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Abstract. The class of functions from the integers to the integers com-
putable in polynomial time has been recently characterized using discrete
ordinary differential equations (ODE), also known as finite differences.
Doing so, the fundamental role of linear (discrete) ODEs and classical
ODE tools such as changes of variables to capture computability and
complexity measures, or as a tool for programming was pointed out.
In this article, we extend the approach to a characterization of functions
from the integers to the reals computable in polynomial time in the sense
of computable analysis. In particular, we provide a characterization of
such functions in terms of the smallest class of functions that contains
some basic functions, and that is closed by composition, linear length
ODEs, and a natural effective limit schema.

1 Introduction

Ordinary differential equations are a natural tool for modeling many phenomena
in applied sciences, with a very abundant literature (see e.g. [1–3]) and are rather
well understood under many aspects. In a series of recent articles, they have
been shown to also correspond to some natural computational model, with a
nice computability and complexity theory: See [4] for a survey.

In a recent article [5, 6], their discrete counterpart, which are called discrete
ODEs, also known as difference equations have been investigated. The basic
principle is, for a function f(x) to consider its discrete derivative defined as
∆f(x) = f(x + 1) − f(x). We will intentionally also write f ′(x) for ∆f(x) to
help to understand statements with respect to their classical continuous coun-
terparts. This associated derivative notion, called finite differences, has been
widely studied in numerical optimization for function approximation [7] and in
discrete calculus [8–11] for combinatorial analysis. While the underlying com-
putational content of finite differences theory is clear and has been pointed out
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many times, no fundamental connections with algorithms and complexity had
been formally established before [5, 6], where it was proved that many complexity
and computability classes from computation theory can actually be characterized
algebraically using discrete ODEs. Even if such results were initially motivated
by helping to understand the relationships between analog computations and
classical discrete models of computation theory, the relation between the two is
currently unclear.

In the context of algebraic classes of functions, a classical notation is the fol-
lowing: Call operation a scheme of definition that takes finitely many functions,
and returns some new function defined from them. Then,

[f1, f2, . . . , fk; op1, op2, . . . , opℓ],

denotes the smallest set of functions containing functions f1, f2, . . . , fk that is
closed under operations op1, op2, . . . opℓ. Call discrete function a function of
type f : S1 × · · · × Sd → S′

1 × . . . S′
d′ , where each Si, S

′
i is either N or Z. Write

FPTIME for the class of functions computable in polynomial time. A main
result of [5, 6] is the following (LDL stands for linear derivation on length):

Theorem 1 ([5]). For discrete functions, we have

LDL = FPTIME

where LDL = [0,1, πk
i , ℓ(x),+,−,×, sg(x) ; composition, linear length ODE].

That is to say, LDL (and hence FPTIME for discrete functions) is the smallest
subset of functions, that contains

– the constant functions 0 and 1,
– the projections πk

i : Rk → R given by πk
i (x1, . . . , xk) = xi, for various

integers i and k,
– the length function ℓ(x), which maps an integer to the length of its binary

representation,
– the addition function x+y,
– the subtraction function x−y,
– the multiplication function x× y (that we will also often denote x · y),
– the sign function sg(x) : Z → Z that takes value 1 for x > 0 and 0 in the

other case,

and closed under composition (when defined) and linear length-ODE scheme:
The linear length-ODE scheme basically (a formal definition is provided in Def-
inition 4) corresponds in defining functions from linear ODEs with respect to
derivation with respect to the length of the argument, that is to say, of the form

∂f(x,y)

∂ℓ
= A[f(x,y), x,y] · f(x,y) +B[f(x,y), x,y],

In all what follows, when we write some variable using some boldface letter, like
y, this means that it can be a vector of variable. A usual typography, like for



the x above, means it is a single variable. In the above description, we use the

notation ∂f(x,y)
∂ℓ , which corresponds in derivation of f along the length function:

Given some function L : Np+1 → Z, and in particular for the case of where
L(x,y) = ℓ(x),

∂f(x,y)

∂L
=
∂f(x,y)

∂L(x,y)
= h(f(x,y), x,y), (1)

is a formal synonym for

f(x+ 1,y) = f(x,y) + (L(x+ 1,y)− L(x,y)) · h(f(x,y), x,y).

Remark 1. This concepts, introduced in [5, 6], is motivated by the fact that the
latter expression is similar to classical formula for classical continuous ODEs:

δf(x,y)

δx
=
δL(x,y)
δx

· δf(x,y)
δL(x,y)

,

and hence this is similar in spirit to a change of variable. Consequently, a linear
length-ODE is basically a linear ODE over variable t, once the change of variable
t = ℓ(x) is done.

In particular, writing as usual BA for functions from A to B, we have:

Theorem 2 ([5]). LDL ∩ NN = FPTIME ∩ NN.

This provides a characterization of FPTIME for discrete functions that does
not require to specify an explicit bound in the recursion, in contrast to Cobham’s
work [12], nor to assign a specific role or type to variables, in contrast to safe
recursion or ramification [13, 14]. The characterization happens to be very simple
using only natural notions from the world of ODE.

Our purpose in this article is to extend this to more general classes of func-
tions. In particular, this makes sense to try to characterize polynomial time
functions from the reals to the reals. We consider here computability and com-
plexity over the reals in the most classical sense, that is to say, computable
analysis (see e.g. [15]). Indeed, considering that N ⊂ R, most of the basic func-
tions and operations in the above characterization (for example, +, −, . . . ) have
a clear meaning over the reals. One clear difficulty is that discrete ODEs are
about discrete schemata, while we would like to talk about functions over the
continuum. We did not succeed to do so yet, but we propose here a substantial
step towards this direction: We provide a characterization of polynomial time
computable functions from the integers to the reals using discrete linear ODEs:
considering linear ODEs is very natural in the context of ODEs.

To do so, we naturally go to talking about algebra of functions more general
than discrete functions, that is to say over more general space than N and Z.
This introduces some subtleties, and difficulties, that we discuss in this article,
with our various concepts, definitions and statements. Hence, we consider in
this article functions of type f : S1 × · · · × Sd → S0, where each Si is either
N, Z or Q or R, or is possibly vectorial functions whose components (that is



to say coordinates/projections) are of this type. We denote F for the class of
such functions. Clearly, we can consider N ⊂ Z ⊂ Q ⊂ R, but as functions may
have different type of outputs, composition is an issue. We simply admit that
composition may not be defined in some cases. In other words, we consider that
composition is a partial operator: for example, given f : N→ R and g : R→ R,
the composition of g and f is defined as expected, but f cannot be composed
with a function such as h : N→ N.

We then consider the class

LDL• = [0,1, πk
i , ℓ(x),+,−,×, cond(x),

x

2
; composition, linear length ODE]

of functions of F . Here

– ℓ : N → N is the length function, mapping some integer to the length of its
binary representation,

– x
2 : R→ R is the function that divides by 2, and all other basic functions are
defined exactly as for LDL, but considered here as functions from the reals
to reals.

– cond(x) : R → R is some piecewise affine function that takes value 1 for
x > 3

4 and 0 for x < 1
4 , and continuous piecewise affine. In particular, its

restrictions to the integer is the function sg(x) considered in LDL.

We prove the following (∥.∥ stands for the sup-norm).

Theorem 3 (Main theorem 1). A function f : Nd → Rd′
is computable in

polynomial time if and only if there exists f̃ : Nd+1 → Rd′ ∈ LDL• such that for
all m ∈ Nd, n ∈ N, ∥f̃(m, 2n)− f(m)∥ ≤ 2−n.

From the fact that we have the reverse direction in the previous theorem, it
is natural to consider the operation that maps f̃ to f . Namely, we introduce the
operation ELim (ELim stands for Effective Limit):

Definition 1 (Operation ELim). Given f̃ : Nd+1 → Rd′ ∈ LDL• such that
for all m ∈ Nd, n ∈ N, ∥f̃(m, 2n) − f(m)∥ ≤ 2−n for some function f , then
ELim(f̃) is the (clearly uniquely defined) corresponding function f : Nd → Rd′

.

We obtain our main result, that provides a characterization of polynomial
time computable functions for functions from the integers to the reals.

Theorem 4 (Main theorem 2). A function f : Nd → Rd′
. is computable in

polynomial time if and only if all it components can be written through the LDL•

scheme, where:
LDL• = [0,1, πk

i , ℓ(x),+,−,×, cond(x), x2 ; composition, linear length ODE,ELim].

In particular:

Theorem 5. LDL• ∩ RN = FPTIME ∩ RN



In Section 2, we recall the theory of discrete ODEs. In Section 3, we recall
required concepts from computable analysis. In Section 4, we prove that func-
tions from LDL• are polynomial time computable. Section 5 is proving a kind
of reverse implication for functions over words. Then this is extended in Section
6 to functions from integers to the reals, and we obtain a proof of Theorem 3.
Section 7 then proves Theorems 4 and 5. Section 8 is some generalizations of
these results. Section 9 discusses future work and difficulties to go to functions
of RR.

Related work. Various computability and complexity classes have been recently
characterized using (classical) continuous ODEs: The most up-to-date survey is
[4]. Dealing with discrete ODEs is really different, as most of the constructions
heavily rely on some closure properties of continuous ODEs not true for discrete
ODEs, in particular because there is no chain rule formula for discrete derivation.
The idea of considering discrete ODEs as a model of computation is due to [5,
6].

In a non-ODE centric point of view, we are characterizing some complexity
classes using particular discrete schemata. Recursion schemes constitute a major
approach of computability theory and to some extent of complexity theory. The
foundational characterization of FPTIME due to Cobham [12], and then others
based on safe recursion [13] or ramification ([16, 17]), or for other classes [18],
gave birth to the very vivid field of implicit complexity at the interplay of logic
and theory of programming: See [19, 20] for monographs.

Our ways of simulating Turing machines have some reminiscence of similar
constructions used in other contexts such as Neural Networks [21, 22]. But with
respect to all previous contexts, as far as we know, only a few papers have been
devoted to characterizations of complexity, and even computability, classes in the
sense of computable analysis. There have been some attempts using continuous
ODEs [23], or the so-called R-recursive functions [4]. For discrete schemata, we
only know [24] and [25], focusing on computability and not complexity.

2 Some concepts from the theory of discrete ODEs

In this section, we recall some concepts and definitions from discrete ODEs,
either well-known or established in [5, 6]. We need to slightly extend the concept
of sg-polynomial expression from [5, 6] to allow expressions with cond() instead
of sg().

Definition 2 (Extension of [5, 6]). A cond-polynomial expression P (x1, ..., xh)
is an expression built-on +,−,× (often denoted ·) and cond() functions over a
set of variables V = {x1, ..., xh} and integer constants. The degree deg(x, P ) of a
term x ∈ V in P is defined inductively as follows: deg(x, x) = 1 and for x′ ∈ V ∪
Z such that x′ ̸= x, deg(x, x′) = 0; deg(x, P +Q) = max{deg(x, P ),deg(x,Q)};
deg(x, P ×Q) = deg(x, P ) + deg(x,Q); deg(x, sg(P )) = 0. A cond-polynomial
expression P is essentially constant in x if deg(x, P ) = 0.



Compared to the classical notion of degree in polynomial expression, all sub-
terms that are within the scope of a sign (that is to say cond()) function con-
tributes 0 to the degree. A vectorial function (respectively a matrix or a vector)
is said to be a cond-polynomial expression if all its coordinates (respectively
coefficients) are. It is said to be essentially constant if all its coefficients are.

Definition 3 ([5, 6]). A cond-polynomial expression g(f(x,y), x,y) is essen-
tially linear in f(x,y) if it is of the form g(f(x,y), x,y) = A[f(x,y), x,y] ·
f(x,y)+B[f(x,y), x,y] where A and B are cond-polynomial expressions essen-
tially constant in f(x,y).

For example, the expression P (x, y, z) = x·cond((x2−z)·y)+y3 is essentially
linear in x, essentially constant in z and not linear in y. The expression: z +
(1− cond(x)) · (1− cond(−x)) · (y − z) is essentially constant in x and linear in
y and z.

Definition 4 (Linear length ODE [5, 6]). Function f is linear L-ODE de-
finable (from u, g and h) if it corresponds to the solution of

f(0,y) = g(y) and
∂f(x,y)

∂ℓ
= u(f(x,y),h(x,y), x,y) (2)

where u is essentially linear in f(x,y).

3 Some concepts from computable analysis

When we say that a function f : S1×· · ·×Sd → Rd′
is (respectively: polynomial-

time) computable this will always be in the sense of computable analysis. We
recall here the basic concepts and definitions, mostly following the book [26],
whose subject is complexity theory in computable analysis. Alternative presen-
tations include [27, 15]. Actually, as we want to talk about functions in F , we
need to mix complexity issues dealing with integer and real arguments.

A dyadic number d is a rational number with a finite binary expansion. That
is to say d = m/2n for some integers m ∈ Z, n ∈ N, n ≥ 0. Let D be the set of all
dyadic rational numbers. We denote by Dn the set of all dyadic rationals d with
a representation s of precision prec(s) = n; that is, Dn = {m · 2−n | m ∈ Z}.

Definition 5 ([26]). For each real number x, a function ϕ : N → D is said to
binary converge to x if for all n ∈ N,prec(ϕ(n)) = n and |ϕ(n)− x| ≤ 2−n. Let
CFx (Cauchy function) denote the set of all functions binary converging to x.

Intuitively Turing machine M computes a real function f in the following
way: 1. The input x to f , represented by some ϕ ∈ CFx, is given to M as an
oracle; 2. The output precision 2−n is given in the form of integer n as the input
toM ; 3. The computation ofM usually takes two steps, though sometimes these
two steps may be repeated for an indefinite number of times: 4. M computes,
from the output precision 2−n, the required input precision 2−m; 5. M queries



the oracle to get ϕ(m), such that ∥ϕ(m)− x∥ ≤ 2−m, and computes from ϕ(m)
an output d ∈ D with ∥d− f(x)∥ ≤ 2−n.

More formally:

Definition 6 ([26]). A real function f : R → R is computable if there is a
function-oracle TM M such that for each x ∈ R and each ϕ ∈ CFx, the function
ψ computed by M with oracle ϕ (i.e., ψ(n) =Mϕ(n)

)
is in CFf(x).

Assume that M is an oracle machine which computes f on domainG. For
any oracle ϕ ∈ CFx, with x ∈ G, let TM (ϕ, n) be the number of steps for M to
halt on input n with oracle ϕ, and T ′

M (x, n) = max {TM (ϕ, n) | ϕ ∈ CFx}. The
time complexity of f is defined as follows.

Definition 7 ([26]). Let G be bounded closed interval [a, b]. Let f : G → R
be a computable function. Then, we say that the time complexity of f on G is
bounded by a function t : G × N → N if there exists an oracle TM M which
computes f such that for all x ∈ G and all n > 0, T ′

M (x, n) ≤ t(x, n).

In other words, the idea is to measure the time complexity of a real function
based on two parameters: input real number x and output precision 2−n. Some-
times, it is more convenient to simplify the complexity measure to be based on
only one parameter, the output precision. For this purpose, we say the uniform
time complexity of f on G is bounded by a function t′ : N → N if the time
complexity of f on G is bounded by a function t : G×N→ N with the property
that for all x ∈ G, t(x, n) ≤ t′(n).

However, if we do so, it is important to realize that if we had taken G = R in
the previous definition, for unbounded functions f , the uniform time complexity
would not exist, because the number of moves required to write down the integral
part of f(x) grows as x approaches +∞ or −∞. Therefore, the approach of [26]
is to do as follows (the bounds −2X and 2X are somewhat arbitrary, but are
chosen here because the binary expansion of any x ∈ (−2n, 2n) has n bits in the
integral part).

Definition 8 (Adapted from [26]). For functions f(x) whose domain is R,
we say that the (non-uniform) time complexity of f is bounded by a function
t′ : N2 → N if the time complexity of f on

[
−2X , 2X

]
is bounded by a function

t : N2 → N such that t(x, n) ≤ t′(X,n) for all x ∈
[
−2X , 2X

]
.

As we want to talk about general functions in F , we extend the approach to
more general functions. (for conciseness, when x = (x1, . . . , xp),X = (X1, . . . , Xp),
we write x ∈ [−2X, 2X] as a shortcut for x1 ∈

[
−2X1 , 2X1

]
, . . . , xp ∈

[
−2Xp , 2Xp

]
).

Definition 9 (Complexity for real functions: general case). Consider a
function f(x1, . . . , xp, n1, . . . , nq) whose domain is Rp × Nq. We say that the
(non-uniform) time complexity of f is bounded by a function t′ : Np+q+1 → N if
the time complexity of f(·, . . . , ·, ℓ(n1), . . . , ℓ(nq)) on

[
−2X1 , 2X1

]
×. . .

[
−2Xp , 2Xp

]
is bounded by a function t(·, . . . , ·, ℓ(n1), . . . , ℓ(nq), ·) : Np × N → N such that
t(x, ℓ(n1), . . . , ℓ(nq), n) ≤ t′(X, ℓ(n1), . . . , ℓ(nq), n) whenever x ∈

[
−2X, 2X

]
.



We say that f is polynomial time computable if t′ can be chosen as a poly-
nomial. We say that a vectorial function is polynomial time computable iff all
its components are.

We do so that this measure of complexity extends the usual complexity for
functions over the integers, where complexity of integers is measured with re-
spects of their lengths, and over the reals, where complexity is measured with
respect to their approximation. In particular, in the specific case of a function
f : Nd → Rd′

, that basically means there is some polynomial t′ : Nd+1 → N
so that the time complexity of producing some dyadic approximating f(m) at
precision 2−n is bounded by t′(ℓ(m1), . . . , ℓ(md), n).

In other words, when considering that a function is polynomial time com-
putable, it is in the length of all its integer arguments, as this is the usual con-
vention. However, we need sometimes to consider also polynomial dependency
directly in one of some specific integer argument, say ni, and not on its length
ℓ(ni). We say that the function is polynomial time computable, with respect to
the value of ni when this holds (keeping possible other integer arguments nj ,
j ̸= i, measured by their length).

A well-known observation is the following.

Theorem 6. Consider f as in Definition 9 computable in polynomial time. Then
f has a polynomial modulus function of continuity, that is to say there is a
polynomial function mf : Np+q+1 → N such that for all x,y and all n > 0,
∥x − y∥ ≤ 2−mf (X,ℓ(n1),...,ℓ(nq),n) implies ∥f(x, n1, . . . , nq) − f(y, n1, . . . , nq)∥ ≤
2−n, whenever x,y ∈

[
−2X, 2X

]
.

4 Functions from LDL• are in FPTIME

The following proposition can be proved by inductionfrom standard arguments.
The hardest part is to prove that the class of polynomial time computable func-
tions is preserved by the linear length ODE schema: This is Lemma 3.

Proposition 1. All functions of LDL• are computable (in the sense of com-
putable analysis) in polynomial time.

The following lemmas are proved in [5, 6].

Lemma 1 (Alternative view, case of Length ODEs, from [5, 6]). Let
f : Np+1 → Zd, L : Np+1 → Z be some functions and assume that (1) holds
considering L(x,y) = ℓ(x). Then f(x,y) is given by f(x,y) = F(ℓ(x),y) where
F is the solution of initial value problem

F(1,y) = f(0,y),

∂F(t,y)

∂t
= h(F(t,y), 2t − 1,y).



Lemma 2 (Solution of linear ODE, , from [5, 6]). For matrices A and
vectors B and G, the solution of equation f ′(x,y) = A(f(x,y),h(x,y), x,y) ·
f(x,y) +B(f(x,y),h(x,y), x,y) with initial conditions f(0,y) = G(y) is

f(x,y) =
(
2
∫ x
0

A(f(t,y),h(t,y),t,y)δt
)
·G(y)

+

∫ x

0

(
2
∫ x
u+1

A(f(t,y),h(t,y),t,y)δt
)
·B(f(u,y),h(u,y), u,y)δu.

Remark 2. Notice, as in [5, 6], that this can be rewritten as

f(x,y) =

x−1∑
u=−1

(
x−1∏

t=u+1

(1 +A(f(t,y),h(t,y), t,y))

)
·B(f(u,y),h(u,y), u,y),

(3)

with the (not so usual) conventions that for any function κ(·),
∏x−1

x κ(x) = 1
and B(−1,y) = G(y).

Lemma 3. The class of polynomial time computable functions is preserved by
the linear length ODE schema.

We propose to write x⃗ for 2x − 1 for conciseness. We write |||· · ·||| for the
sup norm of integer part: given some matrix A = (Ai,j)1≤i≤n,1≤j≤m, |||A||| =
maxi,j⌈Ai,j⌉. In particular, given a vector x, it can be seen as a matrix with
m = 1, and |||x||| is the sup norm of the integer part of its components.

Proof. Using Lemma 1, when the schema of Definition 4 holds, we can do a
change of variable to consider f(x,y) = F(ℓ(x),y), with F solution of a discrete

ODE of the form ∂F(t,y)
∂t = A(F(t,y),h(⃗t,y), t⃗,y)·F(t,y)+B(F(t,y),h(⃗t,y), t⃗,y),

that is to say, of the form (4) below. It then follows from:

Lemma 4 (Fundamental observation). Consider the ODE

F′(x,y) = A(F(x,y),h(x⃗,y), x⃗,y) · F(x,y) +B(F(x,y),h(x⃗,y), x⃗,y). (4)

Assume:

1. The initial condition G(y)
def
= F(0,y), as well as h(x⃗,y) are polynomial time

computable with respect to the value of x.
2. A(F(x,y),h(x⃗,y), x⃗,y) and B(F(x,y),h(x⃗,y), x⃗,y) are sg-polynomial ex-

pressions essentially constant in F(x,y).

Then, there exists a polynomial p such that ℓ(|||F(x,y)|||) ≤ p(x, ℓ(|||y|||)) and
F(x,y) is polynomial time computable with respect to the value of x.

Proof. The fact that there exists a polynomial p such that ℓ(|||F(x,y)|||) ≤
p(x, ℓ(|||y|||)), follows from the fact that we can write some explicit formula for
the solution of (4): This is Lemma 2 below repeated from [5, 6]. Now, bounding
the size of the right hand side of formula (3) provides the statement.



Now the fact that F(x,y) is polynomial time computable, follows from a rea-
soning similar to the one of following lemma (the lemma below restricts the form
of the recurrence by lack of space, but the more general recurrence of (4) would
basically not lead to any difficulty): The fact that the modulus of continuity of
a linear expression of the form of the right hand side of (4) is necessarily affine
in its first argument follows from the hypotheses and from previous paragraph,
using the fact that cond() has a linear modulus of convergence.

Lemma 5. Suppose that function the f : N×Rd → Rd′
is such that for all x,y,

f(0,y) = g(y) and f(x+ 1,y) = h(f(x,y), x,y))

for some functions g : Rd → Rd′
and h : Rd′ × R × Rd → Rd′

both computable
in polynomial time with respect to the value of x. Suppose that the modulus mh

of continuity of h is affine in its first argument: For all functions f , f ′ defined
in [−2F, 2F], y ∈ [−2Y, 2Y], ∥f − f ′∥ ≤ 2−mh(F,ℓ(x),Y,n) implies |h(f , x,y) −
h(f ′, x,y)| ≤ 2−n with mh(F, ℓ(x),Y, n) = αn + ph(F, ℓ(x),Y) for some α.
Suppose there exists a polynomial p such that ℓ(|||f(x,y)|||) ≤ p(x, ℓ(|||y|||)).

Then f(x,y) is computable in polynomial time with respect to the value of x.

Proof. The point is that we can compute f(n,y) by z0 = f(0,y) = g(y),
then z1 = f(1,y) = h(z0, 0,y), then z2 = f(2,y) = h(z1, 1,y), then . . . , then
zm = f(m,y) = h(zm−1,m − 1,y). One needs to do so with some sufficient
precision so that the result given by f(l,y) is correct, and so that the whole
computation can be done in polynomial time.

Given y, we can determine Y such that y ∈ [−2Y, 2Y]. Assume for now that
for all m,

zm ∈ [−2Zm , 2Zm ] (5)

For i = 0, 1, . . . l, consider p(i) = αl−in+
∑l−1

k=i α
k−iph(Zk, ℓ(k),Y).

Using the fact that g is computable, approximate z0 = g(y) with precision
2−p(0). This is doable polynomial time with respect to the value of p(0).

Then for i = 0, 1, . . . , l, using the approximation of zi with precision 2−p(i),
compute an approximation of zi+1 with precision 2−p(i+1): this is feasible to
get precision 2−p(i+1) of zi+1, as zi+1 = f(i + 1,y) = h(zi, i,y), it is sufficient
to consider precision mh(Zi, ℓ(i),Y, p(i + 1)) = αp(i + 1) + ph(Zi, ℓ(i),Y) =

αl−i−1+1n+
∑l−1

k=i+1 α
k−i−1+1ph(Zk, ℓ(k),Y)+ph(Zi, ℓ(i),Y) = p(i). Observing

that p(l) = n, we get zl with precision 2−n. All of this is is indeed feasible in
polynomial time with respect to the value of l, under the condition that all the
Zi remain of size polynomial, that is to say, that we have indeed (5). But this
follows from our hypothesis on ℓ(|||f(x,y)|||).

5 Functions from FPTIME are in LDL•

This section is devoted to prove a kind of reverse implication of Proposition 1:
For any polynomial time computable function f : Nd → Rd′

, we can construct



some function f̃ ∈ LDL• that simulates the computation of f . This basically
requires to be able to simulate the computation of a Turing machine using some
functions from LDL•.

Consider without loss of generality some Turing machine

M = (Q, {0, 1}, qinit, δ, F )

using the symbols 0, 1, 3, where B = 0 is the blank symbol. The reason of the
choice of symbols 1 and 3 will be made clear later. We assumeQ = {0, 1, . . . , |Q|−
1}. Let

. . . l−kl−k+1 . . . l−1l0r0r1 . . . rn. . . .

denote the content of the tape of the Turing machine M . In this representation,
the head is in front of symbol r0, and li, ri ∈ {0, 1, 3} for all i. Such a configura-
tion C can be denoted by C = (q, l, r), where l, r ∈ Σω are (possibly infinite, if
we consider that the tape can be seen as a non finite word, in the case there is
no blank on it) words over alphabet Σ = {1, 3} and q ∈ Q denotes the internal
state of M .

The idea is that such a configuration C can also be encoded by some element
γconfig(C) = (q, l, r) ∈ N× R2, by considering

r = r04
−1 + r14

−2 + · · ·+ rn4
−(n+1) + . . . ,

l = l04
−1 + l−14

−2 + · · ·+ l−k4
−(k+1) + . . .

Basically, in other words, we encode the configuration of bi-infinite tape
Turing machine M by real numbers using their radix 4 encoding, but using
only digits 1,3. If we write: γword : Σω → R for the function that maps word
w = w0w1w2 . . . to γword(w) = w04

−1 +w14
−2 + · · ·+wn4

−(n+1) + . . . , we can
also write γconfig(C) = γconfig(q, l, r) = (q, γword(l), γword(r)).

Notice that this lives in Q × [0, 1]2. Actually, if we denote the image of
γword : Σω → R by I, this even lives in Q× I2.

Lemma 6. We can construct some function Next in LDL• that simulates one
step of M , i.e. that computes the Next function sending a configuration C of
Turing machine M to the next one. This function is essentially linear.

Proof. We can write l = l0l
• and r = r0r

•, where l• and r• corresponding to
(possibly infinite) word l−1l−2 . . . and r1r2 . . . respectively.

... l• l0 r0 r
• ...︸ ︷︷ ︸

l

︸︷︷︸
r

The function Next is basically of the form

Next(q, l, r) = Next(q, l•l0, r0r
•) = (q′, l′, r′)

= (q′, l•l0x, r
•) whenever δ(q, r0) = (q′, x,→)

(q′, l•, l0xr
•) whenever δ(q, r0) = (q′, x,←)

. . .



where the dots is a list of lines of similar types for the various values of q and r0.
This rewrites as a functionNext which is similar, working over the representation
of the configurations as reals:

Next(q, l, r) = Next(q, l•l0, r0r•) = (q′, l′, r′)

= (q′, l•l0x, r•) whenever δ(q, r0) = (q′, x,→)

(q′, l•, l0xr•) whenever δ(q, r0) = (q′, x,←)

. . .
where r0 = ⌊4r⌋ and
• in the first case “→” : l′ = 4−1l + 4−1x and r′ = r• = {4r}
• in the second case “←” : l′ = l• = {4l} and r′ = 4−2r• + 4−2x+ ⌊4l⌋

(6)

Here {.} stands for fractional part.
The problem about such expressions is that we cannot expect the integer

part and the fractional part function to be in LDL• (as functions of this class
are computable, and hence continuous, unlike the fractional part). But, a key
point is that from our trick of using only symbols 1 and 3, we are sure that in an
expression like ⌊r⌋, either it values 0 (this is the specific case where there remain
only blanks in r), or that 4r lives in interval [1, 1+1) or in interval [3, 3+1). That
means that we could replace {4r} by σ(4r) where σ is some (piecewise affine)
function obtained by composing in a suitable way the basic functions of LDL•.
Namely, define If (b, T, E) as a synonym for cond(b) × T + (1 − cond(b)) × E.
Then, considering i(x) = If (x, 0, If (x − 1, 1, 3)), σ(x) = x − i(x), then i(4r)
would be the same as ⌊4r⌋, and σ(4r) would be the same as {4r} in our context
in above expressions. In other words, we could replace the paragraph (6) above
by:

where r0 = i(4r)

• in the first case “→” : l′ = 4−1l + 4−1x and r′ = r• = σ(4r)

• in the second case “←” : l′ = l• = σ(4l) and r′ = 4−2r• + 4−1x+ i(4l)

and get something that would be still work exactly, but using only functions from
LDL•. Notice that these imbrications of If rewrite to an essentially constant
expression.

We can then write:

q′ = If (q−0, nextq0, If (q−1, nextq1, · · · , If (q−|Q−2|, nextq|Q|−2, nextq|Q|−1)))

where
nextqq = If (v − 0, nextqq0, If (v − 1, nextqq1, nextq

q
3))

and where nextqqv = q′ if δ(q, v) = (q′, x,m) for m ∈ {←,→}, for v ∈ {0, 1, 3}.
Similarly, we can write

r′ = If (q−0, nextr0, If (q−1, nextr1, · · · , If (q−|Q−2|, nextr|Q|−2, nextr|Q|−1)))

where nextrq = If (v − 0, nextrq0, If (v − 1, nextrq1, nextr
q
3)) and where nextrqv

that corresponds to the corresponding expression in the item above according
to the value of δ(q, v). We can clearly write a similar expression for l′. These
imbrications of If rewrite to some essentially linear expressions.



Once we have one step, we can simulate some arbitrary computation of a
Turing machine, using some linear length ODE:

Proposition 2. Consider some Turing machine M that computes some func-
tion f : Σ∗ → Σ∗ in some time T (ℓ(ω)) on input ω. One can construct some
function f̃ : N×R→ R in LDL• that does the same, with respect to the previous
encoding: f̃(2T (ℓ(ω)), γword(ω)) provides f(ω).

Proof. The idea is to define the function Exec that maps some time 2t and
some initial configuration C to the configuration number at time t. This can be
obtained using some linear length ODE using Lemma 6.

Exec(0, C) = C and
∂Exec

∂ℓ
(t, C) = Next(Exec(t, C))

We can then get the value of the computation as Exec(2T (ℓ(ω)), Cinit) on in-
put ω, considering Cinit = (q0, 0, γword(ω)). By applying some projection, we get
the following function f̃(x, y) = π3

3(Exec(x, q0, 0, y)) that satisfies the property.

6 Towards functions from integers to the reals

The purpose of this section is to prove Theorem 3. The reverse implication of
Theorem 3 mostly follows from Proposition 1 and arguments from computable
analysis. By lack of space, details are in appendix.

For the direct implication of Theorem 3, the difficulty is that we know from
the previous section how to simulate Turing machines working over I, while we
want functions that work directly over the integers and over the reals. A key is
to be able to convert from integers/reals to representations using only symbols
1 and 3, that is to say, to map integers to I, and I to reals.

Lemma 7 (From I to R). We can construct some function Encode : N ×
[0, 1] → R in LDL• that maps γword(d) with d ∈ {1, 3}∗ to some real d. It is
surjective over the dyadic, in the sense that for any dyadic d ∈ D, there is some

(easily computable) such d with Encode(2ℓ(d), d) = d.

Proof. Consider the following transformation: Every digit in the binary expan-
sion of d is encoded by a pair of symbols in the radix 4 encoding of d ∈ [0, 1]:
digit 0 (respectively: 1) is encoded by 11 (respectively 13) if before the “decimal”
point in d, and digit 0 (respectively: 1) is encoded by 31 (respectively 33) if after.
For example, for d = 101.1 in base 2, d = 0.13111333 in base 4.

The transformation from d to d can be done by considering a function F :
[0, 1]2 → [0, 1]2 that satisfies

F (r1, l2) =


(σ(16r1), 2l2 + 0) whenever i(16r1) = 5

(σ(16r1), 2l2 + 1) whenever i(16r1) = 7

(σ(16r1), (l2 + 0)/2) whenever i(16r1) = 13

(σ(16r1), (l2 + 1)/2) whenever i(16r1) = 15



A natural candidate for this is an expression such as If (i(16r1)−0, (σ(16r1), 2l2+
0), If (i(16r1)−7, (σ(16r1), 2l2+1), If (i(16r1)−13, (σ(16r1), (l2+0)/2), (σ(16r1),
(l2+1)/2)))) with σ and i constructed as suitable approximation of the fractional
and integer part as in previous section.

We then just need to apply ℓ(d) times F on (d, 0), and then project on
the second component to get a function Encode that does the job. That is
Encode(x, y) = π3

3(G(x, y)) with

G(0, y) = (d, 0) and
∂G

∂ℓ
(t, d, l) = F (G(t, d, l)).

Lemma 8 (From N to I). We can construct some function Decode : Nd → R
in LDL• that maps n ∈ N to some (easily computable) encoding of n in I.

Proof. We discuss only the case d = 1 by lack of space. Let div2 (respectively:
mod2) denote integer (respectively remainder of) division by 2: As these func-
tions are from N→ N, from Theorem 1 from [5, 6], they belongs to LDL. Their
expression in LDL, replacing sg() by cond(), provides some extensions div2 and
mod2 in LDL•. We then do something similar as in the previous lemma but now
with function

F (r1, l2) =

{
(div2(r1), (l2 + 0)/2) whenever mod2(r1) = 0

(div2(r1), (l2 + 1)/2) whenever mod2(r1) = 1.

We can now prove the direct direction of Theorem 3: Assume that f : Nd →
Rd′

is computable in polynomial time. That means that each of its components
are, thus, we can consider without loss of generality that d′ = 1. We assume
also that d = 1 (otherwise consider either multi-tape Turing machines, or some
suitable alternative encoding in Encode). That means that we know that there is
a TM polynomial time computable functions d : Nd+1 → {1, 3}∗ so that on m, n
it provides the encoding of some dyadic ϕ(m, n) with ∥ϕ(m, n) − f(m)∥ ≤ 2−n

for all m.
From Proposition 2, we can construct d̃ with d̃(2p(max(m,n)),Decode(n,m)) =

d(m, n) for some polynomial p corresponding to the time required to compute
d.

Both functions ℓ(x) = ℓ(x1) + . . . + ℓ(xp) and B(x) = 2ℓ(x)·ℓ(x) are in LDL
(see [5, 6]). It is easily seen that : ℓ(x)c ≤ B(c)(ℓ(x))) where B(c) is the c-fold
composition of function B.

Then f̃(m, n) = Encode(d̃(B(c)(max(m, n)),Decode(n,m))) provides a solu-
tion such that ∥f̃(m, 2n)− f(m)∥ ≤ 2−n.

7 Proving Theorems 4 and 5

Clearly Theorem 5 follows from the case where d = 1 and d′ = 1 from Theorem 4.
Hence, there only remain to prove Theorem 4. The direct direction is immediate
from Theorem 3. For the reverse direction, by induction, the only thing to prove is
that the class of functions from the integers to the reals computable in polynomial



time is preserved by the operation ELim. Take such a function f̃ . By definition,
given m, we can compute f̃(m, 2n) with precision 2−n in time polynomial in n.
This must be by definition of ELim schema some approximation of f(m), and
hence f is computable in polynomial time.

8 Generalizations

Recall that a functionM : N→ N is a modulus of convergence of g : N→ R, with
g(n) converging toward 0 when n goes to ∞, if and only if for all i > M(n), we
have ∥g(i)∥ ≤ 2−n. A function M : N→ N is a uniform modulus of convergence
of a sequence g : Nd+1 → R, with g(m, n) converging toward 0 when n goes
to ∞ if and only if for all i > M(n), we have ∥g(m, i)∥ ≤ 2−n. Intuitively, the
modulus of convergence gives the speed of convergence of a sequence.

Definition 10 (Operation E2Lim). Given f̃ : Nd+1 → R ∈ LDL•, g : Nd+1 →
R such that for all m ∈ Nd, n ∈ N, ∥f̃(m, 2n) − f(m)∥ ≤ g(m, n) under the
condition that 0 ≤ g(m, n) is decreasing to 0, with ∥g(m, p(n))∥ ≤ 2−n for some
polynomial p(n) then E2Lim(f̃ , g) is the (clearly uniquely defined) corresponding
function f : Nd → Re.

Theorem 7. We could replace ELim by E2Lim in the statements of Theorems
4 and 5.

This is equivalent to prove the following, and observe from the proof that we
can replace in above statement “g(m, n) going to 0” by “decreasing to 0”, and
last condition by ∥g(m, p(n))∥ ≤ 2−n.

Theorem 8. F : Nd → Rd′
is computable in polynomial time iff there exists

f : Nd+1 → Qd′
, with f(m, n) computable in polynomial time with respect to the

value of n, and g : Nd+1 → Q such that

– ∥f(m, n)− F(m)∥ ≤ g(m, n)
– 0 ≤ g(m, n) and g(m, n) converging to 0 when n goes to +∞,
– with a uniform polynomial modulus of convergence p(n).

From the proofs we also get a normal form theorem. In particular,

Theorem 9 (Normal form theorem). Any function f : Nd → Rd′
can be

obtained from the class LDL• using only one schema ELim (or E2Lim).

9 Conclusion and future work

In this article, we characterized the set of functions from the integer to the reals.
As we already said, our aim in a future work is to characterize FPTIME∩RR and
not only FPTIME ∩ RN. This is clearly a harder task. In particular, a natural
approach would be to consider some function Encode from R to I. Unfortunately,
such a function decode is necessarily discontinuous, and is hence not-computable,



and cannot be in the class. The approach of mixing of [23] might provide a
solution, even if the constructions there, based on (classical) continuous ODEs
use deeply some closure properties of these functions that are not true for discrete
ODEs.
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Science. Birkhaüser, Boston (1991)

27. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In:
New computational paradigms. Springer (2008) 425–491


