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A B S T R A C T 

We present a Bayesian inference method to characterize the dust emission properties using the well-known dust- H I correlation 

in the diffuse interstellar medium at Planck frequencies ν ≥ 217 GHz. We use the Galactic H I map from the Galactic All-Sky 

Surv e y (GASS) as a template to trace the Galactic dust emission. We jointly infer the pixel-dependent dust emissivity and the 
zero level present in the Planck intensity maps. We use the Hamiltonian Monte Carlo technique to sample the high-dimensional 
parameter space ( D ∼ 10 

3 ). We demonstrate that the methodology leads to unbiased reco v ery of dust emissivity per pixel and 

the zero level when applied to realistic Planck sky simulations o v er a 6300 deg 

2 area around the Southern Galactic pole. As 
an application on data, we analyse the Planck intensity map at 353 GHz to jointly infer the pixel-dependent dust emissivity at 
N side = 32 resolution (1.8 

◦ pixel size) and the global offset. We find that the spatially varying dust emissivity has a mean of 
0.031 MJy sr −1 (10 

20 cm 

−2 ) −1 and 1 σ standard deviation of 0.007 MJy sr −1 (10 

20 cm 

−2 ) −1 . The mean dust emissivity increases 
monotonically with increasing mean H I column density. We find that the inferred global offset is consistent with the expected 

level of cosmic infrared background (CIB) monopole added to the Planck data at 353 GHz. This method is useful in studying 

the line-of-sight variations of dust spectral energy distribution in the multiphase interstellar medium. 

Key words: methods: statistical – ISM: general – diffuse radiation – submillimetre: diffuse background – submillimetre: ISM. 
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 I N T RO D U C T I O N  

alactic dust emission is one of the significant foregrounds in
easurements of the cosmic microwave background (CMB) intensity

nd polarization at frequencies abo v e ∼100 GHz (Planck 2018 results
V 2020 ). At this frequency range, the form of spectral energy distri-
ution (SED) of the Galactic dust and the cosmic infrared background
CIB; Puget et al. 1996 ; Lagache, Puget & Dole 2005 ) are similar.

hile interesting in its own right, characterization and understanding
f the Galactic dust properties are crucial for measuring the CMB
-mode polarization (Planck 2018 results XI 2020 ). To mitigate this

oreground contribution from the measurements, it is essential to
nderstand how dust grains contribute to the B-mode polarization.
nderstanding the Galactic dust emission is also critical for the

eliable reconstruction of the CIB anisotropies (Planck intermediate
esults XLVIII 2016 ). The fact that the CIB and the Galactic dust
 E-mail: adak@iac.es (DA); sshaik14@asu.edu (SS) 1

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
hare similar spectral properties makes it crucial to understand the
patial distribution and the SED of Galactic dust to separate the
wo emissions reliably. The CIB traces the matter distribution in
he Universe and plays a crucial role in delensing the lensed B-

ode contribution in the observed B-mode measurements (Larsen
t al. 2016 ). It is also an important probe to be cross-correlated
ith other probes of the large-scale structure (Ade et al. 2014 ; van
ngelen et al. 2015 ; Ade et al. 2016 ; Maniyar et al. 2019 ; Jego et al.
023 ). Moreo v er, ev en though the CIB is weakly polarized, at the
requencies where CIB is significant, the polarization of the CIB
an be a contaminant to CMB B-mode polarization (Feng & Holder
020 ; Lagache et al. 2020 ). 
Various methods have been used to study the nature of the Galactic

ust emission with the Modified Black Body (MBB) as a model of
he Galactic dust SED at Planck 1 frequencies. Inferring Galactic
ust SED parameters at the highest Planck angular resolution with
 http:// www.esa.int/ Planck
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ufficient signal-to-noise ratio is also important because smoothing of 
esolution may reduce information associated with the Galactic dust. 
lanck 2015 results X ( 2016 ) use Commander method to perform
ayesian inference of the Galactic dust spectral properties at 7.5 ′ full-
idth half maximum (FWHM) angular resolution. A complementary 
ethod to do a similar task is implementing the dust- H I correlation. 
alactic dust is correlated with H I 21 cm line emission of neutral 
ydrogen at high Galactic latitude and low-column density regions 
Boulanger & Perault 1988 ). Hence, the Galactic H I emission map 
an be used as a tracer of the Galactic dust emission. Using Planck
nd IRAS data along with H I 21 cm observations obtained by Green 
ank Telescope (GBT), Planck early results XXIV ( 2011 ) estimate 

he dust emissivities in 14 fields co v ering more than 800 deg 2 at high-
alactic latitude. Using the same formalism, Planck intermediate 

esults XVII ( 2014 ) study the dust emissivity and its SED by fitting
he MBB model o v er the Southern Galactic Pole (SGP, b < −25 ◦). A
roper estimation of the Galactic dust emission is needed to separate 
he CIB emission (see e.g. Planck intermediate results XLVIII 2016 ; 
rfan et al. 2019 ; Lenz, Dor ́e & Lagache 2019 ). Once the contribution
f Galactic dust to a given frequency map is estimated, it can be
ubtracted to obtain the contribution of the CIB anisotropy (Planck 
013 results XXX 2014 ). Lenz et al. ( 2019 ) have produced the CIB
aps by cross-correlating H I 4PI data (HI4PI Collaboration et al. 

016 ) with the Planck intensities at 353, 545, and 857 GHz o v er
pproximately 25 per cent of the sky. 

Planck does not measure the absolute sky background referred to 
s the zero levels of intensity, which have been fixed at the level
f map-making (Planck 2013 results VIII 2014 ; Planck 2015 results
III 2016 ). Two considerations go into determining the zero level of

n HFI frequency map: the zero level of the Galactic emission and
he CIB monopole. Zero level of the Galactic emission has been set
sing dust- H I correlation at high Galactic latitude where H I is the 
eliable Galactic dust tracer. The underlying assumption is that the 
ust emission is zero where H I column density is zero. The offset
t 857 GHz is obtained by cross-correlating the Planck HFI data at
57 GHz with Leiden Argentine Bonn (LAB) Galactic H I Surv e y 
ata. For other HFI frequencies, the Galactic zero level has been 
xed using cross-correlation of maps at respective frequencies with 

he 857 GHz map (for details, see section 5.1 of Planck 2013 results
III 2014 ). The estimated offsets are subtracted from the detector 
ata at the time of map-making. After this step, the CIB monopole,
stimated from the CIB model of B ́ethermin et al. ( 2012 ), has been
dded to each Planck HFI frequency intensity map. 

Separation of the Galactic dust emission from the Planck frequency 
aps needs to take into account the proper treatment of the offset

resent in the maps. In the previous studies, the dust emissivities are
tted o v er local sk y patches and v ariable of fsets. Planck early results
XIV ( 2011 ) utilize dust- H I correlation to estimate emissivity 
roperties of the dust at Low, Intermediate, and High-Velocity 
louds (LVC, IVC, and HVC) o v er 14-fields. The analysis in Planck

ntermediate results XVII ( 2014 ) estimates the emissivity at LVC
nd offset using dust- H I correlation o v er the patches of 15 ◦ diameter.
oth works use the minimization technique. When dealing with very 
igh dimensional parameter problems, χ2 minimization often results 
n parameter estimates that are far from the typical set (Mackay 
003 ). Furthermore, the efficiency of the χ2 minimization method 
s limited by the correlation between the parameters of interest and 
ecomes inefficient for the high dimensional parameter space. Planck 
013 results XI ( 2014 ) measure global offset first and then estimate
he Galactic dust SED parameters by fitting the MBB spectrum to 
ffset-corrected intensity maps. In this work, we utilize the dust- H I

orrelation to jointly infer the dust emissivity and the global offset 
f the whole sky region considered instead of individual smaller sky
atches. We use GASS H I data with Planck intensity maps o v er the
ame sky region used in the study of Planck intermediate results
VII ( 2014 ). We show that such an analysis can benefit from the

oint inference of the emissivity and the global offset. 
We sample the joint posterior distribution of emissivity and the 

lobal offset. The total number of variables to sample in this problem
s around 2 × 10 3 . We use the Hamiltonian Monte Carlo (HMC)
ampling method, which can more efficiently sample such large 
imensional parameter space than the Metropolis–Hastings (MH) 
lgorithm (Duane et al. 1987 ). For both HMC and MH algorithms,
 new proposed point ( θ� ) is generated from the present point ( θ )
y taking some sort of steps based on the target density. For a D-
imensional problem, the number of steps required to reach a nearly
ndependent proposal point grows as D 

1 / 4 for HMC and D for MH
lgorithm. The total amount of computation time with a reasonable 
cceptance rate grows as D 

5 / 4 for HMC and D 

2 for MH algorithm
Creutz 1988 ; Neal 2012 ; Betancourt & Girolami 2019 ). HMC uses
he gradient of the posterior distribution to generate a proposed point,
hich, in principle, has an acceptance probability equal to one. This

eature has led to HMC being increasingly employed in the high
imensional inference problems encountered in cosmology (Hajian 
007 ; Taylor, Ashdown & Hobson 2008 ; Jasche et al. 2010 ; Jasche &
 andelt 2013 ; Anderes, W andelt & Lavaux 2015 ), including the

nference of CMB foreground parameters (Grumitt, Jew & Dickinson 
020 ). 
This paper is structured along the following lines. In Section 2 ,

e present the data model, the likelihood, and the details of the
MC sampler. Section 3 describes the data used in this paper and

he pre-processing of the data before the main analysis. Validation of
he Bayesian inference method using simulated maps is discussed in 
ection 4 . In Section 5 , we present and discuss the CMB-subtracted
lanck 353 GHz intensity map analysis results. We summarize the 
ain results of the paper in Section 6 . 

 M E T H O D  

his section discusses the data model and likelihood analysis to 
ample the model parameters from their posterior distributions using 
he HMC sampler. 

.1 Dust emission model and the data likelihood 

e are interested in characterizing the dust emission properties in 
he diffuse interstellar medium o v er the frequenc y range co v ered by
he Planck HFI maps ( ν ≥ 217 GHz). The major contributors to the
otal emission in this range of frequencies are CMB, Galactic dust,
IB, and instrumental noise. We assume that the CMB intensity map
erived using the well-established component separation techniques 
SMICA, NILC, SEVEM, and COMMANDER) from the Planck 
ultifrequency observations is accurate enough in the sk y re gion not

bscured by the Galactic disc (Planck 2018 results IV 2020 ). With
his assumption, we work with the CMB-subtracted Planck frequency 
aps to reduce the total number of components that need to be
odelled. The H I column density map can be used as a tracer of the

ust emission due to strong dust–gas correlation in the diffuse ISM
Boulanger & Perault 1988 ). We model the CMB-subtracted intensity 
ap ( d ν) at frequency ν as the addition of the H I -correlated dust

mission ( I H I -d ), the noise and a constant global offset. In general,
he noise term can consist of the CIB emission ( I CIB 

ν ), the instrument
oise ( I N ν ), and the Galactic residual emission ( I R ν ). The Galactic
esiduals contain the dust emission from H 2 gas, which is uncorrelated 
MNRAS 531, 4876–4892 (2024) 
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ith the H I -emission. The global offset ( O ν) o v er the re gions being
nalysed includes the contribution mainly from the CIB monopole
nd emission not accounted for by the H I emission. 

It is evident from previous studies that the dust emissivity varies
moothly o v er the sk y (Planck intermediate results XVII 2014 ). This
act allows us to assume the emissivity to be constant o v er a set of
ixels. This set of pixels is determined using the HEALPIX grid at a
oarser resolution (i.e. lower N side ) than the resolution of the data
ap. The bigger pixel over which emissivity is assumed constant is

ermed a superpixel , whereas pix els within the superpix el are called
ubpixels . This model is expressed in the following equation, 

 ν

(
�

j 
i 

)
= I H I -d ν

(
�

j 
i 

)
+ O ν + I N ν

(
�

j 
i 

)
+ I CIB 

ν

(
�

j 
i 

)
+ I R ν

(
�

j 
i 

)
, 

(1) 

here �j 

i indicates the direction of i th subpixel within j th superpixel.
e model the H I -correlated dust emission ( I H I -d ν ) as 

 

H I -d 
ν

(
�

j 

i 

)
= εj 

ν N H I 

(
�

j 

i 

)
, (2) 

here N H I denotes the integrated column density of H I component
n the direction �j 

i , and εj 
ν is the dust emissivity at frequency ν at

 

th superpixel. Here, we consider a single H I template to trace the
 I -correlated dust emission. Because we are treating I CIB 

ν and I R ν as
oise along with I N ν , we call the remaining contribution of I H I -d ν and
 ν as the signal model , s ν , 

 ν

(
�

j 

i 

)
= εj 

ν N H I 

(
�

j 

i 

)
+ O ν . (3) 

e assume that the three noise components, the CIB, the Galactic
esiduals and the instrument noise, are independent. Hence, the
ovariance matrix of the total noise ( � ν) at frequency ν is the
um of the covariance of the individual noise component. We
enote the angle between i th subpixel of j th superpixel and the i ′ th 

ubpix el of j ′ th superpix el by θjj ′ 
i i ′ and the elements of the covariance

atrix are denoted by 	 

jj ′ 
ν,i i ′ ≡ 	 ν( θjj ′ 

i i ′ ). While we consider the
orrelation between the subpixels within a superpixel, we neglect the
orrelation between subpixels that belong to different superpixels,
hat is 	 

jj ′ 
ν,i i ′ = 	 

jj 

ν,i i ′ δjj ′ . Hence, the non-zero elements of � ν are
iven by 

 

jj 

ν,i i ′ = 	 

N 
ν

(
θ

jj 

i i ′ 
)

+ 	 

CIB 
ν

(
θ

jj 

i i ′ 
)

+ 	 

R 
ν

(
θ

jj 

i i ′ 
)

, (4) 

here � 

N 
ν denotes the instrument noise covariance, � 

CIB 
ν and � 

R 
ν

enote the contribution to � ν due to the CIB and the Galactic
esiduals, respectively. Unlike instrument noise, I CIB 

ν and I R ν are
patially correlated signals. Hence, its contribution to the total noise
ovariance matrix gives rise to the non-zero off-diagonal terms in
 ν . We further assume the instrument noise, the CIB and the residual
alactic emission to be Gaussian with their respective covariance.
ence, the joint likelihood of all the data elements given the model
arameters ( εj 

ν , O ν) is 

 ( { d ν( �j 

i ) }|{ εj 
ν , O ν} ) = 

1 

(2 π ) D/ 2 
√ | � ν | 

exp 
[ 

− χ2 

2 

] 
, (5) 

here χ2 is 

2 = 

∑ 

j 

∑ 

i ,i ′ ⊂j 

[ 
d ν

(
�

j 

i 

)
− s ν

(
�

j 

i 

)] [
	 

−1 
ν

]jj 

i i ′ 

[ 
d ν

(
�

j 

i ′ 

)
− s ν

(
�

j 

i ′ 

)] 
. (6) 

 	 

−1 ] jj i i ′ represents the element of the inverse of the covariance matrix
 . 
In the model fitting, templates N H I 

(
�

j 

i 

)
and the noise vari-

nce 	 ν are known, and { εj 
ν , O ν} are the unknown parameters of

he model that we aim to infer from the observed data. Bayes
NRAS 531, 4876–4892 (2024) 
heorem allows us to write the posterior probability distribution

 P( { εj 
ν , O ν}|{ d ν

(
�

j 

i 

)
} )) of the parameters given data as 

 

({
εj 
ν , O ν

} | 
{ 

d ν

(
�

j 

i 

)} )
= 

L 

({ 

d ν

(
�

j 

i 

)} 

| {εj 
ν , O ν

})
P 

({
εj 
ν , O ν

})

P 

({ 

d ν

(
�

j 

i 

)} ) , 

(7) 

here P( { εj 
ν , O ν} ) is the prior probability distribution of the param-

ters, and P( { d ν
(
�

j 

i 

)
} ) is the evidence . We assume a uniform prior

or all the parameters of interest without any bounds. Because the
odel is linear in parameters and we assume a Gaussian likelihood,

he posterior distribution is also a Gaussian as a function of the model

arameters. P( { d ν
(
�

j 

i 

)
} ) acts as a normalization constant. Hence,

he functional dependence of the posterior distribution on parameters
s the same as that of the likelihood distribution up to a proportionality
onstant. We sample the posterior distribution given in equation ( 7 )
o get the joint samples of all the parameters of interest { εj 

ν , O ν} .
e have around 2 × 10 3 emissivity parameters per N H I template and

ne offset parameter. 

.2 Additional terms in the modelling 

n this section, we discuss additional terms that may be required
n modelling the data, their moti v ation, and implementation in the
nference methodology. 

.2.1 Dipole term 

e can model and fit for a dipole contribution in the signal model, 

 ν

(
�

j 

i 

)
= εj 

ν N H I 

(
�

j 

i 

)
+ O ν + D ν

(
�

j 

i 

)
, (8) 

here D ν

(
�

j 

i 

)
accounts for residual dipole due to the CMB dipole,

he CIB dipole, and the dipole from the Galactic residuals. In
armonic space, the expression for the dipole is 

 ν

(
�

j 

i 

)
= a ν1 , 0 Y 1 , 0 

(
�

j 

i 

)
+ a ν1 , 1 Y 1 , 1 

(
�

j 

i 

)
+ a ν1 , −1 Y 1 , −1 

(
�

j 

i 

)
, (9) 

here Y 1 ,m 

are spherical harmonics with a ν1 ,m 

being spherical
armonic coefficients. Using the relations Y l, −m 

= ( −1) m Y 

∗
l,m 

and
 l, −m 

= ( −1) m a ∗l,m 

, the abo v e e xpression can be rephrased in terms
f m = 0 and m = 1 coefficients as: 

 ν

(
�

j 

i 

)
= a ν1 , 0 Y 1 , 0 

(
�

j 

i 

)
+ 2 a R,ν

1 , 1 Y 

R 
1 , 1 

(
�

j 

i 

)
− 2 a I ,ν

1 , 1 Y 

I 
1 , 1 

(
�

j 

i 

)
, 

(10) 

here superscripts R and I indicate real and imaginary parts of
 comple x quantity, respectiv ely. In the inference process, it is
onvenient to treat the dipole in harmonic space because with the
aussian likelihood, posterior is also Gaussian as a function of a 1 ,m 

ue to their linear nature, unlike the real space variables indicating
ipole amplitude and the direction of the dipole. 

.2.2 Multiple templates 

he dust emission in far-infrared and sub-millimetre frequency bands
an also be modelled as a linear combination of multiple H I templates
ith different dust emissivity per template. For example, Planck

arly results XXIV ( 2011 ) estimate the dust emissivity properties
ssociated with LVC, IVC, and HVC clouds o v er 14 fields. Ghosh
t al. ( 2017 ) and Adak et al. ( 2020 ) estimate the mean dust emissivity
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Figure 1. The CIB model power spectrum (in units of �C � ) obtained by fitting 
the CIB model including the shot noise at four HFI frequencies (Planck 2013 
results XXX 2014 ). We use the model C 

CIB 
� to compute the full covariance 

matrix 	 

CIB 
ν . 
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 v er Southern and Northern Galactic pole re gions, respectiv ely,
y correlating the CMB-subtracted Planck 353 GHz map with H I 

olumn density associated with cold, luk ew arm, and w arm neutral
edium (CNM, LNM, and WNM). Lenz et al. ( 2019 ) use the

ndividual spectral channel map of H I brightness temperature from 

he HI4PI surv e y (HI4PI Collaboration: et al. 2016 ) to model the dust
mission at Planck HFI frequencies ν ≥ 353 GHz. The modelling 
nd inference framework used in this work can be extended to include
ultiple N H I templates with the signal modelled as 

 ν

(
�

j 

i 

)
= 

N t ∑ 

t= 1 

εj,t 
ν N 

t 
H I 

(
�

j 

i 

)
+ O ν + D ν

(
�

j 

i 

)
, (11) 

here the summation is o v er N t number of N H I templates ( N 

t 
H I ),

nde x ed by t , and εj,t 
ν is corresponding emissivity. 

We test the impact of additional terms like dipole term or multiple
 I templates on the inferred { εj,t 

ν , O ν} parameters using simulated 
aps at Planck frequencies in Section 4 . 

.3 CIB model power spectra 

he CIB is a relic emission from stellar-heated dust within galaxies 
ormed throughout cosmic history. At far-infrared/sub-millimetre 
ands and the resolution of Planck, the CIB appears as a diffuse
ackground emission in the total intensity. The CIB anisotropies are 
ound to be correlated across the frequencies and follow approxi- 
ately � −1 power law angular power spectrum (Planck early results 
VIII 2011 ; Planck 2013 results XXX 2014 ). We adopt the best-
tting CIB model power spectra (including the shot noise) at 217, 
53, 545, and 857 GHz obtained by Planck 2013 results XXX ( 2014 ).
ig. 1 presents the model CIB power spectra used in our analysis. 
We treat the CIB anisotropies as Gaussian and correlated noise 

n the Planck intensity maps. To take into account the correlation 
etween pixels at a given smoothing scale, we compute the CIB
ovariance matrix, 	 

CIB 
ν , at a given frequency ν between two pixels 

 and i ′ using the relation 

 

CIB 
ν ( θi i ′ ) = 

1 

4 π

∑ 

(2 � + 1) C 

CIB 
�,ν×ν B 

2 
� w 

2 
� P � ( ̂  n i . ̂  n i ′ ) , (12) 
here C 

CIB 
� is the CIB power spectrum, B � is the beam window

unction of the Gaussian beam, P � is the Legendre polynomial of
rder � and w � is the HEALPIX pixel window function. 

.4 Hamiltonian Monte Carlo sampling 

n this section, we present the essentials of the Hamiltonian Monte
arlo sampling formalism to draw the samples of { εj 

ν } and { O ν}
rom the distribution given in equation ( 7 ), which is the same as the
ikelihood in equation ( 5 ) for a uniform prior on parameters. Details
f the HMC sampling method and some considerations that went 
nto analysing the parameter samples are discussed in Appendix A . 

HMC uses Hamiltonian dynamics to generate the proposed point 
nd traverse the parameter space. The method treats the parameters 
 εj 
ν } and { O ν} as position variables and augments them with the
omentum variables ( p 

j,t 

kν , p O ν
) to define phase space dynamics.The

amiltonian of the dynamics for the given problem is 

( p 

j,t 
ν , p O ν

, εj,t 
ν , O ν) = 

p 

2 
O ν

2 μO ν

+ 

∑ 

j 

p 

j,t 2 
ν

2 μj,t 
ν

− ln [ P( { εj,t 
ν , O ν} )] , 

(13) 

here P( { εj,t 
ν , O ν} ) is the parameter posterior as obtained in equa-

ion ( 7 ) and μj,t 
ν , μO ν

are mass terms for εj,t 
ν and O ν , respectively.

p to a constant, which is independent of parameters of interest,
n [ P( { εj,t 

ν , O ν} )] is 

ln [ P( { εj,t 
ν , O ν} )] = −1 

2 
χ2 , (14) 

here χ2 is given by equation ( 6 ). 
While considering the total covariance matrix, only considering 

he diagonal part leads to underestimating the parameter uncertainty. 
hereas considering all the elements, including the ones correspond- 

ng to two subpixels of different superpixels, drastically increases 
he computation cost. We take the approach somewhere in between. 

e consider the correlations between subpixels corresponding to a 
iv en superpix el only and ne glect the correlations among the pix els
f two different superpixels. This is expressed in equation ( 4 ). The
athematical expressions given in the subsequent discussion are 

nder this approximation. 
We need the time derivatives of position and momentum variables 

o simulate the Hamiltonian dynamics. The time deri v ati ve of the
osition corresponding to a given parameter is simply momentum 

ivided by the mass of the corresponding parameter: 

˙j,t 
ν = 

∂ H 

∂ p 

j,t 
ν

= 

p 

j,t 
ν

μ
j,t 
ν

and Ȯ ν = 

∂ H 

∂ p O ν

= 

p O ν

μO ν

, (15) 

hich is not at all a computationally involved operation. The time
eri v ati ve of the momentum involves computing the deri v ati ve of the
ogarithm of the posterior: 

˙ ≡ ∂ H 

∂ q 
= −∂ ln ( P) 

∂ q 
. (16) 

ur model is linear in the parameters of interest, and the likelihood
s a Gaussian distribution. Hence, with the flat priors, the deri v ati ves
f the logarithm of the posterior are simple expressions given below.
he deri v ati ve with respect to emissi vity is 

∂ ln ( P) 

∂ ε
j,t 
ν

= 

∑ 

i ,i ′ ⊂j 

N 

t 
H I 

(
�

j 

i 

) [
	 

−1 
ν

]jj 

i i ′ [ d ν − s ν] j i ′ , (17) 
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nd deri v ati ve with respect to of fset O ν is 

∂ ln ( P) 

∂ O ν

= 

∑ 

j 

∑ 

i ,i ′ ⊂j 

[
	 

−1 
ν

]jj 

i i ′ [ d ν − s ν] j i ′ . (18) 

While sampling the model parameters, including the residual CMB
ipole contribution, the spherical harmonic coefficients a ( R/I ) ,ν

1 m 

in
quation ( 10 ) are jointly sampled along with emissivity and offset
s { εj,t 

ν , O ν, a 
( R/I ) ,ν
1 m 

} . Since a ν1 ,m 

in real space indicates the dipole
mplitude and direction, they are sampled as global parameters
imilar to O ν . The momentum deri v ati ve for the dipole coefficients
s given by 

∂ ln ( P) 

∂ a 
( R/I ) ,ν
1 m 

= ( ±)2 m 

∑ 

j 

∑ 

i ,i ′ ⊂j 

Y 

( R/I ) 
1 m 

(
�

j 

i 

) [
	 

−1 
ν

]jj 

i i ′ [ d ν − s ν] j i ′ , 

for m = 0 and 1 , (19) 

here ( ±) corresponds to the real ( R) or imaginary ( I ) parts
especti vely, of the coef ficients (see equation 10 ). In general, s ν( �j 

i ′ ),
s given by equation ( 11 ). Our HMC formalism takes into account
ixel-dependent dust emissi vity, global of fset, and three dipole
mplitudes. 

As the algorithm requires, we simulate the Hamiltonian dynamics
sing the Leap-Frog scheme (see Appendix A ). In the Leap-Frog
cheme, the step size  decides the time-step, which is generally
if ferent for dif ferent parameters. A general practice is to standardize
he parameter distribution scales, which requires some knowledge
f the parameter covariance structure (e.g. Betancourt et al. 2017 ).
n the particular case of Gaussian posterior and the model that is
inear in parameters, one can choose the mass matrix to achieve this
oal. For problems where the curvature is isotropic and constant,
uch as for the Gaussian likelihood we consider in this work, a
arameter independent  can be chosen. This choice of  in the
ase of Gaussian likelihoods is discussed in Taylor et al. ( 2008 ). For
he general distributions with hierarchical modelling or non-linear
arameter dependencies, this procedure may not work as well as it
oes in our case. By setting the mass matrix equal to the inverse
f the covariance matrix of the parameters,  is made independent
f the distribution of the individual parameter. The inverse of the
arameter covariance matrix is the ne gativ e of the parameter Fisher
atrix. With our choice of neglecting the correlations between the

uperpix els, for the giv en likelihood, the Fisher matrix turns out to
e diagonal o v er the εj,t 

ν parameters. The only non-zero off-diagonal
erms are those which connect εj,t 

ν with O ν , a 1 m 

, and O ν with a 1 m 

.
o we v er, we ne glect these off-diagonal terms. Considering only the
iagonal elements while assigning mass for the parameters then does
ot lead to  for O ν and a 1 m 

being the same as that of { εj,t 
ν } . Hence,

e choose a different  in the dynamical equations corresponding
o O ν and the dipole parameters. Hence, we have different step sizes
n the Leap-Frog scheme,  ε and  O 

corresponding to εj,t 
ν and O ν ,

espectively. The details of this choice are discussed in Appendix A .
his leads to the mass matrix with the following terms in the diagonal.
he mass for εj,t 

ν is 

j,t 
ν = 

∑ 

i ,i ′ ⊂j 

N 

t 
H I 

(
�

j 

i 

) [
	 

−1 
ν

]jj 

i i ′ N 

t 
H I 

(
�

j 

i ′ 
)

, (20) 

or O ν , it is given by 

O ν
= 

∑ 

j 

∑ 

i ,i ′ ⊂j 

[
	 

−1 
ν

]jj 

i i ′ , (21) 
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nd the following is the mass for the dipole coefficients 

( R/I ) 
a 1 m 

= 2 2 m 

∑ 

j 

∑ 

i ,i ′ ⊂j 

Y 

( R/I ) 
1 m 

(
�

j 

i 

) [
	 

−1 
ν

]jj 

i i ′ Y 

( R/I ) 
1 m 

( �j 

i ′ ) , 

for m = 0 and 1 . (22) 

Note that, the mass matrix elements for εj,t 
ν depend on the noise

ovariance as well as the templates, whereas those for O ν and
 1 m 

depend only on the noise covariance. In HMC, the proposed
arameter is obtained by evolving Hamilton’s equations in a certain
umber of Leap-Frog jumps N . The product of  and N determines
he total distance traversed in the parameter space and controls the
orrelation length in the parameter chain. In this section, we have
iscussed the choices for N and  to simulate the HMC process.
hile we discussed these choices without much rigour, we tested

hat the algorithm works using realistic simulations of the data. We
 ould lik e to point out that formal methods have been developed

o tune the HMC algorithm to facilitate appropriate choices for
tep size and path length. For example, Hoffman & Gelman ( 2014 )
resent the No-U-Turn Sampler scheme to alleviate the need for the
ser to choose the number of steps and also presents a method for
daptive stepsize. Recent developments in also include SNAPER-
MC for implementation on GPU and TPU hardware (Sountsov &
of fman 2021 ), ChEES-HMC (Hof fman, Radul & Sountsov 2021 ),

nd various adaptive schemes, for example, MAL T -HMC (Riou-
urand et al. 2023 ). Some of these schemes are implemented in
robabilistic programming frameworks such as STAN (Carpenter
t al. 2017 ), PyMC (Salvatier, Wiecki & Fonnesbeck 2016 ), and
yro (Bingham et al. 2019 ). 

We first validate the abo v e methodology on the Planck simulations.
he results obtained from the simulations are presented in Section 4 .
he next section discusses the data, the CIB model, and the sky
asks used for our analysis. 

 DATA  SETS  

n this section, we describe the Planck data, H I data, and the sky mask
sed in the analysis. We also describe the procedure for computing
he CIB covariance matrix using the model CIB power spectrum. 

.1 Planck data 

e use the publicly available Planck 2018 Public Release 3 (PR3 2 )
e gac y intensity map at 353 GHz (Planck 2018 results I 2020 ) for our
nalysis. The 353 GHz intensity map has been provided in HEALPIX 

3 

G ́orski et al. 2005 ) grid at N side = 2048 (pixel size 1.7 ′ ) with an
ngular resolution of FWHM 4.82 ′ (Planck 2018 results III 2020 ).
e subtract the CMB contribution at 353 GHz using the following

rocedure. We use the S MI C A CMB map provided at a beam
esolution of 5 ′ (FWHM) and N side = 2048 (Planck 2018 results IV
020 ). We smooth the 353 GHz intensity map at the resolution of the
 MI C A CMB map using the Gaussian approximation of the Planck
eam and subtract the contribution of CMB. We further smooth the
MB-subtracted Planck 353 GHz map at the beam resolution of 16.2 ′ 

FWHM), downgrade to N side = 512 (pixel size 6.8 ′ ) resolution.
e choose the Planck 353 GHz map for our analysis because the

ontribution of synchrotron and free–free emissions are negligible
ompared to that of dust after the contribution due to the CMB is
ubtracted. We consider the Planck CMB-subtracted intensity map

http://pla.esac.esa.int/pla
http://healpix.jpl.nasa.gov
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Table 1. Results of analysis of simulated maps at four Planck HFI frequencies. The global offset values with corresponding 1 σ error bars are estimated o v er 
fiv e sk y masks, tracing low to intermediate H I column density regions. The inference of offset is stable with respect to sk y co v erage, with a slight decrease in 
the uncertainty with higher f sky . 

Frequency 
[ GHz] 

Input offsets 
[ kJy sr −1 ] 

Reco v ered offsets [ kJy sr −1 ] 
Sky masks 

MaskHI2 MaskHI3 MaskHI4 MaskHI5 MaskHI6 
f sky [%] 

7.3 11.5 13.9 15.0 15.3 

217 40 40 . 0 ± 0 . 1 40 . 0 ± 0 . 1 40 . 0 ± 0 . 1 40 . 0 ± 0 . 1 40 . 0 ± 0 . 1 
353 120 119 . 6 ± 0 . 4 120 . 1 ± 0 . 4 119 . 9 ± 0 . 3 119 . 9 ± 0 . 3 120 . 0 ± 0 . 2 
545 330 330 . 9 ± 0 . 9 330 . 5 ± 0 . 7 330 . 3 ± 0 . 7 330 . 6 ± 0 . 7 330 . 6 ± 0 . 6 
857 550 550 . 5 ± 1 . 2 550 . 6 ± 1 . 0 550 . 6 ± 0 . 9 550 . 7 ± 0 . 9 550 . 6 ± 0 . 9 
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s the primary data. We treat the CIB monopole term as the global
ffset parameter. We use the unit conversion factors mentioned in 
lanck 2013 results IX ( 2014 ) to convert 353 GHz map from K CMB 

o kJy sr −1 unit. 
We use 300 end-to-end (E2E) noise realizations for the Planck 

requency maps from the Planck Legacy Archive (Planck 2018 
esults XI 2020 ). The original maps are provided at N side = 2048. We
moothed all the 300 noise maps at 16.2 ′ FWHM beam resolution and
e-project them at the resolution of N side = 512. Then, we compute
he variance map using the 300 smoothed E2E noise maps. 

.2 H I data 

o separate the H I -correlated dust emission from the Planck data at 
igh Galactic latitude, we use the H I data provided by GASS 

4 survey 
arried out by Parkes telescope (McClure-Griffiths et al. 2009 ). The 
urv e y observ ed 21 cm emission o v er the southern galactic sky (at
eclinations δ < 1 ◦) within velocity range, −400 km s −1 < V LSR <

00 km s −1 ; where V LSR is the velocity of the H I clouds with respect
o local standard of rest. The surv e y has a beam resolution of 14.5 ′ 

WHM, velocity resolution δv = 1 km s −1 , and root-mean-square 
rightness temperature uncertainty of 50 mK (1 σ ). The GASS surv e y
aps used in our analysis are from Kalberla et al. ( 2010 ) and

re corrected for instrumental effects, stray radiation, and radio- 
requency interference. 

In the southern Galactic cap, the H I in the Galactic disc (or
hat we call Galactic H I ) is mixed with significant emission from

he Magellanic Stream (MS) (Nide ver, Maje wski & Butler Burton
008 ; D’Onghia & Fox 2016 ). The spectra in the 3D data cube
longitude, latitude and radial velocity) likely to be associated 
ith MS are distinguished from Galactic H I spectra using the 
elocity information (Venzmer, Kerp & Kalberla 2012 ). The three- 
imensional model of Kalberla & Dedes ( 2008 ) helps to distinguish
he spectra associated with the Galactic H I emission and MS. Finally, 
he H I template map is produced integrating 3D spectra over velocity 
ange and projected on HEALPIX grid at N side = 1024. The Galactic
 I column density map N H I used in our analysis has an angular 

esolution of 16.2 ′ FWHM and is projected on the HEALPIX grid 
 side = 512 (pixel size 6.9 ′ ). We use the Galactic H I map as a tracer

or the H I -correlated dust emission. The same Galactic H I map is 
sed by the Planck collaboration to study dust emission properties 
n the diffuse interstellar medium (Planck intermediate results XVII 
014 ). 
 https:// www.atnf.csiro.au/ research/ GASS/ Data.html 

5

3

.3 Sky masking 

e use the same mask as used in Planck intermediate results
VII ( 2014 ) for our dust- H I correlation analysis. The total sky

rea of the mask is 6300 deg 2 ( f sky = 15 . 3 per cent ) where N H I <

 × 10 20 cm 

−2 , and thus a v oids the high column density regions.
he unmasked sky region covers the Galactic latitude b ≤ −25 ◦.
he area of 20 ◦ diameter centred around ( l MS , b MS ) = ( −50 ◦, 0 ◦) is
asked to a v oid Magellanic Stream (Nidever et al. 2010 ). Further, the

right radio sources at microwave frequencies and infrared galaxies 
t 100 μm have been masked out. 

To test the dependence of the analysis results on the sky fraction,
e generate four additional masks with different N H I cutoff o v er

he range between 2 × 10 20 cm 

−2 and 5 × 10 20 cm 

−2 . We mask the
egions with N H I values higher than the cutoff value. We label the
ask with N H I cutoff Q × 10 20 cm 

−2 as MaskHIQ. The sky masks
re o v erlapping by construction. We use o v erlapping masks to study
he dependence of the global offset as a function of mean H I column
ensity. The respectiv e sk y fraction f sky for each sk y mask is quoted
n Table 1 . 

 P L A N C K  SI MULATI ONS  

n this section, we validate our methodology on the Planck simu-
ations to simultaneously fit a dust emissivity per superpixel and a
lobal offset using the HMC sampler. 
We simulate the dust intensity maps at Planck HFI frequency bands 

etween 217 and 857 GHz. We analyse simulated maps considering 
he total noise contribution from the instrument noise and the CIB
nisotropies. We ignore the contribution of Galactic residuals in 
his analysis. We consider the instrument noise to be uncorrelated 
etween pixels. Ho we ver, for the CIB, we consider the inter-pixel
orrelations. Analysis with the simulated data helps to validate the 
ipeline and to determine some analysis choices, for example, the 
ptimal values of the Leap-Frog step size (  ) and the Leap-Frog
umps ( N ) by examining the behaviour of the Markov Chains (MC)
rawn from the posterior distribution. 
We require sufficient unmasked subpixels within each superpixel 

o fit the signal model with the data. We set this threshold to one-
hird of the subpixels within each superpixel. 5 We excluded those 
uperpixels from the joint fitting which do not fulfil this criterion. 
MNRAS 531, 4876–4892 (2024) 

 Here, the threshold is 85 unmasked subpixels within superpixels at N side = 

2. 

https://www.atnf.csiro.au/research/GASS/Data.html
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Figure 2. The autocorrelation coefficient, ρ( t), at 353 GHz for the samples 
of the emissivity in one superpixel ( ε) and the global offset ( O) as a function 
of the lag ( t) for two different choices of Leap-Frog step size (  O 

) for the 
global offset and fixed  ε = 0 . 1. For  O 

= 0 . 1, the correlation length for ε
and O are 8 and 220, respectiv ely. F or  O 

= 1 . 0, the correlation length for 
ε in the same pixel and O are 10 and 102, respectively. 
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.1 Simulated maps 

e construct the simulated maps using the following procedure: 

(i) We start with the dust emissivity map of Planck intermediate
esults XVII ( 2014 ) at 353 GHz ( ε353 ) projected on N side = 32 (low-
esolution) HEALPIX grid. This map is obtained through the dust- H I

orrelation analysis o v er 15 ◦ circular patches in diameter centred
n HEALPIX pixels at N side = 32. We assume that ε353 is the same
t all subpixels defined at resolution N side = 512 that fall within
 superpixel defined by N side = 32. Each superpixel contains 256
ubpixels. 

(ii) We translate the dust emissivity map from 353 GHz to other
FI frequencies using the MBB spectrum, 

ν

(
�

j 

i 

)
= ε353 

(
�

j 

i 

)( ν

353 

)βd B ν( T d ) 

B 353 ( T d ) 
, (23) 

here βd is the dust spectral index fixed to 1.5, B ν is Planck
lackbody function and T d is the dust temperature fixed to 20 K
Planck intermediate results XXII 2015 ). 

(iii) We simulate the dust intensity maps at 217, 353, 545,
nd 857 GHz at N side = 512 using the dust emissivity map and
alactic H I template. We add the global offset values from Planck

ntermediate results XLVIII ( 2016 ) to produce the signal model maps
t all HFI frequencies. 

(iv) To simulate the instrument noise contribution, we use the
ariance map ( I I ) computed from 300 smoothed E2E noise maps.
e assume the instrumental noise to be Gaussian, white, and

ncorrelated between the pix els. F or the CIB noise component, we
imulate the CIB map smoothed at 16.2 ′ FWHM beam resolution
rojected at N side = 512 from the model CIB power spectrum at
ach HFI frequency. Though the CIB is correlated between two
requencies, analysing individual frequency maps entails neglecting
he correlation between the CIB emission at different frequencies. 

(v) Finally, we co-add simulated dust intensity, global offset,
nstrument noise, and the CIB, all expressed in kJy sr −1 units. 

(vi) To build the likelihood, we construct the instrumental noise
ovariance matrix ( 	 

N 
ν ) and the CIB covariance matrix ( 	 

CIB 
ν ). 	 

N 
ν

s taken as a diagonal covariance matrix because we neglect the
nter-pixel instrument noise. I CIB 

ν exhibits a significant correlation
etween subpixels within a given superpixel. 

.2 Validation with simulations 

e focus our discussion of the simulated map analysis on the
53 GHz frequency channel without the loss of generality. Ho we ver,
e summarize the simulation results at all four HFI frequencies

217 –857 GHz). 
The output of our HMC algorithm is the chains of MC samples

f the dust emissivity per superpixel at N side = 32 and the global
ffset. The total number of parameters at each frequency is 2011
dust emissivity values) + 1 (global offset) o v er MaskHI6. 

We obtain 2 × 10 4 samples for each derived parameter and discard
he first 10 3 samples. We use the remaining 1 . 9 × 10 4 MC samples for
urther analysis. In practice, the samples for a given parameter are not
ndependent but are correlated with a certain correlation length. Fig. 2
resents the autocorrelation coefficients, ρ( t), for sample chains of
he dust emissivity at one superpixel and the global offset chains for
53 GHz maps. The results are depicted for two choices of {  ε,  O 

} .
hen step size for ε and O are the same, {  ε,  O 

} = { 0 . 1 , 0 . 1 } ,
he global offset (magenta solid) chain is highly correlated. For this
hoice, the correlation length of emissivity and offset chain is around
 and 220, respectiv ely. F or {  ε,  O 

} = { 0 . 1 , 1 . 0 } , the global offset
NRAS 531, 4876–4892 (2024) 
red dashed) chain becomes less correlated, and correlation length
ecreases by a factor of 2. Ho we ver, the correlation length for the
missivity chain remains almost the same. For the latter choice of step
izes, the correlation length of dust emissivity and global offset chains
re around 10 and 102, respectively. Therefore, we adopt the second
hoice of step sizes for the HMC sampling at all frequencies. Along
ith these {  ε,  O 

} , we choose the number of Leap-Frog steps N =
0, which gives a reasonable acceptance rate and lower correlation
ength. We check the convergence of the chains using the Gelman–
ubin test (Gelman & Rubin 1992 ) (for details, see Section A1 ).
sing seven independent chains, we find Gelman–Rubin Markov
hain Monte Carlo (MCMC) convergence diagnostics are 1.0002

for emissivity) and 1.002 (for offset). These values confirm the
hains are converged to a reasonable accuracy. 

To check the correlations between the model parameters, we show
he joint distributions of the dust emissivity at three superpixels and
he global offset in Fig. 3 at 353 GHz. We do not find a significant
orrelation between the dust emissivities at two different superpixels
r between the emissivity at a given superpixel and the offset. We
lso show the marginalized posterior distributions of the respective
arameters along with their posterior mean values (red dashed line)
nd corresponding input values (orange dashed line) used in the
lanck simulation. We find the inferred posterior mean values of the
arameters agree with their respective input values. 
To quantify the goodness of fit, we use posterior predictive checks

onsidering the pixels included in the analysis, which are a subset
f those in the MaskHIQ mask. This is due to the exclusion of
uperpixels that do not satisfy the threshold criteria for the number
f subpixels. Most of the boundary pixels in the MaskHIQ mask
o not satisfy the criteria and are excluded from further analysis.
e term the resultant extended mask as eMaskHIQ. We replicate

he simulated data based on the mean and standard deviation of
he parameter samples. The distribution of the original simulated
ata and the replicated data match very well. Both the distributions
re non-Gaussian due to the non-Gaussian nature of the thermal
ust emission, which has a dominant contribution. We use summary
tatistics like median and 95 per cent quantile level to test the con-
istency between the original and the replicated simulated data. The
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Figure 3. The joint and marginalized probability distributions of dust 
emissivities (expressed in kJy sr −1 (10 20 cm 

−2 ) −1 ) at three representative 
superpix els (pix el inde x as super-script) and the global offset (in kJy sr −1 ) at 
353 GHz. The red lines mark the posterior mean, and the orange lines depict 
the input values of the respective parameters. The contours mark the 68 and 
90 per cent regions of the joint distributions. The vertical black dashed lines 
in the histogram mark 16, 50, and 84 percentiles of the distribution. 

Table 2. The PTE values obtained for all Planck frequencies considered for 
our analysis o v er eMaskHI6. The y are defined as the probability of obtaining 
summary statistics (median and 95 per cent quantile) larger than fitted data, 
based on 1000 simulations with dust plus CIB and Planck noise. The PTE 

values are expressed as a percentage. 

Frequency [GHz] Median (%) 95% quantile (%) 

217 11 34 
353 63 48 
545 98 96 
857 55 70 
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Figure 4. The histograms of the normalized difference of input emissivities 
and the posterior mean emissivities, δj = ( εj 

inp − ε
j 
out ) /σε

j 
out 

for four Planck 

frequencies from 217 to 857 GHz. Vertical lines depict the normalized 
difference between the input and output global offset at respective Planck 
frequencies. 

Figure 5. The reco v ered dust emissivity ε
j 
ν and its standard deviation 

σ
ε
j 
ν

per superpixel ( j ) as a function of mean Galactic H I column density 

( 〈 N H I 

(
�

j 
i 

)
〉 ). The mean 〈 .. 〉 is taken o v er all unmasked subpixels ( i) that 

fall within a given superpixel. The ‘dot’ symbol represents εj 
ν and ‘plus’ 

represents σ
ε
j 
ν

at all Planck frequencies considered in this analysis. 
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robability-to-exceed (PTE) statistics are used to test the probability 
hat the summary statistics of the replicated data exceed the original 
ata. The PTE values of the summary statistics are quoted in Table 2 .
From the MC chains of the parameters, we compute the mean and

tandard deviation of the respective parameters. In order to quantify 
he accuracy of inference, in Fig. 4 , we present the distribution of
he standard deviation ( σ

ε
j 
out 

) normalized difference, δj = ( εj 

inp −
j 
out ) /σε

j 
out 

of input dust emissivity at all superpixels ( εj 

inp ) and the

osterior mean emissivity at respective superpixels ( εj 
out ), for all 

our frequency bands. We also show the same quantity for the offset
ith vertical dashed lines. The mean values obtained using the MC

amples agree very well with their respective mean values and are 
ithin 3 σ deviations. The largely symmetric nature of the histograms 

mplies that the best-fitting values of output dust emissivities for all 
uperpixels are unbiased. 

In Fig. 5 , we show the mean and standard deviation of dust
missivity per superpixel obtained from the dust- H I correlation 
nalysis as a function of mean Galactic H I column density at those 
uperpixels. The uncertainty decreases with an increase in mean 
alactic H I column density, indicating a better estimation of dust 

missivity in high column density regions within the sky mask 
askHI6. This is expected as the uncertainty scales with 1 /μO ν

see equation 21 ) and is inversely proportional to N H I . 
We use the mean of the parameter samples as the best-fitting

alue of the respective parameter (Mackay 2003 ). Owing to the
inear nature of the signal model, the signal that corresponds to
he best-fitting values of emissivity and the offset is also the best-
tting signal. We obtain the best-fitting intensity map corresponding 

o the signal model using the mean values of the dust emissivity
nd the global offset following equation ( 3 ). In Fig. 6 , we show
he simulated map at 353 GHz along with maps of the best-fitting
MNRAS 531, 4876–4892 (2024) 
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Figure 6. The left panel shows the input simulated map at 353 GHz (in units of kJy sr −1 ) o v er MaskHI6. The middle panel shows the signal model map (in 
kJy sr −1 ) derived from the mean values of the emissivity and the offset obtained using the HMC sampler. The right panel depicts the residual map (in kJy sr −1 ) 
obtained by subtracting the signal model map from the input map at 353 GHz. The residual map has contributions from the CIB and the instrumental noise. 
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odel and the residual. The residual map is the difference between
he input and best-fitting model intensity maps. The residual map
ontains the contribution from the instrument noise and the CIB.
he residual map shows the small-scale structure, lacking large-
cale fluctuations, consistent with the nature of instrument noise
nd the CIB. While the map shows the spatial distribution of the
esidual, to check the nature of the distribution of the residual,
n Fig. 7 , we compare it (black) with the expected residual con-
ribution from instrument noise and the CIB (magenta). We find
ood agreement between the reco v ered and the expected residual
istribution at all Planck frequencies, indicating that the analysis does
ot introduce systematic bias. At the map level, the residual map o v er
he unmasked region strongly correlates with the expected residual
ap obtained by combining the input CIB and instrumental noise
ap at all Planck frequencies. The Pearson correlation coefficients

re 0.97, 0.96, 0.96, and 0.96 at 217, 353, 545, and 857 GHz, 
espectively. 

Offset is a pixel-independent parameter; hence, we expect its
nference to be unaffected by mask choice. We infer the global offset
alues for different mask choices using simulated maps to test this.
n Table 1 , we list the posterior mean values of the global offsets
long with 1 σ error bars and the respective masks. Irrespective of
he choice of mask, the inferred of fset v alues at all frequencies are
onsistent with their input values. This indicates the stability of the
nalysis for different choices of masks. 

To elucidate the effect of the CIB noise in our analysis, we redo the
nalysis without the CIB contribution in the noise covariance matrix.
n Fig. 8 , we compare the standard deviation of the dust emissivity
nd offset inferred with and without considering the CIB in the noise
ovariance matrix. We plot the ratio of these two standard deviations
or all the superpixels against the mean 〈 N H I 〉 value at the respective
uperpixel. The uncertainty ratio in the offset parameter with and
ithout the CIB for all four frequencies is depicted with horizontal

olid lines. There is a weak dependence between the ratio of σε with
nd without the CIB as a function of N H I value. The ratio increases
ith the increasing frequency, consistent with the fact that the CIB
oise dominates o v er instrumental noise at higher HFI frequency
Planck intermediate results XVII 2014 ). 
NRAS 531, 4876–4892 (2024) 
We have shown that the method gives an unbiased inference of
missivity and the offset in the presence of realistic noise. We can
 aithfully tak e into account the noise arising due to the CIB, including
he CIB-induced inter-pixel correlations within a superpixel, while
e neglect the correlation between subpixels belonging to two
ifferent superpixels. The implication of considering the CIB noise is
vident in Fig. 8 . Not considering the CIB can lead to underestimating
he uncertainty by orders of magnitude and possible bias in the
nference. Further, joint sampling of emissivities with the global
ffset mitigates any bias that may arise due to the biased or position-
ependent value of the offset. 
In this simulation section, we completely ignore the contribution

f the Galactic residual. Assuming the same SED for H I -correlated
ust emission and Galactic residuals, one can expect it to dominate
 v er the CIB at Planck’s highest frequency, 857 GHz. Like the CIB
mission, we can incorporate the contribution of Galactic residuals
n the noise covariance term. 

.3 Validation of two-template fit with Galactic H I and MS 

emplates 

o test the method’s robustness, we repeat the same analysis on
he 353 GHz simulated map that has a contribution from the two
 H I templates. We use the MS and Galactic H I templates to

imulate map 353 GHz. The MS template traces the gas from IVC
nd HVC. We add the MS template with a constant emissivity
MS 
353 = 10 −2 〈 εH I 

353 〉 , where 〈 εH I 
353 〉 is the av erage o v er all the superpixels

f the input dust emissivity map ( ε353 map as used in Section 4.1 ).
he corresponding input values for the dust emissivities are 〈 εH I 

353 〉 =
7 . 3 kJy sr −1 (10 20 cm 

−2 ) −1 and εMS 
353 = 0 . 37 kJy sr −1 (10 20 cm 

−2 ) −1 ,
especti vely, and the of fset is 120 kJy sr −1 , the same as that used
n Section 4.1 . We infer the global offset and the emissivity pa-
ameter per superpixels for both the Galactic H I template and the

S template o v er MaskHI6 performing the HMC methodology as
iscussed in Section 2.4 . Fig. 9 shows that the reco v ered emissivity
alues are well within 3 σ of the input value without significant
ias. The inferred global offset is 120 . 0 ± 0 . 3 kJy sr −1 , which is
lose to the input global offset value. The reco v ered emissivities
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Figure 7. Figure shows the histograms of the residual map (dashed curve) after subtracting the signal model from the input simulated map at Planck HFI 
frequencies o v er the unmasked pixels of eMaskHI6. The expected histograms of the residuals (solid curve) are produced from a single realization of instrument 
noise and the CIB at the respective frequency over the same sky mask. The agreement between the observed and expected residual distribution validates an 
unbiased inference of emissivity and the offset for realistic Planck simulations. 

Figure 8. The ratio of 1 σ uncertainty in dust emissivity with and without 
the CIB contribution in the noise covariance term. The ratio is plotted for 
all the superpixels over the unmasked sky area against their mean N H I value 
(‘plus’ marker). The horizontal lines represent the ratio of the uncertainty in 
the offset parameter, which is a single number at a given frequency, with and 
without the CIB in the noise covariance. 
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Figure 9. The histograms of the normalized difference of input and the 
posterior mean emissivities for Galactic H I and MS template at 353 GHz. 
The vertical line shows the normalized difference between the input and 
output global offset at the same frequency. 
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re quoted as the mean of the dust emissi vity v alues o v er all valid
uperpixels, along with its standard deviation. They are respec- 
ively, 37 . 3 kJy sr −1 (10 20 cm 

−2 ) −1 and 7 . 2 kJy sr −1 (10 20 cm 

−2 ) −1 

or the Galactic H I template while 0 . 39 kJy sr −1 (10 20 cm 

−2 ) −1 and
 . 27 kJy sr −1 (10 20 cm 

−2 ) −1 for the MS template. 

.4 Validation with a residual CMB dipole term 

iven that we infer a global offset parameter from the partial sky,
he presence of residual CMB dipole can bias its inference. We 
emonstrate that the method can infer a residual CMB dipole and 
he global offset jointly. We use this e x ercise to assess the extent to
hich the residual dipole affects the inference of the global offset

rom the partial sky. 
We simulate a single realization of the Planck map at 217 GHz

ith the residual CMB dipole amplitude A dip = 3 . 9 kJy sr −1 , cor-
esponding to 8 μK in K CMB unit. We choose this representa- 
ive amplitude approximately equal to the difference between 
MAP and Planck estimates of the Solar system dipole (Planck 
018 results I 2020 ). The direction 

(
l dip , b dip 

) = ( 264 . 0 ◦, 48 . 3 ◦)
s chosen same as the Solar dipole (Planck 2013 results XXVII
014 ). Corresponding to these real space dipole coordinates, the 
nput values of the harmonic coefficients in equation ( 10 ) are
 a 1 , 0 , a 

R 
1 , 1 , a 

I 
1 , 1 ) = (5 . 9 , 0 . 4 , −3 . 7) kJy sr −1 . The value of the global

ffset is O = 40 kJy sr −1 (same as in Table 1 ), and the input
ust emissivity averaged over the superpixels for 217 GHz is 
 . 15 kJy sr −1 (10 20 cm 

−2 ) −1 . Following the procedure detailed in
ection 2.4 , we jointly sample emissivity per superpixel, the global
ffset, and the harmonic coefficients using variable Leap-Frog jumps 
o reduce the correlation among the parameters (as discussed in 
ppendix B ). We reco v er the offset O = 39 . 2 ± 0 . 6 kJy sr −1 and

he harmonic coefficients as a 1 , 0 = 3 . 9 ± 1 . 5, a R 1 , 1 = −0 . 1 ± 0 . 3 and
 

I 
1 , 1 = −4 . 4 ± 0 . 4 in kJy sr −1 for maskHI6. The reco v ered emissivity
s within 3 σ as verified from a normalized histogram, indicating the
ethod works well. The harmonic coefficients are related to the 

ipole amplitude and Galactic longitude and latitude, respectively, 
MNRAS 531, 4876–4892 (2024) 
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Figure 10. The joint and marginalized probability distributions of global 
offset and the three dipole parameters at 217 GHz. The global offset and 
residual CMB dipole amplitude are expressed in kJy sr −1 unit and the residual 
CMB dipole direction in degree. Details are the same as Fig. 3 . 
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s 

 dip = 

√ 

3 

4 π

√ 

a 1 , 0 + 2 a R 1 , 1 + 2 a I 1 , 1 , 

l dip = arctan 

( 

−a I 1 , 1 

a R 1 , 1 

) 

, 

b dip = 

π

2 
− arccos 

( 

a 1 , 0 

A dip 

√ 

3 

4 π

) 

. (24) 

e calculate A dip and ( l dip , b dip ) for each 1 . 9 × 10 4 samples using
quation ( 24 ). The joint and marginalized probability distributions
f the global offset, dipole amplitude, and direction are shown in
ig. 10 . The corresponding mean values with standard deviations are
btained as A dip = 3 . 7 ± 0 . 3 kJy sr −1 and direction 

(
l dip , b dip 

) =
 271 . 4 ± 4 . 2 ◦, 31 . 0 ± 10 . 9 ◦) . 

We find that the amplitude of the fitted dipole is positively
orrelated with the global offset. This is expected due to the dipole
irection lying in the northern Galactic part, which is almost opposite
o the SGP. The increased dipole amplitude corresponds to more
e gativ e dipole fluctuation in the SGP region, which is compensated
y the global offset parameter increase. A similar reason leads to
NRAS 531, 4876–4892 (2024) 

able 3. Reco v ered global offset ( O), dipole amplitude ( A dip ) and Galactic longitu
or simulated map at 217 GHz. The corresponding input values are respectively O 

epresents the difference between the input and the reco v ered parameter value in un

ky masks O 

[
kJy sr −1 

]
A dip 

[
kJy sr −1 

]
Reco v ered δ Reco v ered δ

askHI2 39 . 7 ± 1 . 6 0.2 4 . 1 ± 0 . 8 −0
askHI3 39 . 3 ± 0 . 9 0.7 3 . 6 ± 0 . 5 0.
askHI4 39 . 2 ± 0 . 7 1.1 3 . 8 ± 0 . 4 0.
askHI5 39 . 8 ± 0 . 6 0.4 3 . 9 ± 0 . 4 −0
askHI6 39 . 2 ± 0 . 6 1.2 3 . 7 ± 0 . 3 0.
he positive correlation between the b dip and the of fset. Lo wer v alues
f b dip correspond to the most ne gativ e part of the dipole pointing
way from the SGP, leading to the dipole compensating for a greater
raction of the positive zero level and letting the offset have a
elati vely smaller v alue. Including dipole in the analysis does not
ignificantly change the inference of the offset, indicating unbiased
nference. Ho we ver, due to the correlated nature of the offset and the
ipole parameters, there is a significant increase in the uncertainty
f the offset parameter. Table 3 presents the reco v ered offset and
ipole parameters as a function of sky masks at 217 GHz. As the sky
rea increases, the uncertainty of the global offset and three dipole
arameters decreases. 
We repeat the analysis with the residual CMB dipole at 353 GHz

sing the same Planck simulations. The same residual CMB dipole
mplitude at 353 GHz is A dip = 2 . 4 kJy sr −1 (in intensity units). We
erformed the same analysis and reco v ered the offset O = 119 . 0 ±
 . 4 kJy sr −1 and dipole amplitude A dip = 3 . 7 ± 1 . 4 kJy sr −1 and
irection as 

(
l dip , b dip 

) = ( 277 . 4 ± 31 . 1 ◦, 14 . 9 ± 43 . 2 ◦) . The differ-
nce between input and the reco v ered values of the O, A dip , l dip and
 dip are respectively 0 . 4 σ , −0 . 9 σ , −0 . 4 σ and 0 . 8 σ , σ being the
ncertainty on the respective parameters. The uncertainty of inferred
ipole parameters at 353 GHz is larger than that at 217 GHz. This
s due to higher noise at 353 GHz, where the contribution from the
IB is higher than at 217 GHz (see Fig. 1 ). The lower amplitude
f residual CMB dipole at 353 GHz (in intensity units) and higher
ncertainty results in a low signal-to-noise ratio, but the reco v ered
alue is consistent with the input within 1 σ . Our results show that
he residual CMB dipole contribution can be ignored at frequencies
53 GHz and abo v e. We conclude that at the noise level considered
ere, if the offset is larger than the amplitude of the dipole, neglecting
he residual CMB dipole would not lead to significant bias in the
nference of global offset. 

 P L A N C K  DATA  RESULTS  

n this section, we discuss the analysis results of the 353 GHz CMB-
ubtracted Planck intensity map. We model the data with pixel-
ependent dust emissivity at N side = 32 resolution and a global
ffset. For this analysis, we do not consider the residual CMB dipole
ontribution in the signal model. As shown with the simulations, the
oise at 353 GHz leads to increased uncertainty on the residual CMB
ipole parameters as compared to the same inference at 217 GHz.
o we ver, we do test the robustness of the offset to the addition of

he MS template, discussed later in this section. 
We use the same superpixel and subpixel resolution as in the

nalysis of the simulations. We apply the HMC sampler as discussed
n Section 2.4 . We use the same values for the HMC sampler hyper-
arameters (Leap-Frog step sizes and the number of jumps) as were
sed in the simulations for the analysis of the Planck data. We
de ( l dip ) and latitude ( b dip ) estimated o v er fiv e dif ferent N H I cutof f sky masks 
= 40 kJy sr −1 , A dip = 3 . 9 kJy sr −1 , l dip = 264 . 0 ◦, b dip = 48 . 3 ◦. Column δ
its of 1 σ uncertainty. 

l dip 
[
degree 

]
b dip 

[
degree 

]
Reco v ered δ Reco v ered δ

 . 3 287 . 2 ± 9 . 4 −2 . 5 38 . 4 ± 24 . 6 0.4 
6 271 . 2 ± 6 . 5 −1 . 1 34 . 0 ± 15 . 9 0.9 
2 273 . 0 ± 4 . 2 −2 . 1 30 . 5 ± 12 . 5 1.4 
 . 1 273 . 1 ± 4 . 7 −1 . 9 39 . 7 ± 10 . 0 0.9 
6 271 . 4 ± 4 . 2 −1 . 7 31 . 0 ± 10 . 9 1.6 
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Figure 11. The mean ( left ) and the standard deviation ( right ) of the dust 
emissivity obtained from the Planck 353 GHz intensity map. Both the maps 
are in MJy sr −1 (10 20 cm 

−2 ) −1 units. These are for the analysis with the 
MaskHI6 mask, which has f sky = 15 . 3 per cent . 

o  

o  

a  

1  

d
d
i
T

 

o
m  

s
e
t
t  

a  

t  

t
a  

u  

s  

s  

s
i  

e  

r
o  

e
a
t  

d
f
X  

m  

v
 

m
a  

d
s  

a  

a  

Figure 12. Upper panel : Histogram of mean dust emissivity obtained in the 
Planck 353 GHz intensity map analysis o v er MaskHI6. The map of these 
dust emissi vity v alues is gi ven in the left panel of Fig. 11 . Lower panel : 
Variation of dust emissivity as a function of mean dust column density. 〈 N H I 〉 
represents the bin average H I column density and 〈 ε〉 are the average over 
the superpixels within the same N H I bins. The error bars are the standard 
deviations in the respective bins. 
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btain 2 × 10 4 samples of the emissi vity and the of fset parameters
 v er MaskHI6, discard the first 10 3 samples, and perform the
nalysis with the remaining 1 . 9 × 10 4 samples. Using the remaining
 . 9 × 10 4 MC samples, we compute the posterior mean and standard
eviation of the model parameters. The Gelman-Rubin convergence 
iagnostics values for the Planck 353 GHz data estimated using seven 
ndependent chains are 1.0003 (for emissivity) and 1.003 (for offset). 
his shows that the chains are converged. 
In Fig. 11 , we show the map of the mean and the standard deviation

f the dust emissivity for analysis with the MaskHI6 mask. The 
ean ε map shows the fluctuations that extend down to the scales of

uperpixels, indicating small-scale variations (1.8 ◦ pixel size) in dust 
missivity. The standard deviation map shows the inhomogeneity in 
he uncertainty of the dust emissivity. The N H I map partly determines 
he inhomogeneity in σε map as the instrument noise and the CIB
re fairly statistically isotropic. This map also allows us to assess
he spatial variation in the dust emissivity. The spatial average of
he dust emissivity map in Fig. 11 is 0 . 031 MJy sr −1 (10 20 cm 

−2 ) −1 

nd the standard deviation of the dust emissivity values o v er the
nmasked sky area is 0 . 007 MJy sr −1 (10 20 cm 

−2 ) −1 . Note that, as
hown in Fig. 12 , the spatial distribution of the dust emissivity is
lightly ske wed to wards higher values. The upper panel of Fig. 12
hows the histogram of dust emissivity values in the ε map depicted 
n Fig. 11 . The lower panel of Fig. 12 shows the variation of dust
missivity as a function of N H I . The data point and the error bar
epresent the mean and standard deviation of the emissivity computed 
 v er superpix els that fall within the giv en N H I bin. The av erage dust
missivity increases with increasing H I column density. Our spatial 
verage value of the dust emissivity is ≈ 20 per cent lower than 
he value quoted in Planck intermediate results XVII ( 2014 ). This
ifference could arise due to (1) different aperture sizes considered 
or the dust- H I correlation analysis in Planck intermediate results 
VII ( 2014 ) and (2) change in the calibration of the Planck 353 GHz
ap from PR1 to PR3. For MaskHI6, we report the global offset

alue equal to 0 . 1284 ± 0 . 0003 MJy sr −1 . 
We obtain the signal model map using the mean dust emissivity
ap and the mean global offset. As superpixels do not overlap 

nd the emissivity varies o v er the superpix els, the estimated mean
ust emissivity map becomes discontinuous at the scale of HEALPIX 

uperpixel with 1.8 ◦ angular size (pixel size at N side = 32). To
 v oid this discontinuity, we first obtain the dust emissivity map
t N side = 512 by interpolating the N side = 32 pixel values using
nterpolate.griddata function of SCIPY and then smooth 
he resultant mean dust emissivity map with a Gaussian kernel of
.8 ◦ FWHM. We construct the signal model map using the smoothed
ust emissivity map and the mean value of the global offset following
quation ( 3 ). We show the results of this analysis in Fig. 13 . The
eftmost panel in Fig. 13 shows the CMB-subtracted Planck intensity 
ap at 353 GHz o v er the e xtended unmasked re gion eMaskHI6,

nd the second panel shows the signal map. The third panel in
ig. 13 shows the difference between the CMB-subtracted Planck 
53 GHz intensity map and signal model map o v er the same sky 
ask. 
To compare the residual distribution with the expected distribution 

f the residual at 353 GHz, we simulate a random Gaussian realiza-
ion of the CIB at a beam resolution of 16.2 ′ (FWHM) using the
est-fitting CIB model angular power spectrum and an uncorrelated 
aussian white noise realization from the E2E smoothed noise 
ariance map and add them. The expected distribution of the 
otal noise is centred around zero because both the CIB and the
nstrumental noise have a zero mean. If our model assumptions are
orrect, the distribution of the residual should be consistent with the
istribution of the expected fluctuations from the CIB and instrument 
oise, similar to as seen in the simulated data (see Fig. 7 ). The fourth
anel of Fig. 13 shows the residual for masks with different sky
MNRAS 531, 4876–4892 (2024) 
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Figure 13. Results of analysis with Planck data at 353 GHz in the MJy sr −1 unit. First panel : the CMB subtracted Planck intensity map at 353 GHz o v er the 
South Galactic Pole region, Second panel : the estimate of the signal map obtained using the posterior mean emissivity and the offset, Third panel : the residual 
map, which is the difference between the difference map and the signal estimate, Fourth panel : histogram of the residual map for the analysis with different sky 
masks. The dashed blue curve shows the expected residual based on the CIB and the instrument noise. 

Table 4. Results of analysis of Planck intensity map at 353 GHz. We list the global offset ( O) values and the mean dust emissivity o v er the superpix els ( 〈 εj 〉 ) 
estimated o v er different sk y masks corresponding to different N H I cutoffs. Column σ represents the uncertainty on the mean dust emissivity 〈 εj 〉 . We also 
include the estimates from the Planck collaboration analysis for comparison. 

Sky masks O 〈 εj 〉 σ

( f sky [ % ] ) 
[
MJy sr −1 

] [
MJy sr −1 (10 20 cm 

−2 ) −1 
] [

MJy sr −1 (10 20 cm 

−2 ) −1 
]

MaskHI2 (7.3) 0 . 1358 ± 0 . 0005 0.023 0.00022 
MaskHI3 (11.5) 0 . 1332 ± 0 . 0004 0.026 0.00019 
MaskHI4 (13.9) 0 . 1311 ± 0 . 0004 0.029 0.00018 
MaskHI5 (15.0) 0 . 1294 ± 0 . 0003 0.030 0.00017 
MaskHI6 (15.3) 0 . 1284 ± 0 . 0003 0.031 0.00016 
Planck analysis 0 . 130 ± 0 . 038 0.039 0.0014 
(Planck intermediate results XVII 2014 ) 
(Planck 2018 results I 2020 ) 
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ractions and compares it with the residual expected from the CIB
nd the instrument noise for the respective sky fraction. Though
he residual distributions obtained using different MaskHIQ masks
re mostly consistent with the expected model residuals from the
IB and instrumental noise contributions, they have a minor fraction
f pixels contributing to the non-Gaussian tails with increasing sky
ractions. The residual histogram is in logarithmic scale to highlight
he asymmetric nature of the positive tail arising from a very small
umber of localized pixels in which dust is uncorrelated with the
alactic H I . 
Table 4 shows the reco v ered offset and reco v ered mean emissivi-

ies at 353 GHz o v er different sk y masks. As the available sk y area
ecreases, the mean value of dust emissivity decreases, indicating a
 I column density dependence of dust emissivity. We also see an
pposite trend in the global of fset v alue, which increases with the
eduction in the sky area and decreasing average emissivity. This
s expected as a decrease in the global of fset v alue compensates
or an increase in the mean dust emissivity. Over the range of N H I 

hresholds and corresponding sky area, the inferred offset parameter
anges from 0.1358 MJy sr −1 (o v er MaskHI2) to 0.1284 MJy sr −1 

o v er MaskHI6). This range encompasses the value of the CIB
onopole in the 353 GHz intensity map. The offset we infer is the

otal zero-level of the map that includes the CIB or any other residual
ero-le vel. The dif ferences between the CIB monopole value and the
alue we infer could be due to the differences in (1) the smoothing
cale of the Planck and H I column density map, (2) the Planck
alactic zero-level is estimated o v er a larger sky fraction (28 per cent
NRAS 531, 4876–4892 (2024) 
f the sky) than considered here, and (3) the difference in the local
elocity cloud H I column density threshold ( < 3 × 10 20 cm 

−2 ) from
he LAB surv e y (Kalberla et al. 2005 ). 

To check the robustness of the global offset value due to the
odelling error, we perform the inference with the two-template
t using Galactic H I and MS templates using the methodology
iscussed in Section 2.2.2 . We infer the offset O = 0 . 1281 ±
 . 0003 MJy sr −1 at 353 GHz o v er MaskHI6 for the two-template
t. The average of best-fitting values of recovered emissivities for
alactic H I and MS templates are 0 . 031 MJy sr −1 (10 20 cm 

−2 ) −1 

nd −0 . 6 × 10 −4 MJy sr −1 (10 20 cm 

−2 ) −1 , respectively. The corre-
ponding 1 σ deviation on them are 0 . 007 MJy sr −1 (10 20 cm 

−2 ) −1 

nd 1 . 8 × 10 −4 MJy sr −1 (10 20 cm 

−2 ) −1 , respectively. 

 SUMMARY  

e demonstrate the use of the Bayesian inference method to estimate
he pixel-dependent dust emissivity and the global offset in the diffuse
nterstellar medium at far-infrared and submillimeter frequencies.

e utilize the dust- H I correlation to model the Galactic thermal
ust emission, using the integrated Galactic H I column density map
rom the GASS surv e y (McClure-Griffiths et al. 2009 ) as a template.
he signal model incorporates spatially varying dust emissivity and
lobal offset o v er a 6300 de g 2 re gion centred around the southern
alactic pole. The HMC method allows efficient sampling of the
igh dimensional posterior distribution of the dust emissivity and the
ffset parameters. 
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We first validate the method on the Planck simulations, which 
nclude the CIB and instrumental noise. The dust emissivity param- 
ters are fixed based on earlier Planck analysis (Planck intermediate 
esults XVII 2014 ). This validation process allows us to test the
nalysis pipeline and fix the parameters of the HMC sampler that 
e use for the real Planck data. Given that the data are on the
artial sky, the inference of the offset can be biased if any residual
MB dipole is not taken into account. We demonstrate the nature of

he inferred parameters in the presence of residual CMB dipole at 
17 GHz. We show that the amplitude of the residual CMB dipole
s highly correlated with the global offset parameter for partial sky
nalysis. A small residual CMB dipole does not significantly affect 
he global offset inference beyond the increase in the error bar of
he global offset, whose uncertainty is still significantly smaller than 
he global offset value at 217 GHz. At 353 GHz, the error bar on
he fitted residual CMB dipole term increases due to increased noise 
ontributions from the CIB and the instrumental noise. Ho we ver, 
e note that the joint dipole and offset inference will be important

n the case of application to the NPIPE data where the CMB
ipole is retained in the frequency maps (Planck intermediate results 
VII 2020 ). We further test the robustness of the inferred offset
n the presence of multiple H I templates in the signal model. We 
onsider the emission from the MS as an additional component in the
ignal model. The global offset value does not change significantly 
hen considering the two-template analysis – Galactic H I and MS 

emplates. 
As a demonstration of the method, we apply the same HMC
ethodology to the Planck intensity map at 353 GHz. Results of this

nalysis are depicted in Figs 11 , 12 , 13 , and Table 4 . As shown in
ig. 11 , we infer the emissivity of the dust o v er the sk y area 6300 deg 2 

nd its variation at scales larger than 1.8 ◦. For the region of interest
 v er 6300 de g 2 area centred around the southern Galactic pole with
 H I threshold N H I < 6 × 10 20 cm 

−2 , the spatial average of dust
missivity is 0 . 031 MJy sr −1 (10 20 cm 

−2 ) −1 with standard deviation 
f 0 . 007 MJy sr −1 (10 20 cm 

−2 ) −1 . The inferred offset for MaskHI6 is
 . 1284 ± 0 . 0003 MJy sr −1 is close to the monopole of the B ́ethermin
t al. ( 2012 ) CIB model value 0 . 130 ± 0 . 038 MJy sr −1 added to
he Planck intensity map at 353 GHz after setting the Galactic zero
evel (Planck 2018 results I 2020 ). We further performed the same
nalysis on the smaller sky mask by putting lower N H I thresholds.
s expected, we find the inferred value of the global offset is stable

or different sky masks. We also find that the mean value of the dust
missivity decreases as we go to the low column density regions or
ower sky masks. The non-Gaussian tail in the residual distribution 
caused by the emission not correlated with N H I ) does depend on
 H I threshold and sky fraction. This additional emission component 

an be partly dealt with as an additional noise component in the data
odel, denoted by I R ν in equation ( 1 ), which we leave for future
ork. 
The methodology introduced in this paper opens a new way to 

ointly estimate the pixel-dependent dust emissivity and a global 
ffset o v er the field of interest using the dust- H I correlation. The
MC method is able to sample around 2 × 10 3 parameters and infer

he parameter posterior distribution. This method can be useful in 
tudying the 3D variation of dust SEDs to constrain the frequency 
ecorrelation of dust B-modes. In the future study, we will apply 
his technique to study the dust emissivity properties associated 
ith different H I phases (CNM, LNM, and WNM) of diffuse ISM 

onsidered in Adak et al. ( 2020 ) and Ghosh et al. ( 2017 ), which will
e useful to extend the sky model of dust polarization at multiple
ub-mm frequencies. The residual maps estimated using this method 
ill be useful for estimating the CIB maps at the best angular
esolution of Planck. In the forthcoming paper, we will apply the
ame methodology to other Planck HFI frequency maps to separate 
he thermal dust emission from the CIB emission and characterise 
he dust emissivity parameters. 
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PPENDI X  A :  DETA I LS  O F  H M C  

MPLEMENTATI ON  

ifferent MCMC sampling methods differ from each other mainly
n the way they generate the proposed point. HMC uses Hamiltonian
ynamics to generate the proposed point (Duane et al. 1987 ;
eal 2012 ). This is accomplished by introducing an additional

et of parameters, called momentum parameters , one momentum
arameter ( p i ) corresponding to each parameter of interest ( q i ). The
omentum variables are chosen to follow a Gaussian distribution
ith a covariance defined by a mass matrix . One has to choose the
ass matrix specific to the problem. This aspect is similar to the

hoice of parameters of the proposal distribution in sampling with
he Metropolis–Hastings algorithm. The multidimensional Gaussian
istribution of momenta is augmented with the original probability
istribution that needs to be sampled. For example, if we have ‘ q i ’ as
 number of parameters of interest with the probability distribution
( { q i } ), the probability distribution that is sampled in HMC is the

oint probability distribution of p i and q i : 

( { q i , p i } ) ≡ exp ( −H) 

(2 π ) D/ 2 
√ | μ| 

= 

1 

(2 π ) D/ 2 
√ | μ| exp 

[
−p 

T μ−1 p 

2 

]
P( { q i } ) . (A1) 

ere, p is the vector of momenta { p i } associated with the parameters
nd H is the Hamiltonian comprising of a Kinetic Energy term and
 Potential Energy term: 

( { q i , p i } ) = 

1 

2 
p 

T μ−1 p − ln [ P( { q i } )] . (A2) 

n the abo v e equation, the first term on the right-hand side is the
inetic energy term, and the second term, − ln [ P( { q i } )], acts as
otential energy. μ is the mass matrix corresponding to the set of
arameter { q i } . In general, μ is chosen as equal to the inverse of the
ovariance matrix of the parameters of interest. This choice may lead
o μ having off-diagonal elements, leading to more computational
ost. Instead, we choose the diagonal mass matrix. Further details
bout this choice and its implications are discussed later in this
ection. With a diagonal mass matrix, the resulting Hamiltonian is 

( { q i , p i } ) = 

∑ 

i 

p 

2 
i 

2 μi 

− ln [ P( { q i } )] . (A3) 

Hamilton’s equations for variable q and the conjugate momentum
 are 

˙ ≡ dq 

dt 
= 

∂ H 

∂ p 

and ṗ ≡ dp 

dt 
= −∂ H 

∂ q 
. (A4) 

he abo v e equations are solv ed using symplectic inte gration meth-
ds. In this work, we choose the Leap-Frog method to simulate the
amiltonian dynamics. 

( t + / 2) = p( t ) + 

 

2 
ṗ ( q( t )); (A5) 

( t +  ) = q( t) + p( t +  / 2)  /μ; (A6) 

( t +  ) = p( t + / 2) + 

 

2 
ṗ ( q( t +  )) . (A7) 

n the abo v e equations, ṗ ( q( t)) is the momentum deri v ati ve substi-
uted from equations ( 17 ) or ( 18 ) depending on the parameter. 
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Below is the schematic of the algorithm we followed in sampling 
he posterior distribution. The algorithm is written in terms of 
he generic variables q i (which refer to { εj,t 

ν , O ν, a 
( R/I ) ,ν
1 m 

} ) and
 i . 
1: Initialize q (0) 

2: for k = 1... N s do 
3: p ∼ N (0 , μ); where N is Gaussian distribution with variance

. 
4: q ∗(0) , p 

∗
(0) = q ( k−1) , p 

5: for j = 1... N do 
6: a Leap-Frog mo v e from 

(
q ∗( j−1) , p 

∗
( j−1 ) 

)
to 

(
q ∗( j ) , p 

∗
( j ) 

)
7: end for 
8: q ∗, p 

∗ = q ∗( N) , p 

∗
( N) 

9: Accept q ∗, p ∗ with the probability 

in 
(

1 , e −H(q ∗, p ∗) + H(q (k−1) , p (k−1) ) 
)

. If the proposed point is rejected, 

hen q k , p k = q k − 1 , p k − 1 

10: end for 
As is common in the MCMC methods, we start the algorithm with

 reasonable guess of the parameter values { q (0) 
i } . The corresponding

omenta { p 

k 
i } are drawn from a multinormal distribution at the start

f each k th step, including the very first step. With this as the initial
oint on the phase space trajectory, Hamilton’s equations evolve 
hese variables in the phase space. This evolution is simulated by 
 Leap-Frog jumps to arrive at a proposed point in the phase

pace q ∗, p 

∗. The leap-frog method is volume-preserving and time-
e versible. Ho we ver, Hamiltonian ( H) may not be conserved in
ractical numerical computations due to leapfrog discretization, 
hich can introduce a bias with respect to the target distribution. This
ias can be reduced with a sufficiently small step size, which leads
o less discretization error. To a v oid this bias, we use the Metropolis
ule, according to which the proposed point is accepted with the 
robability equal to the minimum of (1 , e −H ( q ∗,p ∗) + H ( q ( k−1) ,p ( k−1) ) ). 
Once the samples of ( p i , q i ) are obtained, getting the Monte

arlo samples of q i , which samples the distribution P( q i ), is
traightforward. Discarding the samples of p i from the joint samples 
f ( p i , q i ) leads to the marginalization of the distribution P( q i , p i )
ith respect to p i . As p i and q i are independent variables, the

esultant samples of q i are the desired samples of q i drawn from
he probability distribution of our interest P( q i ). 

1 Burn-in, correlation length, and conv er gence test 

ere, we discuss some considerations for analysing these Markov 
hains before using these chains to draw the inference. 

1.1 Burn-in 

e neglect some of the initial samples from the chain as Burn-in.
o quantitatively determine the Burn-in sample size, we monitor 

he χ2 using a model map estimated with the increasing number 
f samples in the chains of the parameters. The model map is built
rom the posterior mean of the parameter chain with an increasing 
umber of samples. Burn-in sample then consists of the initial points
here χ2 is away from the total number of degrees of freedom. In
ractice, we discard the first 10 3 samples, which is much larger than
he Burn-in sample determined using χ2 criteria. Note that, in the 
bsence of explicit priors on the parameters and Gaussian likelihood, 
2 is equal to the logarithm of the posterior up to a constant

erm. 
1.2 Correlation length 

hen we draw the samples from the target distribution, all the
amples may not be independent because of the correlation within a
hain of samples. The ef fecti ve number of the independent samples
ut of the total samples, N s , is n eff = N s /L , where correlation length ,
 , is defined as, 

 = 1 + 2 
t max ∑ 

t= 1 

ρ( t) , (A8) 

here ρ( t) is the autocorrelation coefficient of the chain for lag t 
Taylor et al. 2008 ). 

Correlation length depends on the total jump, s = N in the Leap-
rog scheme and the scale of the distribution of the parameters of

he problem. The total jump s should be of the order of scale of dis-
ribution of the parameters to get less correlated samples.  controls
he accuracy with which we implement Hamiltonian dynamics. This, 
n turn, determines the acceptance rate of the proposed sample. For
 given  , N determines how far the proposed sample is from the
urrent position. If  is chosen to be too small, N needs to be large
nough to mo v e a sufficient distance along the trajectory, resulting
n increased computation time. In contrast, for the choice of a large
alue of  , the computation of the phase space trajectories becomes
elatively less accurate, resulting in a reduced acceptance rate. If N is
hosen to be small, samples are correlated, whereas too large a value
f N may bring back the proposed sample very close to the starting
oint after completing Leap-Frog jumps (Neal 2012 ). In Appendix B ,
e show the difference in correlation length for fixed and variable
eap-Frog jumps. The accuracy of Hamiltonian dynamics can be 

ncreased by efficient choice of total jump in the Leap-Frog scheme
Hoffman & Gelman 2014 ; Bou-Rabee & Sanz-Serna 2017 ; Hoffman 
t al. 2021 ; Sountsov & Hoffman 2021 ). 

As discussed in Section 2.4 , we choose the mass matrix μ to
ake step size  independent of the scale of the target distribution.

n the approximations considered in our analysis, neglecting the 
orrelation between subpixels belonging to two different superpixels 
enders the mass matrix sparse and diagonal dominant. The only 
on-zero off-diagonal terms are those due to the cross-correlation 
mong emissi vity, of fset and spherical harmonic coef ficients (see
ection 2.4 ). The rest of the off-diagonal terms are the cross-
orrelation between emissivities at different superpixels, which are 
ero due to the approximations considered in our analysis. Inverting 
he mass matrix and evolving the vector forms of the Leap-Frog
quations with μ−1 are relatively computationally costly when 
ealing with the non-diagonal mass matrix. Therefore, we neglect 
he off-diagonal terms in the column (and row) of the mass matrix
hat connect the emissivity and offset parameters. As a consequence 
f this choice, we have to choose two separate step sizes,  ε and
 O 

, for emissivity and offset, respectiv ely. F or the various schemes
sed to tune the HMC hyper-parameters, see Hoffman & Gelman 
014 , Bou-Rabee & Sanz-Serna 2017 , Hoffman et al. 2021 , and
ountsov & Hoffman 2021 and for their implementation, refer to the
robabilistic programming frameworks such as STAN (Carpenter 
t al. 2017 ), PyMC (Salvatier et al. 2016 ), and pyro (Bingham et al.
019 ). 

1.3 Convergence test 

o quantify the convergence of the Monte Carlo sample, we adopt
he Gelman–Rubin test (Gelman & Rubin 1992 ). To implement this
est, one needs multiple Monte Carlo chains starting with sufficiently 
MNRAS 531, 4876–4892 (2024) 
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eparated positions in the parameter space. One then computes the
ollowing ratio R, which should be ideally equal to one. 

 = 

V 

W 

, (A9) 

here V is the variance of the given parameter between the chain and
 is the variance of the same parameter along the chain (Brooks &
elman 1998 ; Heavens 2009 ). In practice, it is recommended that R 

hould be less than 1.01 to consider the sample as converged to the
istribution being sampled (Vehtari et al. 2021 ). 

PPENDIX  B:  VARIABLE  LEAP-FROG  STEPS  

o investigate the change in correlation length with Leap-Frog jumps
, we perform the HMC sampling with variable N . Following Neal

 2012 ), we randomly draw N at each iteration from a uniform distri-
ution, U [ 9 , 15 ] and apply the HMC sampler on the simulated map at
53 GHz o v er MaskHI6 as discussed in Section 2.4 . We then compute
he compute the autocorrelation coefficient of emissivity ε at one
uperpixel and the global offset O as in Section 4.2 . Fig. B1 shows
he autocorrelation coefficient for fixed Leap-Frog jumps N = 10
Section 4.2 ) and variable Leap-Frog jumps N ∈ [ 9 , 15 ] . It shows
hat for variable N , the correlation length decreases considerably for

. Variable N minimizes the correlation among the various global
arameters for multiple template fit or fit with dipole contribution. 
NRAS 531, 4876–4892 (2024) 
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igure B1. Same as Fig. 2 , but for fixed and v ariable v alues of Leap-Frog
umps N . For a fixed N = 10, the correlation length for ε and O are 10 and
02, respectiv ely. F or variable N ∈ [ 9 , 15 ] , the correlation length for ε and
 are 7 and 57, respectively. 
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