Aurélie Galfré 
  
Xiaoqian Huang 
  
Françoise Couenne 
  
Claudia Cogné 
  
  
  
The phase field method -from fundamentals to practical applications in crystal growth

Keywords: A1. Crystal morphology, A1. Interfaces, A1 Solidification, A2. Single crystal growth

In this paper, the phase-field method is described and used to model ice crystal growth that is studied in Chemical Engineering in the freezing or freeze-drying process. Two mains partial differential equations are developed on the entire domain consisting of the liquid phase, the solid one, and the interface : (i) The Allen Cahn equation that describes the evolution of the phase field and (ii) the energy balance. In this paper, we explain how to preserve the thermodynamic consistency of the system to model quantitatively ice crystal growth, in particular concerning the choice of the free energy density. Several constitutive equations are used to model the specific properties of ice and water. Simulations are performed in 2D domain using Euler discretization for time to solve the system equations. A complete discussion is made concerning the " best way" to choose the main parameters for the simulation with respect to several physical properties like the interfacial tension of ice/liquid water or the equilibrium stability conditions. Finally, freezing simulations are presented and the potential of the phase field method in Chemical Engineering is discussed.

Introduction

Some researches in Chemical Engineering focus on systems with moving interfaces between phases and with complex morphologies of the interface, such as emulsion, polymerization, mixing, and solidification processes (crystallization, freezing, drying, and freeze-drying). These moving boundary processes are very challenging to simulate.

In the case of solidification process, the models currently used in literature are based on i) a sharp interface as in the Stefan problem, ii) a coarse interface such the mushy zone representation or iii) a diffuse interface with Phase Field Method (PFM), investigated in physics and material area.

The first and second approaches are not completely satisfactory. The major issue of the sharp interface treatment is about the numerical problems due to the discontinuity at the interface which has to be tracked by introducing a scalar function [START_REF] Rich | Sea water desalination by dynamic layer melt crystallization : Parametric study of the freezing and sweating steps[END_REF][START_REF] Ramanuj | A sharp interface model for deterministic simulation of dendrite growth[END_REF][START_REF] Danaila | A newton method with adaptive finite elements for solving phase-change problems with natural convection[END_REF][START_REF] Bourdillon | Numerical simulations of water freezing processes in cavities and cylindrical enclosures[END_REF]. The Stefan model is also only representative of stable solidification with a plane interface [START_REF] Htira | Experimental study of industrial wastewater treatment by freezing[END_REF]. However, some sharp interface models of solidification are able to provide dendritic structures [START_REF] Barrett | Numerical computations of faceted pattern formation in snow crystal growth[END_REF][START_REF] Ramanuj | A sharp interface model for deterministic simulation of dendrite growth[END_REF]. In the mushy zone representation, a two-phase mixed region appears between the solid and liquid region that is considered as a porous medium. This representation can be developed either with two sharp interfaces [START_REF] Pavel | Planar solidification solution with mushy zone[END_REF] or by using discrete numerical approach with a cellular automaton [START_REF] Kelly | Physical improvements to a mesoscopic cellular automaton model for three-dimensional snow crystal growth[END_REF]. The cellular automaton approach is based on discrete spatial cells. The type and state of each cell are known, and their dynamics depend on the cell states in its neighborhood. The interactions between cells make it easy to implement and computationally efficient. However, this approach lacks the connections between physical processes and parameters [START_REF] Dang | Comparative study on snowflake dendrite solidification modeling using a phase-field model and by cellular automaton[END_REF][START_REF] Kelly | Physical improvements to a mesoscopic cellular automaton model for three-dimensional snow crystal growth[END_REF].

The phase field method (PFM) was introduced in research activities about thirty years ago to investigate interfacial dynamic problems [START_REF] Kobayashi | Modeling and numerical simulations of dendritic crystal growth[END_REF] in physics and material area. This method is based on thermodynamic rules which allow the modeling of physical phenomena during the phase transformation. It overcomes the difficulty of monitoring the solidification front, its creation and/or disappearance by providing a spatially diffuse interface along a finite width. This diffuse interface is represented through the scalar variable called phase field variable [START_REF] Demange | A phase field model for snow crystal growth in three dimensions[END_REF].

The bibliographical analysis shows a great interest of this method for material, metallurgical, and physics applications. In these fields, the method has been successfully applied to present the evolution of complex grain morphologies [START_REF] Plapp | Multiphase Microfluidics : The Diffuse Interface Model[END_REF][START_REF] Moelans | An introduction to phase-field modeling of microstructure evolution[END_REF], the splitting or coalescence of bubbles [START_REF] Plapp | Multiphase Microfluidics : The Diffuse Interface Model[END_REF], realistic features of solid along solidification [START_REF] Kobayashi | Modeling and numerical simulations of dendritic crystal growth[END_REF][START_REF] Rojas | A phase-field-lattice boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection[END_REF][START_REF] Boettinger | Phase-field simulation of solidification[END_REF][START_REF] Tönhardt | Phase-field simulation of dendritic growth in a shear flow[END_REF][START_REF] Demange | Growth kinetics and morphology of snowflakes in supersaturated atmosphere using a three-dimensional phase-field model[END_REF] and the microsegregation of species during crystal growth [START_REF] Plapp | Multiphase Microfluidics : The Diffuse Interface Model[END_REF]. However, the phase field method is rarely developed in the Chemical Engineering area, especially due to the following limitations. Firstly, the method uses dimensionless equations, and the relations applied to physical parameters are not clearly explained [START_REF] Kobayashi | Modeling and numerical simulations of dendritic crystal growth[END_REF][START_REF] Boettinger | Phase-field simulation of solidification[END_REF]. Secondly, the results presented in the literature are often merely qualitative. Only recently, the development of the thin interface limit theory [START_REF] Karma | Quantitative phase-field modeling of dendritic growth in two and three dimensions[END_REF][START_REF] Echebarria | Quantitative phase-field model of alloy solidification[END_REF] has made it possible to use a numerical interface thickness several orders of magnitude larger than the physical interface thickness and to compare the results with experimental observations [START_REF] Demange | Growth kinetics and morphology of snowflakes in supersaturated atmosphere using a three-dimensional phase-field model[END_REF][START_REF] Tan | Modeling ice crystal growth using the lattice boltzmann method[END_REF].

The main objective of this work is to demonstrate the applicability of the phase field method to process simulation by investigating the solidification of a pure component (water). Crystal growth and patterns of ice and snow remain a large source of discussion and of computational works in literature [START_REF] Libbrecht | Physical dynamics of ice crystal growth[END_REF][START_REF]The formation of ice crystals, compendium of meteorology[END_REF]. In the case of ice crystal growing in undercooled water, morphology has been recently described in [START_REF] Shibkov | Morphology diagram of nonequilibrium patterns of ice crystals growing in supercooled water[END_REF][START_REF] Libbrecht | Physical dynamics of ice crystal growth[END_REF]. Details will be given in section 3.3. In PFM field, several advanced works were done to represent the snowflake variety of patterns. The kinetic limited surface attachment effect and the ice anisotropy are both taken into account.

The variety of snowflake patterns, its side-branching, and its growth kinetics in supersaturated atmosphere are even successfully reproduced in three-dimension [START_REF] Demange | Growth kinetics and morphology of snowflakes in supersaturated atmosphere using a three-dimensional phase-field model[END_REF][START_REF] Demange | A phase field model for snow crystal growth in three dimensions[END_REF]. In the case of ice growing in undercooled liquid, both PFM study and experimental data were limited. The pioneering work of [START_REF] Kobayashi | Modeling and numerical simulations of dendritic crystal growth[END_REF] enabled to show the ice pattern structure in a qualitative way and the influence of physics and computational parameters on ice growth. Several studies were recently conducted for binary systems, such ice growth from salted water [START_REF] Yuan | Ice crystal growth in the freezing desalination process of binary water-nacl system[END_REF] or ice growth from sugary water [START_REF] Van Der Sman | Phase field simulations of ice crystal growth in sugar solutions[END_REF]. They reproduced the dendritic branching aspect of ice and retrieved the tip velocity of ice in a binary mixture environment. But to our knowledge, it lacks pure system investigation.

In this paper, the applicability of the PFM for the growth of ice in water is demonstrated by : (i) extending the phase field method currently used in physics to the Chemical Engineering field ; (ii) maintaining the thermodynamic consistency ; (iii) working with a system of real units, in order to ease the extension of the methodology to other pure components ; (iv) showing some quantitative simulation results of dendritic growth of crystal and comparing them to the Ivantsov solution and microscopic solvability theory [START_REF] Demange | Growth kinetics and morphology of snowflakes in supersaturated atmosphere using a three-dimensional phase-field model[END_REF][START_REF] Wang | Algorithms for phase field computation of the dendritic operating state at large supercoolings[END_REF]. This paper is organized as follows : first, the basic principles are developed and explained ; in the second part, the model is applied to the crystallization of a pure component, namely water/ice solidification ; finally, simulations are carried out to investigate the influence of main physical parameters in order to conclude about the potential of the method in Chemical Engineering field.

Dynamical modeling of solidification

The system under consideration consists of a small volume V in which a pure material undergoes a phase transition between solid and liquid.

Phase Field Method

The PFM model is based on the Ginzburg-Landau free-energy functional of the biphasic system, the energy balance, and the so-called Allen-Cahn partial differential equations defined over the whole system. The latter will give the spatial evolution of the phase field variable denoted by φ. φ takes value 1 for the liquid state, 0 for the solid state, and intermediate continuous values in the diffuse interface (see Fig. 1). By using a diffuse interface and the parameter φ, the interface position is implicitly set. 

Thermodynamics description of the heterogenous pure system

The Ginzburg-Landau free-energy functional of a biphasic system for pure material is given by the relation (1) [START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF] :

F(φ, T ) = v f (φ, T ) + 1 2 ( - → n ) 2 (∇φ) 2 dv, (1) 
where T (K) is the temperature, f (φ, T ) (J.m -3 ) is the free energy density function associated with the Gibbs' equation. The quadratic term accounts for the free energy density of the diffuse interface where ( -→ n ) is a positive constant related to the thickness δ (m) of the interface and its liquid/solid surface tension σ (J.m -2 ) at melting temperature T m [START_REF] Boettinger | Phase-field simulation of solidification[END_REF][START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF]. In order to manage the anisotropy of the system, we assume that ( -→ n ) depends on the direction of the outer normal vector -→ n at the interface, which vector components are (-∇φ).

The notation ∇ stands for the gradient.

Remark 1. In (1), the molar volume of the system is assumed to be constant since the molar volumes of liquid water and ice only differ by 3.5 % (maximal value) in the working area of temperature. The calculation was made by using property values (see 3.1).

Remark 2. Since the solidification takes place at constant pressure, the free energy functional F could be replaced by the "Gibbs energy" G in [START_REF] Rich | Sea water desalination by dynamic layer melt crystallization : Parametric study of the freezing and sweating steps[END_REF]. The Gibbs energy G and the Helmholtz energy F only differ by a constant term. Since the minimization of the energy functional is used to lead the system solidification, either of these functions leads to the same conclusions f (φ, T ) has a double well structure whose minima correspond to the free energy density of each phase ( f liq (T ), f sol (T ) for liquid and solid phase respectively). It is built by using an interpolating function p φ (φ) and a double well function g φ (φ). The bump size of the free energy density for 0 < φ < 1 is controlled by the parameter a (m 3 /J) in Eq.( 2). In fig. 2, the dimensionless free energy density f (φ, T ) = f (φ, T )a is plotted versus φ. Both a and are related to the interfacial energy and thickness. The choice of the polynomials functions and parameter a have to be carefully done to guarantee the thermodynamics consistency of the whole system [START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF] (see section 3.2 for our study case).

f (φ, T ) = f sol (T ) + f liq (T ) -f sol (T ) p φ (φ) + 1 4a g φ (φ) (2) 

Dynamical model in two dimensions

The set of governing equations comprises the Allen-Cahn equation ( 3) and the energy conservation (4)

as follows [START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF] :

τ ∂φ ∂t = - δF(φ, T ) δφ (3) ∂u(s, φ) ∂t = ∇(λ∇T ) ( 4 
)
where τ is the kinetic positive mobility coefficient and δF δφ is the variational derivative of F with respect to φ. The energy balance is expressed using the internal energy density u(s, φ) (J.m -3 ) as in [START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF]. This balance can also be written with respect to temperature (see below eq. ( 7)).

As properties are continuous throughout the interface, the interpolating function p φ (φ) is used to represent their evolution. The internal energy density u(s, φ) (J.m -3 ) and the thermal conductivity λ(φ, T ) are thus defined according to [START_REF] Htira | Experimental study of industrial wastewater treatment by freezing[END_REF].

X = X sol + p φ (X liq -X sol ) for X = u, λ (5) 
For pure material, the latent heat of fusion L(T ) = u liqu sol is assumed to be constant in the working range of temperature since the maximal error committed is lower than 1% (energy densities calculations , with the latent heat of fusion L at melting point T m , are commonly used [START_REF] Boettinger | Phase-field simulation of solidification[END_REF] for calculation of properties. It facilitates the thermodynamics computation of the system and avoids time-consuming computations. The expanded final set of PFM equations becomes :

τ ∂φ ∂t = - L(T m -T ) T m ∂p φ ∂φ - 1 4a ∂g φ ∂φ + ∇( 2 ( - → n )∇φ) (6) 
∂T ∂t = - L C vsol ∂p φ ∂t + 1 C vsol ∇T ∇λ (φ,T ) + λ (φ,T ) C vsol ∇ 2 T (7)
where C vsol is the specific heat constant of solid phase in J.m -3 .K -1 .

Dimensionless model

To proceed further, the governing equations ( 6), ( 7) are rewritten in dimensionless form and applied in 2D spacial domain. As in [START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF], we introduce the length scale L c representative of the size of the domain and use the time constant

L 2 c
κ liq as the time reference scale with the thermal diffusivity of the liquid κ liq (m 2 s -1 ) at its initial temperature T 0 liq . The energy density of the Allen-Cahn equation is rewritten in its dimensionless form with the bump a as in [START_REF] Boettinger | Phase-field simulation of solidification[END_REF][START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF][START_REF] Plapp | 15-phase-field models[END_REF]. The dimensionless variables are :

x = x L c , ỹ = y L c , t = t L 2 c κ liq , T = T -T m T 0 liq -T m (8) 
The dimensionless Allen-Cahn equation becomes :

τ ∂φ ∂ t = T α ∂p φ ∂φ -β ∂g φ ∂φ + ∇(¯ 2 ∇φ) (9) with τ = τ a L 2 c κ liq , ¯ = √ a ( - → n ) L c , α = L a(T 0 liq -T m ) T m , β = 1 4
The notation ∇ stands for the gradient with respect to dimensionless spatial variables.

The dimensionless energy equation becomes :

∂ T ∂ t = L C vsol (T m -T 0 liq ) ∂p φ ∂ t + λ ( φ, T ) κ liq C vsol ∇2 T + L c κ liq C vsol ∇λ ( φ, T ) ∇ T . (10) 
The thermal conductivity gradient is :

∇λ ( φ, T ) = 1 -p φ L c ∂λ liq ∂ T ∇ T + p φ L c ∂λ sol ∂ T ∇ T + ∇p φ L c (λ liq (T ) -λ sol (T )) (11) 
In PFM literature [START_REF] Kobayashi | Modeling and numerical simulations of dendritic crystal growth[END_REF][START_REF] Moelans | An introduction to phase-field modeling of microstructure evolution[END_REF], to simplify the system description, the melt and solid phases take the same properties for conductivity and heat capacity. Hence, the conductivity gradient ∇λ is not taken into account for the energy conservation formulation in many phase field models. To be as close as possible to a quantitative representation of the growth process, the temperature impact is added here for this gradient.

Anisotropy constitutive equation

To observe the microscopic features of the solid along its solidification, independent control of the anisotropy is included as in other works [START_REF] Yuan | Ice crystal growth in the freezing desalination process of binary water-nacl system[END_REF][START_REF] Kobayashi | Modeling and numerical simulations of dendritic crystal growth[END_REF] .

( - → n ) = (1 + δ a cos(b n θ)) (12) 
where the parameter δ a drives the strength of the anisotropy, b n is the branches number of the crystal. θ is the angle between the interface normal vector ( -→ n ) and a given crystallographic direction. Its expression is given by :

θ = arctan( ∇φ x ∇φ y ) (13) 

Parameters of ice freezing

In this section, thermal and physical properties of ice and liquid water required for the model computations are detailed. Then, the polynomial forms of p φ (φ) and g φ (φ) as well as some choices in the thermodynamics model are specified. Finally, the phase field parameters, namely a, , τ, and the specific anisotropy constitutive function and pattern of ice are presented in this section.

Thermal and physical properties of liquid water and ice

At atmospheric pressure, thermophysical properties of liquid water and ice, namely thermal conductivity, heat capacity, density, latent heat and surface free energy, are listed in Table 1. All properties are functions of temperature and are expressed by using a polynomial expression in order to make their computations easier in the simulation. Some of the polynomial functions proposed in Table 1 are built by using the state equations of ice and water proposed in [START_REF]The International Association for the Properties of Water, Steam, Revised release on the equation of state 2006 for H 2 O Ice Ih[END_REF]. The polynomial functions are valid in the temperature range (from 253K to 273K) . 

Thermodynamics consistency of the model

The Ginzburg-Landau free-energy functional F (1) has to be written in a thermodynamically-consistent manner to have a quantitative evolution of the system in transition. For this purpose, each term of the functional are discussed in the hereafter paragraphs.

Choice of polynomials p φ (φ) and g φ (φ)

The density function f (φ, T ) (2) needs to have, for all values of temperature T, local minima with respect to each phase, such as [START_REF] Callen | Thermodynamics and an Introduction to Thermostatistics[END_REF] :

∂ f ∂φ φ=0 = ∂ f ∂φ φ=1 and ∂ 2 f ∂φ 2 φ=0,1 > 0. ( 14 
)
Besides, at equilibrium, the variational derivative of the Landau-Ginzburg functional (3) must be equal to 0, then, we need to check [START_REF] Boettinger | Phase-field simulation of solidification[END_REF] :

∂ f ∂φ φ=0,1 = 0. ( 15 
)
Appropriate polynomial functions p φ (φ) and g φ (φ) are selected to make sure to have the desirable properties for f (φ, T ). Several propositions were made in the literature [START_REF] Gránásy | Cahn-Hilliard-type density functional calculations for homogeneous ice nucleation in undercooled water[END_REF]. Kobayashi [START_REF] Kobayashi | Modeling and numerical simulations of dendritic crystal growth[END_REF] choose to use p φ (φ) = φ 2 (32φ) and g φ (φ) = φ 2 (1φ) 2 for the ice/liquid water system. In this case, the second derivative of the density function f (φ, T ) according to φ (14) is positive only if the parameter a (see ( 2)) fulfills the additional condition (| 12aL(T m T )

T m | < 1)
. Since the parameter a allows to manage the interfacial energy and thickness (see [START_REF] Demange | Growth kinetics and morphology of snowflakes in supersaturated atmosphere using a three-dimensional phase-field model[END_REF] and ( 18)), then this choice has been excluded to avoid any size limitation of the interface by the polynomial function choice. By using, p φ (φ) = φ 3 (6φ 2 -15φ + 10) and g φ (φ) = φ 2 (1 -φ) 2 , as proposed by [START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF][START_REF] Boettinger | Phase-field simulation of solidification[END_REF], the stability conditions ( 14), ( 15) are all fulfilled by fixing a > 0 : these functions have been retained in the model formulation.

Phase field parameters

The parameters a and that appear in (1) are commonly related to the interface thickness δ and the surface free energy σ in literature [START_REF] Boettinger | Phase-field simulation of solidification[END_REF][START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF]. For this purpose, an one-dimensional solution of the isotropic form of ( 9) is established under equilibrium conditions [START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF]. This solution gives the shape of the variable φ in the diffuse interface [START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF] (the interface is located around x = 0).

φ(x) = 1 2 (tanh( x 2 √ 2a ) + 1) (16) 
The approximated size of diffuse interface thickness δ is given by :

δ = 2α a 1/2 (17)
By taking the reciprocal function of ( 16), we can determine the values of -δ/2 and +δ/2 for φ = 0.01 and φ = 0.99, respectively. In this case, α 7.48. By using α, the thickness of the interface can be assessed for simulation.

The interfacial tension σ(T m ) of ice/liquid water system and the phase field parameters a and are related by [START_REF] Karma | Quantitative phase-field modeling of dendritic growth in two and three dimensions[END_REF] [START_REF] Moelans | An introduction to phase-field modeling of microstructure evolution[END_REF][START_REF] Wang | Thermodynamically-consistent phase-field models for solidification[END_REF] :

σ(T m ) = √ 2 12 √ a ( 18 
)
This relation is found by using the Helmholtz free energy functional equation ( 1) associated with the onedimensional solution of φ (16), evaluated at equilibrium conditions and expressed by the unit of surface area [START_REF] Cahn | Free energy of a nonuniform system. i. interfacial free energy[END_REF]. Notice that this last relation is established by using the commonly accepted convention f liq (T m ) = f sol (T m ).

In practice, to use the model in a phenomenological way, the interfacial tension σ(T m ) needs to be correctly reproduced in order to predict the interfacial properties. This parameter is thus a physical property (see Table 2). Most authors do not fix the interface size but prefer to fix the dimensionless variable ¯ at a low value in order to have an interface size to be less than L c but large enough for computations. Consequently, ¯ and L c are computational parameters (see table 2). Typically, ¯ takes values between 0.01 to 0.08 ( [START_REF] Kobayashi | Modeling and numerical simulations of dendritic crystal growth[END_REF][START_REF] Karma | Quantitative phase-field modeling of dendritic growth in two and three dimensions[END_REF][START_REF] Echebarria | Quantitative phase-field model of alloy solidification[END_REF]).

Ice patterns and anisotropy

In the case of ice crystal growing in undercooled water, the morphology diagram of nonequilibrium patterns was proposed in a wide undercooling range 0.1C< ∆T <30C [START_REF] Shibkov | Morphology diagram of nonequilibrium patterns of ice crystals growing in supercooled water[END_REF][START_REF] Libbrecht | Physical dynamics of ice crystal growth[END_REF]. For a small undercooling (1C), a microscopic seed crystal tends to grow into the form of a simple circular disk. The basal surface structure of ice is maintained by the limited surface attachment kinetics. The growth of the disk edge is also limited by the diffusion of latent heat. As the undercooling increases (∆ T =2C), the disk growth becomes unstable, resulting in the formation of dendritic branching, and the basal faceting remains. The side branching occurrence is commonly explained by the Mullins-Sekerka instability theory [START_REF] Mullins | Stability of a planar interface during solidification of a dilute binary alloy[END_REF]. For larger undercooling (∆ T =4C), unbranched needle-like structures appear, to branched needle-like structures (∆ T =8C), to platelets (∆ T =10-30C).

As previous works [START_REF] Kobayashi | Modeling and numerical simulations of dendritic crystal growth[END_REF][START_REF] Yuan | Ice crystal growth in the freezing desalination process of binary water-nacl system[END_REF], we added the six-fold symmetry of ice by fixing the branch number to 6 ;

the anisotropy parameter δ a varies following literature from 0.01 to 0.05. We fix it to 0.03 as in [START_REF] Yuan | Ice crystal growth in the freezing desalination process of binary water-nacl system[END_REF]. Finally, an uniformly distributed noise is added to produce side branching on the crystal. Indeed, in the absence of such noise and in the case of fine mesh spacing dx, it appears that dendrites in pure system tend to grow without side-branching to needle-like dendrites. Only small perturbations corresponding to thermal noise are responsible for the side-branching dendrites. Here, the noise is added in the dynamic term of the phase field equation ( 6), as proposed by [START_REF] Yuan | Ice crystal growth in the freezing desalination process of binary water-nacl system[END_REF].

τ ∂φ ∂ t = T α ∂p φ ∂φ -β ∂g φ ∂φ + ∇(¯ 2 ∇φ) + rη16g φ (φ) (19) 
where r(x, y, t) is a random number between -1 to +1, and η is the disturbance intensity parameter of the phase field fixed to 0.03 after computational research. The maximum disturbance will occur at the interface when φ = 0.5, and as we move further away from the interface, the disturbance gets smaller. The term 16g φ (φ) is used to introduce the forced disturbance on the interface.

Kinetic constant τ

To achieve the appropriate interface kinetics, the problem is often reduced to the study of the macroscopic free boundary model which involves the following system of equations in the case of the solidification process : the Stefan condition equation, the generalized Gibbs-Thomson equation, and the energy conservation equation (see [START_REF] Boettinger | Phase-field simulation of solidification[END_REF][START_REF] Karma | Quantitative phase-field modeling of dendritic growth in two and three dimensions[END_REF] for details). The parameter τ can be explicitly calculated by using the relation between the material parameters and the interface kinetic coefficient 1/µ from the generalized Gibbs-Thomson equation ( 20) established for an isotropic interface :

T = T m - σ T m ζ L -v 1 µ ( 20 
)
This relation links the interface temperature T , the normal ice growth rate v (m.s -1 ) and the interface curvature ζ. The interface temperature T deviates from the equilibrium value T m by two terms : the first is the capillary shift of the melting temperature (Gibbs-Thomson effect) ; the second is due to interface kinetics.

Karma (1998) [START_REF] Karma | Quantitative phase-field modeling of dendritic growth in two and three dimensions[END_REF] related the interface kinetic 1/ to the kinetic coefficient τ, by performing an asymptotic analysis of the phase field model equations in the case of the thin interface limit. The relation is :

1 µ = a 1 L C v ( τ λ W -a 2 W κ ) (21) 
where a 1 [-] and a 2 [-] are computational parameters depending of the choice of the polynomial functions and λ = a 1 W d 0 and W = a 1/2 . If we assume that the temperature is constant in the interface, which is often called as the sharp interface limit [START_REF] Plapp | 15-phase-field models[END_REF], then the second term of (21) vanishes, and the kinetic coefficient

τ is obtained by : τ = ¯ 2 Lκ L µσ T m (22) 
By using this method, W and meshing dx have to be scaled small enough compared to the scale of dendrite pattern in order to converge to a reliable quantitative solution of the sharp-interface equations. Besides, some authors highlighted that simulations at smaller undercooling seemed to exhibit a dependence on the interface thickness [START_REF] Plapp | 15-phase-field models[END_REF].

For large undercooling, Langer et al. [START_REF] Langer | Evidence for a universal law of dendritic growth rates[END_REF] and Shibkov [START_REF] Shibkov | Morphology diagram of nonequilibrium patterns of ice crystals growing in supercooled water[END_REF] reported the tip-velocity v of an isolated dendrite of ice growing freely in a pure and undercooled liquid for different undercooling values. By using experimental data, rough values of 1 µ and τ from T liq between -5 and -25C can be evaluated. They are reported in Table 2.

Model simulation 3.5.1. Numerical method and boundary conditions

The spatial 2D domain is discretized using N × N points. The explicit Euler method is used for time integration. The centered finite difference method is used to discretize gradient and divergence operators.

Divergence is computed using a 9-points laplacian.

For the boundary conditions, since the system is isolated, there is no heat flux at boundaries. For this simulation, the germ (80 meshes) is located in the middle of the space under consideration. Due to the large number of parameters, parameter assessment for phase field models is not straightforward. For a fixed set of physical parameters, several tests were made to have the better set of computational parameters (see table 2). Several sets of computational parameters (¯ , L c ,d x, d t, δ) were tested. For each numerical test, we followed the method proposed by [START_REF] Wang | Algorithms for phase field computation of the dendritic operating state at large supercoolings[END_REF] to have a reasonable independence of computational parameters for the ice growth simulation. The following points have to be checked :

Parameters of the simulation

-The grid spacing dx = L c d x has to be much smaller than the interface thickness δ (calculated by ( 17)).

Besides, the grid spacing dx/W ratio is about 0.3 to avoid spinning effect.

-To retrieve the results of the Gibbs Thomson relation [START_REF] Tan | Modeling ice crystal growth using the lattice boltzmann method[END_REF] according to [START_REF] Karma | Quantitative phase-field modeling of dendritic growth in two and three dimensions[END_REF], the computational thickness W has to be fine enough in order to check W d0 << κτ/W 2 . -To observe the crystal growth in an undercooled liquid temperature without large variation of its temperature for an isolated system, the simulation grid size has to be wide.

-Once d x is chosen, the time step d t has to be small enough to fulfill the Fourier stability criterium.

The selected simulation parameters for the water-ice system are shown in Table 2. At t = 0ms, one solid spherical germ is placed at the grid middle as shown in Figure 3. In Figures 3,4, and 5, the typical hexagonal prism of ice is observed in the early stages of the crystal growth. This form remains for a longer time at low undercooling. In all cases, at some time, the crystal exhibits the formation of the first branch and side branches. At high undercooling, the crystal shows numerous side branching and the dendritic pattern of ice. The effect of heat conduction is also clearly evidenced on the temperature field as crystal growth progresses.

Results and discussion

In Figure 6, three cross-sections of the phase field (in horizontal, vertical, and diagonal directions of the grid) are depicted for T 0 liq = -15 • C. The number of points inside the interface is large enough in order to have an impact of the φ gradient on the interface orientation. It can be noticed that the interface number of meshes is around 20.

To compare our simulation results to experimental data [START_REF] Langer | Evidence for a universal law of dendritic growth rates[END_REF][START_REF] Shibkov | Morphology diagram of nonequilibrium patterns of ice crystals growing in supercooled water[END_REF] and to the Ivantsov solution [START_REF] Wheeler | Computation of dendrites using a phase field model[END_REF], we also compute the tip velocity v tip (see Figure 7) of the crystal in growth in the following manner : we define the interface by the locus φ < 0.99 and retrieve the dendrite tip position on the middle of x-axis, every 5000 steps of time [START_REF] Demange | Growth kinetics and morphology of snowflakes in supersaturated atmosphere using a three-dimensional phase-field model[END_REF]. In Figure 7, as expected, the crystal growth velocity depends on the undercooling conditions and physical properties of each phase. The steady state is quasi-achieved at the early stage of crystallization. At steady state, we confronted experimental data, the steady-state simulated tip velocity and the Ivantsov solution values for each undercooling condition (see Table 3). The Ivantsov equation [START_REF] Wheeler | Computation of dendrites using a phase field model[END_REF] is a well-known relation used to calculate the tip velocity of a solid phase at constant temperature T m which extends into an undercooled melt in diffusive conditions. Inside the melt the temperature drops and reaches far from the interface its asymptotic value T 0 liq at steady state. The Ivantsov relation connects the Peclet number P e = v tip R/2κ L and the undercooling ∆ = (T m T 0 liq )C vL /L. Here, v tip and R are the tip-velocity and 

To use the Ivantsov solution, the tip radius R of the crystal needs to be calculated. To this end, the crystal edge and curvature of the crystal have been numerically obtained by adapting the function from [START_REF] Manjunatha | Curvature measure and visualization[END_REF]. The adequacy of the function can be checked with a circular geometry and at different sizes.

In Table 3, the numerical velocities are lower than the experimental ones. The values range is however respected. Whatever the undercooling degree, the tip velocity calculated with the Ivantsov solution is not in good agreement with the experimental data and the PFM simulated results. This can be resolved by : i) improving the radius tip calculation in the case of solid picture with a high branching degree ; ii) improving the simulation results. Indeed, the radius tip of the first branch in the PFM simulation pictures is perhaps different from the experimental one, i.e the form of the crystal is not totally quantitative in our simulations.

In both cases, in order to improve the results of the study, relevant experimental data of the tip radius of ice and patterns are required to compare them with PFM simulation results. One major advantage of the phase field method is that the control of the interface and its anisotropy are included in the model formulation. The anisotropy function is empirically chosen in our case. We choose a classical one that is easy to implement. It can be noticed that some advanced studies in literature [START_REF] Demange | Growth kinetics and morphology of snowflakes in supersaturated atmosphere using a three-dimensional phase-field model[END_REF][START_REF] Demange | A phase field model for snow crystal growth in three dimensions[END_REF][START_REF] Demange | Induced side-branching in smooth and faceted dendrites : theory and phase-field simulations[END_REF] employed an anisotropy function which enables to check the position of the first branch and side branching of snow in a quantitative manner. Parameters (see section 3.2) are chosen to respect the thermodynamic consistency of the system. Numerical parameters (see 3.5.2) are also selected to limit the influence of the numerical method. It leads to simulating the system at microscale size to conserve a small but consistent interface width. As there are properties gradients in the interface that needs to be correctly simulated, the point number in the interface is large and the computation of the system is time-consuming. These inconveniences limit the use of the phase field method in the Chemical Engineering field. In our opinion, phase field simulation can be a powerful tool to give local information about the macroscopic system as a snapshot in the field of Chemical Engineering.

To expand the scope of application in Chemical Engineering, the model should be extended to binary system by taking into account mass transfer and binary equilibrium phase. A better computational method needs to be chosen to avoid time and space computation limitations. The parameters selection can also be performed by using the thin interface method [START_REF] Karma | Quantitative phase-field modeling of dendritic growth in two and three dimensions[END_REF] : it enables to work with a higher size of the interfacial thickness and can provide better quantitative results at low undercooling [START_REF] Plapp | 15-phase-field models[END_REF] for both the tip velocity and the solid patterns aspect.

Conclusion

The potential of the phase field method is a worthwhile goal in the Chemical Engineering field because it allows observing the formation of defaults during ice growth such as anarchic ice, and solute incorporation,... As presented in this work, it is possible to develop a thermodynamically consistent model to simulate the kinetics and the facies of the interface. The example discussed in this article concerns dendritic solidification for ice-freezing applications. A large number of parameters of the model have been correlated to well-known properties of water, ice or ice/water equilibrium. Numerical parameters have been investigated to study the growth and the sidebranching. Using this model approach is very challenging in Chemical Engineering because it contains a great deal of known physics. The approach developed in this article concerning ice

Figure 1 .

 1 Figure 1. Diffuse interface : variable φ evolution throughout the interface

Figure 2 .

 2 Figure 2. Dimensionless density function f (φ,T) at T m
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 1 Figures 3, 4, 5 give snapshots at different times of the phase field φ(t, x, y) and the temperature field T (t, x, y) for initial liquid temperature T 0 liq = -5 • C, T 0 liq = -10 • C and T 0 liq = -15 • C, respectively. Zooms of some snapshots are presented to evidence the crystal pattern. The figures are presented with real size of the crystals and real time.

Figure 3 .

 3 Figure 3. Simulation at t = 0 ms, t = 0.013 ms, t = 0.027 ms, t = 0.061 ms, t = 0.13 ms,t = 0.19 ms for T 0 liq = -5 • C

Figure 4 .

 4 Figure 4. Simulation at t = 0.013 ms, t = 0.027 ms, t = 0.068 ms, t = 0.16 ms for T 0 liq = -10 • C

Figure 5 .Figure 6 .

 56 Figure 5. Simulation at t = 0.013 ms , t = 0.027 ms , t = 0.08 ms , t = 0.16 ms ms for T 0 liq = -15 • C

Figure 7 .

 7 Figure 7. Tip velocity over time for each undercooling condition

Table 1 .

 1 Properties of ice and waterWaterThermal conductivity (λ liq )W.m -1 .K -1 0.57109 + 1.7625 10 -3 T -6.7036 10 -6 T 2 [30] Density (ρ liq ) kg.m -3 1000.50 -1.3781 10 -1 T -2.3195 10 -2 T 2 [28] Heat Capacity (C vliq ) J.kg -1 .K -1 4208.4 -3.6409 10 -1 T + 3.5508 10 -1 T 2 [28] Ice Thermal conductivity (λ sol ) W.m -1 .K -1 2.2196 -6.2489 10 -3 T + 1.0154 10 -4 T 2

	[30]

Table 2 .

 2 Simulation parameters

	Definition	Parameter Value(s)	Unity
	Initial undercooling degree of temperature	T m -T 0 liq	5, 10, 15	K
	Dimensionless grid spacing	d x	0.02	[-]
	Dimensionless time	d t	5 10 -5	[-]
	Mesh number in x-axis or y-axis direction	N	600	[-]
	Mesh number of initial crystal nucleus diameter		80	
	Bump size of the free energy density	a	3.37 10 -7	m 3 /J
	Computational parameter	¯	0.06	[-]
	Computation size	L c	1.3 10 -6	m
	Energy gradient constant		1.39 10 -4 J 1/2 .m -1/2
	Kinetic constant of Allen-Cahn equation	τ	0.25	[-]
	Capillarity diameter	d 0	3.4 10 -10	m
	Anisotropy factor for	δ a	0.03	[-]
	Branch number	b n	6	[-]

Table 3 .

 3 Ice growth velocity comparison

	Undercooling temperature (C)	Velocity (cm/s)	Method
	5, 10, 15	0.8 ± 0.1, 1.5 ± 0.1, 4.4 ± 0.4	PFM simulation results
	5, 10, 15	1.1 ± 0.1, 2.6, 5.7	Experimental results [36, 23]
	5, 10, 15	0.1, 0.6, 1.2	Ivantsov method [37]
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growth could be easily extended to a binary system for crystallization, but also to liquid/liquid phases for emulsion application or liquid/gas for boiling systems.
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