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Abstract: The gut microbiota is now considered as a key player in the development of metabolic
dysfunction. Therefore, targeting gut microbiota dysbiosis has emerged as a new therapeutic strategy,
notably through the use of live gut microbiota-derived biotherapeutics. We previously highlighted
the anti-inflammatory abilities of two Parabacteroides distasonis strains. We herein evaluate their
potential anti-obesity abilities and show that the two strains induced the secretion of the incretin
glucagon-like peptide 1 in vitro and limited weight gain and adiposity in obese mice. These beneficial
effects are associated with reduced inflammation in adipose tissue and the improvement of lipid
and bile acid metabolism markers. P. distasonis supplementation also modified the Actinomycetota,
Bacillota and Bacteroidota taxa of the mice gut microbiota. These results provide better insight into the
capacity of P. distasonis to positively influence host metabolism and to be used as novel source of live
biotherapeutics in the treatment and prevention of metabolic-related diseases.
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1. Introduction

The highly diverse microbial community that inhabits the human gut harbors more
than 100 trillion microbes, including bacteria, archaea, fungi, protozoa and viruses. Its
collective genome, the microbiome, possesses at least 25-times more genes than the hu-
man genome [1]. This microbiota lives in a symbiotic relationship with the host and is
responsible for multiple physiological functions, notably contributing to the metabolism
as well as regulating immune responses [2,3]. There is now clear evidence that the gut
microbiome and the associated host–microbiome symbiosis are intrinsically linked with
health and diseases. A causal link between the gut microbiota and the development of
obesity has been evidenced not only using germ-free mice but also by showing that the
transplantation of obesity-associated human microbiota can induce weight gain in lean
mice [4,5]. Animal models have confirmed the major role of the gut microbiome in en-
ergy extraction from food and energy homeostasis, as well as in regulating the lipid and
glucose metabolism [4]. Metagenomics sequencing established that the gut microbiome
is dominated by two main phyla, Bacillota (Firmicutes) and Bacteroidota (Bacteroidetes), rep-
resenting 90% of the phylotypes, with the remaining phylotypes distributed between the
Actinomycetota (Actinobacteria), Pseudomonadota (Proteobacteria) and Verrucomicrobiota (Ver-
rucomicrobia) phyla [6]. Changes in the gut microbiota composition and function, as well
as reduced bacterial diversity, highlight the pivotal role of this microbial ecosystem in the
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pathogenesis of many chronic disorders, notably in metabolic diseases such as obesity [7],
which represents one of the most prevalent problems of public health worldwide. The
resulting dysbiosis was suggested to play an important role in the gut barrier dysfunction,
allowing the translocation of bacterial products and, thus, the activation of inflamma-
tory pathways. This leads to the appearance of inflamed and dysfunctional adipocytes
along with an infiltration of immune cells, notably macrophages, leading to a persistent
low-grade inflammation and contributing to the development of metabolic dysfunction
and insulin resistance [8,9]. SCFA produced by the healthy gut microbiota through the
fermentation of indigestible foods plays a key role in immune and metabolic functions,
notably in the control of satiety [10] and in regulating lipid and glucose homeostasis. A
decreased abundance of SCFA-producing bacteria observed in patients with obesity has
been associated with the alteration of the gut endocrine function [11]. Therefore, there is a
growing interest in testing targeted microbiome interventions, notably through the use of
selected probiotics. Traditional probiotics (bifidobacteria and lactobacilli) having a long
history of use as safe microorganisms and have largely been screened and evaluated in the
context of obesity [12]. Many studies, including ours [13–18], have reported the beneficial
impact of different strains in experimental models with strain-dependent effects and the
different mechanisms involved. However, human clinical trials remain scarce [19,20], and
validated effects are expected to define the potent strains.

With new advances in metagenomics, microbiome-based therapies are now regarded
as new potential strategies for the prevention and treatment of obesity and associated
diseases. A growing number of microorganisms that are found more abundant in healthy
populations or decreased in patients with obesity, which have also been recognized as ben-
eficial to host health, have been evaluated as next-generation probiotics (NGPs) [7,21–25].
Several strains have been shown to alleviate obesity in experimental models, and some of
them, such as Akkermansia muciniphila, Christensenella minuta, Eubacterium halii and Hafnia
alvei (recently reclassified as Anaerobutyricum hallii), have started to be evaluated in clinical
trials [26–32]. Interestingly, pasteurized A. muciniphila, which has immunomodulatory
properties, was recently recognized as a novel food by the European regulation [33], and H.
alvei HA4597® strains are now included in a food supplement (EnteroSatys® by TargEDys
Company, Lonjumeau, France). Considering the high inter-individual variability in the
composition of the gut microbiota and the heterogeneity in the obesity-associated microbial
signatures according to different studies, searching for new NGP based on other strategies
must be considered [34]. Moreover, it remains essential to better understand the functional
properties of specific taxa belonging to the gut microbiota. Few extensive in vitro screenings
have been performed to characterize commensal strains isolated from the gut microbiota in
comparison to traditional probiotics [14]. We set up a screening approach to evaluate the
functional ability of a collection of strains representing different genera and species [35].
This allowed us to characterize bacteria with high potential in the context of IBD, notably
three Parabacteroides distasonis strains able to counteract colitis in mice [36]. One of these
strains (AS93) was also able to induce in vitro the secretion of glucagon-like peptide-1
(GLP-1) [35], an endocrine gut peptide known to play a crucial role in metabolic regula-
tion [37]. We identified promising candidates to use in the context of obesity, notably two P.
distasonis strains—AS93 and PF-BaE11—exhibiting strong anti-inflammatory activities and
the capacity to restore the gut barrier. In the present work, we showed that the two strains
are indeed able to induce GLP-1 release in vitro and highlight the promising abilities of the
two P. distasonis strains to counteract established obesity.

2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions

P. distasonis AS93 was isolated from the feces of heathy human adults, and P. dista-
sonis PF-BaE11 was isolated from a fecal newborn sample. Taxonomic assignation was
determined based on the Blast comparison of the sequence of the V3-V4 variable region
of the 16S ribosomal RNA of the selected strains with the NCBI 16S ribosomal RNA
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sequences database. The obtained sequences for the AS93 and the PF-BaE11 strains ex-
hibited 99.41% and 99.22% identity with the corresponding sequence of the P. distasonis
reference strain ATCC 8503, respectively. Bacteria were grown at 37 ◦C in Brain–Heart Infu-
sion medium Supplemented (BHIS) with 0.5% yeast extract (Difco, Saint Ferréol, France),
0.5 mg/mL hemin (Sigma-Aldrich, Saint Quentin Fallavier, France), 0.5 mg/mL maltose
(Sigma-Aldrich), 0.5 mg/mL cellobiose (Sigma-Aldrich), 0.5 mg/mL cysteine (Sigma-
Aldrich) and 0.098 mg/L K1 vitamin (Sigma-Aldrich) in an anaerobic cabinet (Jacomex,
Dagneux, France) supplied with BIO300 (Air Liquide, Paris, France). After overnight
incubation, bacteria were centrifuged at 6000 rpm for 15 min at 4 ◦C, and bacterial pellets
were washed with phosphate-buffered saline (PBS, pH 7.2) in anerobic conditions. For
in vivo experiments, dry pellets were frozen in liquid nitrogen and stored at −80 ◦C. For
in vitro experiments, bacterial suspensions (109 CFU/mL) were obtained by adding PBS
with 25% glycerol (previously incubated at least 48 h in anaerobiosis) and were frozen in
liquid nitrogen before storage at −80 ◦C.

2.2. Measurement of SCFA Production

After measuring the optical density (OD600nm) of the overnight bacterial culture,
supernatants were collected after centrifugation (15 min at 6000 rpm) and kept at −20 ◦C.
SCFA were measured as previously described [35,38] with slight modifications. Briefly, after
the addition of the SCFA standards, each sample was acidified and then extracted using
diethyl ether (Biosolve, Dieuze, France), with gentle stirring for 1 h and centrifugation for
2 min at 5000 rpm at 4 ◦C. The organic layers were derivatized using tert-butyldimethylsilyl
imidazole (Sigma-Aldrich), and samples were incubated for 30 min at 60 ◦C before analysis
by gas chromatography-mass spectrometry (GC-MS 7890A-5975C; Agilent Technologies,
Montpellier, France) using a 30 m× 0.25 mm× 0.25 µm capillary column (HP1-MS; Agilent
Technologies), as previously described [35]. The SCFA concentrations were reported at
the mean concentrations divided by the optical density of the culture and expressed as
mean ± SEM.

2.3. STC1 Enteroendocrine Cell Culture and Induction of GLP-1 Secretion

The ability of the P. distasonis strains to induce the secretion of GLP-1 was measured
using the neuroendocrine murine cell line STC-1 (ATCC CRL-3254™), as previously de-
scribed [14,35] Cells were grown at 37 ◦C under 5% CO2 in DMEM (Life Technologies,
Saint Aubin, France), supplemented with fetal calf serum (10%, Dutscher, Brumath, France),
L-glutamine (5 mM) and streptomycin and penicillin (100 µg/mL). For bacterial stimula-
tion, cells were grown in 12-well plates (200,000 cells/well) for 72 h, washed twice with PBS
and resuspended in 400 µL of 20 mM Hepes/20 mM Tris pH 7.4 buffer containing 140 mM
NaCl, 4.5 mM KCl, 1.2 mM CaCl2, 1.2 mM MgCl2, 10 mM glucose. Cells were stimulated
(or not) with the bacteria (10:1 bacteria/cell) or with butyrate (10 mM final) as a positive
control at 37 ◦C under 5% CO2. After 8 h stimulation, the supernatants were collected
and centrifuged (10 min at 8000× g). DPP-IV enzyme inhibitor (Ile-Pro-Ile, Sigma-Aldrich
Germany) was added (100 µM), and samples were stored at −20 ◦C. The level of active
GLP-1 was measured using the V-Plex system and MESO QuickPlex SQ 120 (MesoScale
Diagnostics, Rockville, MD, USA).

2.4. Murine Model of Diet-Induced Obesity

C57BL/6 JRj male mice (5 weeks old) were purchased from Janvier Labs (Le Genest-
St-Isle, France). A high-fat diet (HFD, 45% kcal fat, D12451) and low-fat diet were used as
controls, (LFD, 10% kcal fat, D12450B), and irradiated diets were purchased from Research
Diets (Brogaarden, Lynge, Denmark). Mice were housed under specific pathogen-free
conditions in the animal facility of the Institut Pasteur de Lille (accredited no. A59107) and
maintained in a temperature-controlled (20 ± 2 ◦C) facility with a strict 12 h dark/light
cycle and were given ad libitum access to regular chow and water. Housing and procedures
complied with current national and institutional regulations and ethical guidelines (Institut
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Pasteur de Lille/B59-350009 and CEEA 75 Nord-Pas-de-Calais). Experimental protocols
were approved by the Ministère de l’Education Nationale, de l’Enseignement Supérieur et
de la Recherche, France (accreditation no. APAFIS#2019101811141602).

After a one-week acclimation period, mice were divided into 4 groups (12–13 animals
per group, 2 animals per cage) matching the same mean of the starting body weight. Mice
were then either fed with LFD diet (control LFD) or HFD diet (obese mice) for 7 weeks.
Mice were then gavaged daily (5 days per week) either with 200 µL of buffer (0.2 M sodium
bicarbonate, 0.5% glucose; control LFD and HFD mice) or with a suspension of each P.
distasonis strain (109 CFU in 200 µL buffer) for an additional 9 weeks while maintaining the
respective diet (see Figure S1A). Body weight and food intake were monitored weekly. An
intraperitoneal glucose tolerance (IP-GTT) test was performed as previously described [13]
at the 13th week of diet. Blood was collected by retro orbital bleeding of overnight-
fasted mice. A solution of glucose (2 g glucose/kg body weight) was administrated by
intraperitoneal injection to overnight-fasted mice, and blood glucose levels were recorded
30 min before glucose injection and at different time points after 15, 30, 60, 90 and 120 min
using a glucometer (Accu check, Roche, Basel, Switzerland) on blood droplets collected
from the tip of the tail vein. After 16 weeks of diet, mice were sacrificed, and subcutaneous
(inguinal) (SAT), visceral (epididymal) (EAT) adipose tissues, liver, intestinal segments,
fecal samples and cecal contents were collected. Tissue samples were immediately stored
in RNAlater® (Ambion, Life Technologies) and frozen at −80 ◦C.

2.5. Histological Analysis of the Adipose Tissue

Adipose tissue samples (EAT) were fixed in 4% paraformaldehyde for 48 h and then
dehydrated by increasing concentration of ethanol (from 70% to 100%) and embedded in
paraffin. Sections of 5 µm were deparaffinized, rehydrated and stained with hematoxylin
and eosin (H&E). Images were acquired using an optical microscope (Axioplan 2 Imaging,
Zeiss, Göttingen, Germany). Adipocytes size and distribution were determined by mor-
phometric analysis using ImageJ software (NIH image, National Center for Biotechnology
Information). For immunohistochemical staining, EAT tissue sections (5 representative
mice per group) were deparaffinized. After a short antigen retrieval (95 ◦C for 36 min)
using Cell Conditioning solution (CC1; Ventana Medical Systems, Illkirsh-Graffenstaden,
France) and blocking (BSA 1% for 4 min), slides were incubated with primary antibody
against F4/80 (ab100790, diluted 1/100) for 4 h and stained for 30 min with biotin-free HRP
multimer (DISCOVERY Ultramap anti-Rb HRP; Roche, Meylan, France) and an HRP-driven
chromogen (DISCOVERY ChromoMap DAB Kit; Roche). Slides were counterstained with
a modified Mayer’s hematoxylin (Hematoxylin II; Roche) for 4 min, followed by incu-
bation (4 min) with an aqueous solution of buffered lithium carbonate (Bluing Reagent;
Roche). A negative control (primary antibody replaced by reaction buffer) and a positive
control were included in the staining run. Intensity signals of the immunostaining were
measured on a Roche Discovery XT machine and analyzed by a veterinary pathologist
(Oncovet-Clinical-Research, Lille, France).

2.6. Analysis of Metabolic Parameters

Plasma levels of leptin were measured by an enzyme-linked immunosorbent assay
(ELISA) using a specific kit (R&D Systems, Minneapolis, MN, USA). The HOMA-IR index
(Homeostatic Model for the Assessment of IR) was then calculated as follows: (fasted
serum insulin/fasted serum glucose)/14;1), as previous reported [13]. The concentration of
total cholesterol, HDL and VLDL/LDL was measured using quantification kits provided
by Abcam (Cambridge, UK). Plasmatic concentrations of fatty acid binding protein (iFABP)
were quantified using the iFABP ELISA kit (MyBiosource, San Diego, CA, USA).

2.7. Gene Expression Quantification by Real-Time RT-PCR

Tissue samples were homogenized using Lysing Matrix D (MP Bio, Eschwege, Ger-
many) in RA1 buffer (Macherey-Nagel NucleoSpin RNAII isolation kit; Duren, Germany),
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except for adipose tissue, for which homogenization was performed using TRIzol™ Reagent
(Life Technologies Corporation, Carlsbad, CA, USA). Total RNA was prepared using the
NucleoSpin RNAII isolation kit (Macherey-Nagel) according to the manufacturer’s rec-
ommendation. The quantification and integrity analysis of RNA were performed using a
NanoDrop spectrophotometer (260/280 nm, ratio > 2). In addition, cDNA was prepared
by the reverse transcription of 1 µg RNA using the high-capacity cDNA reverse transcrip-
tion kit (Applied Biosystems, Hammonton, NJ, USA). Quantitative reverse transcription
PCR (RT-qPCR) was performed using the Power SYBR Green PCR Master Mix (Applied
Biosystems, Life Technologies, Warrington, UK) on the QuantStudio™ 12K Flex Real-Time
PCR System (Applied Biosystems, Hammonton, NJ, USA). TATA-binding protein (tbp) was
used as housekeeping gene. Primer sequences used in the study are available upon request.
All samples were run in in a single 384-well reaction plate. The relative gene expression
(2−∆∆Ct) was normalized according to the PCR cycle thresholds (Ct) for the gene of interest
and the tbp (∆Ct) and to the ∆Ct values between HFD/treated and control animal (LFD)
groups (∆∆Ct).

2.8. Caecal Microbiota Analysis

The genomic DNA from each sample was extracted according to the Godon proto-
col [39]. The integrity and concentration of the extracted DNA were checked by NanoDrop®

spectrometry and electrophoresis. The V3-V4 region was amplified during 30 amplifica-
tion cycles at 65 ◦C from the extracted DNA with primers: F343 (CTTTCCCTACAC-
GACGCTCTTCCGATCTACGGRAGGCAGCAG) and R784 (GGAGTTCAGACGTGTGCT-
CTTCCGATCTTACCAGGGTATCTAATCCT). Amplicon lengths were approximately 450 bp.
The amplicon was purified to eliminate non-specific amplifications. Single multiplexing
was performed using a homemade 6 bp index, which was added during a second PCR with
12 cycles using the forward primer 5′AATGATACGGCGACCACCGAGATCTACACTCTTT-
CCCTACACGAC3′ and the modified reverse primer 5′CAAGCAGAAGACGGCATACGA-
GAT-index-GTGACTGGAGTTCAGACGTGT′3. The resulting PCR products were purified
and loaded onto the Illumina MiSeq cartridge according to the manufacturer’s instructions.

Raw sequences were analyzed using the bioinformatics pipeline FROGS (Find Rapidly
OTU with Galaxy Solution) [40]. All sequences were first filtered and cleaned to eliminate
the one with low sequencing quality for the V3-V4 region using the FROGS-Galaxy tool.
The total number of sequences which have been retained was 2,098,238 (92% of sequences).
Subsequently, sequences were grouped into operational taxonomic units (OTU) with a level
of similarity of 97%. Then, OTUs were filtered by eliminating the chimeric sequences using
the vsearch tool [41]. The obtained OTUs were assigned to different taxonomic levels using
the Silva database [42].

To investigate microbiota differences between the studied groups, all sequences were
rarefied to equal sample depth. Diversity within samples (α- diversity) was assessed using
the Observed and Shannon indices. The abundances at the phylum, family and genus scales
were calculated by aggregating the OTUs attributed to each studied taxonomic level. For
each of these taxa levels, the Kruskal–Wallis statistical test followed by Dunn’s test was per-
formed to detect combinations that were significantly different [43]. Benjamini–Hochberg
corrections (BH) were used to avoid false positives (significance threshold = 0.05). The level
of significance was set at p ≤ 0.05. Statistical analyses were performed using R software (R
Core Team, 2015 and 2017 R Foundation for Statistical Computing, Vienna, Austria).

2.9. Statistical Analysis

Statistical analyses and graph preparation were performed using GraphPad Prism
software (version 7.0 for windows). Comparison between the four groups was performed
using non-parametric two-way analysis of variance (ANOVA) followed by Dunn’s mul-
tiple comparison post-hoc test. Comparison between two groups was performed by
the Mann–Whitney–Wilcoxon test. Data with p values ≤ 0.05 were considered statisti-
cally significant.
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3. Results

Several bacterial strains isolated from human feces were previously screened to iden-
tify potent live biotherapeutic candidates [35,36]. In this framework, we unraveled the
abilities of two P. distasonis strains (AS93 and PF-BaE11) to counteract established obesity.

3.1. In Vitro Functional Characteristics of the Strains

Regarding the major role played by SFCAs in the regulation of the host metabolism
and immune functions, we compared the capacity of the P. distasonis strains to elicit their
production in basal culture conditions in BHIS medium (Figure 1A). The two strains
produced mainly acetate at concentrations reaching 3.2 mM and 2.7 per 1 OD unit for AS93
and PF-BaE11, respectively. They also produced a slight amount of propionate, with AS93
producing a higher amount (0.7 mM/1 OD) than PF-BaE11 (0.2 mM/1 OD).
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Figure 1. (A) Production of acetate, butyrate and propionate measured in the supernatant of bacterial
cultures. Results are reported in millimolar per OD600nm unit and expressed as the means of 2 in-
dependent experiments ± SEM. (B) Production of active GLP-1 in the supernatants of STC-1 cells
stimulated for 8 h by the two strains (MOI 10:1) or by butyrate (10 mM) as a positive control. GLP-1
concentrations were measured by Multiplex. * p < 0.05 or *** p < 0.001 in comparison with untreated
cells (control).

Knowing the crucial role of glucagon-like peptide-1 (GLP-1) in metabolic regulation,
we compared the ability of the P. distasonis strains to induce the secretion of this incretin
hormone in vitro. The GLP-1 secretion was studied using the murine enteroendocrine
cell line STC-1 [44,45]. As previously observed [35], the AS93 strain induced a high and
significant (p < 0.05) production of GLP-1 (255 ± 59 pM) in comparison to untreated cells,
which was higher than the level induced by butyrate, used as positive control (186 ± 11 pM,
p < 0.05). The level obtained for the PF-BaE11 strain was lower (101± 15 pM) but significant
(p < 0.05) (Figure 1B).

Since the two strains exhibited anti-inflammatory activities and the capacity to in-
duce the secretion of glucagon-like peptide-1 (GLP-1), we evaluated them as promising
candidates to use in the context of obesity.

3.2. The Two P. distasonis Strains Counteract HFD-Induced Obesity and Adiposity and Improve
Glucose Homeostasis

We evaluated the capacity of the two P. distasonis strains to counteract established
obesity in mice. To this end, mice fed with a high-fat diet (45% fat) for 7 weeks were
then orally treated with P. distasonis for additional 9 weeks while maintaining the diet
(see procedure in Figure S1A). The weight gain of the HFD-treated mice was significantly
higher (p < 0.001) as compared to mice fed with LFD, while it was significantly lower in
mice supplemented with the two P. distasonis strains (AUC, p < 0.05) (Figure 2A). When
comparing the weight gain at the beginning of bacterial supplementation, the weight gain
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of the mice treated with the two strains reached a similar level to what obtained for the
lean mice (LFD group) and was significantly lower than in the HFD-fed group (AUC
p < 0.001 and 0.01 for AS93 and PF-BaE11, respectively, showing ≈ 60–70% reduction
(Figure 2B)). Of note, the food intake was not significantly different in comparison to HFD
group (Figure S1B). As expected, the weight of the visceral and subcutaneous fat depots
(EAT and SCAT, respectively) was significantly higher in HFD-fed mice in comparison to
lean mice and was significantly (p < 0.05) decreased in P. distasonis-treated mice (Figure 2C).
This was associated with a lower number of large adipocytes and higher number of small
ones in the P. distasonis-treated groups in comparison to the HFD control group (Figure 2D),
confirmed by morphometric analysis (Figure 2E). Obesity is associated with low-grade
inflammation, linked to an increased infiltration of macrophages into the adipose tissue [46].
Compared to the HFD-fed mice, the infiltration with macrophages (F4/80 positive cells)
was significantly (p < 0.01) decreased in the adipose tissue of mice treated with the two strains,
the effect being higher with PF-BaE11 (p = 0.057; Figure 2F,G). No difference in the weight of
the liver (Figure S2C) and macroscopic steatosis (not shown) was observed among groups.
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Figure 2. P. distasonis AS93 and PF-BaE11 strains limited body weight gain and improved adiposity
in obese mice. (A) Evolution of the body weight gain expressed in % weight gain from day 0 starting
the diet in mice fed an LFD or HFD for 16 weeks and of mice supplemented by the two strains after
7 weeks of HFD (n = 12–13 mice per group) and the corresponding AUC (in AU). (B) Evolution of the
body weight gain expressed as % weight gain from day of starting the bacterial supplementations
(week 7) in mice fed an LFD or HFD and HFD-fed mice receiving the two strains (n = 12–13 mice
per group) and the corresponding AUC (in AU). (C) Mass of the epididymal adipose tissue (EAT)
and subcutaneous adipose tissue (SCAT) at sacrifice (expressed in g). (D) Representative sections of
H&E-stained EAT and (F) of F4/80 immuno-stained EAT. Black arrows indicate infiltrating F4/80+

cells. Scale bars represent 100 µm. (E) Distribution of the mean areas of adipocytes in EAT (expressed
in %). (G) Number of F4/80+ cells in EAT (expressed as mean number of positive cells/10 fields,
5 representative mice per group). Results are expressed as mean ± SEM of 12–13 mice per group
(5 sections for F4/80 labelling). # corresponds to regimen effect (HFD versus LFD), * corresponds
to supplementation effect (AS93 or PF-BaE11-treted mice versus HFD control mice). * p < 0.05;
*** p < 0.001, ### or *** p < 0.001, #### or **** p < 0.0001.
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The improvement of weight gain and the reduced adiposity after AS93 and PF-BaE11
administration was associated with a slight decrease of fasting glycemia (Figure 3A) and
an important reduction in the level of insulin (Figure 3B) and, as such, of the Homeostatic
Model Assessment-Insulin Resistance index (HOMA-IR) (Figure 3C) (however, this reduc-
tion was not significant). No significant impact on glucose tolerance was observed after a
glucose tolerance test (IP-GTT) (Figure 3D). However, both strains were able to limit the
level of plasmatic leptin (Figure 3E) and upregulate the expression of the gene encoding the
insulin receptor substrate 2 (irs2, p < 0.01) (Figure 3F). The expression of Glut4 and resistin
was decreased in HFD-fed mice, and their expression was restored in mice supplemented
with the two strains; however, the difference was not significant (Figure 3G,H).
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of obesity-related metabolic complications [47]. As expected, a significantly increased ex-
pression of inflammatory genes (Tnfa, Il17, Mcp1) and gene markers of monocyte-macro-
phage recruitment (F4/80, Cd11b, Cd11c) was observed in the EAT of obese (HFD-fed) mice 
(p < 0.01 to 0.0001). The administration of the two P. distasonis strains significantly de-
creased the expression of all proinflammatory genes (p < 0.05 to 0.001) (Figure 4A), in as-
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Figure 3. P. distasonis AS93 and PF-BaE11 strains improved glucose homeostasis. (A) Fasting glycemia
(mg/dL), (B) plasmatic insulin level (µg/L) and (C) HOMA-IR index at sacrifice (after 16 weeks of
diet). (D) Intra-peritoneal glucose tolerance test (IP-GTT) at 12 weeks of diet and the corresponding
AUC (in AU). Blood glucose levels (mg/dL) were measured after glucose IP injection (2 g glucose/kg
body weight) at different time points. (E) Plasmatic leptin level (pg/mL). Gene expression of (F) Irs2,
(G) Glut 4 and (H) Resistin quantified by RT-qPCR in the EAT collected at sacrifice. Values are
expressed as the relative mRNA levels compared with LFD control mice. Results are expressed as
mean ± SEM of 12 mice per group. # corresponds to diet effect (HFD vs. LFD), * corresponds to the
supplementation effects (AS93 or PF-BaE11 vs. Excipient); # p < 0.05; ## or ** p < 0.01, ### p < 0.001,
#### p < 0.0001.
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3.3. Supplementation by the Two P. distasonis Strains Decreases Adipose Tissue Inflammation and
Improves Markers of Gut Permeability

Targeting the inflammation in adipose tissue, a crucial factor involved in the develop-
ment of insulin resistance and type 2 diabetes, is an appealing strategy for the treatment
of obesity-related metabolic complications [47]. As expected, a significantly increased
expression of inflammatory genes (Tnfa, Il17, Mcp1) and gene markers of monocyte-
macrophage recruitment (F4/80, Cd11b, Cd11c) was observed in the EAT of obese (HFD-fed)
mice (p < 0.01 to 0.0001). The administration of the two P. distasonis strains significantly
decreased the expression of all proinflammatory genes (p < 0.05 to 0.001) (Figure 4A),
in association with the observed decreased number of infiltrated macrophages (F4/80
immunolabelling). Lipopolysaccharide (LPS) seems to be involved in the transition of
macrophages toward the inflammatory phenotype, and the LPS-binding protein (LBP)
produced in response to microbial translocation is also a biomarker of obesity-related
insulin resistance [48]. The expression of lbp was significantly (p < 0.01) upregulated in
the EAT of obese mice, while it was significantly (p < 0.05) downregulated by the two
strains (Figure 4A).
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Figure 4. P. distasonis AS93 and PF-BaE11 limited the inflammatory gene expression in the EAT
and improved gut permeability. (A) Expression of inflammatory genes and gene encoding the LPS-
binding protein (Lbp) in the EAT. (B) Expression of genes encoding the tight junction proteins and
(C) plasmatic levels of iFABP. Values are expressed as the relative mRNA levels compared with LFD
control mice. Fatty acid binding protein (iFABP) was quantified by ELISA, and results are expressed
in ng/mL. Results represent the means ± SEM of 12 mice per group. # corresponds to diet effect
(HFD vs. LFD), * corresponds to the supplementation effects (AS93 or PF-BaE11 vs. Excipient);
# or * p < 0.05; ## or ** p < 0.01, ### or *** p < 0.001, #### p < 0.0001.

At the gut (ileum) level, while we did not observe a significant impact of HFD on the
expression of genes encoding the tight junction protein (Zo1 and Occludin), Zo1 expres-
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sion was significantly increased in mice treated with AS93 and PF-BaE11 (p < 0.05 and
0.01, respectively) (Figure 4B), and Occludin expression was restored with AS93 but not
significantly. Importantly, while the blood level of iFABP, a marker associated with altered
intestinal permeability, was significantly (p < 0.05) increased in obese mice, its concentration
was decreased in AS93-treated animals in comparison to obese mice (p < 0.01; Figure 4C).

3.4. P. distasonis Strains Restore Cholesterol and Bile Acids Metabolism and Limit Lipid
Metabolism in the Gut

A decreased expression of the genes involved in cholesterol and bile acid metabolism,
notably genes encoding the fatty acid binding protein 6 (Fabp6), the fibroblast growth
factor FGF15 (Fgf15), the organic solute transporter alpha (Slc51a) and the Niemann–pick
C1-like 1 (Npc1l1), was observed in the ileum of obese mice; however, the expression was
not decreased significantly. Interestingly, both P. distasonis strains were able to restore
the expression of these genes, notably the expression of Fgf15, reported to control the
homeostasis of bile acids and to improve glucose homeostasis [49], was significantly
(p < 0.05) increased after AS93 supplementation (Figure 5A). This was correlated with a
slight decrease in total cholesterol, as well as HDL and LDL; however, this decrease was
not significant (Figure S2).
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Figure 5. P. distasonis AS93 and PF-BaE11 modulated the HFD-induced expression of genes involved
in (A) cholesterol and bile acid signaling (Fabp6, Fgf15, Slc51a and Npc1l1), (B) lipid transport
metabolism (Apoc2, Mttp and Cd36), (C) SCFA (Gpr41) or (D) bile acids (Tgr5) recognition in the ileum.
Values are expressed as the relative mRNA levels compared with LFD mice and expressed as means
± SEM of 12-13 mice per group. # corresponds to regime effect (HFD vs. LFD), * corresponds to
treatment effect (P. distasonis vs. Excipient), * or # p < 0.05; ** or ## p < 0.01.

Conversely, an increased ileal expression of genes involved in lipid metabolism (Apoc2,
p < 0.05) and transport (Mttp, p = NS; Cd36; p < 0.01) was observed in obese (HFD-fed)
mice, while their expression was decreased after P. distasonis treatment but in a significant
manner only for mttp by PF-BaE11 (p < 0.05) (Figure 5B).
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SCFAs are known to play beneficial roles in the regulation of the lipid and glucose
metabolism, as well as in the control control of appetite, notably by sensing G-protein-
coupled receptors, such as GPR43 and GPR41 [50,51]. Interestingly, we observed that AS93
and PF-BaE11 significantly increased (p < 0.05 and 0.01, respectively) the expression of
Gpr41 (Figure 5C).

TGR5, another G-protein-coupled receptor known as a receptor for bile acids as well
as other metabolites, is recognized to play a role as a metabolic regulator, notably in energy
homeostasis, bile acid homeostasis, as well as glucose metabolism [52]. Although we did
not observe significant differences in Tgr5 expression among groups, PF-BaE11 tended to
increase its expression (Figure 5D).

3.5. P. distasonis Strains Differentially Modulate the Microbiota

The composition of the cecal microbiota was characterized for the four groups of mice
receiving LFD or HFD with or without the supplementation with each of the P. distasonis
strains (Figure 6). HFD-fed mice exhibited decreased abundances of (i) the Actinomyce-
tota phylum (not significant) and the related Atopobiaceae family (p < 0.05) and (ii) the
Bacteroidota phlylum (not significant) and the related Muribaculaceae family (p < 0.01) in
comparison to LFD-fed mice (Figure 6A,D). In contrast, the Ligilactobacillus genus related to
the Lactobacillaceae family displayed elevated an abundance compared with the LFD-fed
mice’s microbiota (p < 0.05, Figure 6D).
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Although the two P. distasonis strains reduced the alpha diversity of the microbiota
as compared to those of HFD-fed mice (p < 0.05 and p < 0.01 for AS93 and PF-BaE11,
respectively, Figure 6B), they did not significantly alter the beta-diversity (Figure 6C).
However, the microbiota of LFD-fed mice differed from those of mice under HFD with
or without bacteria supplementation. A more detailed microbiota analysis at various
taxonomic levels revealed that each P. distasonis strain exerted slightly different effects on
the mice bacterial taxa (Figure 6A,D).

The cecal microbiota of HFD-fed mice which received the AS93 strain exhibited a
lower abundance of Bacteroidota phyla (p < 0.05) and a lower abundance of the related
Muribaculaceae family (p < 0.001) in comparison to the microbiota of the LFD-fed mice
group. In addition, the Peptococcaceae (p < 0.05), Peptostreptococcaceae (p < 0.01) and Lac-
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tobacillaceae (p < 0.001) families, all affiliated with the Bacillota phyla, exhibited higher
abundances than in the LFD-fed mice microbiota. Of note, Lactobacillaceae also significantly
differed (p < 0.05) from the HFD-fed mice microbiota. At the genus level, the abundance
of both Ligilactobacillus (assigned to the Lactobacillaceae family, p < 0.05) and Enterorhabdus
(belonging to the Eggethellaceae family, which tended to increase, although not significantly
with AS93 supplementation) increased (p < 0.05) compared to the microbiota of LFD-fed
mice (Figure 6D).

The impact of PF-BaE11 differed from that of AS93. Indeed the abundance of Actino-
mycetota phyla (p < 0.05 vs. LFD and p < 0.001 vs. HFD), the related Atopobiaceae (p < 0.01)
and Eggerthellaceae (p < 0.01 vs. LFD group and p < 0.05 vs. the HFD group) families and the
related Enterorhabdus genus (p < 0.001 vs. LFD and p < 0.01 vs. HFD) increased compared to
the microbiota of the LFD- and HFD-fed mice groups, except for the Atopobiaceae, which did
not significantly differ from the LFD group. The PF-BaE11 supplementation also modified
two families and a genus assigned to the Bacillota phyla. The Peptococcaceae family remained
significantly lower than in the HFD group, receiving AS93, while the Ruminococcaceae
family and the Ligilactobacillus genus exhibited lower abundance than in the LFD group
(Figure 6D).

4. Discussion

Although several health-promoting gut bacteria have been newly identified as promis-
ing strains in the control of obesity, the search for new isolates in order to dispose of a
large panel of strains able to face the high variability of the resident human microbiome,
according to their resistant or permissive level of colonization, remains an important is-
sue [53]. P. distasonis belongs to the human core intestinal microbiota, comprising the most
common 57 species present in 90% of 184 individuals [6]. These core genera and species are
suggested to have important physiological function for the host, and deviations from this
core would lead to pathophysiological states, notably obesity [54]. However, contradictory
findings have been reported on the beneficial versus the potential pathogenic role of P.
distasonis species [55]. On the one hand, some studies have reported a negative correlation
between P. distasonis and weight or waist circumference in humans [56,57]. Reports have
described increased levels of this species in diabetic patients, notably with enrichment in the
gut microbiota of women with gestational diabetes mellitus [58,59] or a positive correlation
with cardiovascular disease (CVD) risk factors, including low-density lipoprotein (LDL),
triglycerides (TG), cholesterol, body mass index (BMI) and dyslipidemia [60]. A recent
analysis revealed that most potential pathogenic P. distasonis strains harbor a single-copy
rfbA gene encoding the O-antigen, a key virulence molecule of lipopolysaccharides (LPS).
These rbfA gene variations may help categorize P. distasonis strains for pathogenic versus
probiotic strain differentiation [61]. On the other hand, a number of reports have high-
lighted the beneficial effects of P. distasonis in metabolic disease conditions. This species
has been associated with improved insulin sensitivity in obese subjects [62] in association
with therapy outcomes [63]. Some recent studies investigating the impact of metformin on
the human gut microbiome have reported an increased abundance of P. distasonis in both
healthy individuals and newly diagnosed T2D patients, as the most intriguing findings in
restoring a healthy condition [64]. Patients following the Mediterranean diet also presented
an increased abundance of this species, negatively correlating with waist circumference [62].
An intervention trial giving a multi-fiber bread to 39 individuals at cardiometabolic risk
reported a modification of the gut microbiota, mainly a decrease in Bacteroides vulgatus
and an increase of P. distasonis and Fusicatenibacter saccharivorans associated with reduced
total and LDL cholesterol, insulin and HOMA [65]. A prebiotic intervention trial with
nutriose, a resistant dextrin, showed that P. distasonis was modulated in the gut microbiota
of 28 healthy women involved in this intervention, and the presence of genes encoding a
starch-binding membrane complex in given strains amplified the nutriose effect [66]. Inter-
estingly, resistant starch and dextrin were associated with a positive effect on the markers
of metabolic disorders, body mass index and fat in healthy people [67]. In experimental
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models, propolis widely used in traditional medicines for its health-promoting properties,
including metabolic regulation and positive anti-diabetic and anti-obesity effects [68], was
reported to increase P. distasonis abundance in obese mice [69]. Recently, a strain of P.
distasonis was shown to alleviate obesity and metabolic disorders in mice [70]. P. goldsteinii
was also shown to prevent body weight gain in obese mice, and protection was associated
with increased adipose tissue thermogenesis [71]. Since conflicting reports have underlined
the potential health-promoting impact of P. distasonis [55], it remains important to better
determine the role of this bacterium in human health and evaluate its strain-dependent
functional abilities.

We previously conducted an in vitro screening to evaluate the functional capacities of
a large collection of commensal strains and highlighted that one-third exhibited multiple
putative beneficial properties [35]. Notably, three P. distasonis strains exhibited strong
anti-inflammatory potential and the ability to strengthen the epithelial barrier and were
confirmed to alleviate intestinal inflammation in a murine model of colitis [36]. Recently,
14 P. distasonis strains were screened using different in vitro models, allowing the identifica-
tion of five strains with strong health-promoting functions [72]. In the present study, we
observed that two of the P. distasonis strains we studied were also able to induce in vitro
the secretion of GLP-1, a multifaceted endocrine gut peptide known to play numerous
metabolic roles, notably the control of glucose homeostasis [73]. We therefore evaluated
their capacity to counteract obesity and showed that oral (intragastric) administration of
both strains was highly effective in limiting weight gain and adiposity in obese mice. The
protective effect was associated with a significant reduction of inflammatory markers in the
adipose tissue, notably a decreased abundance of inflammatory macrophages. This effect
should be better deciphered by precisely analyzing the nature of infiltrating cells using
flow cytometry. A beneficial effect was also linked to a reduction of leaky gut markers. A
decreased expression of genes involved in lipid and bile acid metabolism was also observed.
However, the impact on cholesterol levels remains very light. The precise metabolic impact
of the strains will be deciphered in the future. Our results globally confirm the report
by Wang et al., showing that a P. distasonis strain (CGMCC1.30169) isolated from ob/ob
mice that exhibited improvements in metabolic syndrome after treatment with a derivative
of a natural compounds was able to limit obesity in ob/ob and HFD-fed mice, as well as
hyperglycemia and hyperlipidemia [74]. The authors also reported that the supplementa-
tion by the live murine-originated P. distasonis strain did not have a significant effect on
the gut microbiota of ob/ob mice, if not an increase of this taxa. In our work, each of the
human-originated strains induced the modification of the mice gut-microbiota, targeting
Actinomycetota, Bacillota and Bacteroidota taxa albeit with slight differences. Indeed, AS93
mainly targeted the Bacteroidota phylum and two families belonging to the Bacillota, while
PF-BaE11 only altered the Actinomycetota phylum and families. It is noteworthy that in our
study, we did not identify an increase in the Parabacteroides genus in mice under HFD and
treated with AS93 or PF-BaE11. This observation may be related to the variability of micro-
biota between batches of mice and their permissiveness to colonization by P. distasonis. The
sensitivity of the strains to the conditions of the intestinal tract could also inactivate some
of the gavaged strains. The characterization of the genomes of these two strains appears
as a necessary step to identify the functions associated with their adaptation to intestinal
conditions, including lipid and bile acid metabolism, as well as possible risk factors, such as
the presence of the rfbA gene and antibiotic-resistant genes. Wang et al. (2019) established
that the metabolic benefit of the P. distasonis CGMCC1.30169 strain was mediated by the
production of succinate and the modification of the secondary bile acid profile in the gut.
They demonstrated that the effects were linked with the activation of the FXR pathway
and the promotion of intestinal gluconeogenesis. Our results emphasized that the two P.
distasonis strains we studied reduced obesity and adiposity, linked notably to the reduced
recruitment of macrophages. The strains also improved glucose homeostasis and helped in
maintaining gut barrier function. Similar results were obtained with P. goldsteinii, which
reduced body weight, fat accumulation and markers of inflammation. As we previously
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reported for the P. distasonis strains [36], P. goldsteinii also reduced LPS-induced epithelial
cells disruption in vitro and improved intestinal permeability in vivo [71]. Altered gut
microbiota can indeed lead to gut permeability, notably through the release of components
derived from bacterial membranes, and can trigger inflammatory processes.

5. Conclusions

Altogether, our results indicate that two strains of P. distasonis are able to reduce
obesity and associated disorders. Their beneficial impact was notably linked to a decreased
inflammation of the metabolic organs and an improvement of the epithelial barrier. This
highlights their potential use as new live biotherapeutics to prevent and treat metabolic
disorders, even if their precise mechanisms remain to be explored, notably their impact on
the gut microbiota composition. However, our study underlines the importance of identify-
ing new commensal strains, notably derived from the core microbiome, and provides new
insight on the functional capacities of such bacteria.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cells12091260/s1, Figure S1: (A) Scheme of the experimental procedure
used. Mice were fed with LFD or HFD. After 7 weeks, obese-HFD-fed mice were treated daily (5 days
per week) by an intragastric administration (200 µL) of control gavage buffer or by a suspension
of P. distasonis AS93 or PF-BaE11 (109 CFU/ 200 µL gavage buffer). Control LFD mice received an
intragastric administration (200 µL) of control gavage buffer. Mice continued to be fed with respective
diet and procedure was maintained for subsequent 9 weeks. IP-GTT was performed at 13 weeks post
diet. (B) Daily food intake expressed in g/day/mice or in kcal/day/mice and the corresponding
AUC (in AU). (C) Mice liver weight in the 4 experimental groups expressed in g. Results are expressed
as means ± SEM. # p ≤ 0.05; Figure S2: Levels of total cholesterol, HDL and VLDL/LDL determined
using quantification kits provided by Abcam (Cambridge, UK). Results were expressed in µg/µL as
mean ± SEM of 12 mice per groups. # p ≤ 0.05, ## p ≤ 0.01.
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