
HAL Id: hal-04259380
https://hal.science/hal-04259380

Submitted on 26 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Characterisation of Functions Computable in
Polynomial Time and Space over the Reals with

Discrete Ordinary Differential Equations: Simulation of
Turing Machines with Analytic Discrete ODEs

Manon Blanc, Olivier Bournez

To cite this version:
Manon Blanc, Olivier Bournez. A Characterisation of Functions Computable in Polynomial Time
and Space over the Reals with Discrete Ordinary Differential Equations: Simulation of Turing Ma-
chines with Analytic Discrete ODEs. 48th International Symposium on Mathematical Foundations
of Computer Science (MFCS 2023), Aug 2023, Bordeaux, France. �10.4230/LIPIcs.MFCS.2023.21�.
�hal-04259380�

https://hal.science/hal-04259380
https://hal.archives-ouvertes.fr

A characterisation of functions computable in1

polynomial time and space over the reals with2

discrete ordinary differential equations3

Simulation of Turing machines with analytic discrete ODEs.4

Manon Blanc #5

Institut Polytechnique de Paris, Ecole Polytechnique, LIX, Palaiseau, France6

Olivier Bournez #7

Institut Polytechnique de Paris, Ecole Polytechnique, LIX, Palaiseau, France8

Abstract9

We prove that functions over the reals computable in polynomial time can be characterised using10

discrete ordinary differential equations (ODE), also known as finite differences. We also provide11

a characterisation of functions computable in polynomial space over the reals. In particular, this12

covers space complexity, while existing characterisations were only able to cover time complexity,13

and were restricted to functions over the integers, and we prove that no artificial sign or test function14

is needed even for time complexity. At a technical level, this is obtained by proving that Turing15

machines can be simulated with analytic discrete ordinary differential equations. We believe this16

result opens the way to many applications, as it opens the possibility of programming with ODEs,17

with an underlying well-understood time and space complexity.18

2012 ACM Subject Classification Theory of computation → Models of computation; Theory of19

computation → Computability; Computer systems organisation → Analog computers; Theory of20

computation → Complexity classes; Mathematics of computing → Ordinary differential equations21

Keywords and phrases Discrete ordinary differential equations, Finite Differences, Implicit complexity,22

Recursion scheme, Ordinary differential equations, Models of computation, Analog Computations23

Digital Object Identifier 10.4230/LIPIcs.MFCS.2023.1924

1 Introduction25

Recursion schemes constitute a major approach to classical computability theory and, to26

some extent, to complexity theory. The foundational characterisation of FPTIME, based27

on bounded primitive recursion on notations, due to Cobham [10] gave birth to the field28

of implicit complexity at the interplay of logic and theory of programming. Alternative29

characterizations, based on safe recursion [1] or on ramification ([16, 15]) or for other classes30

[17] followed: see [8, 9] for monographs.31

Initially motivated to help understanding how analogue models of computations compare32

to classical digital ones, in an orthogonal way, various computability and complexity classes33

have been recently characterised using Ordinary Differential Equations (ODE). An unexpected34

side effect of these proofs is the possibility of programming with classical ODEs, over the35

continuum. It recently led to solving various open problems. This includes the proof of the36

existence of a universal ODE [6], the proof of the Turing-completeness of chemical reactions37

[11], or hardness of problems related to dynamical systems [12].38

Discrete ODEs, that we consider in this article, are an approach in-between born from39

the attempt of [4, 5] to explain some of the constructions for continuous ODEs in an easier40

way. The basic principle is, for a function f(x), to consider its discrete derivative defined as41

∆f(x) = f(x + 1)− f(x) (also denoted f ′(x) in what follows to help analogy with classical42

continuous counterparts). A consequence of this attempt is the characterisation obtained43

© Manon Blanc and Olivier Bournez;
licensed under Creative Commons License CC-BY 4.0

48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023).
Editors: Jérôme Leroux, Sylvain Lombardy, and David Peleg; Article No. 19; pp. 19:1–19:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:manon.blanc@lix.polytechnique.fr
mailto:olivier.bournez@lix.polytechnique.fr
https://doi.org/10.4230/LIPIcs.MFCS.2023.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Simulation of Turing machines with analytic discrete ODEs. Applications.

in [4, 5]. They provided a characterisation of FPTIME for functions over the integers44

that does not require the specification of an explicit bound in the recursion, in contrast to45

Cobham’s work [10], nor the assignment of a specific role or type to variables, in contrast to46

safe recursion or ramification [1, 14]. Instead, they only assume involved ODEs to be linear,47

a very classical natural concept for differential equations.48

▶ Remark 1. Unfortunately, even if it was the original motivation, both approaches for49

characterising complexity classes for continuous and discrete ODEs are currently not directly50

connected. A key difference is that there is no simple expression (no analogue of the Leibniz51

rule) for the derivative of the composition of functions in the discrete settings. The Leibniz52

rule is a very basic tool for establishing results over the continuum, using various stability53

properties, but that cannot be used easily over discrete settings.54

In the context of algebraic classes of functions, the following notation is classical: call55

operation an operator that takes finitely many functions and returns some new function56

defined from them. Then [f1, f2, . . . , fk; op1, op2, . . . , opℓ] denotes the smallest set of functions57

containing f1, f2, . . . , fk that is closed under the operations op1, op2, . . . opℓ. Call discrete58

function a function of type f : S1×· · ·×Sd → S′
1× . . . S′

d′ , where each Si, S′
i is either N or Z.59

Write FPTIME for the class of functions computable in polynomial time, and FPSPACE60

for the class of functions computable in polynomial space.61

▶ Remark 2. The literature considers two possible definitions for FPSPACE, according to62

whether functions with non-polynomial size values are allowed or not. In our case, we should63

add “whose outputs remain of polynomial size”, to resolve the ambiguity1.64

A main result of [4, 5] is the following (LDL stands for linear derivation on length):65

▶ Theorem 3 ([4]). For functions over the reals, we have LDL = FPTIME where LDL =66

[0, 1, πk
i , ℓ(x), +,−,×, sg(x) ; composition, linear length ODE].67

In particular, writing as usual BA for functions from A to B, we deduce:68

▶ Corollary 4 (Functions over the integers). LDL ∩ NN = FPTIME ∩ NN.69

That is to say, LDL (and hence FPTIME for functions over the integers) is the smallest70

class of functions that contains the constant functions 0 and 1, the projections πk
i of the71

ie coordinate of a vector of size k, the length function ℓ(x), mapping an integer to the72

length of its binary representation, the addition x+y, the subtraction x−y, the multiplication73

x × y, the sign function sg(x) and that is closed under composition (when defined) and74

linear length-ODE scheme: the linear length-ODE scheme, formally given by Definition 15,75

corresponds to defining a function from a linear ODEs with respect to derivation along the76

length of the argument, so of the form ∂f(x,y)
∂ℓ = A[f(x, y), x, y] · f(x, y) + B[f(x, y), x, y].77

Here, we use the notation ∂f(x,y)
∂ℓ which corresponds to the derivation of f along the78

length function: given some function L : Np+1 → Z and in particular for the case where79

L(x, y) = ℓ(x),80

∂f(x, y)
∂L

= ∂f(x, y)
∂L(x, y) = h(f(x, y), x, y) (1)81

82

is a formal synonym for f(x + 1, y) = f(x, y) + (L(x + 1, y)− L(x, y)) · h(f(x, y), x, y).83

1 Otherwise, the class is not closed by composition: this may be considered as a basic requirement when
talking about the complexity of functions. The issue is about the usage of not counting the output as
part of the total space used. In this model, given f computable in polynomial space, and g in logarithmic
space, f ◦ g (and g ◦ f) is computable in polynomial space. But this is not true, if we assume only f
and g to be computable in polynomial space, since the first might give an output of exponential size.

Manon Blanc, Olivier Bournez 19:3

▶ Remark 5. This concept introduced in [4, 5], is motivated by the fact that the latter
expression is similar to the classical formula for continuous ODEs:

δf(x, y)
δx

= δL(x, y)
δx

· δf(x, y)
δL(x, y) ,

and hence is similar to a change of variable. Consequently, a linear length-ODE is basically84

a linear ODE over a variable t once the change of variable t = ℓ(x) is done.85

However, in the context of (classical) ODEs, considering functions over the reals is more86

natural than only functions over the integers. Call real function a function f : S1×· · ·×Sd →87

S′
1×. . . S′

d′ , where each Si, S′
i is either R, N or Z. A natural question about the characterisation88

of FPTIME for real functions arises, and not only discrete functions: we consider here89

computability over the reals in its most classical approach, namely computable analysis [19].90

As a first step, the class LDL• = [0, 1, πk
i , ℓ(x), +,−,×, cond(x), x

2 ; composition, linear91

length ODE] has been considered in [3, 2] where some characterisation of PTIME was92

obtained, but only for functions from the integers to the reals (i.e. sequences) while it would93

be more natural to characterise functions from the reals to the reals. More importantly, this94

was obtained by assuming that some non-analytic exact function is among the basic95

available functions to simulate a Turing machine: cond valuing 1 for x > 3
4 and 0 for x < 1

4 .96

We prove first this is not needed, and mainly, we extend all previous results to real
functions, furthermore covering not only time complexity but also space complexity. Consider

LDL◦ = [0, 1, πk
i , ℓ(x), +,−, tanh,

x

2 ,
x

3 ; composition, linear length ODE],

where ℓ : N → N is the length function, mapping some integer to the length of its binary97

representation, x
2 : R→ R is the function dividing by 2 (similarly for x

3) and all other basic98

functions defined exactly as for LDL, but considered here as functions from the reals to reals.99

▶ Remark 6. This class is LDL but without the sg(x) function, nor the multiplication function,100

or LDL• but without the cond function, nor the multiplication. This is done by adding the101

analytic tanh functions as a substitute (and adding x/3).102

▶ Remark 7. We can consider N ⊂ Z ⊂ R but as functions may have different types of103

outputs, the composition is an issue. We consider, as in [3, 2], that composition may not be104

defined in some cases: it is a partial operator. For example, given f : N→ R and g : R→ R,105

the composition of g and f is defined as expected, but f cannot be composed with a function106

such as h : N→ N.107

First, we improve Theorem 3 by stating FPTIME over the integers can be characterised108

algebraically using linear length ODEs and only analytic functions (i.e. no need for sign109

function). Since LDL◦ is about functions over the reals, and Theorem 3 is about functions110

over the integers, we need a way to compare these classes. Given a function f : Rd → Rd′
111

sending every integer n ∈ Nd to the vicinity of some integer of Nd, say at distance less than112

1/4, we write DP(f) for its discrete part: this is the function from Nd → Nd′ mapping n ∈ Nd
113

to the integer rounding of f(n). Given a class C of such functions, we write DP(C) for the114

class of the discrete parts of the functions of C.115

▶ Theorem 8. DP(LDL◦) = FPTIME ∩ NN.116

Write LDL◦ for the class obtained by adding some effective limit operation similar to the117

one considered in [3] to get LDL•. We get a characterization of functions over the reals (and118

not only sequences as in [3]) computable in polynomial time.119

MFCS 2023

19:4 Simulation of Turing machines with analytic discrete ODEs. Applications.

▶ Theorem 9 (Generic functions over the reals). LDL◦ ∩ RR = FPTIME ∩ RR
120

More generally: LDL◦ ∩ RNd×Rd′

= FPTIME ∩ RNd×Rd .121

We also prove that, by adding a robust linear ODE scheme (Definition 18), we get a122

class RLD◦ (this stands for robust linear derivation) with the similar statements but for123

FPSPACE.124

▶ Theorem 10. DP(RLD◦) = FPSPACE ∩ NN.125

▶ Theorem 11 (Generic functions over the reals). RLD◦ ∩ RR = FPSPACE ∩ RR
126

More generally: RLD◦ ∩ RNd×Rd′

= FPSPACE ∩ RNd×Rd .127

As far as we know, this is the first time a characterisation of FPSPACE with discrete128

ODEs is provided. If we forget the context of discrete ODEs, FPSPACE has been129

characterised in [18] but using a bounded recursion scheme, i.e. requiring some explicit bound130

in the spirit of Cobham’s statement [10]. We avoid this issue by considering numerically131

stable schemes, which are very natural in the context of ODEs.132

At a technical level, all our results are obtained by proving Turing machines can be133

simulated with analytic discrete ODEs in a suitable manner. We believe our constructions134

could be applied to many other situations, where programming with ODEs is needed.135

In Section 2, we recall some basic statements about the theory of discrete ODEs. In136

Section 3, we establish some properties about particular functions required for our proofs.137

In Section 4 we prove our main technical result: Turing machines can be simulated using138

functions from LDL◦. Section 5 is about converting integers and reals (dyadic) to words of139

a specific form. Section 6 is about applications of our toolbox. We prove in particular all140

above theorems.141

2 Some concepts related to discrete ODEs142

In this section, we recall some concepts and definitions from discrete ODEs, either well-known143

or established in [4, 5, 3]. We consider here that tanh is tanh, the hyperbolic tangent. The144

papers [4, 5] use similar definitions with the sign function sg and [3] with the piecewise affine145

function cond, that values 1 for x > 3
4 and 0 for x < 1

4 , instead of tanh.146

▶ Definition 12 ([3]). A tanh-polynomial expression P (x1, ..., xh) is an expression built-on147

+,−,× (often denoted ·) and tanh functions over a set of variables V = {x1, ..., xh} and148

integer constants.149

We need to measure the degree, similarly to the classical notion of degree in polynomial150

expression, but considering all subterms that are within the scope of a tanh function151

contributes to 0 to the degree.152

▶ Definition 13 ([3]). The degree deg(x, P) of a term P in x ∈ V is defined inductively as153

follows: deg(x, x) = 1 and for x′ ∈ V ∪Z such that x′ ̸= x, deg(x, x′) = 0; deg(x, P + Q) =154

max{deg(x, P), deg(x, Q)}; deg(x, P × Q) = deg(x, P) + deg(x, Q); deg(x, tanh(P)) = 0.155

A tanh-polynomial expression P is essentially constant in x if deg(x, P) = 0.156

A vectorial function (resp. a matrix or a vector) is said to be a tanh-polynomial expression157

if all its coordinates (resp. coefficients) are, and essentially constant if all its coefficients are.158

▶ Definition 14 ([4, 5, 3]). A tanh-polynomial expression g(f(x, y), h(x, y), x, y) is essentially159

linear in f(x, y) if it is of the form: A[f(x, y), h(x, y), x, y] · f(x, y) + B[f(x, y), h(x, y), x, y]160

where A and B are tanh-polynomial expressions essentially constant in f(x, y).161

Manon Blanc, Olivier Bournez 19:5

For example, the expression P (x, y, z) = x · tanh (x2 − z) · y + y3 is essentially linear in162

x, essentially constant in z and not linear in y. The expression: z + (1 − tanh(x)) · (1 −163

tanh(−x)) · (y − z) is essentially constant in x and linear in y and z.164

▶ Definition 15 (Linear length ODE [4, 5]). A function f is linear length-ODE definable from165

u essentially linear in f(x, y), g and h, if it corresponds to the solution of166

f(0, y) = g(y) and
∂f(x, y)

∂ℓ
= u(f(x, y), h(x, y), x, y). (2)167

A fundamental fact is that the derivation with respect to length provides a way to do168

some change of variables:169

▶ Lemma 16 ([4, 5]). Assume that (2) holds. Then f(x, y) is given by f(x, y) = F(ℓ(x), y)170

where F is the solution of the initial value problem171

F(1, y) = g(y), and
∂F(t, y)

∂t
= u(F(t, y), h(2t − 1, y), 2t − 1, y). (3)172

This means f(x, y) depends only on the length of its first argument: f(x, y) = f(2ℓ(x), y).173

Then (3) can be seen as defining a function (with this latter property) by a recurrence of174

type175

f(20, y) = g(y), and f(2t+1, y) = u(f(2t, y), h(2t − 1, y), 2t, y). (4)176

for some u is essentially linear in f(2t, y). As recurrence (3) is basically equivalent to (2):177

▶ Corollary 17 (Linear length ODE presented with powers of 2). A function f is linear L-ODE178

definable iff the value of f(x, y) depends only on the length of its first argument and satisfies179

(4), for some g and h, and u, essentially linear in f(2t, y).180

We assume it is easier for our reader to deal with recurrences of the form (4) than with181

ODEs of the form (2). Consequently, this is how we will describe many functions from now on,182

starting with some basic functions, authorising compositions, and the above schemes. As an183

example, n 7→ 2n can easily be defined that way (by 20 = 1, and 2n+1 = 2 · 2n = 2n + 2n) and184

we can produce n 7→ 2p(n) for any polynomial p. For example, (n1, . . . , nk)→ 2n1n2...nk can185

be obtained, using k such schemes in turn, providing the case of the polynomial p(n) = nk.186

When talking about space complexity, we will also consider the case where the ODE is187

not derivated with respect to length but with classical derivation. For functions over the188

reals an important issue is numerical stability.189

▶ Definition 18 (Robust linear ODE [4, 5]). A bounded function f is robustly linear ODE190

definable from u essentially linear in f(x, y), g and h if:191

1. it corresponds to the solution of192

f(0, y) = g(y) and
∂f(x, y)

∂x
= u(f(x, y), h(x, y), x, y), (5)193

2. where the schema (5) is polynomially numerically stable.194

Here, writing a =n b for ∥a − b∥ ≤ 2−n for conciseness, 2. means formally there195

exists some polynomial p such that, for all integer n, writing ϵ(n) = p(n + ℓ(y)), if you196

consider any solution of ỹ =ϵ(n) y and h̃(x, ỹ) =ϵ(n) h(x, ỹ), and f̃(0, ỹ) =ϵ(n) g(y) and197

∂ f̃(x,ỹ)
∂x =ϵ(n) u(f̃(x, ỹ), h̃(x, ỹ), x, ỹ) then f̃(x, ỹ) =ϵ(n) f(x, y).198

MFCS 2023

19:6 Simulation of Turing machines with analytic discrete ODEs. Applications.

3 Some results about various functions199

A key part of our proofs is the construction of very specific functions in LDL◦: we write200

{x} for the fractional part of the real x, i.e. {x} = x − ⌊x⌋. We provide some graphical201

representations of some of them to show that these functions are sometimes highly non-trivial202

(see for e.g. Figures 3 or 6).203

A first observation is that we can uniformly approximate the ReLU(x) = max(0, x)204

function using a essentially constant function:205

▶ Lemma 19. We denote by Y (x, 2m+2) the function Y (x, 2m+2) = 1+tanh(2m+2x)
2 (illustrated206

by Figure 1). For all integer m, for all x ∈ R, |ReLU(x)− xY (x, 2m+2)| ≤ 2−m.207

Figure 1 Graphical representation of xY (x, 22+2) obtained with maple.

We deduce we can uniformly approximate the continuous sigmoid functions (when 1/(b−a)208

is in LDL◦) defined as: s(a, b, x) = 0 whenever w ≤ a, x−a
b−a whenever a ≤ x ≤ b, and 1209

whenever b ≤ x.210

▶ Lemma 20 (Uniform approximation of any piecewise continuous sigmoid). Assume 1
b−a is211

in LDL◦. Then there is some function C-s(m, a, b, x) ∈ LDL◦ (illustrated by Figure 2) such212

that for all integer m, | C-s(m, a, b, x)− s(a, b, x)| ≤ 2−m.213

Figure 2 Graphical representation of C-s(2, 1
2 , 3

4 , x) and C-s(25, 1
2 , 3

4 , x) obtained with maple.

Proof. We can write s(a, b, x) = ReLU(x−a)−ReLU(x−b)
b−a . Thus, | C-s(m + 1 + c, a, b, x) −214

s(a, b, x)| ≤ 2.2−m−1−c

b−a , using the triangle inequality. Take c such that 1
b−a ≤ 2c. ◀215

The existence of the following function will play an important role to obtain the various216

functions of the next corollary.217

Manon Blanc, Olivier Bournez 19:7

▶ Theorem 21. There exists some function ξ : N2 → R in LDL◦ (illustrated in Figure218

3) such that for all n, m ∈ N and x ∈ [−2n, 2n], whenever x ∈ [⌊x⌋ + 1
8 , ⌊x⌋ + 7

8] ,219 ∣∣ξ(2m, 2n, x)− {x− 1
8}

∣∣ ≤ 2−m.220

Figure 3 Graphical representations of ξ(2, 4, x) obtained with maple: some details on the right.

The main idea of the proof is, by parity, to reduce the problem to construct an auxiliary221

function ξ′ that works for x ≥ 0, writing ξ(2m, N, x) = ξ′(2m+2, N, x)−ξ′(2m+2, N,−x)+ 3
4−222

3
4 C-s(2

m+2, 0, 1
8 , x), and then proving that ξ′ is definable in LDL◦, using an adhoc recursive223

(in n) definition of it.224

▶ Corollary 22 (A bestiary of functions). There exist225

1. ξ1, ξ2 : N2 × R 7→ R ∈ LDL◦ such that, for all n, m ∈ N, ⌊x⌋ ∈ [−2n + 1, 2n], whenever226

x ∈ [⌊x⌋ − 1
2 , ⌊x⌋ + 1

4] , |ξ1(2m, 2n, x) − {x}| ≤ 2−m, and whenever x ∈ [⌊x⌋, ⌊x⌋ + 3
4] ,227

|ξ2(2m, 2n, x)− {x}| ≤ 2−m (see Figure 4).228

2. σ1, σ2 : N2 × R 7→ R ∈ LDL◦ such that, for all n, m ∈ N, ⌊x⌋ ∈ [−2n + 1, 2n], whenever229

x ∈ [⌊x⌋ − 1
2 , ⌊x⌋ + 1

4], σ1(2m, 2n, x) − ⌊x⌋ ≤ 2−m, and whenever x ∈ [⌊x⌋, ⌊x⌋ + 3
4],230

|σ2(2m, 2n, x)− ⌊x⌋| ≤ 2−m (see Figure 5).231

3. λ : N2 × R 7→ [0, 1] ∈ LDL◦ such that for all m, n ∈ N, ⌊x⌋ ∈ [−2n + 1, 2n], whenever232

x ∈ [⌊x⌋ + 1
4 , ⌊x⌋ + 1

2], |λ(2m, 2n, x) − 0| ≤ 2−m, and whenever x ∈ [⌊x⌋ + 3
4 , ⌊x⌋ + 1],233

|λ(2m, 2n, x)− 1| ≤ 2−m.234

4. mod2 : N2 ×R 7→ [0, 1] ∈ LDL◦ such that for all m, n ∈ N, ⌊x⌋ ∈ [−2n + 1, 2n], whenever235

x ∈ [⌊x⌋ − 1
4 , ⌊x⌋+ 1

4], |mod2(2m, 2n, x)-⌊x⌋mod 2| ≤ 2−m.236

Figure 4 Graphical representation of ξ1(2, 4, x) and ξ2(2, 4, x) obtained with maple.

MFCS 2023

19:8 Simulation of Turing machines with analytic discrete ODEs. Applications.

Figure 5 Graphical representation of σ1(2, 4, x) and σ2(2, 4, x) obtained with maple.

Figure 6 Graphical representation of ÷2(2, 4, x) obtained with maple.

5. ÷2 : N2 × R 7→ [0, 1] ∈ LDL◦ such that for all m, n ∈ N, ⌊x⌋ ∈ [−2n + 1, 2n], whenever237

x ∈ [⌊x⌋ − 1
4 , ⌊x⌋+ 1

4], | ÷2 (2m, 2n, x)− ⌊x⌋//2| ≤ 2−m, with // the integer division (see238

Figure 6).239

Proof. Take ξ1(M, N, x) = ξ(M, N, x − 3
8) − 1

2 , ξ2(M, N, x) = ξ(N, x − 7
8), σi(M, N, x) =240

x − ξi(M, N, x), λ(M, N, x) = C-s(2M, 1/4, 1/2, ξ(2M, N, x − 9/8)), mod2(M, N, x) = 1 −241

λ(M, N/2, 1
2 x + 7

8), ÷2(M, N, x) = 1
2 (σ1(M, N, x)−mod2(M, N, x)). ◀242

Observing that for if(d, l) = 4 s(1, 2, 1/2 + d + l/4)− 2, for l ∈ [0, 1], we have if(0, l) = 0,243

and if(1, l) = l, and using Lemma 20 on this sigmoid, we get:244

▶ Lemma 23. There exists C-if ∈ LDL◦ such that, l ∈ [0, 1], if we take |d′ − 0| ≤ 1/4, then245

| C-if(d′, l)− 0| ≤ 2−m, and if we take |d′ − 1| ≤ 1/4, then | C-if(d′, l)− l| ≤ 2−m.246

▶ Lemma 24. Let α1, α2, . . . , αn be some integers, and V1, V2, . . . , Vn some constants. We247

write send(αi 7→ Vi)i∈{1,...,n} for the function that maps any x ∈ [αi − 1/4, αi + 1/4] to Vi,248

for all i ∈ {1, . . . , n}.249

There is some function in LDL◦, that we write C-send(2m, αi 7→ Vi)i∈{1,...,n}, that maps250

any x ∈ [αi − 1/4, αi + 1/4] to a real at distance at most 2−m of Vi, for all i ∈ {1, . . . , n}.251

▶ Lemma 25. Let N be some integer. Let α1, α2, . . . , αn be some integers, and Vi,j for 1 ≤252

i ≤ n some constants, with 0 ≤ j < N . We write send((αi, j) 7→ Vi,j)i∈{1,...,n},j∈{0,...,N−1}253

Manon Blanc, Olivier Bournez 19:9

for the function that maps any x ∈ [αi − 1/4, αi + 1/4] and y ∈ [j − 1/4, j + 1/4] to Vi,j , for254

all i ∈ {1, . . . , n}, j ∈ {0, . . . , N − 1}.255

There is some function in LDL◦, that we write C-send(2m, (αi, j) 7→ Vi,j)i∈{1,...,n},j∈{0,...,N−1},256

that maps any x ∈ [αi − 1/4, αi + 1/4] and y ∈ [j − 1/4, j + 1/4] to a real at distance at most257

2−m of Vi,j, for all i ∈ {1, . . . , n}, j ∈ {0, . . . , N − 1}.258

4 Simulating Turing machines with functions of LDL◦
259

This section is devoted to the simulation of a Turing machine using some analytic functions,260

and in particular functions from LDL◦. We use some ideas from [3] but with several261

improvements, as we need to deal with errors and avoid multiplications.262

Consider without loss of generality some Turing machine M = (Q, {0, 1, 3}, qinit, δ, F)263

using the symbols 0, 1, 3, where B = 0 is the blank symbol.264

▶ Remark 26. The reason of the choice of symbols 1 and 3 will be made clear later.265

We assume Q = {0, 1, . . . , |Q|−1}. Let . . . l−kl−k+1 . . . l−1l0r0r1 . . . rn. . . . denote the content266

of the tape of the Turing machine M . In this representation, the head is in front of symbol267

r0, and li, ri ∈ {0, 1, 3} for all i. Such a configuration C can be denoted by C = (q, l, r),268

where l, r ∈ Σω are words over alphabet Σ = {0, 1, 3} and q ∈ Q denotes the internal state of269

M . Write: γword : Σω → R for the function that maps a word w = w0w1w2 . . . to the dyadic270

γword(w) =
∑

n≥0 wn4−(n+1).271

The idea is that such a configuration C can also be encoded by some element C =272

(q, l, r) ∈ N× R2, by considering r = γword(r) and l = γword(l). In other words, we encode273

the configuration of a bi-infinite tape Turing machine M by real numbers using their radix274

4 encoding, but using only digits 1,3. Notice that this lives in Q × [0, 1]2. Denoting the275

image of γword : Σω → R by I, this even lives in Q× I2.276

▶ Remark 27. Notice that I is a Cantor-like set: it corresponds to the rational numbers that277

can be written using only 1 and 3 in base 4. We write IS for those with at most S digits278

after the point (i.e. of the form n/4S for some integer n).279

▶ Lemma 28. We can construct some function Next in LDL◦ that simulates one step of280

M : given a configuration C, writing C ′ for the next configuration, we have for all integer m,281

∥Next(2m, C)− C
′∥ ≤ 2−m.282

Proof. We can write l = l0l• and r = r0r•, where l0 and r0 are the first letters of l and r, and283

l• and r• corresponding to the (possibly infinite) word l−1l−2 . . . and r1r2 . . . respectively.284

... l• l0 r0 r• ...︸ ︷︷ ︸
l

︸ ︷︷ ︸
r

285

The function Next is of the form Next(q, l, r) = Next(q, l•l0, r0r•) = (q′, l′, r′) defined as286

a definition by case of type:287

(q′, l′, r′) =
{

(q′, l•l0x, r•) whenever δ(q, r0) = (q′, x,→)
(q′, l•, l0xr•) whenever δ(q, r0) = (q′, x,←)288

This can be rewritten as a first candidate for the function Next. Consider the similar289

function working over the representation of the configurations as reals, considering r0 = ⌊4r⌋290

Next(q, l, r) = Next(q, l•l0, r0r•) = (q′, l′, r′)291

=
{

(q′, l•l0x, r•) whenever δ(q, r0) = (q′, x,→)
(q′, l•, l0xr•) whenever δ(q, r0) = (q′, x,←)292

293

MFCS 2023

19:10 Simulation of Turing machines with analytic discrete ODEs. Applications.

294

• in the first case “→” : l′ = 4−1l + 4−1x and r′ = r• = {4r}
• in the second case “←” : l′ = l• = {4l} and r′ = 4−2{4r}+ 4−2x + ⌊4l⌋/4 (6)295

We introduce the following functions: →: Q× {0, 1, 3} 7→ {0, 1} and ←: Q× {0, 1, 3} 7→296

{0, 1} such that → (q, a) (respectively: ← (q, a)) is 1 when δ(q, a) = (·, ·,→) (resp. (·, ·,←)),297

i.e. the head moves right (resp. left), and 0 otherwise. We define nextqq
a = q′ if δ(q, a) =298

(q′, ·, ·), i.e. values (q′, x, m) for some x and m ∈ {←,→}.299

We can rewrite Next(q, l, r) = (q′, l
′
, r′) as l′ =

∑
q,r0

[
→ (q, r0)

(
l

4 + x

4

)
+← (q, r0)

{
4l

}]
300

and r′ =
∑
q,r0

[
→ (q, r0) {4r}+← (q, r0)

(
{4r}
42 + x

42 + ⌊4l⌋
4

)]
, and, using notation of Lemma301

25, q′ = send((q, r) 7→ nextqq
r)q∈Q,r∈{0,1,3}(q, ⌊4r⌋).302

Our problem with such expressions is that they involve some discontinuous functions303

such as the integer part and the fractional part function, and we would rather have analytic304

(hence continuous) functions. A key point is that from our trick of using only symbols 1305

and 3, we are sure that in an expression like ⌊4r⌋, either it values 0 (this is the specific case306

where there remain only blanks in r), or that 4r lives in an interval [1, 2] or in interval [3, 4].307

That means that we could replace ⌊4r⌋ by σ(4r) if we take σ as some continuous function308

that would be affine and values respectively 0, 1 and 3 on {0} ∪ [1, 2] ∪ [3, 4] (that is to say309

matches ⌊4r⌋ on this domain). A possible candidate is σ(x) = s(1/4, 3/4, x) + s(9/4, 11/4, x).310

Then considering ξ(x) = x−σ(x), then ξ(4r) would be the same as {4r}: that is, considering311

r0 = σ(4r), replacing in the above expression every {4·} by ξ(·), and every ⌊·⌋ by σ(·), and312

get something that would still work the same, but using only continuous functions.313

But, we would like to go to some analytic functions and not only continuous functions,314

and it is well-known that an analytic function that equals some affine function on some315

interval (e.g. on [1,2]) must be affine, and hence cannot be 3 on [3, 4]. But the point is that316

we can try to tolerate errors, and replace s(·, ·) by C-s(2m+c, ·, ·) in the expressions above for317

σ and ξ, taking c such that (3 + 1/42)3|Q| ≤ 2c. This would just introduce some error at318

most (3 + 1/42)3|Q|2−c2−m ≤ 2−m.319

▶ Remark 29. We could also replace every → (q, r) in above expressions for l
′ and r′ by320

C-send(k, (q, r) 7→→ (q, r))(q, σ(4r)), for a suitable error bound k, and symmetrically for321

← (q, r). However, if we do so, we still might have some multiplications in the above322

expressions.323

The key is to use Lemma 23: we can also write the above expressions as

l′ =
∑

q,r

[
C-if

(
2m+c, C-send(22, (q, r) 7→→ (q, r))(q, σ(4r)), l

4 + x
4

)
+ C-if

(
2m+c, C-send(22, (q, r) 7→← (q, r))(q, σ(4r)), ξ(4l)

)]
r′ =

∑
q,r

[
C-if

(
2m+c, C-send(22, (q, r) 7→→ (q, r))(q, σ(4r)), ξ(4r)

)
+ C-if

(
2m+c, C-send(22, (q, r) 7→← (q, r))(q, σ(4r)), ξ(4r)

42 + x
42 + σ(4l)

4

)]
and still have the same bound on the error. ◀324

Once we have one step, we would like to simulate some arbitrary computation of a Turing325

machine, by considering the iterations of function Next.326

The problem of above construction, is that, even if we start from the exact encoding327

C of a configuration, it introduces some error (even if at most 2−m). If we want to apply328

Manon Blanc, Olivier Bournez 19:11

again the function Next, then we will start not exactly from the encoding of a configuration.329

Looking at the choice of the function σ, a small error can be tolerated (roughly if the process330

does not involve points at distance less than 1/4 of I), but this error is amplified (roughly331

multiplied by 4 on some component), before introducing some new errors (even if at most332

2−m). The point is that if we repeat the process, very soon it will be amplified, up to a level333

where we have no true idea or control about what becomes the value of above function.334

However, if we know some bound on the space used by the Turing machine, we can335

correct it to get at most some fixed additive error: a Turing machine using a space S uses at336

most S cells to the right and to the left of the initial position of its head. Consequently, a337

configuration C = (q, l, r) of such a machine involves words l and r of length at most S. Their338

encoding l, and r are expected to remain in IS+1. Consider roundS+1(l) = ⌊4S+1l⌋/4S+1.339

For a point l of IS+1, 4S+1l is an integer, and l = roundS+1(l). But now, for a point l̃ at340

distance less than 4−(S+2) from a point l ∈ IS+1, roundS+1(̃l) = l. In other words, roundS+1341

“deletes” errors of order 4−(S+2). Consequently, we can replace every l in above expressions342

by σ1(22S+4, 22S+3, 4S+1l)/4S+1, as this is close to roundS+1(l), and the same for r, where343

σ1 is the function from Corollary 22. We could also replace m by m + 2S + 4 to guarantee344

that 2−m ≤ 4−(S+2). We get the following important improvement of the previous lemma:345

▶ Lemma 30. We can construct some function Next in LDL◦ that simulates one step of M ,346

i.e. that computes the Next function sending a configuration C of Turing machine M to C
′,347

where C ′ is the next one: ∥Next(2m, 2S , C)−C
′∥ ≤ 2−m. Furthermore, it is robust to errors348

on its input, up to space S: considering ∥C̃ − C∥ ≤ 4−(S+2), ∥Next(2m, 2S , C̃)− C
′∥ ≤ 2−m

349

remains true.350

▶ Proposition 31. Consider some Turing machine M that computes some function f : Σ∗ →351

Σ∗ in some time T (ℓ(ω)) on input ω. One can construct some function f̃ : N2 × R→ R in352

LDL◦ that does the same: f̃(2m, 2T (ℓ(ω)), γword(ω)) that is at most 2−m far from γword(f(ω)).353

Proof. The idea is to define the function Exec that maps some time 2t and some initial354

configuration C to the configuration at time t. This can be obtained using previous lemma355

by Exec(2m, 0, 2T , C) = C and Exec(2m, 2t+1, 2T , C) = Next(2m, 2T , Exec(2m, 2t, 2T , C)).356

We can then get the value of the computation as Exec(2m, 2T (ℓ(ω)), 2T (ℓ(ω)), Cinit) on input357

ω, considering Cinit = (q0, 0, γword(ω)). By applying some projection, we get the following358

function f̃(2m, 2T , y) = π3
3(Exec(2m, 2T , 2T , (q0, 0, y))) that satisfies the property. ◀359

Actually, in order to get FPSPACE, observe that we can also replace the linear length360

ODE by a linear ODE.361

▶ Proposition 32. Consider some Turing machine M that computes some function f :362

Σ∗ → Σ∗ in some polynomial space S(ℓ(ω)) on input ω. One can construct some function363

f̃ : N2 × R → R in RLD◦ that does the same: we have f̃(2m, 2S(ℓ(ω)), γword(ω)) that is at364

most 2−m far from γword(f(ω)).365

Proof. The idea is the same, but not working with powers of 2, and with linear ODE:366

define the function Exec that maps some time t and some initial configuration C to the367

configuration at time t. This can be obtained using previous lemma by Exec(2m, 0, 2S , C) = C368

and Exec(2m, t + 1, 2S , C) = Next(2m, 2S , Exec(2m, t, 2S , C)).369

In order to claim this is a robust linear ODE, we need to state that Exec(2m, t, 2S , C)370

is polynomially numerically stable: but this holds, since to estimate this value at 2−n it is371

sufficient to work at precision 4−max(m,n,S+2) (independently of t, from the rounding).372

MFCS 2023

19:12 Simulation of Turing machines with analytic discrete ODEs. Applications.

We can then get the value of the computation as Exec(2m, 2S(ℓ(ω)), 2S(ℓ(ω)), Cinit) on input373

ω, considering Cinit = (q0, 0, γword(ω)). By applying some projection, we get the following374

function f̃(2m, 2S , y) = π3
3(Exec(2m, S, 2S , (q0, 0, y))) that satisfies the property. ◀375

5 Converting integers and dyadics to words, and conversely376

One point of our simulations of Turing machines is that they work over I, through encoding377

γword, while we would like to talk about integers and real numbers: we need to be able to378

convert an integer (more generally a dyadic) into some encoding over I and conversely.379

Fix the following encoding: every digit in the binary expansion of d is encoded by a pair380

of symbols in the radix 4 expansion of d ∈ I ∩ [0, 1]: digit 0 (respectively: 1) is encoded by381

11 (resp. 13) if before the “decimal” point in d, and digit 0 (respectively: 1) is encoded by 31382

(resp. 33) if after. For example, for d = 101.1 in base 2, d = 0.13111333 in base 4.383

By iterating ℓ(n) times the function

F (r1, l2) =
{

(÷2(r1), (l2 + 5)/4) whenever mod2(r1) = 0
(÷2(r1), (l2 + 7)/4) whenever mod2(r1) = 1.

over (n, 0), and then projecting on the second argument, we can prove:384

▶ Lemma 33 (From N to I). We can construct some function Decode : N2 → R in LDL◦
385

that maps m and n to some point at distance less than 2−m from γword(n).386

This technique can be extended to consider decoding of tuples: there is a function387

Decode : Nd+1 → R in LDL◦ that maps m and n to some point at distance less than 2−m
388

from γword(n), with n defined componentwise.389

Conversely, given d, we need a way to construct d. Actually, as we will need to avoid390

multiplications, we state that we can even do something stronger: given d, and (some391

bounded) λ we can construct λd.392

▶ Lemma 34 (From I to R, and multiplying in parallel). We can construct some function393

EncodeMul : N2 × [0, 1] × R → R in LDL◦ that maps m, 2S, γword(d) and (bounded) λ to394

some real at distance at most 2−m from λd, whenever d is of length less than S.395

6 Proofs and applications396

When we say that a function f : S1 × · · · × Sd → Rd′ is (respectively: polynomial time or397

space) computable this will always be in the sense of computable analysis: see e.g. [7, 19]. We398

actually follow the formalisation in [3] of required concepts from computable analysis, able399

to mix complexity issues dealing with integer and real arguments. Theorem 8 follows from400

point 1. of next Proposition for one inclusion, and previous simulation of Turing machines401

for the other.402

▶ Proposition 35. 1. All functions of LDL◦ are computable (in the sense of computable403

analysis) in polynomial time.404

2. All functions of RLD are computable (in the sense of computable analysis) in polynomial405

space.406

The proof of the proposition consists in observing this holds for the basic functions and407

that composition preserves polynomial time (respectively: space) computability and also408

by linear length ODEs. This latter fact is established by computable analysis arguments,409

Manon Blanc, Olivier Bournez 19:13

reasoning on some explicit formula giving the solution of linear length ODE. Regarding space,410

the main issue is the need to prove the schema given by Definition 18 guarantees f is in411

FPSPACE, when u, g, and h are. Assuming condition 1. of Definition 18 would not be412

sufficient: the problem is f(x, y) may polynomially grow too fast or have a modulus function413

that would grow too fast. The point is, in Definition 18, we assumed f to be both bounded414

and satisfying 2., i.e. polynomial numerical robustness. With these hypotheses, it is sufficient415

to work with the precision given by this robustness condition and these conditions guarantee416

the validity of computing with such approximated values.417

We now go to various applications of it and of our toolbox. First, we state a characterisation418

of FPTIME for general functions, covering both the case of a function f : Nd → Rd′ ,419

f : Rd → Rd′ as a special case: only the first type (sequences) was covered by [3].420

▶ Theorem 36 (Theorem 9). A function f : Rd × Nd′′ → Rd′ is computable in polynomial421

time iff there exists f̃ : Rd × Nd′′+2 → Rd′ ∈ LDL◦ such that for all x ∈ Rd, X ∈ N,422

x ∈
[
−2X , 2X

]
, m ∈ Nd′′ , n ∈ N, ∥f̃(x, m, 2X , 2n)− f(x, m)∥ ≤ 2−n.423

The reverse implication of Theorem 36 follows from Proposition 35, (1.) and arguments424

from computable analysis. For the direct implication, for sequences, that is to say, functions425

of type f : Nd′′ → Rd′ (i.e. d = 0, the case considered in [3]) we are almost done: reasoning426

componentwise, we only need to consider f : Nd′′ → R (i.e. d′ = 1). As the function is427

polynomial time computable, this means that there is a polynomial time computable function428

g : Nd′′+1 → {1, 3}∗ so that on m, 2n, it provides the encoding ϕ(m, n) of some dyadic429

ϕ(m, n) with ∥ϕ(m, n)− f(m)∥ ≤ 2−n for all m. The problem is then to decode, compute430

and encode the result to produce this dyadic, using our previous toolbox.431

More precisely, from Proposition 31, we get g̃ with |g̃(2e, 2p(max(m,n)), Decode(2e, m, n))−432

γword(g(m, n))| ≤ 2−e for some polynomial p corresponding to the time required to compute433

g, and e = max(p(max(m, n)), n). Then we need to transform the value to the correct dyadic:434

we mean f̃(m, n) = EncodeMul(2e, 2t, g̃(2e, 2t, Decode(2e, m, n)), 1), where t = p(max(m, n)),435

e = max(p(max(m, n)), n) provides a solution such that ∥f̃(m, 2n)− f(m)∥ ≤ 2−n.436

▶ Remark 37. This is basically what is done in [3], except that we do it here with analytic437

functions. However, as already observed in [3], this cannot be done for the case d ≥ 1,438

i.e. for example for f : R→ R. The problem is that we used the fact that we can decode:439

Decode maps an integer n to its encoding n (but is not guaranteed to do something valid on440

non-integers). There cannot exist such functions that would be valid over all reals, as such441

function must be continuous, and there is no way to map continuously real numbers to finite442

words. This is where the approach of the article [3] is stuck.443

To solve this, we use an adaptive barycentric technique. By lack of space, we discuss444

only the case of a polynomial time computable function f : R × N → R. From standard445

arguments from computable analysis (see e.g. [Corollary 2.21][13]), the following holds and446

the point is to be able to realise all this with functions from LDL◦.447

▶ Lemma 38. Assume f : R× N→ R is computable in polynomial time. There exists some448

polynomial m : N2 → N and some f̃ : N4 → Z computable in polynomial time such that for449

all x ∈ R, ∥2−nf̃(⌊2m(n,M)x⌋, u, 2M , 2n)− f(x, u)∥ ≤ 2−n whenever x
2m(n,M) ∈ [−2M , 2M].450

Assume we consider an approximation σi (with either i = 1 or i = 2) of the integer part451

function given by Lemma 22. Then, given n, M , when 2m(n,M)x falls in some suitable interval452

Ii for σi (see statement of Lemma 22), we are sure that σi(2e, 2m(n,M)+X+1, 2m(n,M)x) is at453

some distance upon control from ⌊2m(n,M)x⌋. Consequently, 2−nf̃(σi(2m(n,M)+X+1, 2m(n,M)
454

x), u, 2M , 2n) provides some 2−n-approximation of f(x, u), up to some error upon control.455

MFCS 2023

19:14 Simulation of Turing machines with analytic discrete ODEs. Applications.

When this holds, we then use an argument similar to what we describe for sequences: using456

functions from LDL◦, we can decode, compute, and encode the result to provide this dyadic.457

It is provided by an expression Formulai(x, u, M, n) of the form EncodeMul(2e, 2t, ˜̃f(22, 2t,458

Decode(2e, σi(2e, 2M , 2m(n,M)x))), 2−n).459

The problem is that it might also be the case that 2m(n,M)x falls in the complement460

of the intervals (Ii)i. In that case, we have no clear idea of what could be the value of461

σi(2e, 2m(n,M)+X+1, 2m(n,M)x), and consequently of what might be the value of the above462

expression Formulai(x, u, M, n). But the point is that when it happens for an x for σ1, we463

could have used σ2, and this would work, as one can check that the intervals of type I1 covers464

the complements of the intervals of type I2 and conversely. They also overlap, but when x is465

both in some I1 and I2, Formula1(x, u, M, n) and Formula2(x, u, M, n) may differ, but they466

are both 2−n approximation of f(x).467

The key is to compute some suitable "adaptive" barycenter, using function λ, provided by468

Corollary 22. Writing ≈ for the fact that two values are closed up to some controlled bounded469

error, observe from the statements of Lemma 22 that whenever λ(·, 2n, x) ≈ 0, we know470

that σ2(·, 2n, x) ≈ ⌊x⌋; whenever λ(·, 2n, x) ≈ 1 we know that σ1(·, 2n, x) ≈ ⌊x⌋; whenever471

λ(·, 2n, x) ∈ (0, 1), we know that σ1(·, 2n, x) ≈ ⌊x⌋+ 1 and σ2(·, 2n, x) ≈ ⌊x⌋. That means472

that if we consider λ(·, 2n, x)Formula1(x, u, M, n)+(1−λ(·, 2n, n))Formula2(x, u, M, n) we are473

sure to be close (up to some bounded error) to some 2−n approximation of f(x). There remains474

that this requires some multiplication with λ. But from the form of Formulai(x, u, M, n),475

this could be also be written as follows, ending the proof of Theorem 36.476
477

EncodeMul(2e, 2t, ˜̃f(2e, 2t, Decode(2e, σ1(2e, 2M , 2m(n,M)x))), λ(2e, 2M , 2m(n,M)x)2−n)+478

EncodeMul(2e, 2t, ˜̃f(2e, 2t, Decode(2e, σ2(2e, 2M , 2m(n,M)x))), (1−λ(2e, 2M , 2m(n,M)x))2−n)
(7)

479

480
From the fact that we have the reverse direction in Theorem 36, it is natural to consider481

the operation that maps f̃ to f . Namely, we introduce the operation ELim (ELim stands482

for Effective Limit):483

▶ Definition 39 (Operation ELim). Given f̃ : Rd×Nd′′ ×N→ Rd′ ∈ LDL◦ such that for all484

x ∈ Rd, X ∈ N, x ∈
[
−2X , 2X

]
, m ∈ Nd′′ , n ∈ N, ∥f̃(x, m, 2X , 2n)− f(x, m)∥ ≤ 2−n, then485

ELim(f̃) is the (clearly uniquely defined) corresponding function f : Rd → Rd′ .486

▶ Theorem 40. A continuous function f is computable in polynomial time if and only if all its487

components belong to LDL◦, where LDL◦ = [0, 1, πk
i , ℓ(x), +,−, cond(x), x

2 , x
3 ; composition,488

linear length ODE, ELim].489

For the reverse direction, by induction, the only thing to prove is that the class of functions490

from to the integers computable in polynomial time is preserved by the operation ELim.491

Take such a function f̃ . By definition, given x, m, X we can compute f̃(x, m, 2X , 2n) with492

precision 2−n in time polynomial in n. This must be, by definition of ELim schema, some493

approximation of f(x, m) over [−2X , 2X], and hence f is computable in polynomial time.494

This also gives directly Theorem 9 as a corollary.495

We obtain the statements for polynomial space computability (Theorems 10 and 11)496

replacing LDL◦ by RLD◦, using similar reasoning about space instead of time, considering497

point 2. instead of 1. of Proposition 35, and Proposition 32 instead of Proposition 31.498

References499

1 Stephen Bellantoni and Stephen Cook. A new recursion-theoretic characterization of the500

poly-time functions. Computational Complexity, 2:97–110, 1992.501

Manon Blanc, Olivier Bournez 19:15

2 Manon Blanc and Olivier Bournez. A characterization of polynomial time computable functions502

from the integers to the reals using discrete ordinary differential equations. Submitted. Journal503

version of [3]. Preliminary version available on https://arxiv.org/abs/2209.13599.504

3 Manon Blanc and Olivier Bournez. A characterization of polynomial time computable functions505

from the integers to the reals using discrete ordinary differential equations. In Jérôme Durand-506

Lose and György Vaszil, editors, Machines, Computations, and Universality - 9th International507

Conference, MCU 2022, Debrecen, Hungary, August 31 - September 2, 2022, Proceedings,508

volume 13419 of Lecture Notes in Computer Science, pages 58–74. Springer, 2022. MCU’22509

Best Student Paper Award. doi:10.1007/978-3-031-13502-6_4.510

4 Olivier Bournez and Arnaud Durand. Recursion schemes, discrete differential equations and511

characterization of polynomial time computation. In Peter Rossmanith, Pinar Heggernes, and512

Joost-Pieter Katoen, editors, 44th Int Symposium on Mathematical Foundations of Computer513

Science, MFCS, volume 138 of LIPIcs, pages 23:1–23:14. Schloss Dagstuhl - Leibniz-Zentrum514

für Informatik, 2019.515

5 Olivier Bournez and Arnaud Durand. A characterization of functions over the integers516

computable in polynomial time using discrete ordinary differential equations. Computational517

Complexity, 32(2):7, 2023.518

6 Olivier Bournez and Amaury Pouly. A universal ordinary differential equation. In International519

Colloquium on Automata Language Programming, ICALP’2017, 2017.520

7 Vasco Brattka, Peter Hertling, and Klaus Weihrauch. A tutorial on computable analysis. In521

New computational paradigms, pages 425–491. Springer, 2008.522

8 P. Clote. Computational models and function algebras. In Edward R. Griffor, editor, Handbook523

of Computability Theory, pages 589–681. North-Holland, Amsterdam, 1998.524

9 Peter Clote and Evangelos Kranakis. Boolean functions and computation models. Springer525

Science & Business Media, 2013.526

10 Alan Cobham. The intrinsic computational difficulty of functions. In Y. Bar-Hillel, editor,527

Proceedings of the International Conference on Logic, Methodology, and Philosophy of Science,528

pages 24–30. North-Holland, Amsterdam, 1962.529

11 Francois Fages, Guillaume Le Guludec, Olivier Bournez, and Amaury Pouly. Strong turing530

completeness of continuous chemical reaction networks and compilation of mixed analog-digital531

programs. In Computational Methods in Systems Biology-CMSB 2017, 2017. CMSB’2017 Best532

Paper Award.533

12 Daniel S. Graça and Ning Zhong. Handbook of Computability and Complexity in Analysis,534

chapter Computability of Differential Equations. Springer., 2018.535

13 Ker-I Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer Science.536

Birkhaüser, Boston, 1991.537

14 D. Leivant. Intrinsic theories and computational complexity. In LCC’94, number 960 in538

Lecture Notes in Computer Science, pages 177–194, 1995.539

15 Daniel Leivant. Predicative recurrence and computational complexity I: Word recurrence540

and poly-time. In Peter Clote and Jeffery Remmel, editors, Feasible Mathematics II, pages541

320–343. Birkhäuser, 1994.542

16 Daniel Leivant and Jean-Yves Marion. Lambda calculus characterizations of Poly-Time.543

Fundamenta Informatica, 19(1,2):167,184, 1993.544

17 Daniel Leivant and Jean-Yves Marion. Ramified recurrence and computational complexity II:545

substitution and poly-space. In L. Pacholski and J. Tiuryn, editors, Computer Science Logic,546

8th Workshop, CSL’94, volume 933 of Lecture Notes in Computer Science, pages 369–380,547

Kazimierz, Poland, 1995. Springer.548

18 David B Thompson. Subrecursiveness: Machine-independent notions of computability in549

restricted time and storage. Mathematical Systems Theory, 6(1-2):3–15, 1972.550

19 Klaus Weihrauch. Computable Analysis: an Introduction. Springer, 2000.551

MFCS 2023

https://arxiv.org/abs/2209.13599
https://doi.org/10.1007/978-3-031-13502-6_4

	1 Introduction
	2 Some concepts related to discrete ODEs
	3 Some results about various functions
	4 Simulating Turing machines with functions of LDL
	5 Converting integers and dyadics to words, and conversely
	6 Proofs and applications

