Hybrid polymer/ceramic membranes:

Towards a new concept of electrolytic separator for all-solid-state Li metal batteries

ISE 2023 – Lyon, France – Thursday 7th of September 2023

Thomas Basso-Bert¹

Jonathan Szymczak², Margaud Lécuyer², Marc Deschamps², Didier Devaux¹, Renaud Bouchet¹

¹Univ. Grenoble Alpes, Univ Savoie Mont Blanc, Grenoble INP, CNRS, LEPMI, Grenoble, France ²Blue Solutions, Ergué Gabéric, France

New concept of all-solid-state electrolytic separator

 Aetukuri, N. B. *et al.* Flexible Ion-Conducting Composite Membranes for Lithium Batteries. *Adv. Energy Mater.* 5, 1–6 (2015)
Aetukuri, N.B. *et al. ACS Appl. Energy Mater.* 3, 12709–12715 (2020)

This PhD work

To elaborate this ceramic-based membrane thanks to a one-step, dry & scalable process = EXTRUSION

1/ Study the elaboration process of the composite material

 \rightarrow We need homogeneous and impermeable membranes

2/ Electrochemical study of interfaces between layers

ightarrow Optimization of the catholyte and the anolyte separately

thanks to Electrochemical Impedance Spectroscopy (EIS)

Lab scale elaboration process of composite membranes

1) Internal blending at 130°C

LATP particles Monocristalline grains Narrow PSD thanks to sieving (diameter ~35μm +/- 15μm)

Poly(ethylene) matrix industrial grade Extrudable

Insoluble in solvent

Internal mixer

- → Optimization of the calendering parameters to produce a thin membrane with controlled characteristics
 - Impermeability to solvent
 - Thickness
 - Fraction of apparent surface

II. Electrochemical characterization by EIS

Morphology of the composite membrane

2/ Apparent surface fraction α of LATP grains $S_{mbn} = \alpha S_{tot}$

 $\rightarrow \alpha$ is not proportional to LATP loading (%vol)

α fraction of apparent surface vs. LATP loading (from BSE image binarization)

LEPMI Blue Solutions

ISE 2023 - Lyon - 07/09/2023 - Thomas Basso-Bert

Ionic charge transport and transfer through a multilayer system

Scheme of the Li⁺ percolating pathway through the multilayer

High frequencies ⇔ ionic bulk conduction Middle frequencies ⇔ ionic charge transfer

$$R_{tot} = (2 * R_{elec} + R_{LATP grain}) + R_{int}$$

How to study such electrolytic system thanks to EIS?

- 1. Study of intrinsic conduction properties of each layer
 - **R**_{elec} (easy to do)
 - R_{LATP grain} (tricky to do)
- 2. Study the charge transfer resistance R_{int elec/mbn} in multilayer systems
- \rightarrow Which parameters drives R_{int}?

Membrane conductivity R_{LATP grains}

Conventional methods **DOESN'T WORK** (gold coating, Cu or SS electrode)...

- ightarrow We developed our own flexible composite blocking electrode made of
 - Ketjen Black (carbon) for e⁻ conduction
 - Poly(ethylene) for flexibility

Impedance spectra of a 50%vol LATP-based membrane at -40°C from 7MHz to 80kHz

PE / KB (10%vol) coated on Cu current collector

Symmetrical setup PEKB/mbn/PEKB in coin cell

Coin cell cross-section (SEM, BSE) → good contacts

II. Electrochemical characterization by EIS

Membrane conductivity R_{LATP grains}

Ionic conductivity of membranes as a function of T°

• **E**_▲ are in good agreement with LATP [3]

[3] Cretin, M. & Fabry, P., J. Eur. Ceram. Soc. 19, 2931–2940 (1999).

compared to a fraction of apparent LATP grains

as function of the LATP loading (%vol)

- σ_{LATP grains} is not proportional to the ceramic loading (%vol)
- σ_{LATP grains} is well correlated to SEM binarized images

II. Electrochemical characterization by EIS

Charge transfer resistance R_{int elec/mbn}

SS/multilayer/SS (SSEMESS) setup in coin cell

Impedance spectra at 20°C from 7MHz to 100mHz $M = LATP \ 40\% vol \ / PE \ ref$ $E = PEGDME + 1M \ LiNO_3$ in Celgard separator

• σ_{bulk} has a VTF behavior similar to σ_{elec}

Because the LATP has a much higher conductivity than the liquid elec

- $\alpha = \frac{\sigma_{bulk}}{\sigma_{elec}}$ = 20-30% for a 40% vol LATP loading
- R_{MF} has a consistent activation energy for charge transfer [4][5]
- \rightarrow What are the determining parameters of R_{int}?

[4]F. Richter et al., Electrochem. Energy Rev., vol. 3, no. 2, pp. 221–238, 2020
[5]R. Bouchet et al., ACS Appl. Mater. Interfaces, vol. 14, no. 11, pp. 13158–13168, 2022

Charge transfer resistance R_{int} – Tips for improvement

Conclusion

- Elaboration of composite poly(ethylene)/LATP membranes
 - ✓ Scalable, one step, low-cost and eco-friendly extrusion process
 - ✓ Thin membranes ~30μm
 - ✓ Membranes are impermeable, non soluble & has good mechanical properties
 - ✓ High ionic conductivity 2.10⁻⁴ S/cm at 20°C and t⁺ = 1
- R_{int} is the limiting factor of the total resistance in multilayer systems \rightarrow BUT it can be improved

Perspectives

- Reduce the composite membrane thickness to ~15µm
- Li/Li symmetrical cell + Li metal battery cycling
 - ✓ study of dendritic growth
 - ✓ effective t⁺ in multilayer systems

thomas.basso-bert@grenoble-inp.fr

Université de Grenoble Alpes, Massif de Belledonne

Thank you.

No pinhole within the membrane ? \rightarrow Permeability cell

Permeability cell setup at 20°C in dry room

<u>2 Pt electrodes for each compartment</u> Recording impedance of each solutions over time

Li salt	Solvent anolyte/catholyte	R _{int} at 40°C (Ohm.cm²)
LiNO ₃ 2M	PEGDME 240g/mol	6.10 ³
	TEGDME	1.104
LiTFSI 2M	PEGDME 240g/mol	1.10 ⁶
	PC	1.10 ⁵
LP30		1.10 ³