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ABSTRACT

We present a Bayesian inference method to characterize the dust emission properties using the well-known dust-H I correlation
in the diffuse interstellar medium at Planck frequencies v > 217 GHz. We use the Galactic HT1 map from the Galactic All-Sky
Survey (GASS) as a template to trace the Galactic dust emission. We jointly infer the pixel-dependent dust emissivity and the
zero level present in the Planck intensity maps. We use the Hamiltonian Monte Carlo technique to sample the high-dimensional
parameter space (D ~ 10%). We demonstrate that the methodology leads to unbiased recovery of dust emissivity per pixel and
the zero level when applied to realistic Planck sky simulations over a 6300 deg” area around the Southern Galactic pole. As
an application on data, we analyse the Planck intensity map at 353 GHz to jointly infer the pixel-dependent dust emissivity at
Nsige = 32 resolution (1.8° pixel size) and the global offset. We find that the spatially varying dust emissivity has a mean of
0.031 MJy sr=1(10?° cm=2)~! and 1o standard deviation of 0.007 MJy sr='(10** cm=2)~!. The mean dust emissivity increases
monotonically with increasing mean H1 column density. We find that the inferred global offset is consistent with the expected
level of cosmic infrared background (CIB) monopole added to the Planck data at 353 GHz. This method is useful in studying
the line-of-sight variations of dust spectral energy distribution in the multiphase interstellar medium.

Key words: methods: statistical - ISM: general — diffuse radiation — submillimetre: diffuse background — submillimetre: ISM.

1 INTRODUCTION

Galactic dust emission is one of the significant foregrounds in
measurements of the cosmic microwave background (CMB) intensity
and polarization at frequencies above ~100 GHz (Planck 2018 results
IV 2020). At this frequency range, the form of spectral energy distri-
bution (SED) of the Galactic dust and the cosmic infrared background
(CIB; Puget et al. 1996; Lagache, Puget & Dole 2005) are similar.
While interesting in its own right, characterization and understanding
of the Galactic dust properties are crucial for measuring the CMB
B-mode polarization (Planck 2018 results XI 2020). To mitigate this
foreground contribution from the measurements, it is essential to
understand how dust grains contribute to the B-mode polarization.
Understanding the Galactic dust emission is also critical for the
reliable reconstruction of the CIB anisotropies (Planck intermediate
results XLVIII 2016). The fact that the CIB and the Galactic dust

* E-mail: adak @iac.es (DA); sshaik14@asu.edu (SS)

share similar spectral properties makes it crucial to understand the
spatial distribution and the SED of Galactic dust to separate the
two emissions reliably. The CIB traces the matter distribution in
the Universe and plays a crucial role in delensing the lensed B-
mode contribution in the observed B-mode measurements (Larsen
et al. 2016). It is also an important probe to be cross-correlated
with other probes of the large-scale structure (Ade et al. 2014; van
Engelen et al. 2015; Ade et al. 2016; Maniyar et al. 2019; Jego et al.
2023). Moreover, even though the CIB is weakly polarized, at the
frequencies where CIB is significant, the polarization of the CIB
can be a contaminant to CMB B-mode polarization (Feng & Holder
2020; Lagache et al. 2020).

Various methods have been used to study the nature of the Galactic
dust emission with the Modified Black Body (MBB) as a model of
the Galactic dust SED at Planck' frequencies. Inferring Galactic
dust SED parameters at the highest Planck angular resolution with

Uhttp://www.esa.int/Planck
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sufficient signal-to-noise ratio is also important because smoothing of
resolution may reduce information associated with the Galactic dust.
Planck 2015 results X (2016) use Commander method to perform
Bayesian inference of the Galactic dust spectral properties at 7.5’ full-
width half maximum (FWHM) angular resolution. A complementary
method to do a similar task is implementing the dust-H1 correlation.
Galactic dust is correlated with HI 21 cm line emission of neutral
hydrogen at high Galactic latitude and low-column density regions
(Boulanger & Perault 1988). Hence, the Galactic HI emission map
can be used as a tracer of the Galactic dust emission. Using Planck
and IRAS data along with HI 21 cm observations obtained by Green
Bank Telescope (GBT), Planck early results XXIV (2011) estimate
the dust emissivities in 14 fields covering more than 800 deg” at high-
Galactic latitude. Using the same formalism, Planck intermediate
results XVII (2014) study the dust emissivity and its SED by fitting
the MBB model over the Southern Galactic Pole (SGP, b < —25°). A
proper estimation of the Galactic dust emission is needed to separate
the CIB emission (see e.g. Planck intermediate results XLVIII 2016;
Irfan et al. 2019; Lenz, Doré & Lagache 2019). Once the contribution
of Galactic dust to a given frequency map is estimated, it can be
subtracted to obtain the contribution of the CIB anisotropy (Planck
2013 results XXX 2014). Lenz et al. (2019) have produced the CIB
maps by cross-correlating H14PI data (HI4PI Collaboration et al.
2016) with the Planck intensities at 353, 545, and 857 GHz over
approximately 25 per cent of the sky.

Planck does not measure the absolute sky background referred to
as the zero levels of intensity, which have been fixed at the level
of map-making (Planck 2013 results VIII 2014; Planck 2015 results
VIII 2016). Two considerations go into determining the zero level of
an HFI frequency map: the zero level of the Galactic emission and
the CIB monopole. Zero level of the Galactic emission has been set
using dust-H1 correlation at high Galactic latitude where H1 is the
reliable Galactic dust tracer. The underlying assumption is that the
dust emission is zero where H1 column density is zero. The offset
at 857 GHz is obtained by cross-correlating the Planck HFI data at
857 GHz with Leiden Argentine Bonn (LAB) Galactic HI Survey
data. For other HFI frequencies, the Galactic zero level has been
fixed using cross-correlation of maps at respective frequencies with
the 857 GHz map (for details, see section 5.1 of Planck 2013 results
VIII 2014). The estimated offsets are subtracted from the detector
data at the time of map-making. After this step, the CIB monopole,
estimated from the CIB model of Béthermin et al. (2012), has been
added to each Planck HFI frequency intensity map.

Separation of the Galactic dust emission from the Planck frequency
maps needs to take into account the proper treatment of the offset
present in the maps. In the previous studies, the dust emissivities are
fitted over local sky patches and variable offsets. Planck early results
XXIV (2011) utilize dust-HI correlation to estimate emissivity
properties of the dust at Low, Intermediate, and High-Velocity
Clouds (LVC, IVC, and HVC) over 14-fields. The analysis in Planck
intermediate results XVII (2014) estimates the emissivity at LVC
and offset using dust-H I correlation over the patches of 15° diameter.
Both works use the minimization technique. When dealing with very
high dimensional parameter problems, x> minimization often results
in parameter estimates that are far from the typical set (Mackay
2003). Furthermore, the efficiency of the x2 minimization method
is limited by the correlation between the parameters of interest and
becomes inefficient for the high dimensional parameter space. Planck
2013 results XI (2014) measure global offset first and then estimate
the Galactic dust SED parameters by fitting the MBB spectrum to
offset-corrected intensity maps. In this work, we utilize the dust-H1
correlation to jointly infer the dust emissivity and the global offset
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of the whole sky region considered instead of individual smaller sky
patches. We use GASS H1 data with Planck intensity maps over the
same sky region used in the study of Planck intermediate results
XVII (2014). We show that such an analysis can benefit from the
joint inference of the emissivity and the global offset.

We sample the joint posterior distribution of emissivity and the
global offset. The total number of variables to sample in this problem
is around 2 x 10°. We use the Hamiltonian Monte Carlo (HMC)
sampling method, which can more efficiently sample such large
dimensional parameter space than the Metropolis—Hastings (MH)
algorithm (Duane et al. 1987). For both HMC and MH algorithms,
a new proposed point (9*) is generated from the present point (6)
by taking some sort of steps based on the target density. For a D-
dimensional problem, the number of steps required to reach a nearly
independent proposal point grows as D'/* for HMC and D for MH
algorithm. The total amount of computation time with a reasonable
acceptance rate grows as D34 for HMC and D? for MH algorithm
(Creutz 1988; Neal 2012; Betancourt & Girolami 2019). HMC uses
the gradient of the posterior distribution to generate a proposed point,
which, in principle, has an acceptance probability equal to one. This
feature has led to HMC being increasingly employed in the high
dimensional inference problems encountered in cosmology (Hajian
2007; Taylor, Ashdown & Hobson 2008; Jasche et al. 2010; Jasche &
Wandelt 2013; Anderes, Wandelt & Lavaux 2015), including the
inference of CMB foreground parameters (Grumitt, Jew & Dickinson
2020).

This paper is structured along the following lines. In Section 2,
we present the data model, the likelihood, and the details of the
HMC sampler. Section 3 describes the data used in this paper and
the pre-processing of the data before the main analysis. Validation of
the Bayesian inference method using simulated maps is discussed in
Section 4. In Section 5, we present and discuss the CMB-subtracted
Planck 353 GHz intensity map analysis results. We summarize the
main results of the paper in Section 6.

2 METHOD

This section discusses the data model and likelihood analysis to
sample the model parameters from their posterior distributions using
the HMC sampler.

2.1 Dust emission model and the data likelihood

We are interested in characterizing the dust emission properties in
the diffuse interstellar medium over the frequency range covered by
the Planck HFI maps (v > 217 GHz). The major contributors to the
total emission in this range of frequencies are CMB, Galactic dust,
CIB, and instrumental noise. We assume that the CMB intensity map
derived using the well-established component separation techniques
(SMICA, NILC, SEVEM, and COMMANDER) from the Planck
multifrequency observations is accurate enough in the sky region not
obscured by the Galactic disc (Planck 2018 results IV 2020). With
this assumption, we work with the CMB-subtracted Planck frequency
maps to reduce the total number of components that need to be
modelled. The H1 column density map can be used as a tracer of the
dust emission due to strong dust—gas correlation in the diffuse ISM
(Boulanger & Perault 1988). We model the CMB-subtracted intensity
map (d,) at frequency v as the addition of the HI-correlated dust
emission (/7"4), the noise and a constant global offset. In general,
the noise term can consist of the CIB emission (/E'®), the instrument
noise (Ilf\l), and the Galactic residual emission (If). The Galactic
residuals contain the dust emission from H; gas, whichis uncorrelated

MNRAS 531, 4876-4892 (2024)
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with the H I-emission. The global offset (O, ) over the regions being
analysed includes the contribution mainly from the CIB monopole
and emission not accounted for by the HT emission.

It is evident from previous studies that the dust emissivity varies
smoothly over the sky (Planck intermediate results XVII 2014). This
fact allows us to assume the emissivity to be constant over a set of
pixels. This set of pixels is determined using the HEALPIX grid at a
coarser resolution (i.e. lower Nggqe) than the resolution of the data
map. The bigger pixel over which emissivity is assumed constant is
termed a superpixel, whereas pixels within the superpixel are called
subpixels. This model is expressed in the following equation,

do(@]) =1 (@]) + 0, + 1Y (@) + 15 (@) + 18 ().
)]

where ©/ indicates the direction of i subpixel within j** superpixel.
We model the H I-correlated dust emission (/1 )y a9

1 (@) = el (/) @

where Ny, denotes the integrated column density of HI component
in the direction 2/, and €/ is the dust emissivity at frequency v at
Jj' superpixel. Here, we consider a single HI template to trace the
HI-correlated dust emission. Because we are treating I'® and IR as
noise along with /N, we call the remaining contribution of /"4 and
0, as the signal model, s,,

5 (Q’) = ¢/ Ny (Q’) +o,. 3)

We assume that the three noise components, the CIB, the Galactic
residuals and the instrument noise, are independent. Hence, the
covariance matrix of the total noise (X,) at frequency v is the
sum of the covariance of the individual noise component. We

denote the angle between i™ subpixel of j™ superpixel and the i""

subpixel of j"" superpixel by 9,-7 " and the elements of the covariance

matrix are denoted by Efi;, = Eu(él,’;.’;,). While we consider the
correlation between the subpixels within a superpixel, we neglect the
correlation between subpixels that belong to different superpixels,

that is Eiﬂli/ = Zi'jl-i/Sj_]". Hence, the non-zero elements of X, are
given by

y N i S & (i
sl =2 (o) + 3% (o) + =X (0. @)

where XN denotes the instrument noise covariance, ¥ and TR
denote the contribution to X, due to the CIB and the Galactic
residuals, respectively. Unlike instrument noise, IS and I} are
spatially correlated signals. Hence, its contribution to the total noise
covariance matrix gives rise to the non-zero off-diagonal terms in
Y.,. We further assume the instrument noise, the CIB and the residual
Galactic emission to be Gaussian with their respective covariance.
Hence, the joint likelihood of all the data elements given the model
parameters (¢}, O0,) is
2

IV (el _ 1 _x
LAd@DIE O = (i exp [ = 7.

&)

where x?2 is
e T3 () s ()] o () s 20)]- ©

[x-! ]l’l’, represents the element of the inverse of the covariance matrix
X,
In the model fitting, templates Ny, (Q'[’ ) and the noise vari-

ance X, are known, and {¢/, O,} are the unknown parameters of
the model that we aim to infer from the observed data. Bayes

MNRAS 531, 4876-4892 (2024)

theorem allows us to write the posterior probability distribution
(P({e-vf, 0, }{d, (Q,’ ) 1)) of the parameters given data as

P (101 {a (2)}) = - ({a (21 l}g {{d ( Z?}; (- 0.))
@)

where P({€], O,}) is the prior probability distribution of the param-

eters, and P({d, (Q,/ ) }) is the evidence. We assume a uniform prior
for all the parameters of interest without any bounds. Because the
model is linear in parameters and we assume a Gaussian likelihood,
the posterior distribution is also a Gaussian as a function of the model
parameters. P({d, (Ql’ ) }) acts as a normalization constant. Hence,
the functional dependence of the posterior distribution on parameters
is the same as that of the likelihood distribution up to a proportionality
constant. We sample the posterior distribution given in equation (7)
to get the joint samples of all the parameters of interest {€/, O,}.
We have around 2 x 10° emissivity parameters per Ny, template and
one offset parameter.

2.2 Additional terms in the modelling

In this section, we discuss additional terms that may be required
in modelling the data, their motivation, and implementation in the
inference methodology.

2.2.1 Dipole term

We can model and fit for a dipole contribution in the signal model,
s (9F) =elvu (@) + 0, + D, (). ®)

where D, (Qlj ) accounts for residual dipole due to the CMB dipole,

the CIB dipole, and the dipole from the Galactic residuals. In
harmonic space, the expression for the dipole is

Dv (Q{) = a}’YOYLO (Q{) +arle1’1 (Qlj) —|—a1”,_|Y1‘,1 (Q{) ,(9)

v

where Yi,, are spherical harmonics with ay,, being spherical
harmonic coefficients. Using the relations ¥; _,, = (=1)"Y}", and

aj—m = (—l)ma,’fm, the above expression can be rephrased in terms
of m = 0 and m = 1 coefficients as:

D, (sz) =a;oYio (sz) + zalR.’lefl (sz) - 2“11.’;Yl{1 (Q}f) ,
(10)

where superscripts R and / indicate real and imaginary parts of
a complex quantity, respectively. In the inference process, it is
convenient to treat the dipole in harmonic space because with the
Gaussian likelihood, posterior is also Gaussian as a function of a; ,
due to their linear nature, unlike the real space variables indicating
dipole amplitude and the direction of the dipole.

2.2.2 Multiple templates

The dust emission in far-infrared and sub-millimetre frequency bands
can also be modelled as a linear combination of multiple H 1 templates
with different dust emissivity per template. For example, Planck
early results XXIV (2011) estimate the dust emissivity properties
associated with LVC, IVC, and HVC clouds over 14 fields. Ghosh
etal. (2017) and Adak et al. (2020) estimate the mean dust emissivity
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Figure 1. The CIB model power spectrum (in units of £C;) obtained by fitting
the CIB model including the shot noise at four HFI frequencies (Planck 2013
results XXX 2014). We use the model CzCIB to compute the full covariance
matrix £

over Southern and Northern Galactic pole regions, respectively,
by correlating the CMB-subtracted Planck 353 GHz map with H1
column density associated with cold, lukewarm, and warm neutral
medium (CNM, LNM, and WNM). Lenz et al. (2019) use the
individual spectral channel map of H1 brightness temperature from
the HI4PI survey (HI4PI Collaboration: et al. 2016) to model the dust
emission at Planck HFI frequencies v > 353 GHz. The modelling
and inference framework used in this work can be extended to include
multiple Ny, templates with the signal modelled as

Ny
5, (Qf) =S &N, (Q’) +0,+D, (Q’) (11

where the summation is over N; number of Ny, templates (N};,),
indexed by t, and €/ is corresponding emissivity.

We test the impact of additional terms like dipole term or multiple
H1 templates on the inferred {€/!, O,} parameters using simulated
maps at Planck frequencies in Section 4.

2.3 CIB model power spectra

The CIB is a relic emission from stellar-heated dust within galaxies
formed throughout cosmic history. At far-infrared/sub-millimetre
bands and the resolution of Planck, the CIB appears as a diffuse
background emission in the total intensity. The CIB anisotropies are
found to be correlated across the frequencies and follow approxi-
mately £~ power law angular power spectrum (Planck early results
XVIII 2011; Planck 2013 results XXX 2014). We adopt the best-
fitting CIB model power spectra (including the shot noise) at 217,
353, 545, and 857 GHz obtained by Planck 2013 results XXX (2014).
Fig. 1 presents the model CIB power spectra used in our analysis.
We treat the CIB anisotropies as Gaussian and correlated noise
in the Planck intensity maps. To take into account the correlation
between pixels at a given smoothing scale, we compute the CIB
covariance matrix, =B, at a given frequency v between two pixels
i and i’ using the relation
TG = ﬁ Z(ze +1)CS®B B2 w? Py(; i), (12)

£,vxv
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where CS™ is the CIB power spectrum, B, is the beam window
function of the Gaussian beam, P; is the Legendre polynomial of
order ¢ and wy is the HEALPIX pixel window function.

2.4 Hamiltonian Monte Carlo sampling

In this section, we present the essentials of the Hamiltonian Monte
Carlo sampling formalism to draw the samples of {e{} and {O,}
from the distribution given in equation (7), which is the same as the
likelihood in equation (5) for a uniform prior on parameters. Details
of the HMC sampling method and some considerations that went
into analysing the parameter samples are discussed in Appendix A.

HMC uses Hamiltonian dynamics to generate the proposed point
and traverse the parameter space. The method treats the parameters
{e/} and {0O,} as position variables and augments them with the
momentum variables ( p,{’v’ , Po,)todefine phase space dynamics.The
Hamiltonian of the dynamics for the given problem is

P ~
sz — In[P({e]", O, )],

2

2
. . Po
H(p)', po,. €', 0,) = —— +
(p)'s po,, €)', 0) 2o, Ej

13)

where P({€/, 0,}) is the parameter posterior as obtained in equa-
tion (7) and /', wo, are mass terms for €/ and O,, respectively.
Up to a constant, which is independent of parameters of interest,
In[P({e}’, O, is

In[P({e]", 0D = —%Xz ; (14)
where x? is given by equation (6).

While considering the total covariance matrix, only considering
the diagonal part leads to underestimating the parameter uncertainty.
Whereas considering all the elements, including the ones correspond-
ing to two subpixels of different superpixels, drastically increases
the computation cost. We take the approach somewhere in between.
We consider the correlations between subpixels corresponding to a
given superpixel only and neglect the correlations among the pixels
of two different superpixels. This is expressed in equation (4). The
mathematical expressions given in the subsequent discussion are
under this approximation.

We need the time derivatives of position and momentum variables
to simulate the Hamiltonian dynamics. The time derivative of the
position corresponding to a given parameter is simply momentum
divided by the mass of the corresponding parameter:

0 Jot . 0
Ho_p and O, i :&, (15)

e = =
0po, Ko,

o apl !

which is not at all a computationally involved operation. The time
derivative of the momentum involves computing the derivative of the
logarithm of the posterior:

OH _ dIn(P)

=g = g

(16)

Our model is linear in the parameters of interest, and the likelihood
is a Gaussian distribution. Hence, with the flat priors, the derivatives
of the logarithm of the posterior are simple expressions given below.
The derivative with respect to emissivity is

OP) 5 i (2f) 2714 - a

Jt
d€p ii'cj

MNRAS 531, 4876-4892 (2024)
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and derivative with respect to offset O, is

aln(P) _ Z Z - /// [d, — sv]_’_i/' (18)

Jjoii'cj

While sampling the model parameters, including the residual CMB
dipole contribution, the spherical harmonic coefficients a(R/ D in
equation (10) are jointly sampled along with emissivity and offset
as {e/, 0,, a(R /Dvy Since ay ,, in real space indicates the dipole
amplitude and direction, they are sampled as global parameters
similar to O,.. The momentum derivative for the dipole coefficients

is given by

0In(P) m (R/1) -1 Ji j
2a®/ = @2 > Vi, ( ) S ldy = s
Jj oiLi'cjy
form = 0and 1, (19)

where () corresponds to the real (R) or imaginary (I) parts
respectively, of the coefficients (see equation 10). In general, s.,(Q{,),
is given by equation (11). Our HMC formalism takes into account
pixel-dependent dust emissivity, global offset, and three dipole
amplitudes.

As the algorithm requires, we simulate the Hamiltonian dynamics
using the Leap-Frog scheme (see Appendix A). In the Leap-Frog
scheme, the step size A decides the time-step, which is generally
different for different parameters. A general practice is to standardize
the parameter distribution scales, which requires some knowledge
of the parameter covariance structure (e.g. Betancourt et al. 2017).
In the particular case of Gaussian posterior and the model that is
linear in parameters, one can choose the mass matrix to achieve this
goal. For problems where the curvature is isotropic and constant,
such as for the Gaussian likelihood we consider in this work, a
parameter independent A can be chosen. This choice of A in the
case of Gaussian likelihoods is discussed in Taylor et al. (2008). For
the general distributions with hierarchical modelling or non-linear
parameter dependencies, this procedure may not work as well as it
does in our case. By setting the mass matrix equal to the inverse
of the covariance matrix of the parameters, A is made independent
of the distribution of the individual parameter. The inverse of the
parameter covariance matrix is the negative of the parameter Fisher
matrix. With our choice of neglecting the correlations between the
superpixels, for the given likelihood, the Fisher matrix turns out to
be diagonal over the €/' parameters. The only non-zero off-diagonal
terms are those which connect 61{” with O,, ay,,, and O, with ay,,.
However, we neglect these off-diagonal terms. Considering only the
diagonal elements while assigning mass for the parameters then does
not lead to A for O, and ay,, being the same as that of {e‘{”}. Hence,
we choose a different A in the dynamical equations corresponding
to O, and the dipole parameters. Hence, we have different step sizes
in the Leap-Frog scheme, A, and A corresponding to €/ and O,,
respectively. The details of this choice are discussed in Appendix A.
This leads to the mass matrix with the following terms in the diagonal.
The mass for €/ is

= 3 i () [2

ii'Cj

SV (). @

for O,, it is given by

Z > [= @1

j o i,i'Cj
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and the following is the mass for the dipole coefficients

R/I1 2) (R/1) —17JJ y(R/D) j
Mt(l]zi = 2 " Z Z Y ( ) E ],','/ Ylm (Qlj’)s
joLi'Cj

form = Oand 1. 22)

Note that, the mass matrix elements for €/ depend on the noise
covariance as well as the templates, whereas those for O, and
ay, depend only on the noise covariance. In HMC, the proposed
parameter is obtained by evolving Hamilton’s equations in a certain
number of Leap-Frog jumps N. The product of A and N determines
the total distance traversed in the parameter space and controls the
correlation length in the parameter chain. In this section, we have
discussed the choices for N and A to simulate the HMC process.
While we discussed these choices without much rigour, we tested
that the algorithm works using realistic simulations of the data. We
would like to point out that formal methods have been developed
to tune the HMC algorithm to facilitate appropriate choices for
step size and path length. For example, Hoffman & Gelman (2014)
present the No-U-Turn Sampler scheme to alleviate the need for the
user to choose the number of steps and also presents a method for
adaptive stepsize. Recent developments in also include SNAPER-
HMC for implementation on GPU and TPU hardware (Sountsov &
Hoffman 2021), ChEES-HMC (Hoffman, Radul & Sountsov 2021),
and various adaptive schemes, for example, MALT-HMC (Riou-
Durand et al. 2023). Some of these schemes are implemented in
probabilistic programming frameworks such as STAN (Carpenter
et al. 2017), PyMC (Salvatier, Wiecki & Fonnesbeck 2016), and
pyro (Bingham et al. 2019).

We first validate the above methodology on the Planck simulations.
The results obtained from the simulations are presented in Section 4.
The next section discusses the data, the CIB model, and the sky
masks used for our analysis.

3 DATA SETS

In this section, we describe the Planck data, H1data, and the sky mask
used in the analysis. We also describe the procedure for computing
the CIB covariance matrix using the model CIB power spectrum.

3.1 Planck data

We use the publicly available Planck 2018 Public Release 3 (PR3?%)
legacy intensity map at 353 GHz (Planck 2018 results 1 2020) for our
analysis. The 353 GHz intensity map has been provided in HEALPIX®
(Gérski et al. 2005) grid at Ngg = 2048 (pixel size 1.7") with an
angular resolution of FWHM 4.82" (Planck 2018 results III 2020).
We subtract the CMB contribution at 353 GHz using the following
procedure. We use the SMICA CMB map provided at a beam
resolution of 5 (FWHM) and N4, = 2048 (Planck 2018 results IV
2020). We smooth the 353 GHz intensity map at the resolution of the
SM 1C A CMB map using the Gaussian approximation of the Planck
beam and subtract the contribution of CMB. We further smooth the
CMB-subtracted Planck 353 GHz map at the beam resolution of 16.2
(FWHM), downgrade to Ngg. = 512 (pixel size 6.8’) resolution.
We choose the Planck 353 GHz map for our analysis because the
contribution of synchrotron and free—free emissions are negligible
compared to that of dust after the contribution due to the CMB is
subtracted. We consider the Planck CMB-subtracted intensity map

Zhttp://pla.esac.esa.int/pla
3http://healpix.jpl.nasa.gov
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Table 1. Results of analysis of simulated maps at four Planck HFI frequencies. The global offset values with corresponding 1o error bars are estimated over
five sky masks, tracing low to intermediate H1 column density regions. The inference of offset is stable with respect to sky coverage, with a slight decrease in

the uncertainty with higher fyy.

Frequency Input offsets Recovered offsets [ kJy sr—']
[ GHz] [Kysr™'] Sky masks
MaskHI2 MaskHI3 MaskHI4 MaskHIS MaskHI6
Ssky [%]
7.3 139 15.0 15.3

217 40 40.0 £0.1 40.0 £0.1 40.0 £ 0.1 40.0 £0.1 40.0 £ 0.1
353 120 119.6 £ 0.4 120.1 0.4 119.9+0.3 1199 +0.3 120.0 0.2
545 330 330.9+0.9 330.54+0.7 330.34+0.7 330.6 0.7 330.6 £ 0.6
857 550 550.5+1.2 550.6 +1.0 550.6 £0.9 550.7 £ 0.9 550.6 +0.9

as the primary data. We treat the CIB monopole term as the global
offset parameter. We use the unit conversion factors mentioned in
Planck 2013 results IX (2014) to convert 353 GHz map from Kcmp
to kJy sr™! unit.

We use 300 end-to-end (E2E) noise realizations for the Planck
frequency maps from the Planck Legacy Archive (Planck 2018
results XI2020). The original maps are provided at Ngge = 2048. We
smoothed all the 300 noise maps at 16.2' FWHM beam resolution and
re-project them at the resolution of Ngg. = 512. Then, we compute
the variance map using the 300 smoothed E2E noise maps.

3.2 Hidata

To separate the HI-correlated dust emission from the Planck data at
high Galactic latitude, we use the H1 data provided by GASS* survey
carried out by Parkes telescope (McClure-Griffiths et al. 2009). The
survey observed 21 cm emission over the southern galactic sky (at
declinations § < 1°) within velocity range, —400 km s7h < Vigr <
500 kms~!; where Vg is the velocity of the H1 clouds with respect
to local standard of rest. The survey has a beam resolution of 14.5
FWHM, velocity resolution v = 1 kms™!, and root-mean-square
brightness temperature uncertainty of 50 mK (1o). The GASS survey
maps used in our analysis are from Kalberla et al. (2010) and
are corrected for instrumental effects, stray radiation, and radio-
frequency interference.

In the southern Galactic cap, the HI in the Galactic disc (or
what we call Galactic H1) is mixed with significant emission from
the Magellanic Stream (MS) (Nidever, Majewski & Butler Burton
2008; D’Onghia & Fox 2016). The spectra in the 3D data cube
(longitude, latitude and radial velocity) likely to be associated
with MS are distinguished from Galactic H1 spectra using the
velocity information (Venzmer, Kerp & Kalberla 2012). The three-
dimensional model of Kalberla & Dedes (2008) helps to distinguish
the spectra associated with the Galactic H1emission and MS. Finally,
the H I template map is produced integrating 3D spectra over velocity
range and projected on HEALPIX grid at Ngg. = 1024. The Galactic
HT1 column density map Ny; used in our analysis has an angular
resolution of 16.2 FWHM and is projected on the HEALPIX grid
Ngige = 512 (pixel size 6.9"). We use the Galactic HI map as a tracer
for the HI-correlated dust emission. The same Galactic HT map is
used by the Planck collaboration to study dust emission properties
in the diffuse interstellar medium (Planck intermediate results XVII
2014).

“https://www.atnf.csiro.au/research/GASS/Data.html

3.3 Sky masking

We use the same mask as used in Planck intermediate results
XVII (2014) for our dust-HI correlation analysis. The total sky
area of the mask is 6300 deg® (fiy = 15.3 per cent) where Ny, <
6 x 10 cm™2, and thus avoids the high column density regions.
The unmasked sky region covers the Galactic latitude b < —25°.
The area of 20° diameter centred around ({5, bys) = (—50°,0°) is
masked to avoid Magellanic Stream (Nidever et al. 2010). Further, the
bright radio sources at microwave frequencies and infrared galaxies
at 100 um have been masked out.

To test the dependence of the analysis results on the sky fraction,
we generate four additional masks with different Ny, cutoff over
the range between 2 x 102°%cm~2 and 5 x 10®cm™2. We mask the
regions with Ny, values higher than the cutoff value. We label the
mask with Ny; cutoff Q x 10*°cm~2 as MaskHIQ. The sky masks
are overlapping by construction. We use overlapping masks to study
the dependence of the global offset as a function of mean H1 column
density. The respective sky fraction fi, for each sky mask is quoted
in Table 1.

4 PLANCK SIMULATIONS

In this section, we validate our methodology on the Planck simu-
lations to simultaneously fit a dust emissivity per superpixel and a
global offset using the HMC sampler.

We simulate the dust intensity maps at Planck HFI frequency bands
between 217 and 857 GHz. We analyse simulated maps considering
the total noise contribution from the instrument noise and the CIB
anisotropies. We ignore the contribution of Galactic residuals in
this analysis. We consider the instrument noise to be uncorrelated
between pixels. However, for the CIB, we consider the inter-pixel
correlations. Analysis with the simulated data helps to validate the
pipeline and to determine some analysis choices, for example, the
optimal values of the Leap-Frog step size (A) and the Leap-Frog
jumps (N) by examining the behaviour of the Markov Chains (MC)
drawn from the posterior distribution.

We require sufficient unmasked subpixels within each superpixel
to fit the signal model with the data. We set this threshold to one-
third of the subpixels within each superpixel.” We excluded those
superpixels from the joint fitting which do not fulfil this criterion.

SHere, the threshold is 85 unmasked subpixels within superpixels at Ngjge =
32.

MNRAS 531, 4876-4892 (2024)
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4.1 Simulated maps
We construct the simulated maps using the following procedure:

(1) We start with the dust emissivity map of Planck intermediate
results XVII (2014) at 353 GHz (€353) projected on Ngjge = 32 (low-
resolution) HEALPIX grid. This map is obtained through the dust-H 1
correlation analysis over 15° circular patches in diameter centred
on HEALPIX pixels at Ngq. = 32. We assume that €353 is the same
at all subpixels defined at resolution Ngge = 512 that fall within
a superpixel defined by N4 = 32. Each superpixel contains 256
subpixels.

(i1) We translate the dust emissivity map from 353 GHz to other
HFI frequencies using the MBB spectrum,

& (2) = e (@) (L)ﬁd Bulla) 23)
353/ Bas3(Ta)

where B4 is the dust spectral index fixed to 1.5, B, is Planck

blackbody function and 7j is the dust temperature fixed to 20K

(Planck intermediate results XXII 2015).

(iii) We simulate the dust intensity maps at 217, 353, 545,
and 857 GHz at Ngg. = 512 using the dust emissivity map and
Galactic HI template. We add the global offset values from Planck
intermediate results XLVIII (2016) to produce the signal model maps
at all HFI frequencies.

(iv) To simulate the instrument noise contribution, we use the
variance map (/) computed from 300 smoothed E2E noise maps.
We assume the instrumental noise to be Gaussian, white, and
uncorrelated between the pixels. For the CIB noise component, we
simulate the CIB map smoothed at 16.2" FWHM beam resolution
projected at Ngge = 512 from the model CIB power spectrum at
each HFI frequency. Though the CIB is correlated between two
frequencies, analysing individual frequency maps entails neglecting
the correlation between the CIB emission at different frequencies.

(v) Finally, we co-add simulated dust intensity, global offset,
instrument noise, and the CIB, all expressed in kJy sr~! units.

(vi) To build the likelihood, we construct the instrumental noise
covariance matrix ( Zf’ ) and the CIB covariance matrix (EVCIB). Zﬁv
is taken as a diagonal covariance matrix because we neglect the
inter-pixel instrument noise. /™ exhibits a significant correlation
between subpixels within a given superpixel.

4.2 Validation with simulations

We focus our discussion of the simulated map analysis on the
353 GHz frequency channel without the loss of generality. However,
we summarize the simulation results at all four HFI frequencies
(217-857 GHz).

The output of our HMC algorithm is the chains of MC samples
of the dust emissivity per superpixel at Ngq. = 32 and the global
offset. The total number of parameters at each frequency is 2011
(dust emissivity values) + 1 (global offset) over MaskHI6.

We obtain 2 x 10* samples for each derived parameter and discard
the first 10* samples. We use the remaining 1.9 x 10* MC samples for
further analysis. In practice, the samples for a given parameter are not
independent but are correlated with a certain correlation length. Fig. 2
presents the autocorrelation coefficients, p(¢), for sample chains of
the dust emissivity at one superpixel and the global offset chains for
353 GHz maps. The results are depicted for two choices of {A., Ap}.
When step size for € and O are the same, {A., Ap} = {0.1,0.1},
the global offset (magenta solid) chain is highly correlated. For this
choice, the correlation length of emissivity and offset chain is around
8 and 220, respectively. For {A., Ap} = {0.1, 1.0}, the global offset

MNRAS 531, 4876-4892 (2024)
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Figure 2. The autocorrelation coefficient, p(¢), at 353 GHz for the samples
of the emissivity in one superpixel (¢) and the global offset (O) as a function
of the lag () for two different choices of Leap-Frog step size (Ag) for the
global offset and fixed A = 0.1. For Ap = 0.1, the correlation length for €
and O are 8 and 220, respectively. For Ap = 1.0, the correlation length for
€ in the same pixel and O are 10 and 102, respectively.

(red dashed) chain becomes less correlated, and correlation length
decreases by a factor of 2. However, the correlation length for the
emissivity chain remains almost the same. For the latter choice of step
sizes, the correlation length of dust emissivity and global offset chains
are around 10 and 102, respectively. Therefore, we adopt the second
choice of step sizes for the HMC sampling at all frequencies. Along
with these {A., Ay}, we choose the number of Leap-Frog steps N =
10, which gives a reasonable acceptance rate and lower correlation
length. We check the convergence of the chains using the Gelman—
Rubin test (Gelman & Rubin 1992) (for details, see Section Al).
Using seven independent chains, we find Gelman—Rubin Markov
Chain Monte Carlo (MCMC) convergence diagnostics are 1.0002
(for emissivity) and 1.002 (for offset). These values confirm the
chains are converged to a reasonable accuracy.

To check the correlations between the model parameters, we show
the joint distributions of the dust emissivity at three superpixels and
the global offset in Fig. 3 at 353 GHz. We do not find a significant
correlation between the dust emissivities at two different superpixels
or between the emissivity at a given superpixel and the offset. We
also show the marginalized posterior distributions of the respective
parameters along with their posterior mean values (red dashed line)
and corresponding input values (orange dashed line) used in the
Planck simulation. We find the inferred posterior mean values of the
parameters agree with their respective input values.

To quantify the goodness of fit, we use posterior predictive checks
considering the pixels included in the analysis, which are a subset
of those in the MaskHIQ mask. This is due to the exclusion of
superpixels that do not satisfy the threshold criteria for the number
of subpixels. Most of the boundary pixels in the MaskHIQ mask
do not satisfy the criteria and are excluded from further analysis.
We term the resultant extended mask as eMaskHIQ. We replicate
the simulated data based on the mean and standard deviation of
the parameter samples. The distribution of the original simulated
data and the replicated data match very well. Both the distributions
are non-Gaussian due to the non-Gaussian nature of the thermal
dust emission, which has a dominant contribution. We use summary
statistics like median and 95 per cent quantile level to test the con-
sistency between the original and the replicated simulated data. The

20z Joquieydag 9z uo 1sanb Aq 0€1989./9/8V/v/1L€S/I0IME/SEIuW /W00 dno-ojwapese/:sdny woly papeojumoq



@) €4106 €8246 €8347

Figure 3. The joint and marginalized probability distributions of dust
emissivities (expressed in kJy st=1(1020 cm=2)~!) at three representative
superpixels (pixel index as super-script) and the global offset (in kJy sr~!) at
353 GHz. The red lines mark the posterior mean, and the orange lines depict
the input values of the respective parameters. The contours mark the 68 and
90 per cent regions of the joint distributions. The vertical black dashed lines
in the histogram mark 16, 50, and 84 percentiles of the distribution.

Table 2. The PTE values obtained for all Planck frequencies considered for
our analysis over eMaskHI6. They are defined as the probability of obtaining
summary statistics (median and 95 per cent quantile) larger than fitted data,
based on 1000 simulations with dust plus CIB and Planck noise. The PTE
values are expressed as a percentage.

Frequency [GHz] Median (%) 95% quantile (%)
217 11 34
353 63 48
545 98 96
857 55 70

probability-to-exceed (PTE) statistics are used to test the probability
that the summary statistics of the replicated data exceed the original
data. The PTE values of the summary statistics are quoted in Table 2.

From the MC chains of the parameters, we compute the mean and
standard deviation of the respective parameters. In order to quantify
the accuracy of inference, in Fig. 4, we present the distribution of
the standard deviation (o, éu,) normalized difference, 8/ = (¢}, —

e;fu,)/oe({m of input dust emissivity at all superpixels (ei’;lp) and the

posterior mean emissivity at respective superpixels (e,{u,), for all
four frequency bands. We also show the same quantity for the offset
with vertical dashed lines. The mean values obtained using the MC
samples agree very well with their respective mean values and are
within 3o deviations. The largely symmetric nature of the histograms
implies that the best-fitting values of output dust emissivities for all
superpixels are unbiased.

In Fig. 5, we show the mean and standard deviation of dust
emissivity per superpixel obtained from the dust-HI correlation
analysis as a function of mean Galactic HI column density at those
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Figure 4. The histograms of the normalized difference of input emissivities
and the posterior mean emissivities, 8/ = (ei’np - el{m)/o6 ; for four Planck
frequencies from 217 to 857 GHz. Vertical lines depicag ' the normalized
difference between the input and output global offset at respective Planck
frequencies.
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Figure 5. The recovered dust emissivity e,{ and its standard deviation
o, per superpixel (j) as a function of mean Galactic HT column density

((Nu1 (Q[J ) )). The mean (..) is taken over all unmasked subpixels (i) that

fall within a given superpixel. The ‘dot’ symbol represents €] and ‘plus’
represents o_; at all Planck frequencies considered in this analysis.

superpixels. The uncertainty decreases with an increase in mean
Galactic HT column density, indicating a better estimation of dust
emissivity in high column density regions within the sky mask
MaskHI6. This is expected as the uncertainty scales with 1/,
(see equation 21) and is inversely proportional to Ny;.

We use the mean of the parameter samples as the best-fitting
value of the respective parameter (Mackay 2003). Owing to the
linear nature of the signal model, the signal that corresponds to
the best-fitting values of emissivity and the offset is also the best-
fitting signal. We obtain the best-fitting intensity map corresponding
to the signal model using the mean values of the dust emissivity
and the global offset following equation (3). In Fig. 6, we show
the simulated map at 353 GHz along with maps of the best-fitting

MNRAS 531, 4876-4892 (2024)
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Figure 6. The left panel shows the input simulated map at 353 GHz (in units of kJy sr~!) over MaskHI6. The middle panel shows the signal model map (in
kJy st~ ') derived from the mean values of the emissivity and the offset obtained using the HMC sampler. The right panel depicts the residual map (in kJy sr—!)
obtained by subtracting the signal model map from the input map at 353 GHz. The residual map has contributions from the CIB and the instrumental noise.

model and the residual. The residual map is the difference between
the input and best-fitting model intensity maps. The residual map
contains the contribution from the instrument noise and the CIB.
The residual map shows the small-scale structure, lacking large-
scale fluctuations, consistent with the nature of instrument noise
and the CIB. While the map shows the spatial distribution of the
residual, to check the nature of the distribution of the residual,
in Fig. 7, we compare it (black) with the expected residual con-
tribution from instrument noise and the CIB (magenta). We find
good agreement between the recovered and the expected residual
distribution at all Planck frequencies, indicating that the analysis does
not introduce systematic bias. At the map level, the residual map over
the unmasked region strongly correlates with the expected residual
map obtained by combining the input CIB and instrumental noise
map at all Planck frequencies. The Pearson correlation coefficients
are 0.97, 0.96, 0.96, and 0.96 at 217, 353, 545, and 857 GHz,
respectively.

Offset is a pixel-independent parameter; hence, we expect its
inference to be unaffected by mask choice. We infer the global offset
values for different mask choices using simulated maps to test this.
In Table 1, we list the posterior mean values of the global offsets
along with 1o error bars and the respective masks. Irrespective of
the choice of mask, the inferred offset values at all frequencies are
consistent with their input values. This indicates the stability of the
analysis for different choices of masks.

To elucidate the effect of the CIB noise in our analysis, we redo the
analysis without the CIB contribution in the noise covariance matrix.
In Fig. 8, we compare the standard deviation of the dust emissivity
and offset inferred with and without considering the CIB in the noise
covariance matrix. We plot the ratio of these two standard deviations
for all the superpixels against the mean (Ny,) value at the respective
superpixel. The uncertainty ratio in the offset parameter with and
without the CIB for all four frequencies is depicted with horizontal
solid lines. There is a weak dependence between the ratio of o, with
and without the CIB as a function of Ny, value. The ratio increases
with the increasing frequency, consistent with the fact that the CIB
noise dominates over instrumental noise at higher HFI frequency
(Planck intermediate results XVII 2014).

MNRAS 531, 4876-4892 (2024)

We have shown that the method gives an unbiased inference of
emissivity and the offset in the presence of realistic noise. We can
faithfully take into account the noise arising due to the CIB, including
the CIB-induced inter-pixel correlations within a superpixel, while
we neglect the correlation between subpixels belonging to two
different superpixels. The implication of considering the CIB noise is
evidentin Fig. 8. Not considering the CIB can lead to underestimating
the uncertainty by orders of magnitude and possible bias in the
inference. Further, joint sampling of emissivities with the global
offset mitigates any bias that may arise due to the biased or position-
dependent value of the offset.

In this simulation section, we completely ignore the contribution
of the Galactic residual. Assuming the same SED for H I-correlated
dust emission and Galactic residuals, one can expect it to dominate
over the CIB at Planck’s highest frequency, 857 GHz. Like the CIB
emission, we can incorporate the contribution of Galactic residuals
in the noise covariance term.

4.3 Validation of two-template fit with Galactic H1 and MS
templates

To test the method’s robustness, we repeat the same analysis on
the 353 GHz simulated map that has a contribution from the two
Ny, templates. We use the MS and Galactic HT templates to
simulate map 353 GHz. The MS template traces the gas from IVC
and HVC. We add the MS template with a constant emissivity
15 = 1072(llL), where (€fl}) is the average over all the superpixels
of the input dust emissivity map (€353 map as used in Section 4.1).
The corresponding input values for the dust emissivities are (efll) =
37.3 Kysr '(10® cm=2)~! and €)% = 0.37 KJy sr=1(10® cm™2)~!,
respectively, and the offset is 120 kJy sr~!, the same as that used
in Section 4.1. We infer the global offset and the emissivity pa-
rameter per superpixels for both the Galactic HI template and the
MS template over MaskHI6 performing the HMC methodology as
discussed in Section 2.4. Fig. 9 shows that the recovered emissivity
values are well within 30 of the input value without significant
bias. The inferred global offset is 120.0 £ 0.3 kJy sr™!, which is
close to the input global offset value. The recovered emissivities
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Figure 7. Figure shows the histograms of the residual map (dashed curve) after subtracting the signal model from the input simulated map at Planck HFI

frequencies over the unmasked pixels of eMaskHI6. The expected histograms of the residuals (solid curve) are produced from a single realization of instrument

noise and the CIB at the respective frequency over the same sky mask. The agreement between the observed and expected residual distribution validates an

unbiased inference of emissivity and the offset for realistic Planck simulations.
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Figure 8. The ratio of 1o uncertainty in dust emissivity with and without
the CIB contribution in the noise covariance term. The ratio is plotted for
all the superpixels over the unmasked sky area against their mean Ny value
(‘plus’” marker). The horizontal lines represent the ratio of the uncertainty in
the offset parameter, which is a single number at a given frequency, with and
without the CIB in the noise covariance.

are quoted as the mean of the dust emissivity values over all valid
superpixels, along with its standard deviation. They are respec-
tively, 37.3 kJysr™'(10®cm™2)"! and 7.2 klJysr~'(10* cm™2)~!
for the Galactic HI template while 0.39 kJy sr='(10*° cm~2)~! and
0.27 kJysr~'(10*° cm™2)~! for the MS template.

4.4 Validation with a residual CMB dipole term

Given that we infer a global offset parameter from the partial sky,
the presence of residual CMB dipole can bias its inference. We
demonstrate that the method can infer a residual CMB dipole and
the global offset jointly. We use this exercise to assess the extent to
which the residual dipole affects the inference of the global offset
from the partial sky.

We simulate a single realization of the Planck map at 217 GHz
with the residual CMB dipole amplitude Agy, = 3.9 kJysr~!, cor-
responding to 8 uK in Kcymp unit. We choose this representa-
tive amplitude approximately equal to the difference between
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Figure 9. The histograms of the normalized difference of input and the
posterior mean emissivities for Galactic HI and MS template at 353 GHz.
The vertical line shows the normalized difference between the input and
output global offset at the same frequency.

WMAP and Planck estimates of the Solar system dipole (Planck
2018 results I 2020). The direction (ldip,bdip) = (264.0°, 48.3°)
is chosen same as the Solar dipole (Planck 2013 results XXVII
2014). Corresponding to these real space dipole coordinates, the
input values of the harmonic coefficients in equation (10) are
(ar0,af,af ) =(5.9,0.4, =3.7)klysr~". The value of the global
offset is O =40 kJysr~! (same as in Table 1), and the input
dust emissivity averaged over the superpixels for 217 GHz is
8.15 kJy sr=1(10?° cm~2)~!. Following the procedure detailed in
Section 2.4, we jointly sample emissivity per superpixel, the global
offset, and the harmonic coefficients using variable Leap-Frog jumps
to reduce the correlation among the parameters (as discussed in
Appendix B). We recover the offset O = 39.2 4 0.6 klysr~! and
the harmonic coefficientsasa; o = 3.9 £ 1.5, alR.1 = —0.1£0.3and
aj | = —4.4 £ 0.4inkJy sr~' for maskHI6. The recovered emissivity
is within 3¢ as verified from a normalized histogram, indicating the
method works well. The harmonic coefficients are related to the
dipole amplitude and Galactic longitude and latitude, respectively,
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Figure 10. The joint and marginalized probability distributions of global
offset and the three dipole parameters at 217 GHz. The global offset and
residual CMB dipole amplitude are expressed in kJy sr—! unit and the residual
CMB dipole direction in degree. Details are the same as Fig. 3.

as

/3
Adgip = E\/01,0+2aﬁl+20f,1,

0111
lgip = arctan -— |-
aj

3
baip = % — arccos (611_0 ) . 24)

dip 4

We calculate Agip and (lgip, bgip) for each 1.9 x 10* samples using
equation (24). The joint and marginalized probability distributions
of the global offset, dipole amplitude, and direction are shown in
Fig. 10. The corresponding mean values with standard deviations are
obtained as Agp =3.7£0.3 klysr~' and direction (lgp, baip) =
(271.4 £4.2°,31.0 £ 10.9°).

We find that the amplitude of the fitted dipole is positively
correlated with the global offset. This is expected due to the dipole
direction lying in the northern Galactic part, which is almost opposite
to the SGP. The increased dipole amplitude corresponds to more
negative dipole fluctuation in the SGP region, which is compensated
by the global offset parameter increase. A similar reason leads to

the positive correlation between the bg;, and the offset. Lower values
of bg;p correspond to the most negative part of the dipole pointing
away from the SGP, leading to the dipole compensating for a greater
fraction of the positive zero level and letting the offset have a
relatively smaller value. Including dipole in the analysis does not
significantly change the inference of the offset, indicating unbiased
inference. However, due to the correlated nature of the offset and the
dipole parameters, there is a significant increase in the uncertainty
of the offset parameter. Table 3 presents the recovered offset and
dipole parameters as a function of sky masks at 217 GHz. As the sky
area increases, the uncertainty of the global offset and three dipole
parameters decreases.

‘We repeat the analysis with the residual CMB dipole at 353 GHz
using the same Planck simulations. The same residual CMB dipole
amplitude at 353 GHz is Agjp, = 2.4 kly sr! (in intensity units). We
performed the same analysis and recovered the offset O = 119.0 &
2.4 Klysr™! and dipole amplitude Agp, = 3.7+ 1.4 klysr! and
direction as (Lgip, bdip) = (277.4 £31.1°, 14.9 £ 43.2°). The differ-
ence between input and the recovered values of the O, Agp, lgip and
bgip are respectively 0.40, —0.90, —0.40 and 0.80, o being the
uncertainty on the respective parameters. The uncertainty of inferred
dipole parameters at 353 GHz is larger than that at 217 GHz. This
is due to higher noise at 353 GHz, where the contribution from the
CIB is higher than at 217 GHz (see Fig. 1). The lower amplitude
of residual CMB dipole at 353 GHz (in intensity units) and higher
uncertainty results in a low signal-to-noise ratio, but the recovered
value is consistent with the input within 1o. Our results show that
the residual CMB dipole contribution can be ignored at frequencies
353 GHz and above. We conclude that at the noise level considered
here, if the offset is larger than the amplitude of the dipole, neglecting
the residual CMB dipole would not lead to significant bias in the
inference of global offset.

5 PLANCK DATA RESULTS

In this section, we discuss the analysis results of the 353 GHz CMB-
subtracted Planck intensity map. We model the data with pixel-
dependent dust emissivity at Ngge = 32 resolution and a global
offset. For this analysis, we do not consider the residual CMB dipole
contribution in the signal model. As shown with the simulations, the
noise at 353 GHz leads to increased uncertainty on the residual CMB
dipole parameters as compared to the same inference at 217 GHz.
However, we do test the robustness of the offset to the addition of
the MS template, discussed later in this section.

We use the same superpixel and subpixel resolution as in the
analysis of the simulations. We apply the HMC sampler as discussed
in Section 2.4. We use the same values for the HMC sampler hyper-
parameters (Leap-Frog step sizes and the number of jumps) as were
used in the simulations for the analysis of the Planck data. We

Table 3. Recovered global offset (0), dipole amplitude (Agip) and Galactic longitude (4;p) and latitude (bgip) estimated over five different Ny, cutoff sky masks
for simulated map at 217 GHz. The corresponding input values are respectively O = 40 klysr—!, Adgip = 3.9 Kly sl Laip = 264.0°, bgip = 48.3°. Column §
represents the difference between the input and the recovered parameter value in units of 1o uncertainty.

Sky masks o [ka sr‘l] Adip [ka Sr"] Lip [degree} baip [degree]
Recovered 8 Recovered 8 Recovered 8 Recovered 8
MaskHI2 39.7+1.6 0.2 4.1+0.8 -0.3 287.2+94 -2.5 38.4+24.6 0.4
MaskHI3 39.34+0.9 0.7 3.6+0.5 0.6 271.2+6.5 —1.1 34.0+ 159 0.9
MaskHI4 39.2+0.7 1.1 3.8+04 0.2 273.0+ 4.2 —2.1 30.5+12.5 1.4
MaskHI5 39.8 £0.6 0.4 394+04 —0.1 273.1+4.7 -1.9 39.7 +10.0 0.9
MaskHI6 39.24+0.6 1.2 3.7+0.3 0.6 271.4+4.2 —-1.7 31.0+10.9 1.6
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Figure 11. The mean (left) and the standard deviation (right) of the dust
emissivity obtained from the Planck 353 GHz intensity map. Both the maps
are in MJysr~!'(10%° cm=2)~! units. These are for the analysis with the
MaskHI6 mask, which has fy = 15.3 per cent.

obtain 2 x 10* samples of the emissivity and the offset parameters
over MaskHI6, discard the first 10° samples, and perform the
analysis with the remaining 1.9 x 10* samples. Using the remaining
1.9 x 10* MC samples, we compute the posterior mean and standard
deviation of the model parameters. The Gelman-Rubin convergence
diagnostics values for the Planck 353 GHz data estimated using seven
independent chains are 1.0003 (for emissivity) and 1.003 (for offset).
This shows that the chains are converged.

In Fig. 11, we show the map of the mean and the standard deviation
of the dust emissivity for analysis with the MaskHI6 mask. The
mean € map shows the fluctuations that extend down to the scales of
superpixels, indicating small-scale variations (1.8° pixel size) in dust
emissivity. The standard deviation map shows the inhomogeneity in
the uncertainty of the dust emissivity. The Ny, map partly determines
the inhomogeneity in o, map as the instrument noise and the CIB
are fairly statistically isotropic. This map also allows us to assess
the spatial variation in the dust emissivity. The spatial average of
the dust emissivity map in Fig. 11 is 0.031 MJysr~!(10%* cm=2)~!
and the standard deviation of the dust emissivity values over the
unmasked sky area is 0.007 MJysr—'(10%° cm~2)~'. Note that, as
shown in Fig. 12, the spatial distribution of the dust emissivity is
slightly skewed towards higher values. The upper panel of Fig. 12
shows the histogram of dust emissivity values in the € map depicted
in Fig. 11. The lower panel of Fig. 12 shows the variation of dust
emissivity as a function of Ny,. The data point and the error bar
represent the mean and standard deviation of the emissivity computed
over superpixels that fall within the given Ny, bin. The average dust
emissivity increases with increasing H1 column density. Our spatial
average value of the dust emissivity is ~ 20 per cent lower than
the value quoted in Planck intermediate results XVII (2014). This
difference could arise due to (1) different aperture sizes considered
for the dust-HI correlation analysis in Planck intermediate results
XVII (2014) and (2) change in the calibration of the Planck 353 GHz
map from PRI to PR3. For MaskHI6, we report the global offset
value equal to 0.1284 4 0.0003 MJy sr—'.

We obtain the signal model map using the mean dust emissivity
map and the mean global offset. As superpixels do not overlap
and the emissivity varies over the superpixels, the estimated mean
dust emissivity map becomes discontinuous at the scale of HEALPIX
superpixel with 1.8° angular size (pixel size at Ngg. = 32). To
avoid this discontinuity, we first obtain the dust emissivity map
at Ngge = 512 by interpolating the Ngge = 32 pixel values using

Bayesian inference of dust emissivity ~ 4887
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Figure 12. Upper panel: Histogram of mean dust emissivity obtained in the
Planck 353 GHz intensity map analysis over MaskHI6. The map of these
dust emissivity values is given in the left panel of Fig. 11. Lower panel:
Variation of dust emissivity as a function of mean dust column density. (Ny)
represents the bin average HI column density and (€) are the average over
the superpixels within the same Ny, bins. The error bars are the standard
deviations in the respective bins.

interpolate.griddata function of SCIPY and then smooth
the resultant mean dust emissivity map with a Gaussian kernel of
1.8° FWHM. We construct the signal model map using the smoothed
dust emissivity map and the mean value of the global offset following
equation (3). We show the results of this analysis in Fig. 13. The
leftmost panel in Fig. 13 shows the CMB-subtracted Planck intensity
map at 353 GHz over the extended unmasked region eMaskHI6,
and the second panel shows the signal map. The third panel in
Fig. 13 shows the difference between the CMB-subtracted Planck
353 GHz intensity map and signal model map over the same sky
mask.

To compare the residual distribution with the expected distribution
of the residual at 353 GHz, we simulate a random Gaussian realiza-
tion of the CIB at a beam resolution of 16.2" (FWHM) using the
best-fitting CIB model angular power spectrum and an uncorrelated
Gaussian white noise realization from the E2E smoothed noise
variance map and add them. The expected distribution of the
total noise is centred around zero because both the CIB and the
instrumental noise have a zero mean. If our model assumptions are
correct, the distribution of the residual should be consistent with the
distribution of the expected fluctuations from the CIB and instrument
noise, similar to as seen in the simulated data (see Fig. 7). The fourth
panel of Fig. 13 shows the residual for masks with different sky
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Figure 13. Results of analysis with Planck data at 353 GHz in the MJy sr™! unit. First panel: the CMB subtracted Planck intensity map at 353 GHz over the
South Galactic Pole region, Second panel: the estimate of the signal map obtained using the posterior mean emissivity and the offset, Third panel: the residual

map, which is the difference between the difference map and the signal estimate, Fourth panel: histogram of the residual map for the analysis with different sky
masks. The dashed blue curve shows the expected residual based on the CIB and the instrument noise.

Table 4. Results of analysis of Planck intensity map at 353 GHz. We list the global offset (O) values and the mean dust emissivity over the superpixels ({e/))
estimated over different sky masks corresponding to different Ny cutoffs. Column o represents the uncertainty on the mean dust emissivity (/). We also

include the estimates from the Planck collaboration analysis for comparison.

Sky masks 0 (el o

(fsky [%]) [MIy sr~!] [MIy sr=!(10% cm=2)~1] [MIy sr=!(10% em=2)~1]
MaskHI2 (7.3) 0.1358 £ 0.0005 0.023 0.00022
MaskHI3 (11.5) 0.1332 4 0.0004 0.026 0.00019
MaskHI4 (13.9) 0.1311 =% 0.0004 0.029 0.00018
MaskHI5 (15.0) 0.1294 + 0.0003 0.030 0.00017
MaskHI6 (15.3) 0.1284 =+ 0.0003 0.031 0.00016

Planck analysis 0.130 £ 0.038 0.039 0.0014

(Planck intermediate results XVII 2014)
(Planck 2018 results I 2020)

fractions and compares it with the residual expected from the CIB
and the instrument noise for the respective sky fraction. Though
the residual distributions obtained using different MaskHIQ masks
are mostly consistent with the expected model residuals from the
CIB and instrumental noise contributions, they have a minor fraction
of pixels contributing to the non-Gaussian tails with increasing sky
fractions. The residual histogram is in logarithmic scale to highlight
the asymmetric nature of the positive tail arising from a very small
number of localized pixels in which dust is uncorrelated with the
Galactic HI1.

Table 4 shows the recovered offset and recovered mean emissivi-
ties at 353 GHz over different sky masks. As the available sky area
decreases, the mean value of dust emissivity decreases, indicating a
HT column density dependence of dust emissivity. We also see an
opposite trend in the global offset value, which increases with the
reduction in the sky area and decreasing average emissivity. This
is expected as a decrease in the global offset value compensates
for an increase in the mean dust emissivity. Over the range of Ny,
thresholds and corresponding sky area, the inferred offset parameter
ranges from 0.1358 MJysr—!' (over MaskHI2) to 0.1284 MJy sr™!
(over MaskHI6). This range encompasses the value of the CIB
monopole in the 353 GHz intensity map. The offset we infer is the
total zero-level of the map that includes the CIB or any other residual
zero-level. The differences between the CIB monopole value and the
value we infer could be due to the differences in (1) the smoothing
scale of the Planck and HI column density map, (2) the Planck
Galactic zero-level is estimated over a larger sky fraction (28 per cent

MNRAS 531, 4876-4892 (2024)

of the sky) than considered here, and (3) the difference in the local
velocity cloud H1 column density threshold (< 3 x 10%° cm~2) from
the LAB survey (Kalberla et al. 2005).

To check the robustness of the global offset value due to the
modelling error, we perform the inference with the two-template
fit using Galactic H1 and MS templates using the methodology
discussed in Section 2.2.2. We infer the offset O =0.1281 &+
0.0003 MJysr~! at 353 GHz over MaskHI6 for the two-template
fit. The average of best-fitting values of recovered emissivities for
Galactic H1 and MS templates are 0.031 MJysr—!(10*° cm=2)~!
and —0.6 x 10~ MJysr~!(10® cm~2)~!, respectively. The corre-
sponding 1o deviation on them are 0.007 MJy sr~!(10%° cm=2)~!
and 1.8 x 10™* MJysr='(10% cm~2)~!, respectively.

6 SUMMARY

We demonstrate the use of the Bayesian inference method to estimate
the pixel-dependent dust emissivity and the global offset in the diffuse
interstellar medium at far-infrared and submillimeter frequencies.
We utilize the dust-HI correlation to model the Galactic thermal
dust emission, using the integrated Galactic H1 column density map
from the GASS survey (McClure-Griffiths et al. 2009) as a template.
The signal model incorporates spatially varying dust emissivity and
global offset over a 6300 deg” region centred around the southern
Galactic pole. The HMC method allows efficient sampling of the
high dimensional posterior distribution of the dust emissivity and the
offset parameters.
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We first validate the method on the Planck simulations, which
include the CIB and instrumental noise. The dust emissivity param-
eters are fixed based on earlier Planck analysis (Planck intermediate
results XVII 2014). This validation process allows us to test the
analysis pipeline and fix the parameters of the HMC sampler that
we use for the real Planck data. Given that the data are on the
partial sky, the inference of the offset can be biased if any residual
CMB dipole is not taken into account. We demonstrate the nature of
the inferred parameters in the presence of residual CMB dipole at
217 GHz. We show that the amplitude of the residual CMB dipole
is highly correlated with the global offset parameter for partial sky
analysis. A small residual CMB dipole does not significantly affect
the global offset inference beyond the increase in the error bar of
the global offset, whose uncertainty is still significantly smaller than
the global offset value at 217 GHz. At 353 GHz, the error bar on
the fitted residual CMB dipole term increases due to increased noise
contributions from the CIB and the instrumental noise. However,
we note that the joint dipole and offset inference will be important
in the case of application to the NPIPE data where the CMB
dipole is retained in the frequency maps (Planck intermediate results
LVII 2020). We further test the robustness of the inferred offset
in the presence of multiple H1 templates in the signal model. We
consider the emission from the MS as an additional component in the
signal model. The global offset value does not change significantly
when considering the two-template analysis — Galactic HI and MS
templates.

As a demonstration of the method, we apply the same HMC
methodology to the Planck intensity map at 353 GHz. Results of this
analysis are depicted in Figs 11, 12, 13, and Table 4. As shown in
Fig. 11, we infer the emissivity of the dust over the sky area 6300 deg?
and its variation at scales larger than 1.8°. For the region of interest
over 6300 deg? area centred around the southern Galactic pole with
Ny, threshold Ny, < 6 x 10?°%cm™2, the spatial average of dust
emissivity is 0.031 MJy sr~'(10%° cm~2)~! with standard deviation
of 0.007 MJy sr~'(10%° cm~2)~!. The inferred offset for MaskHIG6 is
0.1284 4 0.0003 MJy st~ is close to the monopole of the Béthermin
et al. (2012) CIB model value 0.130 & 0.038 MJysr—! added to
the Planck intensity map at 353 GHz after setting the Galactic zero
level (Planck 2018 results I 2020). We further performed the same
analysis on the smaller sky mask by putting lower Ny, thresholds.
As expected, we find the inferred value of the global offset is stable
for different sky masks. We also find that the mean value of the dust
emissivity decreases as we go to the low column density regions or
lower sky masks. The non-Gaussian tail in the residual distribution
(caused by the emission not correlated with Ny,;) does depend on
Ny, threshold and sky fraction. This additional emission component
can be partly dealt with as an additional noise component in the data
model, denoted by IR in equation (1), which we leave for future
work.

The methodology introduced in this paper opens a new way to
jointly estimate the pixel-dependent dust emissivity and a global
offset over the field of interest using the dust-H1 correlation. The
HMC method is able to sample around 2 x 103 parameters and infer
the parameter posterior distribution. This method can be useful in
studying the 3D variation of dust SEDs to constrain the frequency
decorrelation of dust B-modes. In the future study, we will apply
this technique to study the dust emissivity properties associated
with different H1 phases (CNM, LNM, and WNM) of diffuse ISM
considered in Adak et al. (2020) and Ghosh et al. (2017), which will
be useful to extend the sky model of dust polarization at multiple
sub-mm frequencies. The residual maps estimated using this method
will be useful for estimating the CIB maps at the best angular

Bayesian inference of dust emissivity ~ 4889

resolution of Planck. In the forthcoming paper, we will apply the
same methodology to other Planck HFI frequency maps to separate
the thermal dust emission from the CIB emission and characterise
the dust emissivity parameters.

ACKNOWLEDGEMENTS

The Planck Legacy Archive (PLA) contains all public products
originating from the Planck mission, and we take the opportunity
to thank ESA/Planck and the Planck Collaboration for the same.
This work has used HI data of the GASS survey headed by the
Parkes Radio Telescope, a part of the Australia Telescope funded
by the Commonwealth of Australia for operation as a National
Facility managed by CSIRO. Some of the results in this paper have
been derived using the HEALPIX package. All the computations in
this paper were run on the Aquila cluster at NISER. This work
was supported by the Science and Engineering Research Board,
Department of Science and Technology, Govt. of India, grant number
SERB/ECR/2018/000826. DA acknowledges UGC for providing
Ph.D. fellowship when a major part of this project is done. DA
acknowledges IMSc for providing a postdoc fellowship for one year
when the rest of the project is completed. SS acknowledges support
from SERB for the Research Associate position at NISER, during
which a part of this work was performed, and the Beus Center for
Cosmic Foundations for current support. SS would like to thank
NISER Bhubaneswar for the postdoctoral fellowship. GL acknowl-
edges funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme
(grant agreement no. 788212) and from the Excellence Initiative
of Aix-Marseille University-AxMidex, a French ‘Investissements
d’Avenir’ programme.

DATA AVAILABILITY

The Planck 353 GHz intensity map and the component-separated
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APPENDIX A: DETAILS OF HMC
IMPLEMENTATION

Different MCMC sampling methods differ from each other mainly
in the way they generate the proposed point. HMC uses Hamiltonian
dynamics to generate the proposed point (Duane et al. 1987;
Neal 2012). This is accomplished by introducing an additional
set of parameters, called momentum parameters, one momentum
parameter (p;) corresponding to each parameter of interest (g;). The
momentum variables are chosen to follow a Gaussian distribution
with a covariance defined by a mass matrix. One has to choose the
mass matrix specific to the problem. This aspect is similar to the
choice of parameters of the proposal distribution in sampling with
the Metropolis—Hastings algorithm. The multidimensional Gaussian
distribution of momenta is augmented with the original probability
distribution that needs to be sampled. For example, if we have ‘g;” as
n number of parameters of interest with the probability distribution
P({gq:}), the probability distribution that is sampled in HMC is the
joint probability distribution of p; and ¢;:
exp(—H)

Pqi, pi}) = RISCEN

1 Pr'p

= e OF [_ 2

Here, p is the vector of momenta { p; } associated with the parameters
and H is the Hamiltonian comprising of a Kinetic Energy term and
a Potential Energy term:

] Pai)). (AD

1
H(gi, pi}) = Epﬁr'p —In[P({g; )] - (A2)

In the above equation, the first term on the right-hand side is the
kinetic energy term, and the second term, — In[P({g;})], acts as
potential energy. p is the mass matrix corresponding to the set of
parameter {g;}. In general, p is chosen as equal to the inverse of the
covariance matrix of the parameters of interest. This choice may lead
to p having off-diagonal elements, leading to more computational
cost. Instead, we choose the diagonal mass matrix. Further details
about this choice and its implications are discussed later in this
section. With a diagonal mass matrix, the resulting Hamiltonian is

p?
ll_ — In[P({g:}] - (A3)

Hllgi, =) 5

Hamilton’s equations for variable ¢ and the conjugate momentum
p are

. _dg OH . dp oH
= — =— and = — =

T="ar T op P=ar = 3
The above equations are solved using symplectic integration meth-
ods. In this work, we choose the Leap-Frog method to simulate the
Hamiltonian dynamics.

(A4)

A

pt+A/2)=p@)+ EP(Q(t)); (AS)

qit +A)=q@)+ ptt + A/2)A /s (A6)
A

P+ A) = p(i+ A/2) + 5 plg(t + A)). (A7)

In the above equations, p(g(z)) is the momentum derivative substi-
tuted from equations (17) or (18) depending on the parameter.
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Below is the schematic of the algorithm we followed in sampling
the posterior distribution. The algorithm is written in terms of
the generic variables g; (which refer to {€/", O,, aif/ Dy and
Di-

1: Initialize ¢

2: fork = 1...N,do

3: p ~ N(0, n); where NV is Gaussian distribution with variance

.
(k=1)

4 40y Py =4 p

5: forj =1..Ndo

6:  aLeap-Frog move from (¢f;_,), p{;_p) to (455, Pf;)

7: end for

8: 4", p* =4y Pln

9: Accept ¢g*, p* with the  probability

min (1, e*H(q*'P*”H(q(k*”‘P(k*”>). If the proposed point is rejected,

then g*, pF = g* 1, pF !

10: end for

As is common in the MCMC methods, we start the algorithm with
areasonable guess of the parameter values {ql.(o) }. The corresponding
momenta { pf‘ } are drawn from a multinormal distribution at the start
of each k' step, including the very first step. With this as the initial
point on the phase space trajectory, Hamilton’s equations evolve
these variables in the phase space. This evolution is simulated by
N Leap-Frog jumps to arrive at a proposed point in the phase
space g*, p*. The leap-frog method is volume-preserving and time-
reversible. However, Hamiltonian () may not be conserved in
practical numerical computations due to leapfrog discretization,
which can introduce a bias with respect to the target distribution. This
bias can be reduced with a sufficiently small step size, which leads
to less discretization error. To avoid this bias, we use the Metropolis
rule, according to which the proposed point is accepted with the
probability equal to the minimum of (1, e=#@"-P)+H@ ™" p*=0)y

Once the samples of (p;, ¢g;) are obtained, getting the Monte
Carlo samples of g;, which samples the distribution P(g;), is
straightforward. Discarding the samples of p; from the joint samples
of (pi, g;) leads to the marginalization of the distribution P(g;, p;)
with respect to p;. As p; and ¢; are independent variables, the
resultant samples of g; are the desired samples of ¢; drawn from
the probability distribution of our interest P(g;).

A1l Burn-in, correlation length, and convergence test

Here, we discuss some considerations for analysing these Markov
chains before using these chains to draw the inference.

Al.l Burn-in

We neglect some of the initial samples from the chain as Burn-in.
To quantitatively determine the Burn-in sample size, we monitor
the x? using a model map estimated with the increasing number
of samples in the chains of the parameters. The model map is built
from the posterior mean of the parameter chain with an increasing
number of samples. Burn-in sample then consists of the initial points
where x? is away from the total number of degrees of freedom. In
practice, we discard the first 10> samples, which is much larger than
the Burn-in sample determined using x? criteria. Note that, in the
absence of explicit priors on the parameters and Gaussian likelihood,
x? is equal to the logarithm of the posterior up to a constant
term.

Bayesian inference of dust emissivity 4891

Al.2 Correlation length

When we draw the samples from the target distribution, all the
samples may not be independent because of the correlation within a
chain of samples. The effective number of the independent samples
out of the total samples, Ny, is negr = N, /L, where correlation length,
L, is defined as,

Imax

L=1+2) p@). (A8)

t=1

where p(t) is the autocorrelation coefficient of the chain for lag ¢
(Taylor et al. 2008).

Correlation length depends on the total jump, s = N A in the Leap-
Frog scheme and the scale of the distribution of the parameters of
the problem. The total jump s should be of the order of scale of dis-
tribution of the parameters to get less correlated samples. A controls
the accuracy with which we implement Hamiltonian dynamics. This,
in turn, determines the acceptance rate of the proposed sample. For
a given A, N determines how far the proposed sample is from the
current position. If A is chosen to be too small, N needs to be large
enough to move a sufficient distance along the trajectory, resulting
in increased computation time. In contrast, for the choice of a large
value of A, the computation of the phase space trajectories becomes
relatively less accurate, resulting in a reduced acceptance rate. If NV is
chosen to be small, samples are correlated, whereas too large a value
of N may bring back the proposed sample very close to the starting
point after completing Leap-Frog jumps (Neal 2012). In Appendix B,
we show the difference in correlation length for fixed and variable
Leap-Frog jumps. The accuracy of Hamiltonian dynamics can be
increased by efficient choice of total jump in the Leap-Frog scheme
(Hoffman & Gelman 2014; Bou-Rabee & Sanz-Serna 2017; Hoffman
et al. 2021; Sountsov & Hoffman 2021).

As discussed in Section 2.4, we choose the mass matrix g to
make step size A independent of the scale of the target distribution.
In the approximations considered in our analysis, neglecting the
correlation between subpixels belonging to two different superpixels
renders the mass matrix sparse and diagonal dominant. The only
non-zero off-diagonal terms are those due to the cross-correlation
among emissivity, offset and spherical harmonic coefficients (see
Section 2.4). The rest of the off-diagonal terms are the cross-
correlation between emissivities at different superpixels, which are
zero due to the approximations considered in our analysis. Inverting
the mass matrix and evolving the vector forms of the Leap-Frog
equations with p~! are relatively computationally costly when
dealing with the non-diagonal mass matrix. Therefore, we neglect
the off-diagonal terms in the column (and row) of the mass matrix
that connect the emissivity and offset parameters. As a consequence
of this choice, we have to choose two separate step sizes, A, and
Ao, for emissivity and offset, respectively. For the various schemes
used to tune the HMC hyper-parameters, see Hoffman & Gelman
2014, Bou-Rabee & Sanz-Serna 2017, Hoffman et al. 2021, and
Sountsov & Hoffman 2021 and for their implementation, refer to the
probabilistic programming frameworks such as STAN (Carpenter
et al. 2017), PyMC (Salvatier et al. 2016), and pyro (Bingham et al.
2019).

Al.3 Convergence test

To quantify the convergence of the Monte Carlo sample, we adopt
the Gelman—Rubin test (Gelman & Rubin 1992). To implement this
test, one needs multiple Monte Carlo chains starting with sufficiently
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separated positions in the parameter space. One then computes the
following ratio R, which should be ideally equal to one.

R= W (A9)

where V is the variance of the given parameter between the chain and
W is the variance of the same parameter along the chain (Brooks &
Gelman 1998; Heavens 2009). In practice, it is recommended that R
should be less than 1.01 to consider the sample as converged to the
distribution being sampled (Vehtari et al. 2021).

APPENDIX B: VARIABLE LEAP-FROG STEPS

To investigate the change in correlation length with Leap-Frog jumps
N, we perform the HMC sampling with variable N. Following Neal
(2012), we randomly draw N at each iteration from a uniform distri-
bution, ¢/ [9, 15] and apply the HMC sampler on the simulated map at
353 GHz over MaskHI6 as discussed in Section 2.4. We then compute
the compute the autocorrelation coefficient of emissivity € at one
superpixel and the global offset O as in Section 4.2. Fig. B1 shows
the autocorrelation coefficient for fixed Leap-Frog jumps N = 10
(Section 4.2) and variable Leap-Frog jumps N € [9, 15]. It shows
that for variable N, the correlation length decreases considerably for
O. Variable N minimizes the correlation among the various global
parameters for multiple template fit or fit with dipole contribution.

1.0
e for N =10
0.8 —— O for N =10
-== ¢for N € [9,15]
0.6 O for N € [9,15]
= 04 K
= AN
02 F ™
. "
0.0 p---—---- Tas=s
—0.2
1 sl n A | " L
10° 10! 102 103

lag t

Figure B1. Same as Fig. 2, but for fixed and variable values of Leap-Frog
jumps N. For a fixed N = 10, the correlation length for € and O are 10 and
102, respectively. For variable N € [9, 15], the correlation length for € and
O are 7 and 57, respectively.
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