of elevated competitive interactions with more generalist species.  199 

On the contrary, an increase of the forest cover density could mitigate macroclimate change 200 

impacts on forest specialist species by limiting abrupt light stress. This trend corroborates 201 
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observational data55, and highlights the importance of a continuous cover forest management 202 

under climate change. We find, for instance, in Anemone nemorosa that an increase of 20% 203 

forest cover density mitigates the impacts of macroclimate change by not less than 65%, while an 204 

increase of 50% compensate almost the entire (92%) effect (Fig. 5, Extended Data Figs. 10,11).  205 

While direct impacts of macroclimate change on canopy disturbances are increasingly apparent53 206 

with cascading effects on understorey biodiversity56, managers should maximally retain dense 207 

forest canopies to maintain shady forest-floor conditions to mitigate severe impacts on 208 

understorey communities. Nonetheless, to sustainably preserve diverse forest communities, 209 

policy makers should first merit key priority to tackle drivers of macroclimate change.  210 

 211 

In all model predictions, we assumed temperature offsets to stay constant over time although 212 

forest disturbance reduces offset values19,21 and warming enhances offset values under 213 

maintained forest cover22. Thus, our model predictions likely underestimated the effect of 214 

changes in the forest cover density on plant population dynamics under macroclimate change, 215 

and are thus conservative. High-resolution projected temperature offsets under climate change 216 

are indeed not yet available, and are most likely driven by a complex interplay among many 217 

environmental variables, including macroclimate and forest cover density, but also by e.g. 218 

dynamics in cloud cover57. Using constant temperature offset values in all future predictions, 219 

however, allowed us to isolate changes in species’ demography within the community driven by 220 

the independent effect of light30. 221 

 222 

Challenges in demographic distribution modelling 223 
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While the mechanistic nature of DDMs brought advantages over more correlative approaches 224 

such as species distribution modelling, it also has methodological limitations that should be 225 

considered when interpreting the results. First, DDMs require us to make assumptions on the 226 

structure of the vital rate models. While more complex vital models are likely to better describe 227 

the natural complexity of the system (e.g. by including higher order polynomials and interactions 228 

terms), the robust parameterization of these models typically trades off with the number of 229 

observations in the data set. For this reason, we here only considered monotonous relationships 230 

of the vital rates to the environment, while a qualitative sensitivity analyses against this approach 231 

suggested that some vital rate models are likely to follow a more complex response curve 232 

(Extended Data Fig. 7). For instance, the vital rates survival and flowering probability in Allium 233 

ursinum more likely followed a unimodal response to the winter temperature offset gradient 234 

which is not captured by the assumed monotonous response curve in our models. Second, DDMs 235 

are data hungry models. Ideally, demographic data should be collected in the critical macro- and 236 

microenvironmental conditions within the study area. This is, however, often impossible due to a 237 

limitation of time and resources. Given that our work aimed to assess fine-grained variation in λ, 238 

we put maximal effort the collect demographic data in the critical microclimatic conditions, 239 

while the range of sampled macroclimatic conditions within the study area was still not fully 240 

covered (Extended Data Fig. 14). Model extrapolation is inherent to predictive ecology, and the 241 

accuracy of the presented DDM predictions (far) beyond the macroclimatic range that was 242 

sampled (in our case, e.g. at higher elevations in the Alps) is evidently lower. A well-designed 243 

plot network which a priori considers the goal of the study, is thus key in the efficient and 244 

successful application of DDMs. 245 

 246 
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Conclusions 247 

In sum, we here built demographic distribution models based on mechanistic plant responses to 248 

both microclimate and macroclimate. We found that fine-grained microclimatic conditions and 249 

forest density, in addition to the macroclimatic conditions, play a fundamental role in 250 

understorey species’ distributions. Our results suggest that changes in forest-floor conditions, 251 

regardless of whether the drivers of canopy opening are natural or anthropogenic, can amplify 252 

macroclimate change impacts on forest biodiversity. We propose that sustainable forest 253 

management should conserve conditions that favour the survival of forest specialist species 254 

through maintaining a high canopy cover to limit both abrupt light stress and temperature 255 

increase. The DDMs suggest that macroclimate change impacts on forest specialist species (e.g. 256 

emblematic species such as Anemone nemorosa and Allium ursinum) could be mitigated by 257 

increased forest density. Forest generalists whose ranges often promptly respond to changes in 258 

the macroclimate system, are likely to keep on taking advantage from the natural variation in 259 

microclimate and light availability after disturbance that is inherent to European broadleaved 260 

forest dynamics.  261 

Our integrative methodological framework (R-code for the analyses of the DDMs available as 262 

Supplementary Material) is adaptable to many other species and ecosystems to examine the 263 

importance of fine-grained environmental conditions in a warming world, and can undoubtedly 264 

improve our understanding of species range dynamics under 21st century climate change.265 
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Figures 266 

 267 

Figure 1 Overview of the study. (a) Experimental locations with heating and irradiation treatments (red), 268 

control plots (black) and the Temperate broadleaved and mixed forest biome58 (shaded). (b) Experimental 269 

sites (yellow) along two microclimate gradients created by forest structure and forest edge distance. (c) 270 

One experimental site with heating and irradiation treatments. (d) Nine mesocosm communities per 271 

treatment. (e) A mesocosm community containing four individuals of four contrasting species. (f-g) 272 

Temperature offset values in dense vs. simple forests and forest cores vs. edges. (h) Forest cover density 273 

in dense vs. simple forests. In all boxplots, we present median (horizontal line), 1st and 3th quantile (lower 274 

and upper hinges, 1.5 time the inter-quartile-range (whiskers), and outliers (points). 275 
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 276 

Figure 2 Four key vital rates survival probability (survival), growth rate (growth), flowering probability (flowering) and the number of flowers (# 277 

flowers) regressed against individual plant height (plant size) and the environmental covariates. Values are (generalized) linear mixed-effect model 278 

(LMM) coefficient estimates [± standard error] (after model selection; presented in horizontal way). Species are ranked following the Colonization 279 

Capacity Index (CCI). Significant effects (p < .05) are in bold. Non-significant effects (p ≥ .05) are faded. Model coefficient estimates for the vital 280 

rates number of seeds and seedling size are presented in Extended Data Fig. 9. See Supplementary Table 1 for model details.  281 
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 282 

Figure 3 Range model predictions of the current distributions (estimated as the population growth rate, λ) 283 

at the continental scale and the landscape scale (three example areas of 2 × 2 km [400 ha] around the 284 

centroid of the experimental sites in Italy [IT], Belgium [BE] and South Sweden [S-SW]) based on 285 

population growth rates (λ). For three species (Oxalis acetosella, Vinca minor and Geranium sylvaticum), 286 

the data did not allow to construct DDMs due to the absence of observations related to fecundity. Maps 287 

are in an equal area projection [EPSG:3035]. 288 
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 289 

Figure 4 Predicted change in future population growth rate (∆λ) under future macroclimate change (RCP 290 

8.5) and 50% forest density decrease at the continental scale and the landscape scale (three areas of 2 × 2 291 

km [400 ha] around the centroid of the experimental sites in Italy [IT], Belgium [BE] and South Sweden 292 

[S-SW]). Changes are expressed relative to the range model predictions of the current distributions (Fig. 293 

3). Maps are in an equal area projection [EPSG:3035]. See Extended data Fig. 10 for maps on all 294 

environmental change scenarios. 295 
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 296 

Figure 5 Predicted change in future population growth rate (λ) for different climate and forest density 297 

scenarios (50% decrease and 50% increase). Plotted are continental-scale average % change [± standard 298 

deviation (SD)] in λ relative to the baseline predictions (Fig. 3) for all combinations of future 299 

macroclimate change and increased and decreased forest density. Species are ranked from specialists 300 

(left) to generalists (right) following their colonization capacity index (CCI). 301 

302 
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Methods 420 

1. Study region 421 

The study region encompasses all forested area within a broad window around the European 422 

temperate broadleaf and mixed forest biome58, between 10°W - 20°E and 40°N - 61°N (Fig. 1). 423 

 424 

2. Study species 425 

Twelve species were selected based on their common occurrence in the understorey of temperate 426 

European forests and their difference in affinity to light and warmth (Anemone nemorosa, Oxalis 427 

acetosella, Carex sylvatica, Vinca minor, Poa nemoralis, Allium ursinum, Deschampsia 428 

cespitosa, Geranium sylvaticum, Geranium robertianum, Geum urbanum, Alliaria petiolata and 429 

Urtica dioica). The species’ light preference was inferred from the Colonization Capacity Index 430 

(CCI)41, a continuous gradient from -100 (generalist species) to +100 (typical forest specialist 431 

species) representing their association with ancient, structurally complex forests (Supplementary 432 

Table 1). The CCI generally coincides with the forest specialist – generalist spectrum41. For one 433 

species (Geranium sylvaticum), the CCI was inferred based on expert knowledge because no 434 

value was available. The species’ warmth preferences were inferred from their Thermal Niche 435 

Optimum (TNO), which were calculated as the mean annual temperature within the species’ 436 

distribution range59. Using the species’ temperature and light preferences, the species were 437 

categorized in four ecological groups: cold-adapted forest specialists; warm-adapted forest 438 

specialists; cold-adapted forest generalists and warm-adapted forest generalists. 439 

 440 

3. Transplant experiment 441 
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A large-scale transplant experiment was installed in early Spring 2019 in five regions along a c. 442 

1,750 km long transect spanning the entire European temperature broadleaved forest biome29 443 

(Fig. 1a). In each region, four experimental locations were established with contrasting forest 444 

structure (simple vs. dense) and distance to the forest edge (edge vs. core; Fig. 1b), hereby 445 

capturing a major part of the natural variation in macroclimate, microclimate and light 446 

availability in European broadleaf forests. Dense forest stands typically had a well-developed 447 

shrub and tree layer, high basal area and canopy cover. Simple forest stands were characterized 448 

by a high canopy openness and the absence of a shrub layer. In each forest stand, experimental 449 

plots were installed at c. 2 m from the south-facing forest edge and in the forest core (minimal 450 

distance of 50 m from any forest edge). In total, 20 experimental sites (5 regions × 2 forest types 451 

× 2 sites per forest type) were established. 452 

In three regions (Italy, Belgium and South Sweden), experimental heating and irradiance 453 

treatments were applied in a full-factorial design (Fig. 1c, Extended Data Fig. 1). Hence, in these 454 

regions, each site contained four experimental plots: heating, lighting, heating and lighting, and a 455 

control. The experimental sites in France and Central Sweden contained only control plots. In 456 

total, the transplant experiment consisted of 56 experimental plots. The experimental treatments 457 

were applied during the growing season for three consecutive years, from May 2019 (after 458 

installation) till 30 September 2019 and from 1 February till 30 September in 2020 and 2021. 459 

More detail on the experimental design are provided in Supplementary Methods 1.  460 

 461 

All experimental plots contained nine mesocosm communities, each composed of four 462 

individuals (replicates) of four different species (one from each of the two ecological groups, see 463 

study species) randomly planted in a rectangular grid of 4 × 4 (27 cm × 37 cm; Fig. 1d, e). The 464 
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four species were sampled from the set of twelve species in a stratified way that ensured a 465 

combination of one species from each ecological group in each mesocosm, with all species 466 

occurring in equal numbers at the plot level. In total, at the onset of the transplant experiment, it 467 

contained 8,064 individuals (56 experimental plots × 9 mesocosms × 4 species × 4 individuals) 468 

and 672 individuals per species (12 replicates × 56 experimental plots). All biological material 469 

originated from the same source in Belgium or Germany to minimize potential effects of local 470 

adaptation (Supplementary Table 1).  471 

 472 

4. Plant demographic data 473 

Demographic data were collected at the individual plant level (Extended Data Fig. 2). Summer-474 

flowering plant species were measured in July 2019, 2020 and 2021. Spring-flowering plant 475 

species were measured in April and May 2020 and 2021. For all species, we measured survival, 476 

natural plant height (distance between the soil surface and the uppermost photosynthetic 477 

tissue60), flowering status and the number of flowers. For Anemone nemorosa and Geum 478 

urbanum, we additionally counted the number of seeds (when present) in 2021. For Alliaria 479 

petiolata and Allium ursinum we measured the seedling size (natural height) in 2021 at the plot 480 

level (since parent plants were not exactly known). See Extended Data Fig. 3 for details on the 481 

annual sampling sizes. 482 

 483 

5. Environmental data 484 

We quantified the environment based on large-scale macroclimate conditions and local-scale 485 

variation in forest microclimates and forest density. Five variables were selected that capture 486 

major non-edaphic environmental axes in European temperate forest systems at both large- and 487 
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small-spatial gradients, and that are potential drivers of plant demography: average growing 488 

season temperature; cumulative growing season precipitation; winter and summer temperature 489 

offset due to canopy cover and distance to the forest edge; and forest density (supplementary 490 

Table 2)19,29. Each variable was assessed at the level of the experimental site (for use in the vital 491 

rate models and IPMs), and retrieved as raster grids at the extent of the study region (for use in 492 

the DDMs) (see Extended Data Fig. 2 for a flowchart of the data).  493 

 494 

5.1. Environment of the experimental sites 495 

The average growing season temperature and cumulative growing season precipitation were 496 

calculated as the average of monthly mean growing season (April till July) temperatures and as 497 

the sum of monthly mean growing season cumulative precipitation for the most recent available 498 

30-year period (1970-2000) extracted at 30 arcsec (~1 km) resolution from WorldClim v2.1 499 

[projection EPSG:4326]61. 500 

Winter and summer temperature offset values were calculated as subcanopy microclimate 501 

temperatures minus macroclimate temperatures. The winter offset metric positively relates to the 502 

capacity of canopies to buffer free-air thermal minima and increased with forest structure and 503 

distance to the forest edge. The summer offset metric negatively relates to the capacity of 504 

canopies to buffer free-air thermal maxima and decreases with forest structure and distance to the 505 

forest edge19,21. In situ microclimate temperatures were measured at 15 cm above the soil surface 506 

using TMS-4 loggers (TOMST, Prague, Czech Republic) installed in the centre of each control 507 

plot (n = 20), and covered by a white radiation shield. Local air temperatures were recorded at 15 508 

min intervals from 17 May 2019 till 30 June 2021. Hourly mean microclimate temperatures were 509 

calculated to match the temporal resolution of the macroclimate data. Hourly mean macroclimate 510 
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temperatures at 2 m height for each control site were extracted from the ERA5-land reanalysis 511 

data base62 at the spatial resolution of 0.1 × 0.1 degrees (native resolution of 9 km) [EPSG:4326]. 512 

Hourly offset values (∆T °C) were calculated as microclimate minus macroclimate temperatures. 513 

Finally, for each experimental site, summer offsets were calculated as the average offset from 514 

June till August. Winter offsets were calculated as the average offset from December till 515 

February. 516 

Forest density was quantified as the cumulative percentage of tree canopy cover and shrub cover 517 

within a circle with radius of 9 m around the centre of each experimental site. The cumulative 518 

percentage was standardized to a maximum of 100%. 519 

 520 

5.2. Environmental data of the study area 521 

Gridded average growing season temperature and cumulative growing season precipitation data 522 

were calculated as the average of monthly mean growing season temperatures and as the sum of 523 

monthly mean growing season cumulative precipitation for the most recent available 30-year 524 

period (1970-2000) at 30 arcsec (~1 km) resolution from WorldClim v2.1 [EPSG:4326] and 525 

projected to an equal area projection [EPSG:3035]. 526 

Gridded summer temperature offset data were calculated as the average offset from June till 527 

August. Gridded winter temperature offset data were calculated as the average offset from 528 

December till February. Gridded Monthly temperature offset data were retrieved from Haesen et 529 

al., (2021)20 at the resolution of 25 m [EPGS:3035]. 530 

Gridded forest density data were retrieved from the 2015 Copernicus tree cover density map and 531 

represent the average horizonal tree cover density (in a range of 0 - 100 %; 532 

https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-533 

https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps/2015
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maps/2015) in a grid of 20 × 20 m [EPSG:3035]. Gridded forest density data were resampled to 534 

25 m resolution using a bilinear interpolation. 535 

 536 

5.3. Future environmental data 537 

The future average growing season temperature and cumulative growing season precipitation 538 

for the period 2070 (i.e. average for the period 2061 – 2080) were retrieved from WorldClim 539 

v2.1 under phase 5 of the Coupled Model Intercomparison Project (CMIP5) at 30 arcsec 540 

resolution for the representative concentration pathway RCP8.5. Gridded future average growing 541 

season temperature (mean of monthly maximum and minimum temperatures) and cumulative 542 

precipitation data were calculated as averages across four General Circulation Models (GCMs) to 543 

consider uncertainty related to each GCM. The GCMs were selected based on minimal 544 

interdependency following63 and data availability in WorldClim v2.1. We included MIROC5, 545 

INMCM4, ACCESS1-0 and CNRM-CM5. 546 

To evaluate the effects of forest management (and hence changes in forest structure) on 547 

population dynamics, two additional forest cover density maps with a hypothetical decrease and 548 

increase of 50% forest cover density (always with a maximum of 100%) were simulated. A 549 

decrease of 50% in forest density in response to management or natural disturbance is a realistic 550 

scenario: the average disturbance severity in European disturbed forest patches is 77% (with 0% 551 

indicating zero loss and 100% indicating complete replacement)53. 552 

For the sake of simplicity, we assumed temperature offset values to stay constant over time 553 

although macroclimate warming might enhance offset values22. Our estimates are thus 554 

conservative. 555 

 556 

https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps/2015
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6. Demographic models 557 

6.1. Vital rate models 558 

Individual-level measurements of six vital rates describing key transitions in the plant’s 559 

generative life cycle were regressed against experimental site-level environmental data (5.1) and 560 

plant size (for implementation in the IPMs) (Fig. S2, S4). The six vital rates included survival 561 

probability (n = 12 species), growth rate (n = 12), flowering probability (n = 8), number of 562 

reproductive structures (flowers or inflorescences; n = 8), number of seeds per fruit (n = 2) and 563 

seedling sizes (n = 5). Vital rates of species with too few or no observations were not modelled 564 

and introduced as constant values in the IPMs (Supplementary Tables 1,3). 565 

 566 

The vital rates were analysed with mixed-effect models in the R package lme464 for each species 567 

separately. Prior to modelling, the state variable ‘plant size’ was checked for normality based on 568 

visual inspection and transformed (ln or sqrt) when appropriate (Supplementary Table 1, 569 

Extended Data Fig. 5). To account for the nested experimental design, ‘mesocosm ID’ (9 levels) 570 

was included as random intercept in all models of vital rates that were measured at the level of 571 

the individual. As a sensitivity analysis against this approach, we also tested an alternative 572 

random effect term accounting for the fully nested study design: ‘mesocosm ID’ nested within 573 

‘experimental site’ nested within ‘forest type’ nested within ‘region’. This, however, did not 574 

changed the general trends in parameter estimates of the fixed effects (Extended Data Fig. 6). 575 

We therefore opted to keep the simpler random structure in all models. To account for 576 

environmental stochasticity across the study period, ‘sampling year’ was included as an 577 

additional random intercept in all vital rates models that were measured for more than one annual 578 

transition. Growth rate and the seedling size were regressed with linear mixed models (LMMs). 579 
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Survival and flowering probability (binary distributed) were regressed with generalized linear 580 

mixed-effect models (GLMMs) and a binomial error distribution. The number of reproductive 581 

structures and the number of seeds were regressed with GLMMs and a Poisson error distribution. 582 

The vital rate models included plant size (when relevant) and all environmental variables as fixed 583 

effect terms. Pairwise spearman correlations (r) among the environmental variables were 584 

acceptable (median |r| = 0.17; maximum |r| = 0.62)65. The seedling size models of Alliaria 585 

petiolata and Allium ursinum and the seed number models did not include the macroclimate 586 

predictors to avoid over-extrapolation because these vital rates were only measured in the sites of 587 

Belgium and Sweden66. The optimal level of model complexity was evaluated based on the 588 

lowest Akaike information criterion with small-sample correction (AICc) by comparing all 589 

possible nested models with reduced complexity using the R package MuMln67. For the model 590 

selection of the LMMs growth rate and the seedling size, we first set the restricted maximum 591 

likelihood (REML) argument to “FALSE”. Once the best model structure was selected, we set 592 

REML to TRUE for exact coefficient estimation64. Model fit of the selected models was assessed 593 

as the percentage of variance explained by the fixed effects (marginal R2; R2
m), and the 594 

percentage of variance explained by both fixed and random effects (conditional R2; R2
c) 595 

following Nakagawa & Schielzeth (2013)68. We only tested linear responses of the vital rates to 596 

the environmental gradients and plant size. Nevertheless, we also performed a qualitative 597 

sensitivity analyses against this approach by fitting the vital rate models with more flexible 598 

Generalized Additive Models (GAMs; details in Supplementary Methods 2; Extended Data Fig. 599 

7).   600 

 601 
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To analyse the relation between the species association with ancient forests (inferred from the 602 

CCI) and the responses of the survival probability to changes in the environment, we ran linear 603 

models with the parameter coefficients of this vital rate model as response variable, and the 604 

species’ CCI as predictor. The linear models were ran in a Bayesian framework using the R 605 

package brms69 that allows to take the standard errors around the model coefficient estimates into 606 

account. We used default chain parameters. 607 

 608 

6.2. Integral Projection Models (IPMs) 609 

The effects of the environment and experimental treatments on population growth rates (λ) were 610 

investigated by combining the vital rate models (as built in section 6.1) into Integral Projection 611 

Models (IPMs42). IPMs are analogous to matrix population models that allow the integration of 612 

multiple vital rates regressed against a continuous state variable, and are well-suited to gain 613 

mechanistic understanding on population dynamics to changes in the environment by including 614 

environmental covariates into each vital rate model of the IPM43. We built IPMs based on ‘plant 615 

height’ (sqrt- or ln-transformed; see 6.1) as the continuous state variable. For biennial species 616 

(Geranium robertianum and Alliaria petiolata), IPMs included ‘age’ as an additional state 617 

variable to explicitly account for their biennial life cycle70,71. We did not construct IPMs (and 618 

DDMs) for Vinca minor, Geranium sylvaticum and Oxalis acetosella due to the absence of 619 

fecundity data in these species. For these species, responses to the environment were only 620 

inferred based on the vital rates survival probability and growth rate. 621 

 622 

Because we could not infer vital rates related to vegetative reproduction (clonal growth) due to 623 

the lack of empirical data (this would require destructive sampling), the approach presented here 624 
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estimates population growth rates that apply on generative population growth in the phase of 625 

population establishment. Nevertheless, we acknowledge that for some forest plants, vegetative 626 

reproduction is an important aspect of the life cycle. In addition, the estimated λ implicitly 627 

accounts for the effects of neighbouring competitors as all individuals were transplanted into 628 

community mesocosms. Details on the IPM structure are described in Supplementary Methods 3. 629 

 630 

6.3. Demographic Distribution Models (DDMs) 631 

6.3.1. Demography-based distribution maps (i.e. maps of λ) 632 

Demography-based distribution maps (i.e. maps of λ) for each species were produced by 633 

projecting the IPMs across the study extent36,37 (Extended Data Fig 2). Both continental- and 634 

landscape-scale maps were produced to assess the model’s behaviour along macro- and 635 

microclimate gradients. Continental-extent maps were computed by iterating the IPM for each 636 

species in 1,000,000 random forested locations sampled within the study area. IPMs in these 637 

locations were supplied with environmental covariate values extracted from the 25-m resolution 638 

environmental layers. Landscape-extent maps were computed by iterating the IPM in all forested 639 

25 × 25 m cells in a squared area of 2 × 2 km (400 ha) around the centroid of the experimental 640 

plots in Italy, Belgium and South Sweden. Hence, both continental-extent and landscape-extent 641 

maps relied on 25 meter resolution environmental data. Projected maps of λ were computed for 642 

the current environmental conditions and all combinations of future macroclimate change and a 643 

50% increase or decrease in forest cover density.  644 

In all model future scenarios, we assumed temperature offsets to stay constant over time 645 

although forest disturbance reduces offset values19,21 and warming enhances offset values under 646 

maintained forest cover22. The rationale behind this decision was two-fold: (1) projected future 647 
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high-resolution below-canopy temperature offset data at the European scale are simply not yet 648 

available to date; (2) using constant temperature offset values under different forest management 649 

and climate-change scenarios allowed us to isolate the effect of changes in species’ demography 650 

within the community driven by the independent effect of light30. 651 

The effects of the experimental heating and irradiation treatments on the intercepts of the vital 652 

rates were not included in the future DDM predictions. Hence, we applied a space-for-time 653 

substitution to make future predictions, i.e. we only used the spatial gradient from the transplant 654 

experiment to infer changes over time, not including the temporal change brought on by the 655 

experimental treatments. All DDM predictions implicitly included forest edge effects by the vital 656 

rate responses to less buffered microclimates and more light availability that are typical for forest 657 

edges21,72.  658 

Geographic uncertainty of population growth rates (λ) was quantified by bootstrapping 659 

(Supplementary Methods 4). 660 

Parallel computation was implemented using the R packages foreach73 and doParallel74. Maps 661 

were produced using the R package tmap75, and are in an equal area projection [EPSG:3035]. In 662 

all maps, λ values higher than the 97.5% quantile were projected to the 97.5% quantile to avoid 663 

extremely high λ values in response to marginal environments that obscure the main gradient of 664 

the maps. 665 

 666 

6.3.2 Scenario analyses under variable forest cover density 667 

To quantify the impact of variable forest cover density (e.g. in response to changes in the forest 668 

management), we calculated the population growth rate in a subset of 10,000 random locations 669 

under all combinations of current and future climatic conditions and an increased and decreased 670 
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forest cover density of 10%, 20%, 30%, 40%, and 50%. The proportional change (relative the 671 

population growth rate under the baseline climate and forest cover conditions) was calculated 672 

and plotted for each species. 673 

 674 

6.3.3 Validation of the distribution maps 675 

A general and convenient method to validate DDM predictions is currently not existing. We here 676 

developed a method to test whether the DDMs perform better than random based on a 677 

quantitative comparison of the average population growth rates in occurrence locations (i.e. 678 

locations were the species was observed) versus random background locations. The average 679 

population growth rates in occurrence locations are expected to be higher compared to the 680 

background locations if a model is better than random. Significant differences between the two 681 

groups were tested with one-sample t-tests. Occurrence locations for each species were extracted 682 

from the Global Biodiversity Information Facility (GBIF, http://www.gbif.org). To improve the 683 

data quality, all occurrence locations were subject to a systematic cleaning protocol 684 

(Supplementary Methods 5). Unfortunately, we could not collect enough ‘real’ absence data 685 

points for all species, and therefore had to work with background locations as an alternative. At 686 

these background locations, the target species could be either absent or unobserved.  687 

For each species, population growth rates were calculated for 1,000 forested occurrence locations 688 

and 1,000 forested background locations. Because the median coordinate uncertainty of the 689 

cleaned occurrence locations after cleaning was still relatively low (333 meter), we calculated the 690 

population growth rate as the average population growth rate of all raster cell within an area of 691 

~1 km² (i.e. circular area with a radius of 564 meter) around these locations. Additional details 692 

are provided in Supplementary Methods 6.  693 

http://www.gbif.org/
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All analyses were performed in R version 4.1.076. 694 
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Data availability 695 

Macroclimate data are available through the global climate archive WorldClim 696 

(https://www.worldclim.org/data/index.html). Spatial temperature offset data between forest and 697 

open field conditions are available at https://doi.org/10.6084/m9.figshare.1461823520. Tree cover 698 

density data are available at https://land.copernicus.eu/pan-european/high-resolution-699 

layers/forests/tree-cover-density/status-maps/2015. Georeferenced observation records used for 700 

the continental scale validation of the Demographic Distribution Models (DDMs) are available at 701 

https://doi.org/10.15468/dl.3nvzc8 All experimental plant demographic data and site-level 702 

environmental data will be made available on an online repository such as FigShare 703 

(https://figshare.com/) (temporary private link to the data is already available:  704 

https://figshare.com/s/35b070818230ce5795d3). 705 

 706 

Code availability 707 

All scripts to reproduce the methods, analyses and figures will be made available on an online 708 

repository such as FigShare (https://figshare.com/) (temporary private link to the code to the 709 

code: https://figshare.com/s/35b070818230ce5795d3). 710 
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