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Abstract

In this paper, the phase-field method is described and used to model ice crystal growth that is studied in Chemical
Engineering in the freezing or freeze-drying process. Two mains partial differential equations are developed on the
entire domain consisting of the liquid phase, the solid one, and the interface : (i) The Allen Cahn equation that describes
the evolution of the phase field and (ii) the energy balance. In this paper, we explain how to preserve the thermodynamic
consistency of the system to model quantitatively ice crystal growth, in particular concerning the choice of the free
energy density. Several constitutive equations are used to model the specific properties of ice and water. Simulations are
performed in 2D domain using Euler discretization for time to solve the system equations. A complete discussion is made
concerning the " best way" to choose the main parameters for the simulation with respect to several physical properties
like the interfacial tension of ice/liquid water or the equilibrium stability conditions. Finally, freezing simulations are
presented and the potential of the phase field method in Chemical Engineering is discussed.

c© 2011 Published by Elsevier Ltd.
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1. Introduction

Some researches in Chemical Engineering focus on systems with moving interfaces between phases and

with complex morphologies of the interface, such as emulsion, polymerization, mixing, and solidification

processes (crystallization, freezing, drying, and freeze-drying). These moving boundary processes are very

challenging to simulate.

In the case of solidification process, the models currently used in literature are based on i) a sharp

interface as in the Stefan problem, ii) a coarse interface such the mushy zone representation or iii) a diffuse
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interface with Phase Field Method (PFM), investigated in physics and material area.

The first and second approaches are not completely satisfactory. The major issue of the sharp interface

treatment is about the numerical problems due to the discontinuity at the interface which has to be tracked

by introducing a scalar function [1, 2, 3, 4]. The Stefan model is also only representative of stable solidifi-

cation with a plane interface [5]. However, some sharp interface models of solidification are able to provide

dendritic structures [6, 2]. In the mushy zone representation, a two-phase mixed region appears between the

solid and liquid region that is considered as a porous medium. This representation can be developed either

with two sharp interfaces [7] or by using discrete numerical approach with a cellular automaton [8]. The

cellular automaton approach is based on discrete spatial cells. The type and state of each cell are known, and

their dynamics depend on the cell states in its neighborhood. The interactions between cells make it easy

to implement and computationally efficient. However, this approach lacks the connections between physical

processes and parameters [9, 8].

The phase field method (PFM) was introduced in research activities about thirty years ago to investigate

interfacial dynamic problems [10] in physics and material area. This method is based on thermodynamic

rules which allow the modeling of physical phenomena during the phase transformation. It overcomes the

difficulty of monitoring the solidification front, its creation and/or disappearance by providing a spatially

diffuse interface along a finite width. This diffuse interface is represented through the scalar variable called

phase field variable [11].

The bibliographical analysis shows a great interest of this method for material, metallurgical, and physics

applications. In these fields, the method has been successfully applied to present the evolution of complex

grain morphologies [12, 13], the splitting or coalescence of bubbles [12], realistic features of solid along

solidification [10, 14, 15, 16, 17] and the microsegregation of species during crystal growth [12].

However, the phase field method is rarely developed in the Chemical Engineering area, especially due

to the following limitations. Firstly, the method uses dimensionless equations, and the relations applied

to physical parameters are not clearly explained [10, 15]. Secondly, the results presented in the literature

are often merely qualitative. Only recently, the development of the thin interface limit theory [18, 19] has

made it possible to use a numerical interface thickness several orders of magnitude larger than the physical

interface thickness and to compare the results with experimental observations [17, 20].

The main objective of this work is to demonstrate the applicability of the phase field method to process

simulation by investigating the solidification of a pure component (water). Crystal growth and patterns of ice

and snow remain a large source of discussion and of computational works in literature [21, 22]. In the case of
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ice crystal growing in undercooled water, morphology has been recently described in [23, 21]. Details will

be given in section 3.3. In PFM field, several advanced works were done to represent the snowflake variety

of patterns. The kinetic limited surface attachment effect and the ice anisotropy are both taken into account.

The variety of snowflake patterns, its side-branching, and its growth kinetics in supersaturated atmosphere

are even successfully reproduced in three-dimension [17, 11]. In the case of ice growing in undercooled

liquid, both PFM study and experimental data were limited. The pioneering work of [10] enabled to show

the ice pattern structure in a qualitative way and the influence of physics and computational parameters

on ice growth. Several studies were recently conducted for binary systems, such ice growth from salted

water [24] or ice growth from sugary water [25]. They reproduced the dendritic branching aspect of ice and

retrieved the tip velocity of ice in a binary mixture environment. But to our knowledge, it lacks pure system

investigation.

In this paper, the applicability of the PFM for the growth of ice in water is demonstrated by : (i) extending

the phase field method currently used in physics to the Chemical Engineering field ; (ii) maintaining the

thermodynamic consistency ; (iii) working with a system of real units, in order to ease the extension of

the methodology to other pure components ; (iv) showing some quantitative simulation results of dendritic

growth of crystal and comparing them to the Ivantsov solution and microscopic solvability theory [17, 26].

This paper is organized as follows : first, the basic principles are developed and explained ; in the second

part, the model is applied to the crystallization of a pure component, namely water/ice solidification ; finally,

simulations are carried out to investigate the influence of main physical parameters in order to conclude

about the potential of the method in Chemical Engineering field.

2. Dynamical modeling of solidification

The system under consideration consists of a small volume V in which a pure material undergoes a phase

transition between solid and liquid.

2.1. Phase Field Method

The PFM model is based on the Ginzburg–Landau free-energy functional of the biphasic system, the

energy balance, and the so-called Allen-Cahn partial differential equations defined over the whole system.

The latter will give the spatial evolution of the phase field variable denoted by φ. φ takes value 1 for the

liquid state, 0 for the solid state, and intermediate continuous values in the diffuse interface (see Fig. 1). By

using a diffuse interface and the parameter φ, the interface position is implicitly set.
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Figure 1. Diffuse interface : variable φ evolution throughout the interface

2.2. Thermodynamics description of the heterogenous pure system

The Ginzburg–Landau free-energy functional of a biphasic system for pure material is given by the

relation (1) [27] :

F(φ,T ) =

∫
v

(
f (φ,T ) +

1
2
ε(−→n )2(∇φ)2

)
dv, (1)

where T (K) is the temperature, f (φ,T ) (J.m−3) is the free energy density function associated with the Gibbs’

equation. The quadratic term accounts for the free energy density of the diffuse interface where ε(−→n ) is a

positive constant related to the thickness δ (m) of the interface and its liquid/solid surface tension σ (J.m−2)

at melting temperature Tm [15, 27]. In order to manage the anisotropy of the system, we assume that ε(−→n )

depends on the direction of the outer normal vector −→n at the interface, which vector components are (−∇φ).

The notation ∇ stands for the gradient.

Remark 1. In (1), the molar volume of the system is assumed to be constant since the molar volumes of

liquid water and ice only differ by 3.5 % (maximal value) in the working area of temperature. The calculation

was made by using property values (see 3.1).

Remark 2. Since the solidification takes place at constant pressure, the free energy functional F could be

replaced by the "Gibbs energy" G in (1). The Gibbs energy G and the Helmholtz energy F only differ by

a constant term. Since the minimization of the energy functional is used to lead the system solidification,

either of these functions leads to the same conclusions

f (φ,T ) has a double well structure whose minima correspond to the free energy density of each phase

( fliq(T ), fsol(T ) for liquid and solid phase respectively). It is built by using an interpolating function pφ(φ)

and a double well function gφ(φ).

f (φ,T ) = fsol(T ) +
(

fliq(T ) − fsol(T )
)

pφ(φ) +
1
4a

gφ(φ) (2)
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Figure 2. Dimensionless density function f̃ (φ,T) at Tm

The bump size of the free energy density for 0 < φ < 1 is controlled by the parameter a (m3/J) in Eq.(2). In

fig.2, the dimensionless free energy density f̃ (φ,T ) = f (φ,T )a is plotted versus φ. Both a and ε are related

to the interfacial energy and thickness. The choice of the polynomials functions and parameter a have to be

carefully done to guarantee the thermodynamics consistency of the whole system [27] (see section 3.2 for

our study case).

2.3. Dynamical model in two dimensions

The set of governing equations comprises the Allen-Cahn equation (3) and the energy conservation (4)

as follows [27] :

τ
∂φ

∂t
= −

δF(φ,T )
δφ

(3)

∂u(s, φ)
∂t

= ∇(λ∇T ) (4)

where τ is the kinetic positive mobility coefficient and δF
δφ

is the variational derivative of F with respect to

φ. The energy balance is expressed using the internal energy density u(s, φ) (J.m−3) as in [27]. This balance

can also be written with respect to temperature (see below eq. (7)).

As properties are continuous throughout the interface, the interpolating function pφ(φ) is used to re-

present their evolution. The internal energy density u(s, φ) (J.m−3) and the thermal conductivity λ(φ,T ) are

thus defined according to (5).

X = Xsol + pφ(Xliq − Xsol) for X = u, λ (5)

For pure material, the latent heat of fusion L(T ) = uliq − usol is assumed to be constant in the working

range of temperature since the maximal error committed is lower than 1% (energy densities calculations
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made by using water and ice state equations from [28]). The relations uliq − usol ' L and fliq(T ) − fsol(T ) '

L(Tm−T )
Tm

, with the latent heat of fusion L at melting point Tm, are commonly used [15] for calculation of

properties. It facilitates the thermodynamics computation of the system and avoids time-consuming compu-

tations. The expanded final set of PFM equations becomes :

τ
∂φ

∂t
= −

L(Tm − T )
Tm

∂pφ
∂φ
−

1
4a

∂gφ
∂φ

+ ∇(ε2(−→n )∇φ) (6)

∂T
∂t

= −
L

Cvsol

∂pφ
∂t

+
1

Cvsol
∇T∇λ(φ,T ) +

λ(φ,T )

Cvsol
∇2T (7)

where Cvsol is the specific heat constant of solid phase in J.m−3.K−1.

2.3.1. Dimensionless model

To proceed further, the governing equations (6), (7) are rewritten in dimensionless form and applied in

2D spacial domain. As in [27], we introduce the length scale Lc representative of the size of the domain and

use the time constant L2
c

κliq
as the time reference scale with the thermal diffusivity of the liquid κliq (m2s−1) at

its initial temperature T 0
liq. The energy density of the Allen-Cahn equation is rewritten in its dimensionless

form with the bump a as in [15, 27, 29]. The dimensionless variables are :

x̃ =
x
Lc
, ỹ =

y
Lc
, t̃ =

t
L2

c
κliq

, T̃ =
T − Tm

T 0
liq − Tm

(8)

The dimensionless Allen-Cahn equation becomes :

τ̄
∂φ

∂t̃
= T̃α

∂pφ
∂φ
− β

∂gφ
∂φ

+ ∇̃(ε̄2∇̃φ) (9)

with

τ̄ =
τ a
L2

c
κliq

, ε̄ =

√
a ε(−→n )

Lc
, α =

L a(T 0
liq − Tm)

Tm
, β =

1
4

The notation ∇̃ stands for the gradient with respect to dimensionless spatial variables.



/ Journal of Crystal Growth 00 (2023) 1–20 7

The dimensionless energy equation becomes :

∂T̃
∂t̃

=
L

Cvsol(Tm − T 0
liq)

∂pφ
∂t̃

+
λ(φ,T )
κliqCvsol

∇̃2T̃ +
Lc

κliqCvsol
∇̃λ(φ,T )∇̃T̃ . (10)

The thermal conductivity gradient is :

∇̃λ(φ,T ) =
1 − pφ

Lc

∂λliq

∂T̃
∇̃T̃ +

pφ
Lc

∂λsol

∂T̃
∇̃T̃ +

∇̃pφ
Lc

(λliq(T ) − λsol(T )) (11)

In PFM literature [10, 13], to simplify the system description, the melt and solid phases take the same

properties for conductivity and heat capacity. Hence, the conductivity gradient ∇̃λ is not taken into account

for the energy conservation formulation in many phase field models. To be as close as possible to a quanti-

tative representation of the growth process, the temperature impact is added here for this gradient.

2.3.2. Anisotropy constitutive equation

To observe the microscopic features of the solid along its solidification, independent control of the

anisotropy is included as in other works [24, 10] .

ε(−→n ) = ε(1 + δa cos(bnθ)) (12)

where the parameter δa drives the strength of the anisotropy, bn is the branches number of the crystal. θ

is the angle between the interface normal vector (−→n ) and a given crystallographic direction. Its expression is

given by :

θ = arctan(
∇φx

∇φy
) (13)

3. Parameters of ice freezing

In this section, thermal and physical properties of ice and liquid water required for the model computa-

tions are detailed. Then, the polynomial forms of pφ(φ) and gφ(φ) as well as some choices in the thermody-

namics model are specified. Finally, the phase field parameters, namely a, ε, τ, and the specific anisotropy

constitutive function and pattern of ice are presented in this section.

3.1. Thermal and physical properties of liquid water and ice

At atmospheric pressure, thermophysical properties of liquid water and ice, namely thermal conductivity,

heat capacity, density, latent heat and surface free energy, are listed in Table 1. All properties are functions
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of temperature and are expressed by using a polynomial expression in order to make their computations

easier in the simulation. Some of the polynomial functions proposed in Table 1 are built by using the state

equations of ice and water proposed in [28]. The polynomial functions are valid in the temperature range

(from 253K to 273K) .

Table 1. Properties of ice and water

Water
Thermal conductivity (λliq) W.m−1.K−1 0.57109 + 1.7625 10−3T − 6.7036 10−6T 2 [30]
Density (ρliq) kg.m−3 1000.50 − 1.3781 10−1T − 2.3195 10−2T 2 [28]
Heat Capacity (Cvliq) J.kg−1.K−1 4208.4 − 3.6409 10−1T + 3.5508 10−1T 2 [28]

Ice
Thermal conductivity (λsol) W.m−1.K−1 2.2196 − 6.2489 10−3T + 1.0154 10−4T 2 [30]
Density (ρsol) kg.m−3 916.75 − 0.13073T [28]
Heat Capacity (Cvsol) J.kg−1.K−1 2096.5 + 7.3034T [28]

Ice/water properties at 0◦C
Latent heat of fusion (L) J.m−3 305.65 106 [28]
Surface free energy (σ) J.m−2 2.85 10−2 [31]

with T (◦C)

3.2. Thermodynamics consistency of the model

The Ginzburg–Landau free-energy functional F (1) has to be written in a thermodynamically-consistent

manner to have a quantitative evolution of the system in transition. For this purpose, each term of the

functional are discussed in the hereafter paragraphs.

3.2.1. Choice of polynomials pφ(φ) and gφ(φ)

The density function f (φ,T ) (2) needs to have, for all values of temperature T, local minima with respect

to each phase, such as [32] :

∂ f
∂φ

∣∣∣∣∣
φ=0

=
∂ f
∂φ

∣∣∣∣∣
φ=1

and
∂2 f
∂φ2

∣∣∣∣∣
φ=0,1

> 0. (14)

Besides, at equilibrium, the variational derivative of the Landau-Ginzburg functional (3) must be equal to 0,

then, we need to check [15] :

∂ f
∂φ

∣∣∣∣∣
φ=0,1

= 0. (15)

Appropriate polynomial functions pφ(φ) and gφ(φ) are selected to make sure to have the desirable properties

for f (φ,T ). Several propositions were made in the literature [33]. Kobayashi [10] choose to use pφ(φ) =
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φ2(32φ) and gφ(φ) = φ2(1φ)2 for the ice/liquid water system. In this case, the second derivative of the

density function f (φ,T ) according to φ (14) is positive only if the parameter a (see (2)) fulfills the additional

condition (| 12aL(TmT )
Tm

| < 1). Since the parameter a allows to manage the interfacial energy and thickness

(see (17) and (18)), then this choice has been excluded to avoid any size limitation of the interface by the

polynomial function choice. By using, pφ(φ) = φ3(6φ2 − 15φ + 10) and gφ(φ) = φ2(1 − φ)2, as proposed

by [27, 15], the stability conditions (14), (15) are all fulfilled by fixing a > 0 : these functions have been

retained in the model formulation.

3.2.2. Phase field parameters

The parameters a and ε that appear in (1) are commonly related to the interface thickness δ and the

surface free energy σ in literature [15, 27]. For this purpose, an one-dimensional solution of the isotropic

form of (9) is established under equilibrium conditions [27]. This solution gives the shape of the variable φ

in the diffuse interface [27] (the interface is located around x = 0).

φ(x) =
1
2

(tanh(
x

2
√

2aε
) + 1) (16)

The approximated size of diffuse interface thickness δ is given by :

δ = 2α a1/2ε (17)

By taking the reciprocal function of (16), we can determine the values of −δ/2 and +δ/2 for φ = 0.01

and φ = 0.99, respectively. In this case, α' 7.48. By using α, the thickness of the interface can be assessed

for simulation.

The interfacial tension σ(Tm) of ice/liquid water system and the phase field parameters a and ε are

related by (18) [13, 27] :

σ(Tm) =

√
2ε

12
√

a
(18)

This relation is found by using the Helmholtz free energy functional equation (1) associated with the one-

dimensional solution of φ (16), evaluated at equilibrium conditions and expressed by the unit of surface

area [34]. Notice that this last relation is established by using the commonly accepted convention fliq(Tm) =

fsol(Tm).

In practice, to use the model in a phenomenological way, the interfacial tension σ(Tm) needs to be

correctly reproduced in order to predict the interfacial properties. This parameter is thus a physical property
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(see Table 2). Most authors do not fix the interface size but prefer to fix the dimensionless variable ε̄ at a low

value in order to have an interface size to be less than Lc but large enough for computations. Consequently,

ε̄ and Lc are computational parameters (see table 2). Typically, ε̄ takes values between 0.01 to 0.08 ([10, 18,

19]).

3.3. Ice patterns and anisotropy

In the case of ice crystal growing in undercooled water, the morphology diagram of nonequilibrium

patterns was proposed in a wide undercooling range 0.1C< ∆T <30C [23, 21]. For a small undercooling

(1C), a microscopic seed crystal tends to grow into the form of a simple circular disk. The basal surface

structure of ice is maintained by the limited surface attachment kinetics. The growth of the disk edge is

also limited by the diffusion of latent heat. As the undercooling increases (∆ T =2C), the disk growth

becomes unstable, resulting in the formation of dendritic branching, and the basal faceting remains. The

side branching occurrence is commonly explained by the Mullins–Sekerka instability theory [35]. For larger

undercooling (∆ T =4C), unbranched needle-like structures appear, to branched needle-like structures (∆ T

=8C), to platelets (∆ T =10–30C).

As previous works [10, 24], we added the six-fold symmetry of ice by fixing the branch number to 6 ;

the anisotropy parameter δa varies following literature from 0.01 to 0.05. We fix it to 0.03 as in [24]. Finally,

an uniformly distributed noise is added to produce side branching on the crystal. Indeed, in the absence of

such noise and in the case of fine mesh spacing dx, it appears that dendrites in pure system tend to grow

without side-branching to needle-like dendrites. Only small perturbations corresponding to thermal noise

are responsible for the side-branching dendrites. Here, the noise is added in the dynamic term of the phase

field equation (6), as proposed by [24].

τ̄
∂φ

∂t̃
= T̃α

∂pφ
∂φ
− β

∂gφ
∂φ

+ ∇̃(ε̄2∇̃φ) + rη16gφ(φ) (19)

where r(x, y, t) is a random number between -1 to +1, and η is the disturbance intensity parameter of the

phase field fixed to 0.03 after computational research. The maximum disturbance will occur at the interface

when φ = 0.5, and as we move further away from the interface, the disturbance gets smaller. The term

16gφ(φ) is used to introduce the forced disturbance on the interface.

3.4. Kinetic constant τ

To achieve the appropriate interface kinetics, the problem is often reduced to the study of the macrosco-

pic free boundary model which involves the following system of equations in the case of the solidification
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process : the Stefan condition equation, the generalized Gibbs-Thomson equation, and the energy conserva-

tion equation (see [15, 18] for details). The parameter τ can be explicitly calculated by using the relation bet-

ween the material parameters and the interface kinetic coefficient 1/µ from the generalized Gibbs-Thomson

equation (20) established for an isotropic interface :

T = Tm −
σ Tm ζ

L
− v

1
µ

(20)

This relation links the interface temperature T , the normal ice growth rate v (m.s−1) and the interface cur-

vature ζ. The interface temperature T deviates from the equilibrium value Tm by two terms : the first is the

capillary shift of the melting temperature (Gibbs-Thomson effect) ; the second is due to interface kinetics.

Karma (1998)[18] related the interface kinetic 1/ to the kinetic coefficient τ, by performing an asymptotic

analysis of the phase field model equations in the case of the thin interface limit. The relation is :

1
µ

=
a1 L
Cv

(
τ

λ W
− a2

W
κ

) (21)

where a1[−] and a2[−] are computational parameters depending of the choice of the polynomial func-

tions and λ = a1W
d0

and W = a1/2ε. If we assume that the temperature is constant in the interface, which is

often called as the sharp interface limit [29], then the second term of (21) vanishes, and the kinetic coefficient

τ is obtained by :

τ̄ =
ε̄2LκL

µσ Tm
(22)

By using this method, W and meshing dx have to be scaled small enough compared to the scale of den-

drite pattern in order to converge to a reliable quantitative solution of the sharp-interface equations. Besides,

some authors highlighted that simulations at smaller undercooling seemed to exhibit a dependence on the

interface thickness[29].

For large undercooling, Langer et al. [36] and Shibkov [23] reported the tip-velocity v of an isolated

dendrite of ice growing freely in a pure and undercooled liquid for different undercooling values. By using

experimental data, rough values of 1
µ

and τ̄ from Tliq between -5 and -25C can be evaluated. They are

reported in Table 2.
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3.5. Model simulation

3.5.1. Numerical method and boundary conditions

The spatial 2D domain is discretized using N × N points. The explicit Euler method is used for time

integration. The centered finite difference method is used to discretize gradient and divergence operators.

Divergence is computed using a 9-points laplacian.

For the boundary conditions, since the system is isolated, there is no heat flux at boundaries. For this

simulation, the germ (80 meshes) is located in the middle of the space under consideration.

3.5.2. Parameters of the simulation

Table 2. Simulation parameters

Definition Parameter Value(s) Unity
Initial undercooling degree of temperature Tm − T 0

liq 5, 10, 15 K
Dimensionless grid spacing dx̃ 0.02 [-]
Dimensionless time dt̃ 5 10−5 [-]
Mesh number in x-axis or y-axis direction N 600 [-]
Mesh number of initial crystal nucleus diameter 80
Bump size of the free energy density a 3.37 10−7 m3/J
Computational parameter ε̄ 0.06 [-]
Computation size Lc 1.3 10−6 m
Energy gradient constant ε 1.39 10−4 J1/2.m−1/2

Kinetic constant of Allen-Cahn equation τ̄ 0.25 [−]
Capillarity diameter d0 3.4 10−10 m
Anisotropy factor for ε δa 0.03 [−]
Branch number bn 6 [−]

Due to the large number of parameters, parameter assessment for phase field models is not straightfor-

ward. For a fixed set of physical parameters, several tests were made to have the better set of computational

parameters (see table 2). Several sets of computational parameters (ε̄, Lc,dx̃, dt̃, δ) were tested. For each nu-

merical test, we followed the method proposed by [26] to have a reasonable independence of computational

parameters for the ice growth simulation. The following points have to be checked :

– The grid spacing dx = Lcdx̃ has to be much smaller than the interface thickness δ (calculated by (17)).

Besides, the grid spacing dx/W ratio is about 0.3 to avoid spinning effect.

– To retrieve the results of the Gibbs Thomson relation (20) according to [18], the computational thick-

ness W has to be fine enough in order to check W
d0 << κτ/W

2.

– To observe the crystal growth in an undercooled liquid temperature without large variation of its

temperature for an isolated system, the simulation grid size has to be wide.
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– Once dx̃ is chosen, the time step dt̃ has to be small enough to fulfill the Fourier stability criterium.

The selected simulation parameters for the water-ice system are shown in Table 2.

4. Results and discussion

4.1. Comparison

Figures 3, 4, 5 give snapshots at different times of the phase field φ(t, x, y) and the temperature field

T (t, x, y) for initial liquid temperature T 0
liq = −5◦C, T 0

liq = −10◦C and T 0
liq = −15◦C, respectively. Zooms of

some snapshots are presented to evidence the crystal pattern. The figures are presented with real size of the

crystals and real time.

At t = 0ms, one solid spherical germ is placed at the grid middle as shown in Figure 3. In Figures 3,

4, and 5, the typical hexagonal prism of ice is observed in the early stages of the crystal growth. This form

remains for a longer time at low undercooling. In all cases, at some time, the crystal exhibits the formation

of the first branch and side branches. At high undercooling, the crystal shows numerous side branching and

the dendritic pattern of ice. The effect of heat conduction is also clearly evidenced on the temperature field

as crystal growth progresses.

In Figure 6, three cross-sections of the phase field (in horizontal, vertical, and diagonal directions of the

grid) are depicted for T 0
liq = −15◦C. The number of points inside the interface is large enough in order to

have an impact of the φ gradient on the interface orientation. It can be noticed that the interface number of

meshes is around 20.

To compare our simulation results to experimental data [36, 23] and to the Ivantsov solution [37], we

also compute the tip velocity vtip (see Figure 7) of the crystal in growth in the following manner : we define

the interface by the locus φ < 0.99 and retrieve the dendrite tip position on the middle of x-axis, every

5000 steps of time [17]. In Figure 7, as expected, the crystal growth velocity depends on the undercooling

conditions and physical properties of each phase. The steady state is quasi-achieved at the early stage of

crystallization. At steady state, we confronted experimental data, the steady-state simulated tip velocity and

the Ivantsov solution values for each undercooling condition (see Table 3). The Ivantsov equation [37] is

a well-known relation used to calculate the tip velocity of a solid phase at constant temperature Tm which

extends into an undercooled melt in diffusive conditions. Inside the melt the temperature drops and reaches

far from the interface its asymptotic value T 0
liq at steady state. The Ivantsov relation connects the Peclet

number Pe = vtipR/2κL and the undercooling ∆ = (TmT 0
liq)CvL/L. Here, vtip and R are the tip-velocity and
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Figure 3. Simulation at t = 0 ms, t = 0.013 ms, t = 0.027 ms, t = 0.061 ms, t = 0.13 ms,t = 0.19 ms for T 0
liq = −5◦C

the tip-radius of a parabola interface, respectively, of the first branch. For the 2D case, in the case of dendritic

growth :

∆ = (πPe)0.5ePe er f c(P0.5
e ) (23)
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To use the Ivantsov solution, the tip radius R of the crystal needs to be calculated. To this end, the crystal

edge and curvature of the crystal have been numerically obtained by adapting the function from [38]. The

adequacy of the function can be checked with a circular geometry and at different sizes.

In Table 3, the numerical velocities are lower than the experimental ones. The values range is however

respected. Whatever the undercooling degree, the tip velocity calculated with the Ivantsov solution is not

in good agreement with the experimental data and the PFM simulated results. This can be resolved by : i)

improving the radius tip calculation in the case of solid picture with a high branching degree ; ii) improving

the simulation results. Indeed, the radius tip of the first branch in the PFM simulation pictures is perhaps

different from the experimental one, i.e the form of the crystal is not totally quantitative in our simulations.

In both cases, in order to improve the results of the study, relevant experimental data of the tip radius of ice

and patterns are required to compare them with PFM simulation results.

Figure 4. Simulation at t = 0.013 ms, t = 0.027 ms, t = 0.068 ms, t = 0.16 ms for T 0
liq = −10◦C

Table 3. Ice growth velocity comparison

Undercooling temperature (C) Velocity (cm/s) Method
5, 10, 15 0.8 ± 0.1, 1.5 ± 0.1, 4.4 ± 0.4 PFM simulation results
5, 10, 15 1.1 ± 0.1, 2.6, 5.7 Experimental results [36, 23]
5, 10, 15 0.1, 0.6, 1.2 Ivantsov method [37]
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Figure 5. Simulation at t = 0.013 ms , t = 0.027 ms , t = 0.08 ms , t = 0.16 ms ms for T 0
liq = −15◦C

Figure 6. Several cross sections of the phase field (in horizontal ∗, vertical − and diagonal directions + of the grid) for T 0
liq = −15◦C

and t = 0.027 ms

4.2. Potential of the Phase field method application in the Chemical Engineering field

One major advantage of the phase field method is that the control of the interface and its anisotropy are

included in the model formulation. The anisotropy function is empirically chosen in our case. We choose a

classical one that is easy to implement. It can be noticed that some advanced studies in literature[17, 11, 39]

employed an anisotropy function which enables to check the position of the first branch and side branching

of snow in a quantitative manner.

Parameters (see section 3.2) are chosen to respect the thermodynamic consistency of the system. Nu-

merical parameters (see 3.5.2) are also selected to limit the influence of the numerical method. It leads to

simulating the system at microscale size to conserve a small but consistent interface width. As there are
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Figure 7. Tip velocity over time for each undercooling condition

properties gradients in the interface that needs to be correctly simulated, the point number in the interface is

large and the computation of the system is time-consuming. These inconveniences limit the use of the phase

field method in the Chemical Engineering field. In our opinion, phase field simulation can be a powerful tool

to give local information about the macroscopic system as a snapshot in the field of Chemical Engineering.

To expand the scope of application in Chemical Engineering, the model should be extended to binary system

by taking into account mass transfer and binary equilibrium phase. A better computational method needs to

be chosen to avoid time and space computation limitations. The parameters selection can also be performed

by using the thin interface method [18] : it enables to work with a higher size of the interfacial thickness

and can provide better quantitative results at low undercooling [29] for both the tip velocity and the solid

patterns aspect.

5. Conclusion

The potential of the phase field method is a worthwhile goal in the Chemical Engineering field because it

allows observing the formation of defaults during ice growth such as anarchic ice, and solute incorporation,...

As presented in this work, it is possible to develop a thermodynamically consistent model to simulate the

kinetics and the facies of the interface. The example discussed in this article concerns dendritic solidification

for ice-freezing applications. A large number of parameters of the model have been correlated to well-known

properties of water, ice or ice/water equilibrium. Numerical parameters have been investigated to study the

growth and the sidebranching. Using this model approach is very challenging in Chemical Engineering

because it contains a great deal of known physics. The approach developed in this article concerning ice
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growth could be easily extended to a binary system for crystallization, but also to liquid/liquid phases for

emulsion application or liquid/gas for boiling systems.
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