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Two-way coupling Eulerian numerical simulations
of particle clouds settling in a quiescent fluid

Quentin Kriaa,∗ Benjamin Favier,† and Michael Le Bars‡

Aix Marseille Univ, CNRS, Centrale Marseille, IRPHE, Marseille, France
(Dated: October 25, 2023)

To get a deeper understanding of our laboratory experiments [Kriaa et al., Phys. Rev. Fluids 7(12)
124302 (2022)], we numerically model settling clouds produced by localised instantaneous releases
of heavy particles in a quiescent fluid. By modelling particles as a field of mass concentration in an
equilibrium Eulerian approach, our two-way coupling simulations recover our original experimental
observation of a maximum growth rate for clouds laden with particles of finite Rouse number R ≈
0.22. Consistent with the literature on buoyant vortex rings, our clouds verify the relation α ∝ Γ−2

∞
between the clouds’ growth rate α and their eventually constant circulation Γ∞. As the Rouse
number approaches R ≈ 0.22, the baroclinic forcing of the circulation reduces down to a minimum,
thus optimising the cloud growth rate α. This analysis highlights the role of the mean flow in the
enhanced entrainment of ambient fluid by negatively buoyant clouds. Our results also validate, on
the basis of direct comparison with experimental results, the use of a one-fluid two-way coupling
numerical model to simulate particle clouds in the limit of weak particle inertia.

I. INTRODUCTION

The present study follows up on a series of 514 systematic laboratory experiments presented in Kriaa et al. [1]
which focus on the evolution of instantaneously-released particle-laden clouds settling from rest in initially quiescent
water, under the sole action of their buoyancy. By varying the size of particles yet keeping an identical buoyancy for
all clouds, the latter proved to grow linearly in depth with a growth rate α that reaches a maximum for a finite particle
inertia R ≃ 0.3±0.1, where the Rouse number R = ws/Uref is the ratio of the terminal velocity of an isolated particle
ws over the reference fall velocity Uref of the cloud due to the sole action of its buoyancy. This new observation was
unexpected because the theory of turbulent thermals [2], commonly used to model such clouds, predicts that all clouds
should grow similarly as a salt-water cloud of identical buoyancy. Yet, our measurements revealed that the particle
inertia can increase the growth rate by up to 75%. Our experiments did not enable us to answer some remaining
questions: Through what mechanism do particle clouds entrain more than salt-water clouds of identical buoyancy?
In particular, does the particle inertia alter the mean flow around the cloud or does it modulate the intensity of the
turbulence that develops inside the cloud? The aim of the present study is to gain understanding on these questions
thanks to complementary Direct Numerical Simulations (DNS). The numerical approach to be adopted should capture
the macroscopic physics of particle clouds as observed in our experiments, yet with the minimum ingredients to keep
a low numerical cost, with a motivation to later apply the method to a planetary-scale multiphase flow called ‘iron
snow’ [3].

When the size of particles, their volume fraction and the particle-to-fluid density anomaly are low, the fluid governs
the motion of particles whose feedback on the flow is negligible, a situation called one-way coupling [4]. Many studies
have considered the one-way coupling between particles and fluid motions (e.g. [5–9]) and evidenced that inertia
is a source of non-uniformities in the field of particle concentration [10]: despite the incompressibility of the fluid
phase, inertia allows the disperse phase to be compressible. M. R. Maxey [10] showed that very small particles behave
as passive tracers due to their low inertia; conversely, large particles are insensitive to local modifications of the
flow due to their large response time (see also [7, 11]). Due to this low-pass ‘inertial filtering’ of timescales, dense
particles of intermediate size partly decouple from fluid motions. For some finite inertia they have been observed to
optimally couple with the surrounding flow and concentrate in some specific regions. This phenomenon of ‘preferential
concentration’ ([10], see also [7, 9, 12–14]) leads to the accumulation of small particles in regions of large strain rate
or equivalently of low vorticity [10], possibly due to centrifuging of particles outside of vortices [5, 9], while larger
dense particles rather concentrate in regions of vanishing fluid acceleration [8, 15].

With the addition of gravity, another heterogeneity originates from the tendency of heavy particles to fall on the
side of downward velocity of eddies [16], which can be grasped by simple advective arguments even in laminar flows
(e.g. [17]). This phenomenon of ‘fast tracking’ or ‘preferential sweeping’ is also optimum for a finite particle inertia
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[16]; it has been observed in 2D periodic laminar vortices [18] and in turbulent flows (e.g., [6, 9, 19–21]). Additionally,
due to their inertia, falling particles lag behind fluid motions so their trajectories are biased in the direction of gravity.
As particles cross upwelling and downwelling regions, they spend more time in upwelling regions, increasing their
sensitivity to velocity variations in these upwellings. This ‘loitering’ [17] is a third example of preferential sampling
of the flow.

All these phenomena of preferential sampling determine the distribution of particles in time and space. This
observation is paramount if the flow is altered by the feedback of particles on the fluid, a situation referred to as two-
way coupling [4]. Inclusion of this feedback in numerical simulations has proved to be essential as it further modifies
the structure of particle-laden flows even in well-controlled idealised isotropic turbulent flows [19–22], especially in
the presence of gravity which breaks the flow isotropy. As an example, experiments [12] and simulations [21, 22]
have shown that the non-linear modification of the settling velocity due to preferential concentration and preferential
sweeping is further favoured by two-way coupling since clusters of particles drag fluid with them as they sweep
downward, producing downward acceleration of the fluid which enhances the fluid velocity and therefore the particle
settling velocity. Most importantly, even in the presence of low mass loadings, the feedback of particles on the fluid
is essential if the flow is driven by the particles themselves, e.g. in downdrafts [23], turbidity currents [24, 25], and
presumably iron snow [3]. The present work fits in this framework: in our experiments [1] particles were released from
rest in quiescent water, hence all fluid motions resulted from the drag exerted by particles on water during their fall.

Thus, in this study we adopt an equilibrium Eulerian approach [4] to model our settling particle clouds at reasonably
low numerical cost, while still accounting for the two essential ingredients of (i) the feedback of particles on the fluid
through a drag term which forces the flow, and (ii) a differential motion between water and settling particles through
a gravitational drift, a formalism already used in the literature to model particle-laden flows [26–30]. The latter effect
is quantified by a Rouse number which is about R = 0.3 for the optimum growth rate in experiments, and which lies
below unity for most of our clouds. Our experiments therefore fit in the range of validity of the equilibrium Eulerian
model, as pointed out by Boffetta et al. [27]. Note however that we extend our analysis up to R ≃ 3 as in our
experiments. Boffetta et al. [27] showed that such particles have so much inertia that they undergo the ‘sling effect’
i.e. particles tend to converge and thereby form caustics, so that the continuum modelling of particle motions through
a unique velocity field locally breaks down. Yet, our results using the equilibrium Eulerian formalism up to R ≃ 3
show good agreement with our experiments, supporting the fact that if the sling effect plays any part in experiments,
it still has no strong statistical signature on the macroscopic quantities we measured in experiments and reproduce
numerically here.

The paper is organised as follows. Section II introduces the equations of motion to model particles as a field of
mass concentration verifying an advection-diffusion equation and forcing the flow through a drag term. Section III
presents the numerical setup of the three-dimensional numerical simulations. Then, section IV presents the two main
regimes of cloud settling; it notably evidences the same maximum of the cloud growth rate α as observed in our
experiments [1]. Section V is devoted to the analysis of this effect, showing that particles with a Rouse number close
to the optimum impose a weaker baroclinic forcing of the clouds’ circulation, resulting in an enhanced growth rate
according to the theory of buoyant vortex rings. Further discussion and concluding remarks are presented in section
VI. Appendix A provides details on the robustness of the numerical simulations, and appendix B gives numerical
results for particle clouds of larger Reynolds number than those presented in the core of this study.

II. EQUATIONS OF MOTION

If a particle has finite inertia and is not neutrally buoyant, it moves with a velocity vp which is different from
that of the fluid v in its vicinity, and the particle acceleration verifies its own momentum equation. This momentum
equation for a small spherical particle was established in 1983 by [31] under the assumptions that the particle of
radius rp is much smaller than the characteristic macroscopic length scale L of the flow, that the particle Reynolds
number based on the slip velocity of the particle is much lower than unity (so the disturbance flow due to the particle
can be considered a Stokes flow), and that the diffusive timescale r2p/ν is much lower than the advective timescale
L/U0 (ν being the kinematic viscosity of the fluid and U0 a characteristic velocity scale of the flow). With these
assumptions, the leading terms boil down to the particle acceleration, its buoyancy and the Stokes drag exerted by
the fluid. Furthermore, in the equilibrium Eulerian formalism, assuming that all particles have very small inertia
(limit of vanishingly small Stokes numbers), the particle acceleration can be neglected [4] so that the particle velocity
is solely prescribed by the balance between buoyancy and drag [9, 32]. This balance yields

vp = v + wsez , (1)

as derived in [33], where v is the fluid velocity, vp is the particle velocity, ws is the terminal velocity of the particle in
quiescent fluid and ez = g/||g|| is aligned with the gravity field g. In the present study we use this approximation to
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the momentum equation even for particles with non negligible inertia, and try to assess the accuracy of this approach.
To keep a moderate numerical cost, as in previous studies of particle-laden flows [26–30, 34, 35] we model particles as
a continuum with a field of concentration C (mass of particles per unit volume) that is advected at the velocity vp,
hence, mass conservation reads

∂tC + vp · ∇C = 0 . (2)

In practice, such modelling neglects particle dispersion at the particle scale. In fact, even in dilute suspensions for
which collisions are negligible, and even in the absence of Brownian motions, particles induce long-range perturbations,
particle-wake interactions and collective-settling effects in the fluid depending on their particulate Reynolds number
(e.g. [36–39]). These perturbations lead to a dispersion which has been analysed analytically [40], numerically [41]
and experimentally [42–46], and which can be approximated by a diffusive process. Together with other ingredients
such as concentration gradients and shear [47], these effects are referred to as a hydrodynamic diffusion [48]. They are
often approximated at a macroscopic level by a term of diffusion in the mass conservation above [33, 44, 46, 49]. In
addition, including a diffusive term in the mass conservation equation is necessary to prevent the formation of caustics
in the field of particle concentration, which would lead to numerical instabilities in the current Eulerian framework
[34]. By introducing the effective particle diffusivity κp, and using equation (1), the new equation of mass conservation
reads

∂tC + v · ∇C = κp∇2C − ws
∂C
∂z

, (3)

where the last term accounts for the gravitational drift of particles.
Fluid motions are constrained by the condition of incompressibility

∇ · v = 0, (4)

which also prescribes the incompressibility of the field of concentration using equation (1). The fluid velocity v verifies
the Navier-Stokes equation for a Newtonian fluid

∂v

∂t
+ v · ∇v = − 1

ρf
∇p+ ν∇2v +

1

ρf
fdrag, (5)

where ρf is the fluid density, p is the pressure field including the hydrostatic contribution, ν is the constant fluid
kinematic viscosity, and fdrag is the average drag force exerted by particles on the fluid per unit volume. This drag
term in equation (5) describes how particles force the flow: the field of concentration and the fluid are now two-way
coupled. The present model is derived for supposedly spherical particles of vanishingly small Reynolds number, hence
they fall in the Stokes regime with a settling velocity

wStokes
s =

2gr2p(ρp − ρf )

9νρf
, (6)

with ρp the density of a spherical particle of radius rp. Then, using equation (1), the Stokes drag exerted by the fluid
on a particle reads −6πρfνrpw

Stokes
s ez. Summation on all the particles in the unit volume requires to multiply this

individual acceleration by the number of particles per unit volume i.e. 3C/4πr3pρp. Using Newton’s third law, the
drag force reads

fdrag = C ρp − ρf
ρp

g . (7)

The previous equations are non-dimensionalised using the diameter of the release cylinderDcyl and the characteristic
velocity that clouds can build up when accelerating from rest which is

Uref =

√
g

(
1− ρf

ρ0

)
Dcyl , (8)

where ρ0 = ρf + (1 − ρf/ρp)m0/(4πD
3
cyl/3) is the typical initial effective density of particle clouds (see Ref. [1]

for details). Time t, pressure p and concentration C are respectively non-dimensionalised by the advective timescale
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Dcyl/Uref, the characteristic dynamic pressure ρfU
2
ref, and the fluid density ρf . With the dimensionless variables,

equation (4) is unmodified while mass conservation now reads

∂tC + v · ∇C =
1

Pe
∇2C −R∂C

∂z︸ ︷︷ ︸
gravitational drift

, (9)

where Pe = UrefDcyl/κp is the Péclet number, and R = ws/Uref is the Rouse number which characterises the
gravitational drift of particles. When R ≪ 1 particles hardly drift with respect to the fluid and tend to follow fluid
motions, whereas particles having R ≫ 1 largely decouple by vertical settling so their trajectories largely differ from
those of fluid particles in their vicinity. Using equation (7), similar non-dimensionalisation of equation (5) leads to

∂v

∂t
+ v · ∇v = −∇p+

1

Re
∇2v +RiCez︸ ︷︷ ︸

drag term

, (10)

where Re = UrefDcyl/ν is the Reynolds number and Ri = gDcyl(1 − ρf/ρp)/U
2
ref is the Richardson number which

boils down to a ratio of density contrasts Ri = (1 − ρf/ρp)/(1 − ρf/ρ0) for our specific choice of Uref used to
non-dimensionalise the equations.

III. NUMERICAL SETUP

The numerical setup aims at reproducing the experimental conditions for the generation of our particle clouds [1],
released with no initial velocity from the top centre of a tank of still water. Every particle cloud is composed ofm0 = 1g
of spherical glass beads with a mean radius rp chosen in the range 5µm-1mm, as well as some water, sometimes dyed
with rhodamine. All this material is initially contained in a cylinder of diameter Dcyl partially immersed in water and
sealed by a latex membrane. When an experiment starts, the membrane is ruptured by a needle, it quickly retracts
and lets particles settle from rest in the tank with the dyed fluid. Visualisations are performed in a vertical green
laser sheet with two cameras: the one with a green filter records the motion of particles only, while the camera with
an orange filter records only motions of turbulent eddies dyed with rhodamine, see figure 1a for an illustration. Some
reference clouds without particle inertia contained an identical mass excess m0 = 1g of salt water and were generated
in the same way. Their dynamics is characterised by a Rouse number R = 0. Experiments were performed in a tank
of depth 1m with horizontal square cross section of 42×42cm2 surface area; the side walls of the tank were considered
far enough from particle clouds to have negligible influence on the settling of particles. In the present simulations,
the computational domain represents a cube of volume 1m3 with side length Ldomain = 31.25Dcyl. Figure 1b shows
a numerical analog of our experimental clouds in a simulation having R = 0.221 at time t = 34.
To model the instantaneous release of particles from the cylinder, the field of concentration is initialised in a

narrow cylindrical region of diameter Dcyl, horizontally centred and localised at distance 1.5Dcyl below the top of the
computational domain. In experiments particles rested at the bottom of the cylinder on the latex membrane as a
very thin layer of height Hcompact. To smooth the initial concentration gradients required to model the initial layer,
the field of concentration is initialised in a cylindrical region of height 10Hcompact, and the lateral and vertical edges
of this cylindrical region are smoothed by a hyperbolic tangent with typical length scale Hcompact. The factor 10 on
the initial height of the pile of particles is expected to have negligible influence: indeed, our experiments showed that
varying the height of the pile of particles from Hcompact to 40Hcompact had negligible impact on the dynamics we aim
to model here (see [1] for further details). To compensate for the errors introduced the hyperbolic tangent smoothing,
the exact mass of particles is enforced (in dimensional form, m0 = 1g) by an appropriate rescaling. The uniform fluid
is initially motionless, save for a cylindrical enveloppe around particles at time t = 0 in which the velocity field is
perturbed by a random uniform infinitesimal noise.

A passive tracer is implemented to mimic rhodamine in simulations. This tracer is initialised exactly like the
concentration C and satisfies equation (9) with its own Rouse number R = 0 so it does not drift vertically as particles
do. Importantly, unlike the field of particle concentration C, the passive tracer does not force any flow (it is absent of
equation (10)).

On all walls, the velocity field satisfies no slip boundary conditions, while the concentration C and the passive tracer
satisfy no-flux Neumann boundary conditions.

Equations (4), (9) and (10) are integrated in three dimensions with the solver Basilisk [50] that is second-order
accurate in space and time, using a time-splitting pressure-correction discretisation of the Navier-Stokes equation
(10). The second-order advection scheme of Bell-Colella-Glaz [51] is used for equation (10) and for the two advection
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(a)
(b)

FIG. 1: (a) Visualisation of an experimental particle cloud in a vertical laser sheet with particles in grey (set of
polydisperse particles of Rouse number R = 0.308± 0.080) and dye (rhodamine) in orange. (b) Numerical analog in
the plane y = 0 of the previous photograph with a grey field of concentration C modelling particles and an orange
tracer concentration Ctracer modelling dye (cloud of Reynolds number Re = 1183 as in the experiment (a), with a

fixed Rouse number R = 0.221). The larger vertical spread of particles in (a) compared to (b) is due to the
polydispersity of the former, whereas simulations are performed for monodisperse particle clouds (see Kriaa et al. [1]

for further details).

terms in equation (9). The concentration gradient ∂C/∂z is computed with the generalised minmod slope limiter [52]
to reduce spurious oscillations due to sharp concentration gradients at initial times, with negligible impact on our
numerical measurements (see appendix A). Due to the large scale separation between the domain size and the initial
cloud size (Ldomain = 31.25Dcyl), an adaptive mesh refinement is adopted. This octree mesh is made of hierarchically
organised cubic cells, each refinement of a cell corresponding to a division of this cell in 8 identical cubes. This
refinement is based on local values of the concentration C and on the local viscous dissipation, see an illustration
in figure 2a. The smallest mesh cell has a size fixed to Ldomain/1024 while the largest mesh cell has a size Ldomain/128.

Our main focus is to analyse the influence of gravitational settling on the evolution of particle clouds by varying
the Rouse number from R = 0 to R = 3.03. Consequently, with a fixed density ρp = 2500kg/m3 for all particles,
the Richardson number Ri = 138 does not vary between simulations, and the same conclusion holds for Re and
Pe. These last two numbers are equal because we assume ν = κp as a first approximation. The value Re = 454 is
chosen by following this conservative estimate: if the particle clouds were highly inertial and if their turbulence was
homogeneous and isotropic with a fully-developed energy cascade from the integral cloud scale of order ∼ 3Dcyl to

the Kolmogorov scale, then the latter would have a size 3DcylRe−3/4. By prescribing that this smallest length scale

should have a size Ldomain/1024, this prescribes the value of Re = (Ldomain/3072Dcyl)
−4/3 = 454. This calculation

is conservative as no flow structure reaches such a small length scale in our simulations. In fact, the transient cloud
formation does not permit the development of an energy cascade down to the Kolmogorov scale. Instead, the clouds
we model are close to laminar, with a predominating coherent structure of size ∼ 3Dcyl, confirming that all length
scales are appropriately resolved. An example of the fields obtained is shown in figure 2b. For completeness, additional
simulations at Re = 1183 (which is the Reynolds number of particle clouds in our experiments [1]) are presented in
appendix B which show similar results as those presented in the core of the present analysis.
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(a) (b)

FIG. 2: (a) Adaptive mesh refinement on the field of concentration C for R = 0.221 in the plane y = 0 at time
t = 35. (b) Bird’s eye view of the 3D structure of C(x, y, z, t = 33.75) for R = 0.221 in blue-red colours (colorbar and
opacity in the bottom left-hand corner). Streamlines show the toroidal velocity field, with blue-red colours for the

velocity magnitude ||v|| (colorbar in the top left-hand corner).

IV. REGIMES OF CLOUD SETTLING

A. Overview

Figure 3 shows snapshots as well as an average image of the field of concentration C(x, y = 0, z, t) in a vertical cross
section of the computational domain. They faithfully account for all the qualitative morphological features observed
in our experiments (see figure 4 in Kriaa et al. [1]). Particle clouds initially grow as they propagate downward. For
the lowest Rouse numbers this regime of growth and dilution lasts over the entire fall of the cloud. For intermediate
Rouse numbers, this regime is more prominent (see figure 3c), yet this growth gradually vanishes and stops (see in
particular average images in figures 3d, 3e). This transition is due the field of concentration separating from eddies,
which is why the field of concentration deforms less and less, and settles more and more vertically.

The cloud evolution can be quantified by tracking the vertical position zf (t) of its front, defined as the lowermost
position of the iso-contour of concentration C(x, y, z, t) = 10−8 (this low value ensures that measurements are inde-
pendent of the specific threshold), and by tracking the vertical position z(t) of the centre of mass, defined as the
weighted average of the vertical coordinate z in the whole computational domain as z(t) =

∫
zC/

∫
C. Figure 4 shows

the evolution of these two positions in time; for all figures we use dashed lines if R > 0.221 and solid lines otherwise,
with grey shades diverging from the thick darkest line of R = 0.221. For low Rouse numbers (R < 1), after a short
phase of acceleration, the positions zf (t) and z(t) evidence a concave evolution revealing the cloud deceleration. For
intermediate Rouse numbers, a smooth transition occurs that leads to a regime of constant settling velocity when
particles separate from fluid motions and settle in quiescent liquid. For the largest Rouse numbers (R > 1), clouds
almost immediately transition from the regime of acceleration to the regime of constant settling velocity. The litera-
ture [1, 53–55] distinguishes between the first regime of turbulent thermal, or equivalently of buoyant vortex ring, and
the second regime of swarm. All these observations are consistent with our experimental observations, which were
obtained by tracking the front of the light intensity reflected by the glass spheres in time, which is analogous to zf
here. In the next sections, the two regimes of buoyant vortex ring and swarm are described separately.

B. Buoyant vortex ring regime (aka thermal regime)

Due to the lower cloud Reynolds number in numerical simulations than in experiments (see appendix B for results
at higher Reynolds number), numerical results evidence clear buoyant vortex rings whose toroidal structure is less
apparent in our more turbulent thermals in the laboratory. Yet, several studies have shown that turbulent thermals
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FIG. 3: Each row shows snapshots of the field of concentration C(t, x, z) in the plane y = 0 for a different Rouse
number, as well as the average of 40 snapshots taken with a constant timestep ∆t = 1 over the fall.
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FIG. 4: For several Rouse numbers, evolution in time of the vertical position of (a) the centre of mass of particles,
and of (b) the cloud front. Lines are dashed if R > 0.221 and solid otherwise.

(i.e. instantaneous releases of a finite volume of buoyant fluid with no initial momentum) are formed like buoyant
vortex rings [56, 57], and have a very similar structure [58–61] and dynamics [62, 63], to such an extent that ther-
mals have been considered as buoyant vortex rings whose circulation is fully determined by their buoyancy [64, 65].
Consistently, turbulent thermals at the cap of starting plumes [66], immiscible thermals [63] and settling particle
clouds [67–69] have all been successfully modelled as vortex rings. In fact, different models of turbulent thermals
(for example, references [2, 70]) and models of buoyant vortex rings [61, 62, 71] lead to the same scalings after the
transient formation of these structures. Given the morphology of clouds in figure 3, we present the essential equations
governing the evolution of buoyant vortex rings, which will prove enlightening to analyse the clouds growth.

When buoyant particles start settling, the cloud initially rolls up as a buoyant vortex ring. After a transient, one
observes that vorticity concentrates inside a toroidal core. It is often assumed, and appropriate in our simulations as
we shall see, that the vortex ring is sufficiently thin-cored to guarantee the absence of any buoyant material along the
vortex centreline (axis of symmetry of the vortex ring, parallel to ez and passing through the centre of symmetry of
the torus), and that no vorticity diffuses through this line, leading to the conclusion that the circulation Γ of the vortex
ring remains constant after the short transient of spin-up (see equation 4 in reference [61]), as verified in numerical
simulations for a cloud Reynolds number of 630 and 6300 [61]. Consequently, the initial spin-up of the vortex is
paramount because it sets the ultimately constant value of the circulation which plays a key role in determining the
cloud growth rate.

The impulse of a thin-cored vortex ring of radius R under the Boussinesq approximation reads πρfΓR
2 [61, 62].

This impulse varies in time due to buoyancy which is the sole external force, hence we have

d

dt

[
πρfΓR

2
]
= m0g , (11)

from which it is clear that in the absence of buoyancy, the impulse would be constant hence the vortex ring would keep
a constant radius, as verified in the literature [57, 72] for vortex rings of Reynolds number up to 104 [72]. Assuming
a constant circulation, the previous equation simplifies to

R(t)2 −R2(t = 0) =
m0g

πρfΓ
t . (12)

To verify this scaling, the cloud radius is measured in numerical simulations with the quantity σh, which is the
horizontal standard deviation of the particles’ spatial distribution with respect to the cloud centre of mass

σh(t) =

√∫
C(x′, y′, z′, t)(x′2 + y′2)∫

C(x′, y′, z′, t)
, (13)

where the origin of coordinates (x′, y′, z′) corresponds to the cloud centre of mass, and integrals are computed in the
whole computational domain. From this definition, the scaling (12) is verified in figure 5: aside from slight oscillations,
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FIG. 5: Time evolution of the increment of square radius compensated with time [σ2
h(t)− σ2

h(t = 0)]/t, measured in
simulations for several Rouse numbers. Lines are dashed if R > 0.221 and solid otherwise.

clouds of low Rouse number (R ≤ 0.221) eventually grow as σh ∼ t1/2 as evidenced by the plateau of the compensated
quantity [σ2

h − σ2
h(t = 0)]/t. Conversely, clouds with large Rouse numbers (R > 0.221) grow slower than σh ∼ t1/2

so the quantity [σ2
h − σ2

h(t = 0)]/t eventually decreases in time, meaning that these clouds do not follow the scaling
(12). Note that according to equation (12), the plateaus in figure 5 are inversely proportional to the circulation
Γ, suggesting the existence of a minimum of circulation for intermediate Rouse numbers close to R = 0.221; this
observation will receive considerable attention in section V.
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FIG. 6: (a) Evolution of the clouds’ radius σh along depth. Lines are dashed if R > 0.221 and solid otherwise. (b)
Growth rate α computed in the range z < 0.45Ldomain, divided by the reference value αsalt of a salt-water cloud i.e.

of a cloud with no particle settling (R = 0).

The clouds’ growth is generally analysed along depth z rather than in time. Figure 6a shows the evolution of the
radius σh(z) for all clouds. For R ≪ 1 clouds tend to grow linearly in depth after a short transient. For R = 0.221
a noticeable decrease of the slope dσh/dz is visible at depth z = 10, as already observable in figure 3c, which is due
to the transition to the swarm regime. For large Rouse numbers, typically above unity, it is manifest that the slope
dσh/dz is never constant, it keeps decreasing as clouds fall deeper.
More importantly, figure 6a shows that the growth rate dσh/dz(z) tends to be maximum for an intermediate Rouse

number close toR = 0.221. To compare this growth rate with the entrainment rate measured in our experiments over a
45cm-deep field of view, the value of dσh/dz(z) is computed in simulations, then averaged in the range z < 0.45Ldomain.
The resulting average value is denoted α and results are shown in figure 6b. Consistently with our experiments (see
figure 6 in [1]), we observe an asymptote towards a constant growth rate as R → 0, a local maximum for a finite
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Rouse number which lies in the range R ≃ 0.3± 0.1 determined from experiments, and a clear decrease of the growth
rate as R increases beyond R = 0.3. The maximum amplitude of the enhancement α(R = 0.221)/αsalt = 3.20± 0.83
is larger than the value found in experiments α(R ≃ 0.3)/αsalt = 1.75 ± 0.30. This is likely due to the difference of
cloud Reynolds number between experiments (Re = 1183) and simulations (Re = 454). In appendix B, numerical
results for clouds of Reynolds number Re = 1183 yield α(R = 0.221)/αsalt = 2.20 ± 0.42 as a new maximum, which
is in agreement with our experiments. The important point here is that the present Eulerian approach is capable of
reproducing the physical effect we observed in laboratory experiments.

We now turn to the swarm regime before analysing the role of the gravitational drift in enhancing the growth rate
α in Section V.

C. Swarm regime

During the gradual transition from the buoyant vortex ring to the swarm regime, particles increasingly decouple
from fluid motions. This gradual decoupling is analysed thanks to the concentration Ctracer of the passive tracer,
which is implemented in four new simulations of Rouse numbers R = 0.100, 0.221, 0.498, 0.885. As a wish to perform
similar processings as in our experiments where the flow was visualised in a vertical laser sheet, the decoupling is
illustrated with space-time diagrams in figures 7a-7d after averaging the fields C and Ctracer along x in the plane y = 0
(this averaging process is made explicit with the brackets ⟨·⟩x). The space-time diagrams reveal that increasing R
leads to a faster separation between the field ⟨C⟩x (in blue-red colours) and the passive tracer ⟨Ctracer⟩x (in yellow-red
contours) which is left behind particles. By construction, the sole ingredient responsible for this decoupling is the
gravitational drift in equation (9) which only concerns the field C, not the passive tracer.
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FIG. 7: Hovmöller diagrams for four increasing Rouse numbers showing the gradual decoupling in the plane y = 0
between the field of concentration ⟨C⟩x (in blue-red colours) and the passive tracer ⟨Ctracer⟩x (in yellow-red contours).

The values shown for both concentrations are horizontal averages along x in the plane y = 0 at each time step.

A quantification of the decoupling between C and Ctracer is possible by defining a correlation coefficient which
computes the overlap between C and Ctracer as a percentage of the total region occupied by these two fields. In practice,
minimum thresholds are applied on the fields, whose values ensure the convergence of the correlation coefficient. As
in figure 7, the correlation coefficient is computed in the plane y = 0 (denoted Oxz below) as

CC,Ctracer(t) =

∫
Oxz

ξ1(t)dxdz∫
Oxz

ξ2(t)dxdz
, (14)

where the booleans (ξ1(t), ξ2(t)) are defined as

ξ1(t) =

{
1, if C(t) > C1(t) and Ctracer(t) > C2(t)
0, otherwise

; ξ2(t) =

{
1, if C(t) > C1(t) or Ctracer(t) > C2(t)
0, otherwise

, (15)
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with C1(t) = max{C(t)} × 10−4, C2(t) = max{Ctracer(t)} × 10−4. The time evolution of CC,Ctracer
(t) is shown in figure

8a for the same four simulations as above. The correlation coefficient is initially equal to unity because both fields
of concentration are identical. Then, the correlation coefficient decreases as particles gradually shift away from the
passive tracer due to the gravitational drift, all the faster as the Rouse number is larger. Finally figure 8b confirms
that the settling velocity of swarms approaches a constant value after separation, equal to the individual settling
velocity which is equal to the Rouse number R in our dimensionless units (see inlet in figure 8b). Figure 6a already
showed that the growth rate of swarms starts reducing after separation (the concave deflection of σh(z) is most visible
for R = 0.221), so swarms ultimately fall with constant velocity, retaining a bowl shape without deforming, as shown
by the snapshots in figure 3e for R = 3.03.
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FIG. 8: (a) Time evolution of the correlation coefficient CC,Ctracer
(t) between particle and passive tracer

concentrations for R ∈ {0.100, 0.221, 0.498, 0.885}, from top to bottom. (b) Evolution in depth of the vertical
velocity of the clouds’ centre of mass for all simulations. Lines are dashed if R > 0.221 and solid otherwise. The

inset shows the normalised velocity ż/R as a function of time t only for clouds verifying R ≥ 0.221.

V. ROLE OF THE ROUSE NUMBER ON THE ENHANCED GROWTH RATE

The linear growth in depth of buoyant clouds is usually described as resulting from entrainment of ambient fluid into
the cloud, leading to its growth and dilution, and consequently its deceleration through mixing drag. One reference
to describe the process of entrainment for turbulent thermals is the model of Morton et al. [2]. It is based on the
entrainment hypothesis which states that the inflow velocity at the interface of the turbulent thermal is proportional
to the vertical velocity of the cloud’s centre of mass; this inflow velocity is considered to be produced by turbulent
motions.

Yet, our observation of a maximum growth rate α even for moderate Reynolds numbers (Re = 454 here) suggests
that the enhanced entrainment due to the finite gravitational drift finds an origin in the large-scale buoyancy-induced
mean flow (which, in the case of turbulent particle clouds, is obtained by an average over realisations) rather than
in turbulent fluctuations. Actually, this question of the origin of entrainment in turbulent flows has long been
debated: does it originate from the large-scale mean flow incorporating ambient fluid into the turbulent region through
‘engulfment’? Or from small-scale fluctuations and diffusive processes which mix the ambient material in the turbulent
structure close to its interface through ‘nibbling’? While Mathew and Basu [73] observed that mixing in a cylindrical
turbulent jet seemed to be driven by nibbling close to the jet interface, Townsend [74] showed that large-scale eddies
of increasing intensity produce more energy in the turbulent wake past a cylinder and consequently favour a larger
growth rate of this wake, suggesting that the mean flow drives entrainment through engulfment. Discriminating
between engulfment and nibbling can be complex because large and small scales may be insufficiently separated at
moderate Reynolds numbers, and because fluxes at both scales can be connected through some relationships [73]. For
example, in [75], Reynolds stresses at the mixing interface of a gravity current are modelled based on Prandtl mixing
length theory, thus enabling, through the use of a large-scale quantity based on the mean flow, the description of
entrainment in the mixing layer by fundamentally local fluxes.
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Importantly, the reason for this ambiguity is that both processes contribute to entrainment, as evidenced by Fox
[76] who derived the equations of evolution of a self-similar plume while considering the equation of conservation of
energy, hence lifting the constraint of modelling entrainment to guarantee a closure of the equations. In doing so,
he showed that entrainment depends both on the Reynolds stress and on a contribution from the mean flow due
to buoyancy. This was confirmed by Reeuwijk and Craske [77] who carried this analysis further and showed that a
third contribution comes from possible deviations from self-similarity in the streamwise direction. By analysing data
from the literature, Reeuwijk and Craske [77] showed that the term of turbulence production due to shear hardly
varies between a pure jet and a pure plume, even though plumes have a larger growth rate than jets. Hence this
last difference between jets and plumes is attributed to the contribution of the mean flow due to buoyancy, as later
confirmed by Reeuwijk et al. [78] in DNS. These conclusions about entrainment apply similarly for plumes and
thermals, as pointed out by Landeau et al. [63]. From the model of Morton et al. [2], Landeau et al. [63] proved
experimentally that the growth rate of an immiscible thermal verifies a linear relationship with respect to the ther-
mal’s Richardson number, which is exactly analogous to the entrainment model of Priestley and Ball [79] for plumes,
see [77] for details. Consistently with these conclusions, Lecoanet et al. [60] showed that turbulence only enhances
entrainment by 20% between turbulent thermals of Reynolds number 630 and 6300, whereas an artificial sudden shut
off of buoyancy during the same numerical simulations drastically reduces the entrainment rate of turbulent thermals
[61], highlighting the driving role of buoyancy in entrainment.

Consequently, in the present section we focus on mean flow azimuthally-averaged quantities to try and understand
the optimum growth rate of particle clouds for a Rouse number around R ≃ 0.22. Past studies have shown that in
the absence of buoyancy, the circulation of a vortex ring generated from a nozzle increases from zero to a constant
value during the transient rolling-up of the viscous boundary layer in the nozzle [72], with this constant circulation
increasing as the ratio of the nozzle length over its diameter increases. When the vortex ring is buoyant, buoyancy
provides a new contribution to the total circulation, which was fully derived by Mc Kim et al. [61] for a thin-cored
Boussinesq vortex ring, yielding the following scaling for the growth rate α (see [58, 71] but also [60, 62, 70] for
turbulent thermals)

α ∝ m0g

ρfΓ2
∞
, (16)

with a proportionality constant accounting for the cloud added mass and its morphology [61], and with Γ∞ the
asymptotically constant value of the circulation. The key result here is that since all clouds undergo the same
buoyancy force m0g in our simulations, their growth rate α is dictated by Γ∞ only. Consequently, vortex rings
of lower circulation should have a larger growth rate – crudely speaking, they should entrain more, as consistently
observed in [58, 63].

To verify this scaling, the vortex ring circulation is computed a posteriori for several snapshots after (i) interpolating
the mesh on a regular cartesian grid, (ii) averaging the azimuthal vorticity ωθ along the azimuth eθ in radial and
vertical bins (when ambiguity is possible, we denote azimuthally-averaged quantities with an overline such as ωθ), (iii)
integrating the resulting average azimuthal vorticity over the whole radial extent and in the range z ∈ [0.3, Ldomain−0.3]
(top and bottom walls are removed from this range to avoid integration of vorticity near those boundaries). Results
are shown in figure 9a. We verify that the circulation produced by the particle clouds ultimately reaches a plateau,
except when R ≫ 1 i.e. for clouds which are not expected to behave as buoyant vortex rings due to separation. From
previous sections, figure 9a already suggests that the circulation Γ∞ is all the lower as the cloud grows faster; this is
confirmed in figure 9b where the scaling α ∝ Γ−2 of equation (16) is in excellent agreement with the best fit (see the
solid dark line in figure 9b) of measurements of the circulation when the cloud centre of mass is at mid-depth in the
computational domain i.e. with the definition Γ∞ ≡ Γ(z = Ldomain/2).

Another remarkable observation is the modification of the structure of the vortical core with increasing the Rouse
number, as illustrated in figure 10. When R = 4.28 × 10−2 (figure 10a) the vortex core is neatly defined, centered
around a maximum of azimuthal vorticity whose structure is at first order isotropic in a plane (er, ez) of fixed azimuth.
Conversely when R = 0.221 (figure 10c), the vortex core is made up of sheets of vorticity of alternate sign and varying
intensity which occupy a much larger region than observed for R = 4.28× 10−2 at the same depth. Let us show that
as R gets closer to 0.221 the vortical core induces circulation farther and farther away, thus expanding the region
of entrainment through the toroidal mean flow. After defining the core centroid as the barycentre of the azimuthal
vorticity, the following normalised circulation is computed

Γ∗(r) =
1

πr2

∫ 2π

0

∫ r

0

< ωθ >θ r′dr′dθ, (17)

where (r′, r, θ) here correspond to polar coordinates centered on the circulation centroid. The size of the vortex core
is defined as argmax{Γ∗(r)} i.e. as the radial distance from the circulation centroid where the circulation Γ∗(r) is
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FIG. 9: (a) Time evolution of the axisymmetric circulation in the whole computational domain. Lines are dashed if
R > 0.221 and solid otherwise. (b) Correlation between the growth rate α averaged over the range z < 0.45, and

measurements of Γ∞. The solid dark line is the linear least square fit of ln(α) vs. ln(Γ∞).

maximum. Consistently, figure 11a shows that this circulation Γ∗ spreads further away from the circulation centroid
when R = 0.221, meaning that this vortex ring induces velocity farther away, therefore incorporating more ambient
fluid within the particle cloud, hence the latter grows faster. This trend is even clearer in figure 11b where the core
size is computed at the same depth Ldomain/2 for all clouds: one verifies that the core extension is maximum when
the Rouse number is closest to R = 0.221.

The key question is then: How come vortex rings have a wider core and a lower circulation when the particle Rouse
number is closer to 0.221? The vortex circulation is only produced during a short initial transient, mainly by the
baroclinic torque as long as its contribution along the vortex centreline is non-negligible. As soon as the buoyant
material has spun up and widened sufficiently, one can define a closed contour encircling the core where no vorticity
diffuses and no buoyant material is present, so that circulation is conserved (e.g. [61]). The vorticity equation along
the azimuth eθ reads

Dωθ

Dt
=

ωθvr
r︸ ︷︷ ︸

stretching

+

baroclinic torque︷ ︸︸ ︷
g′

ρf

∂C
∂r

+ ν

[
1

r

∂

∂r

(
r
∂ωθ

∂r

)
+

∂2ωθ

∂z2

]

︸ ︷︷ ︸
diffusion

, (18)

which shows that azimuthal vorticity is produced by vortex stretching, the baroclinic torque and diffusion of vorticity.
The quantity ωθvr is at first order symmetrical around the vortex core, so for a thin-cored vortex ring having a radius
much larger than the vortex core, the stretching term should be vanishingly small, as previously argued by other
authors [61]. Then, if diffusion is assumed negligible, most forcing is expected to originate from the baroclinic torque.
This is especially true at initial times when the stretching and diffusion terms vanish while the baroclinic torque
remains finite. The baroclinic torque is therefore the leading source of circulation at initial times [61]. To verify this,
the dimensionless baroclinic torque Ri∂rC along eθ is first averaged along the azimuth (the resulting axisymmetric
torque is denoted Ri∂rC). Then the axisymmetric torque is integrated in the plane (er, ez) and integrated in time
until t = 10 when we observe that the torque has vanished for all simulations. Results are shown in figure 12. We
verify that Rouse numbers close to R = 0.221, which correspond to the largest growth rate α (figure 6b) and lowest
circulation (figure 9a), also correspond to the lowest baroclinic forcing. This observation is robust: integrating the
baroclinic torque in time even just up to t = 1 modifies the value of the integrated torque, but leaves the curve in
figure 12 unchanged. As an indication, the errorbars in figure 12 show the little influence of integrating the baroclinic
torque up to t = 8 or t = 10 which respectively correspond to the lower and upper bound of errorbars.

The picture that emerges from these results is the following: under the assumption that baroclinicity is the leading
forcing of the vortex rings’ circulation, the maximum of entrainment capacity of particle clouds with a Rouse number
close to R = 0.221 seems to be due to the gravitational drift and two-way coupling of particles with the fluid which
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(d) R = 0.498
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FIG. 10: Each row shows snapshots of the azimuthally-averaged vorticity ωθ in blue-red colours, and the
azimuthally-averaged concentration C with dashed contours in yellow-red shades (see colorbars on the left-hand

side). Each snapshot is visualised in the plane (r, z) in the range 3 < z < 22 and 0 < r =
√

x2 + y2 < 10.
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FIG. 11: (a) Time evolution of the size of the vortical core for all clouds. Lines are dashed if R > 0.221 and solid
otherwise. (b) Size of the core at depth z = Ldomain/2 for all clouds. The dark arrow corresponds to the value for

R = 0.

reduces the baroclinic torque, thus reducing the cloud circulation. Since all clouds undergo an identical buoyancy
force m0g, these same clouds have a larger growth rate α as predicted by equation (16). Similar results have been
obtained at a larger Reynolds number Re = 1183 (see Appendix B), in good agreement with experiments. Note
however that the role played by fluctuations in the limit of very large Reynolds numbers remains to be explored and
might have an influence on our conclusions derived from moderate Reynolds numbers only.
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FIG. 12: Results of time and volume integration up until t = 10 of the axisymmetric baroclinic torque as a function
of the Rouse number.

VI. CONCLUDING DISCUSSION

The previous section showed that the gravitational drift modifies the distribution in space and time of the field of
particle concentration C(x, y, z, t) compared to that of a passive tracer. This modification alters the forcing by the
drag force, minimises the baroclinic torque and concurs to a maximum growth rate α for a Rouse number around
R = 0.221. All these modifications are observed at moderate Reynolds numbers and notably quantified by the
azimuthally-averaged circulation and baroclinic torque; this is consistent with the literature pointing towards the
leading role of the mean flow and buoyancy in controlling entrainment and the growth of thermals (see section V).
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A key conclusion is that the present Eulerian two-way coupling numerical simulations successfully reproduce our
experimental observation of a maximum growth rate α/αsalt of particle clouds for a Rouse number R ≈ 0.22 lying
within the experimental range R ≃ 0.3 ± 0.1. While results at Re = 454 yield a maximum growth rate slightly
above the experimental value α(R ≃ 0.3)/αsalt = 1.75 ± 0.30, results at Re = 1183 lie in the experimental range
within uncertainty margins. A systematic study with varying Reynolds numbers might clarify whether the mechanism
identified in this paper persists in the presence of intense turbulent fluctuations.

Our results raise a new question: How does the gravitational drift of particles contribute to reducing the baroclinic
forcing ? Some light could be shed on this matter by analysing the properties of the flow induced by a canonical
laminar vortex ring while the field of concentration drifts radially outward until separation, but the evolution of the
structure of the vortex core in figure 10 suggests that the feedback of particles on the vortex ring itself probably
plays a non-negligible part. Furthermore, even though the robust agreement between our experiments and the present
results supports the responsibility of the mean flow in the maximisation of α for a finite Rouse number, it remains to
be investigated whether other physical ingredients could be at play in experiments, in particular velocity fluctuations
due to turbulence at much higher Reynolds numbers than considered here.

In the present numerical simulations, fluctuations are very low compared to the mean flow due to the low Reynolds
number Re = 454 at the scale of the particle cloud. Our experiments, on the opposite, were characterised by a
Reynolds number Re = 1183. Even though this value is too low to have a well-developed turbulent flow with a clear
separation of scales between the integral cloud scale and the scale of the smallest dissipative eddies, our experimental
clouds evidenced some more fluctuations than in numerical simulations. On one hand, these may modify the cloud
circulation during its transient increase, hence during a limited amount of time. On the other hand, after this transient,
entrainment can be increased by the term of production of turbulent kinetic energy (TKE), as shown by Reeuwijk
and Craske [77] in their entrainment relations. This production term may differ for one-phase turbulent thermals vs.
particle-laden turbulent thermals due to turbulence modulation by particles [5], as observed in simulations [20, 21]
and experiments [19, 32]. These studies notably showed a redistribution of energy from small to large wave numbers
known as ‘pivoting’, which may favour nibbling-like entrainment at small scales rather than engulfment by the mean
flow. Consequently, the possible enhancement of α by fluctuations in a more vigorous turbulent flow cannot be ruled
out, calling for further investigation with a dedicated larger experimental setup and numerical simulations with a clear
separation of scales. Answering these questions also probably requires a more advanced model such as a two-fluids
approach where the particles have their own velocity field (e.g. [33, 34, 80]), or a point-force Lagrangian model (e.g.
[30, 81–83]).
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Appendix A: Robustness of numerical measurements

We verified that numerical measurements of key quantities are invariant with respect to three numerical parameters:
(i) the Schmidt number Sc = ν/κp, (ii) the size hmin of the finest mesh cell and (iii) the numerical scheme implemented
to compute the concentration gradient. For all simulations presented in the core of this study, the concentration
gradient was computed with the generalised minmod slope limiter [52], which reads along the direction ez

(
∂C
∂z

)

i

≃ max

{
0,min

(
θ(Ci+1 − Ci), θ(Ci − Ci−1),

Ci+1 − Ci−1

2

)}
, (A1)

with θ a scalar ranging between 1 (the most dissipative scheme) and 2 (the least dissipative scheme), and Cj∈N is the
evaluation of C in a mesh cell j along the direction ez. The default value θ = 1.3 of Basilisk was adopted. We verified
that adopting a second-order centered scheme

(
∂C
∂z

)

i

=
Ci+1 − Ci−1

2
(A2)

does not alter our measurements. Results are presented in table I, providing the average and standard deviation of
(a) the growth rate α, (b) the cloud vertical velocity ż and (c) the work of the drag term

∫
Cvz responsible for the
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Varying numerical parameter Fixed Re α× 103 ż × 102
∫
Cvz × 103

Sc ∈ {1, 2, 5, 10} 1183 172± 7 640± 2 13.8± 2.3
Ldomain/hmin ∈ {256, 512, 1024, 2048} 180 328± 31 42.9± 3.4 6.4± 1.0
Ldomain/hmin ∈ {256, 512, 1024, 2048} 454 321± 29 44.1± 4.9 6.7± 1.5
Ldomain/hmin ∈ {512, 1024, 2048} 1183 343± 28 56± 14 12.7± 7.4

∇C: minmod2 or 2nd order centered 454 305.64± 0.03 38.7870± 0.0004 5.422522± 0.000006
∇C: minmod2 or 2nd order centered 1183 295± 8 39.9± 0.6 5.7± 0.2

TABLE I: Variability of the macroscopic quantities α, ż and the work of the drag force
∫
Cvz in the range

z < 0.45Ldomain when varying the Schmidt number, the size hmin of the finest mesh cell, or the numerical scheme
used to compute the concentration gradient.

transfer of energy from particles to the fluid during the cloud fall. These three quantities are averaged when the
cloud position verifies z(t) < 0.45Ldomain, which is the range we analysed with our experiments [1]. Reported values
evidence little to negligible impact of the three numerical parameters on average measurements of α, ż and

∫
Cvz.

Appendix B: Key results for clouds of Reynolds number Re = 1183

For completeness, we briefly present numerical results for clouds of Reynolds number Re = 1183 as in our experi-
ments [1]. Figure 13 shows time averages in the plane y = 0 of the field of concentration C for a set of clouds with
varying Rouse numbers. More fluctuations do appear at low Rouse numbers (figures 13a-13c), whereas clouds of large
Rouse numbers still evidence a thin bowl shape due to rapid particle separation from fluid motions (figures 13d,13e).
Importantly, these images show the existence of a maximum growth rate as R → 0.221, as quantitatively confirmed
by figure 14, similarly as in section IVB and consistently with our experiments [1]. The maximum amplitude of the
enhancement α(R = 0.221)/αsalt = 2.20 ± 0.42 is lower than the one measured for Re = 454 in section IVB, and in
good agreement with the maximum measured in experiments α(R ≃ 0.3)/αsalt = 1.75± 0.30. A systematic study as
a function of the Reynolds number might clarify what determines the amplitude of the optimum α/αsalt, but this is
beyond the scope of the present work which focuses on the origin of this amplification, and on the capacity of the
numerical model to reproduce it.
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FIG. 13: Field of concentration C in the plane y = 0 averaged over up to 20 snapshots taken with a constant
timestep ∆t = 2.5 over the cloud fall for clouds of Reynolds number Re = 1183.
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