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The solution to empirical risk minimization with f -divergence regularization (ERMf DR) is presented under mild conditions on f . Under such conditions, the optimal measure is shown to be unique and examples for particular choices of the function f are presented. Previously known solutions are obtained as special cases, including the ERM with relative entropy regularization (Type-I and Type-II). The analysis of the solution unveils the following properties of f -divergences when used in the ERM-f DR problem: iq f -divergence regularization forces the support of the solution to coincide with the support of the reference measure, which introduces a strong inductive bias that dominates the evidence provided by the training data; and iiq any f -divergence regularization is equivalent to a different f -divergence regularization with an appropriate transformation of the empirical risk function.

Introduction

Empirical Risk Minimization (ERM) is a fundamental principle in machine learning. It is a tool for selecting a model from a given set by minimizing the empirical risk, which is the average loss or error induced by such a model on each of the labeled patterns available in the training dataset [START_REF] Vapnik | On a perceptron class[END_REF][START_REF] Vapnik | Principles of risk minimization for learning theory[END_REF]. In a nutshell, ERM aims to find a model that performs well on a given training dataset. However, ERM is prone to overfitting [START_REF] Krzyzak | Nonparametric estimation and classification using radial basis function nets and empirical risk minimization[END_REF][START_REF] Deng | Regularized extreme learning machine[END_REF][START_REF] Arpit | A closer look at memorization in deep networks[END_REF], which affects the generalization capability of the selected model [START_REF] Tikhonov | Solution of incorrectly formulated problems and the regularization method[END_REF][START_REF] Horel | Application of ridge analysis to regression problems[END_REF][START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]. To remediate this phenomenon, the solution of ERM must exhibit a small sensitivity to variations in the training dataset, which is often obtained via regularization [START_REF] Bousquet | Stability and generalization[END_REF][START_REF] Vapnik | On the uniform convergence of relative frequencies of events to their probabilities[END_REF][START_REF] Aminian | An exact characterization of the generalization error for the Gibbs algorithm[END_REF][START_REF] Perlaza | Empirical risk minimization with generalized relative entropy regularization[END_REF][START_REF] Zou | The worst-case datagenerating probability measure[END_REF].

In statistical learning theory, the ERM problem amounts to the minimization of the expected empirical risk over a subset of all probability measures that can be defined on the set of models. In this case, regularization is often obtained by adding to the expected empirical risk a statistical distance from the optimization measure, weighted by a regularization factor. Such a statistical distance is essentially a non-negative measure of dissimilarity between the optimization measure and the reference measure, which might be a σ-finite measure and not necessarily a probability measure, as shown in [START_REF] Perlaza | Empirical risk minimization with generalized relative entropy regularization[END_REF] and [START_REF] Perlaza | Empirical risk minimization with relative entropy regularization: Optimality and sensitivity[END_REF]. A key observation is that the reference measure often represents prior knowledge or the inductive bias on the solution.

The notion of f -divergence, introduced in [START_REF] Rényi | On measures of information and entropy[END_REF], and further studied in [START_REF] Sason | f -divergence inequalities[END_REF] and [START_REF] Csiszár | Information-type measures of difference of probability distributions and indirect observation[END_REF], describes a family of hallmark statistical distances. A popular f -divergence is the relative entropy [START_REF] Kullback | On information and sufficiency[END_REF], which due to its asymmetry, leads to two different problem formulations known as Type-I and Type-II ERM with relative entropy regularization (ERM-RER) [START_REF] Daunas | Empirical risk minimization with relative entropy regularization Type-II[END_REF][START_REF] Perlaza | Sensitivity of the Gibbs algorithm to data aggregation in supervised machine learning[END_REF][START_REF] Daunas | Analysis of the relative entropy asymmetry in the regularization of empirical risk minimization[END_REF]. Relative entropy regularization also plays a central role in obtaining the worst-case data-generating probability measure introduced in [START_REF] Zou | The worst-case datagenerating probability measure[END_REF] and [START_REF] Zou | Generalization analysis of machine learning algorithms via the worst-case data-generating probability measure[END_REF]. The Type-I ERM-RER problem exhibits a unique solution, which is a Gibbs probability measure, independently of whether the reference measure is a probability measure or a σ-finite measure, as shown in [START_REF] Perlaza | Empirical risk minimization with generalized relative entropy regularization[END_REF]. The Type-II ERM-RER problem also has a unique solution when the reference measure is a probability measure. This solution exhibits properties that are analogous to those of the Gibbs probability measure [START_REF] Perlaza | Sensitivity of the Gibbs algorithm to data aggregation in supervised machine learning[END_REF]. Type-I ERM-RER appears to be the more popular regularized ERM problem, despite the fact that both types of regularization have distinct advantages. See for instance, [START_REF] Perlaza | Empirical risk minimization with relative entropy regularization: Optimality and sensitivity[END_REF][START_REF] Perlaza | Sensitivity of the Gibbs algorithm to data aggregation in supervised machine learning[END_REF][START_REF] Robert | The Bayesian Choice: From Decision-theoretic Foundations to Computational Implementation[END_REF][START_REF] Mcallester | Some PAC-Bayesian theorems[END_REF][START_REF] Valiant | A theory of the learnable[END_REF][START_REF] Shawe-Taylor | A PAC analysis of a Bayesian estimator[END_REF][START_REF] Cullina | PAC-learning in the presence of adversaries[END_REF][START_REF] Vapnik | An overview of statistical learning theory[END_REF][START_REF] Raginsky | Informationtheoretic analysis of stability and bias of learning algorithms[END_REF][START_REF] Russo | How much does your data exploration overfit? Controlling bias via information usage[END_REF][START_REF] Zou | The generalization performance of ERM algorithm with strongly mixing observations[END_REF][START_REF] Futami | Information-theoretic analysis of test data sensitivity in uncertainty[END_REF] and references therein.

Optimization problems with f -divergence regularization have been explored before in [START_REF] Teboulle | Entropic proximal mappings with applications to nonlinear programming[END_REF] and [START_REF] Beck | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF] for the discrete case. In [START_REF] Alquier | Non-exponentially weighted aggregation: regret bounds for unbounded loss functions[END_REF], the problem of nonexponentially weighted aggregation is studied. Such a problem involves an ERM with f -divergence regularization (ERM-f DR) identical to the one studied in this work. Nonetheless, the ERM-f DR imposes strong solution existence conditions on the function f , and thus, it holds for a reduced number of f -divergences. This work presents the solution to the ERM-f DR problem using a method of proof that differs from those in [START_REF] Teboulle | Entropic proximal mappings with applications to nonlinear programming[END_REF][START_REF] Beck | Mirror descent and nonlinear projected subgradient methods for convex optimization[END_REF] and [START_REF] Alquier | Non-exponentially weighted aggregation: regret bounds for unbounded loss functions[END_REF] and goes along the lines of the methods Inria in [START_REF] Perlaza | Empirical risk minimization with generalized relative entropy regularization[END_REF][START_REF] Zou | The worst-case datagenerating probability measure[END_REF] and [START_REF] Perlaza | Sensitivity of the Gibbs algorithm to data aggregation in supervised machine learning[END_REF], which rely on the notion of the Gateaux derivative [START_REF] Gateaux | Sur les fonctionnelles continues et les fonctionnelles analytiques[END_REF] and vector space methods [START_REF] Luenberger | Optimization by Vector Space Methods[END_REF].

The method of proof favored in this paper enables the derivation of new results that have not been reported before. Firstly, the permissible values of the regularization factor that guarantee the existence of a solution are analytically characterized. Secondly, the obtained solution holds for a family of f -divergences that is larger than the one in [START_REF] Alquier | Non-exponentially weighted aggregation: regret bounds for unbounded loss functions[END_REF]. For instance, the Type-II ERM-RER studied in [START_REF] Daunas | Analysis of the relative entropy asymmetry in the regularization of empirical risk minimization[END_REF] and the ERM with Jensen-Shannon divergence regularization are both special cases of the ERM-f DR problem studied in this paper. These are examples of ERM-f DR problems that are not considered in [START_REF] Alquier | Non-exponentially weighted aggregation: regret bounds for unbounded loss functions[END_REF]. More importantly, the new method of proof allows showing that any f -divergence regularization is equivalent to a different f -divergence regularization with an appropriate transformation of the empirical risk function.

Empirical Risk Minimization Problem

Let M, X and Y, with M ⊆ R d and d ∈ N, be sets of models, patterns, and labels, respectively.

A pair px, yq ∈ X ×Y is referred to as a labeled pattern or data point, and a dataset is represented by the tuple ppx 1 , y 1 q, px 2 , y 2 q, . . . , px n , y n qq ∈ pX × Yq n .

Let the function h : M × X → Y be such that the label assigned to a pattern x ∈ X according to the model θ ∈ M is hpθ, xq. Then, given a dataset z = ppx 1 , y 1 q, px 2 , y 2 q, . . . , px n , y n qq ∈ pX × Yq n ,

the objective is to obtain a model θ ∈ M, such that, for all i ∈ {1, 2, . . . , n}, the label assigned to pattern x i , which is hpθ, x i q, is "close" to the label y i . This notion of "closeness" is formalized by the function

: Y × Y → r0, +∞q, (2) 
such that the loss or risk induced by choosing the model θ ∈ M with respect to the labeled pattern px i , y i q, with i ∈ {1, 2, . . . , n}, is phpθ, x i q, y i q. The risk function is assumed to be nonnegative and to satisfy py, yq = 0, for all y ∈ Y.

The empirical risk induced by a model θ with respect to the dataset z in (1) is determined by the function L z : M → r0, +∞q, which satisfies

L z pθq 1 n n i=1
phpθ, x i q, y i q.

(3)

The ERM problem with respect to the dataset z in (1) consists of the optimization problem:

min θ∈M L z pθq. (4) 
The set of solutions to such a problem is denoted by

T pzq arg min θ∈M L z pθq. (5) 
Note that if the set M is finite, the ERM problem in (4) has a solution, and therefore, it holds that |T pzq| > 0. Nevertheless, in general, the ERM problem does not always have a solution. That is, there exist choices of the loss function and the dataset z that yield |T pzq| = 0.

3 The ERM with f -Divergence Regularization

Preliminaries

For ease of notation, the expected empirical risk with respect to a given measure is expressed via the following functional R z , defined below.

Definition 3.1 (Expected Empirical Risk). The expectation of the empirical risk L z pθq in (3), when θ is sampled from a probability measure P ∈ pMq, is determined by the functional R z : pMq → r0, +∞q, such that

R z pP q = L z pθqdP pθq. (6) 
In the following, the family of f -divergences is defined.

Definition 3.2 (f -divergence [START_REF] Csiszár | Information-type measures of difference of probability distributions and indirect observation[END_REF]). Let f : r0, ∞q → R be a convex function with f p1q = 0 and f p0q lim x→0 + f pxq. Let P and Q be two probability measures on the same measurable space, with P absolutely continuous with Q. The f -divergence of P with respect to Q, denoted by D f pP Qq, is

D f pP Qq f ˆdP dQ pθq ˙dQpθq, (7) 
where the function dP dQ is the Radon-Nikodym derivative of P with respect to Q. In the case in which the function f is continuous and differentiable, denote by 9 f : r0, +∞q → R and 9 f -1 : R → r0, +∞q, the derivative of f and the inverse of the function 9 f , respectively.

The set of probability measures that can be defined upon the measurable space pM, BpMqq, with BpMq being the Borel σ-field on M, is denoted by pMq. Given a probability measure Q ∈ pMq the set containing exclusively the probability measures in pMq that are absolutely continuous with respect to Q is denoted by Q pMq. That is,

Q pMq {P ∈ pMq : P Q}, (8) 
where the notation P Q stands for the measure P being absolutely continuous with respect to the measure Q.

Inria

Problem Formulation

The ERM-f DR problem is parametrized by a probability measure Q ∈ pMq, a positive real λ, and an f -divergence (Definition 3.2). The measure Q is referred to as the reference measure, λ as the regularization factor, and f as the regularization function. Given the dataset z ∈ pX × Yq n in (1), the ERM-f DR problem, with parameters Q , λ and f , consists of the following optimization problem:

min P ∈ Q pMq R z pP q + λD f pP Qq. ( 9 
)

Solution to the ERM-f DR

The solution of the ERM-f DR problem in ( 9) is presented in the following theorem under the assumption that the function f is strictly convex.

Theorem 3.1. If the function f in (9) is strictly convex, differentiable and there exists a β in

B = t ∈ R : ∀θ ∈ supp Q, 0 < 9 f -1 ˆ-t + L z pθq λ ˙ , (10a) 
such that

9 f -1 ˆ-β + L z pθq λ ˙dQpθq = 1, (10b) 
then the solution to the optimization problem in (9), denoted by P

pQ,λq

Θ|Z=z ∈ Q pMq, is unique, and for all θ ∈ supp Q satisfies dP pQ,λq Θ|Z=z

dQ pθq = 9 f -1 ˆ-β + L z pθq λ ˙. (11) 
Proof: The optimization problem in ( 9) can be re-written in terms of the Radon-Nikodym derivative of the optimization measure P with respect to the measure Q, which yields

min P ∈ Q pMq L z pθq dP dQ pθq dQpθq + λ f ˆdP dQ pθq ˙dQpθq (12a) s.t. dP dQ pθqdQpθq = 1. ( 12b 
)
The remainder of the proof focuses on the problem in which the optimization is over the function dP dQ : M → r0, ∞q, which represents the Radon-Nikodym derivate of P with respect to Q. Hence, instead of optimizing the measure P , the optimization is over the function dP dQ . This is due to the fact that for all P ∈ Q pMq, the Radon-Nikodym derivate dP dQ is unique up to sets of zero measure with respect to Q. Let M be the set of measurable functions M → R with respect to the measurable spaces pM, F q and pR, BpRqq that are absolutely integrable with respect to Q. That is, for all ĝ ∈ M , it holds that |ĝpθq|dQpθq<∞.

Hence, the optimization problem of interest is

min g∈M L z pθqgpθq dQpθq + λ f pgpθqqdQpθq (14a) s.t. gpθqdQpθq = 1. (14b) 
Let the Lagrangian of the optimization problem in ( 14) be L :

M × R → R such that Lpg, βq= L z pθqgpθq dQpθq + λ f pgpθqq dQpθq + β ˆ gpθq dQpθq -1 ˙, (15) 
= ´gpθqpL z pθq + βq + λf pgpθqq ¯dQpθq -β, (16) 
where β is a real that acts as a Lagrange multiplier due to the constraint (14b).

Let ĝ : M → R be a function in M . The Gateaux differential of the functional

L in (15) at pg, βq ∈ M × R in the direction of ĝ, if it exists, is ∂Lpg, β; ĝq d dγ Lpg + γĝ, βq ˇˇˇγ =0 . (17) 
The proof continues under the assumption that the function g and ĝ are such that the Gateaux differential in [START_REF] Csiszár | Information-type measures of difference of probability distributions and indirect observation[END_REF] exists. Under such an assumption, let the function r : R → R satisfy for all γ ∈ p-, q, with arbitrarily small, that

rpγq=Lpg + γĝ, βq (18) 
= L z pθqpgpθq + γĝpθqq dQpθq + λ f pgpθq + γĝpθqq dQpθq

+ β ˆ pgpθq + γĝpθqqdQpθq -1 ˙(19) = gpθqpL z pθq + βqdQpθq + γ ĝpθqpL z pθq + βqdQpθq -β +λ f pgpθq + γĝpθqq dQpθq, (20) 
where the last equality is simply an algebraic re-arrangement of terms. From the assumption that the function g and ĝ are such that the Gateauz differential Inria in [START_REF] Csiszár | Information-type measures of difference of probability distributions and indirect observation[END_REF] exists, it follows that the function r in ( 18) is differentiable at zero. Note that the first two terms in (20) are independent of γ; the third term is linear with γ; and the fourth term can be written using the function r : R → R such that for all γ ∈ p-, q, with arbitrarily small, it holds that

rpγq=λ f pgpθq + γĝpθqq dQpθq. (21) 
Under the same assumption, it follows that the function r in ( 21) is differentiable at zero. That is, the limit

lim δ→0 1 δ prpγ + δq -rpγqq (22) 
exists for all γ ∈ p-, q, with arbitrarily small. The proof of the existence of such a limit relies on the fact that f is strictly convex and continuous. This implies that f is Lipschitz continuous, which implies that for all θ ∈ M and for all γ ∈ p-, q, with > 0 arbitrarily small, it holds that

|f pgpθq + pγ + δqĝpθqq -f pgpθq + γĝpθqq| ≤ c |ĝpθq| |δ|, (23) 
for some constant c positive and finite, which implies that

ˇˇˇf pgpθq + pγ + δqĝpθqq -f pgpθq + γĝpθqq δ ˇˇˇ≤ c |ĝpθq|. ( 24 
)
Using these arguments, the limit in [START_REF] Zou | Generalization analysis of machine learning algorithms via the worst-case data-generating probability measure[END_REF] satisfies for all γ ∈ p-, q, with > 0 arbitrarily small, that

lim δ→0 1 δ prpγ + δq -rpγqq=λ lim δ→0 1 δ ˆ f pgpθq + pγ + δqĝpθqq dQpθq - f pgpθq + γĝpθqq dQpθq ˙(25) =λ lim δ→0 ˆf pgpθq + pγ + δqĝpθqq δ - f pgpθq + γĝpθqq δ ˙dQpθq ( 26 
)
=λ 9 f pgpθq + γĝpθqqĝpθq dQpθq (27) 
<∞,

where both the equality in [START_REF] Cullina | PAC-learning in the presence of adversaries[END_REF] and the inequality in [START_REF] Vapnik | An overview of statistical learning theory[END_REF] follow from noticing that the conditions for the dominated convergence theorem hold [38, Theorem 1.6.9], namely:

• For all γ ∈ p-, q, with > 0, the inequality in [START_REF] Mcallester | Some PAC-Bayesian theorems[END_REF] holds;

• The function ĝ in [START_REF] Mcallester | Some PAC-Bayesian theorems[END_REF] satisfies the inequality in [START_REF] Zou | The worst-case datagenerating probability measure[END_REF]; and

• For all θ ∈ M and for all γ ∈ p-, q, with > 0 arbitrarily small, it holds that

lim δ→0 f pgpθq + pγ + δqĝpθqq -f pgpθq + γĝpθqq δ = d dγ f pgpθq + γĝpθqq (29) = 9 f pgpθq + γĝpθqq, (30) 
which follows from the fact that f is differentiable.

Hence, the derivative of the real function r in ( 20) is

d dγ rpγq= ĝpθqpL z pθq + βqdQpθq + λ 9 f pgpθq + γĝpθqqĝpθq dQpθq (31) = ĝpθq ´Lz pθq + β + λ 9 f pgpθq + γĝpθqq ¯dQpθq. (32) 
From ( 17) and [START_REF] Futami | Information-theoretic analysis of test data sensitivity in uncertainty[END_REF], it follows that

∂Lpg, β; ĝq= d dγ rpγq ˇˇˇγ =0 (33) 
= ĝpθq ´Lz pθq

+ β + λ 9 f pgpθqq ¯dQpθq. ( 34 
)
The relevance of the Gateaux differential in [START_REF] Teboulle | Entropic proximal mappings with applications to nonlinear programming[END_REF] 

This implies that for all θ ∈ supp Q,

L z pθq + β + λ 9 f ¨dP pQ,λq Θ|Z=z dQ pθq '= 0, (37) 
and thus, dP pQ,λq Θ|Z=z

dQ pθq = 9 f -1 ˆ-β + L z pθq λ ˙, (38) 
Inria where β is chosen to satisfy (10b) and guarantee that for all θ ∈ supp Q, it holds that 9 f -1 ´-β+Lzpθq λ ¯∈ p0, ∞q. That is,

β ∈ t ∈ R : ∀θ ∈ supp Q, 0 < 9 f -1 ˆ-t + L z pθq λ ˙ , (39) 
which is an assumption of the theorem.

Finally, note that the objective function in ( 14) is the sum of two terms. The first one, i.e., L z pθqgpθqdQpθq, is linear with g. The second, i.e., -logpgpθqqdQpθq, is strictly convex with g from the assumption that f is strictly convex. Hence, given that λ > 0, the sum of both terms is strictly convex with g. This implies the uniqueness of P Corollary 3.1 reveals that, as is also the case with Type-II regularization, the support of the reference measure Q establishes an inductive bias that cannot be overcome, regardless of the f -divergence choice. That is, the support of the solution is the support of the reference measure. In a nutshell, the use of any strictly convex f -divergence regularization inadvertently forces the solution to coincide with the support of the reference independently of the training data. Remarkably, from [39, Corollary 23.5.1] the function 9

f -1 is the derivative of the convex conjugate of f .

Examples

Under the assumptions in Theorem 3.1 and assuming that B in (10a) is not empty, this section presents the solutions for typical choices of the function f .

Kullback-Leibler Divergence

Let the function f : p0, +∞q → R be such that f pxq = x logpxq, whose derivative satisfies

9 f pxq = 1 + logpxq. (40a) 
In this case, the resulting f -divergence D f pP Qq is the relative entropy of P with respect to Q. From (40a) and Theorem 3.1, it holds that for all θ ∈ supp Q,

dP pQ,λq Θ|Z=z dQ pθq = exp ˆ-β + λ + L z pθq λ ˙(40b) RR n°9521 = exp `-1 λ L z pθq ˘ exp `-1 λ L z pνq ˘dQpνq . ( 40c 
)
This result has been independently reported by several authors in [START_REF] Perlaza | Empirical risk minimization with generalized relative entropy regularization[END_REF][START_REF] Perlaza | Empirical risk minimization with relative entropy regularization: Optimality and sensitivity[END_REF][START_REF] Raginsky | Informationtheoretic analysis of stability and bias of learning algorithms[END_REF][START_REF] Zou | The generalization performance of ERM algorithm with strongly mixing observations[END_REF][START_REF] Perlaza | On the validation of Gibbs algorithms: Training datasets, test datasets and their aggrega-tion[END_REF], and the references therein.

Reverse Relative Entropy Divergence

Let the function f : p0, +∞q → R be such that f pxq = -logpxq, whose derivative satisfies

9 f pxq = - 1 x . (41a) 
In this case, the resulting f -divergence D f pP Qq is the relative entropy of Q with respect to P . From (41a) and Theorem 3.1, it holds that for all θ ∈ supp Q,

dP pQ,λq Θ|Z=z dQ pθq = λ β + L z pθq . (41b) 
This result has been reported in [START_REF] Zou | The worst-case datagenerating probability measure[END_REF] and [START_REF] Daunas | Analysis of the relative entropy asymmetry in the regularization of empirical risk minimization[END_REF].

Jeffrey's Divergence

Let the function f : p0, +∞q → R be such that f pxq = x logpxq -logpxq, whose derivative satisfies

9 f pxq = logpxq + 1 - 1 x . (42a) 
In this case, the resulting f -divergence D f pP Qq is Jeffrey's divergence between P and Q. From equation (42a) and Theorem 3. 

' + β + λ + L z pθq λ ˙-exp ˆβ + λ + L z pθq λ ˙. (42g) 
Let W 0 : r0, ∞q → r0, ∞q be the Lambert function, which for a function g : R → R such that gpxq = x exppxq satisfies W 0 pgpxqq = x. Hence, from the equality in (42g), it holds that

exp ˆβ + λ + L z pθq λ = exp ¨log ¨dP pQ,λq Θ|Z=z dQ pθq '+ β + λ + L z pθq λ ' ¨log ¨dP pQ,λq Θ|Z=z dQ pθq '+ β + λ + L z pθq λ ', (42h) 
which in terms of the Lambert function yields

W 0 ˆexp ˆβ + λ + L z pθq λ ˙˙= log ¨dP pQ,λq Θ|Z=z dQ pθq '+ β + λ + L z pθq λ . (42i) 
From (42a) and Theorem 3.1, it holds that for all θ ∈ supp Q,

dP pQ,λq Θ|Z=z dQ pθq = exp ˆW0 ˆexp ˆβ + λ + L z pθq λ ˙- β + λ + L z pθq λ ˙. (42j) 

Hellinger Divergence

Let the function f : p0, +∞q → R be such that f pxq = p1 -? xq 2 , whose derivative satisfies

9 f pxq = 1 - 1 ? x . (43a) 
In this case, the resulting f -divergence D f pP Qq is Hellinger's divergence of P with respect to Q. From (43a) and Theorem 3.1, it holds that for all θ ∈ supp Q, dP pQ,λq Θ|Z=z

dQ pθq = ˆλ β + λ + L z pθq ˙2. (43b) 

Jensen-Shannon Divergence

Let the function f : p0, +∞q → R be such that

f pxq = x log ´2x x+1 ¯+ log ´2 x+1 ¯,
whose derivative satisfies

9 f pxq = log ˆ2x x + 1 ˙. ( 44a 
)
From (44a) and Theorem 3.1, it holds that for all θ ∈ supp Q,

dP pQ,λq Θ|Z=z dQ pθq = 1 2 exp ´β+Lzpθq λ ¯-1 . ( 44b 
)
χ 2 Divergence
Let the function f : p0, ∞q → R be such that f pxq = px -1q 2 , whose derivative satisfies

9 f pxq = 2px -1q. ( 45a 
)
In this case, the resulting f -divergence D f pP Qq is the Pearson-divergence, also known as, the χ 2 -divergence. From (45a) and Theorem 3.1, it holds that for all θ ∈ supp Q,

dP pQ,λq Θ|Z=z dQ pθq = 2λ -β -L z pθq 2λ . ( 45b 
)

Analysis of Regularization Factor

This section explores the set of permissible regularization factors, which is defined as the collection of regularization factors for which the optimization problem in ( 9) admits a solution. The analysis of the set B, as defined in (10a), forms the basis for comprehending this set and facilitates the introduction of the normalization function described below. Let the function

N Q,z : A → B, (46a) 
where A ⊆ p0, ∞q represents the set of permissible regularization factors, and B is defined in (10a). This function is defined such that for all γ ∈ A,

N Q,z pγq = t, (46b) 
Inria where t satisfies

9 f -1 ˆ-t + L z pθq γ ˙dQpθq = 1, (47) 
and the function L z is defined in [START_REF] Krzyzak | Nonparametric estimation and classification using radial basis function nets and empirical risk minimization[END_REF]. Combining ( 46) and ( 47), it follows that

9 f -1 ˆ-N Q,z pλq + L z pθq λ ˙dQpθq = 1, (48) 
which justifies calling the function N Q,z as the normalization function. Some of the properties of interest of the function N Q,z in (46) are characterized by

t Q,z inf B, (49) 
under the assumption that B = ∅. The following lemma introduces relevant properties of the function N Q,z in (46). Proof: The proof is presented in Appendix A.

Since the function f is strictly convex, then 9 f -1 is strictly increasing, which in conjunction with Lemma 4.1, connects the term t Q,z to the infimum of the set A in (46a). More specifically,

λ inf A = N Q,z `t Q,z ˘. ( 50 
)
Lemma 4.2. If the set B in (10a) is not empty, then it satisfies

`t Q,z , ∞ ˘⊆ B ⊆ " t Q,z , ∞ ˘. (51) 
Moreover, the set B is identical to " t Q,z , ∞ ˘if and only if

9 f -1 `-t Q,z -L z pθq ˘dQpθq < ∞, (52) 
with t Q,z defined in (49).

Proof: The proof is presented in Appendix B.

For the case in which B is closed from the left, Lemma 4.1 and Lemma 4.2 imply the existence of a minimum regularization factor λ > 0, with λ ∈ A. As a result, the solution to the optimization problem in (9) only exists for regularization factors λ ≥ λ . For the case in which B is open from the left, the following lemma shows sufficient conditions for observing that A = p0, ∞q.

Lemma 4.3. If the function 9 f -1 in (11) is nonnegative and B is not empty, then B in (10a) is identical to `t Q,z , ∞ ˘and A in (46a) is identical to p0, ∞q, with t Q,z defined in (49).
Example 4.2. Consider Example 4.1 with z = p1, 1q. Under the current assumptions, the objective of this example is to show that B = `t Q,z , ∞ ˘. For this purpose, it is sufficient to show that the inequality in (52) does not hold:

1 L z pθq -t Q,z dQpθq = 4θ 2 expp-2θq L z pθq + t Q,z dµpθq (56a) = ∞ 0 4θ 2 expp-2θq pθ -1q 2 dθ (56b) = ∞. (56c) 
where equality (56a) follows from equality (53a); equality (56b) follows from the assumption that px, yq = p1, 1q and the fact that t Q,z = 0; and the equality (56c) follows from an algebraic development. Finally, the function

N Q,z in (46) is undefined at zero, which implies t Q,z ∈ B, that is, B = p0, ∞q.
These examples illustrate that even if the reference measure Q and functions and h in (3) are fixed, the set B might be either

" t Q,z , ∞ ˘or `t Q,z , ∞
depending on the dataset z. This observation underscores that the existence of the minimum regularization factor λ is coupled on the specific choices of Q, , f , and z.

Equivalence of the f -Regularization via Transformation of the Empirical Risk

This section shows that given two strictly convex and differentiable functions f and g that satisfy the conditions in Definition 3.2, there exists a function v : r0, ∞q → r0, ∞q, such that the solution to the optimization problem in ( 9) is identical to the solution of the following problem:

min P ∈ Q pMq vpL z pθqqdP pθq + λD g pP Qq, (57) 
with λ and Q in [START_REF] Bousquet | Stability and generalization[END_REF]. The main result of this section is presented in the following theorem.

Theorem 5.1. Let f and g be two strictly convex and differentiable functions satisfying the conditions in Definition 3.2. If the problem in (9) possesses a solution, then

min P ∈ Q pMq L z pθqdP pθq + λD f pP Qq = min P ∈ Q pMq vpL z pθqqdP pθq + λD g pP Qq, (58) 
where the function v : r0, ∞q → r0, ∞q is such that

vpxq = λ 9 g ˆ9 f -1 ˆ-N Q,z pλq + x λ ˙˙-N Q,z pλq, (59) 
where N Q,z and N Q,z are the normalization functions of the optimization problems in (9) and (57).

Proof: Note that from Theorem 3.1 the functions f and g are differentiable and strictly convex. Hence, the functional inverse of the derivative is well-defined from the fact that 9 f and 9 g are strictly increasing and bijective.

Denote by P pQ,λq

Θ|Z=z the solution to the optimization problem in (57). Then, from Theorem 3.1, for all θ ∈ supp Q, it follows that

d P pQ,λq Θ|Z=z dQ pθq= 9 g -1 ˆ-N Q,z pλq + vpL z pθqq λ ˙(60a) = 9 g -1 ˆ9 g ˆ9 f -1 ˆ-N Q,z pλq + L z pθq λ ˙˙˙( 60b) = 9 f -1 ˆ-N Q,z pλq + L z pθq λ ˙(60c) = dP pQ,λq Θ|Z=z dQ pθq, (60d) 
where the equality in (60b) follows from (59), which completes the proof.

Theorem 5.1 establishes an equivalence between two ERM problems subject to different f -divergence regularizations. Such equivalence can always be established as long as the corresponding divergences are defined by strictly convex and differentiable functions. More importantly, for all strictly convex f functions, the solution to the corresponding ERM with f -divergence regularization is mutually absolutely continuity with respect to the reference measure.

Conclusions

This work has presented the solution to the ERM-f DR problem under mild conditions on f , namely, paq strict convexity; and pbq differentiability. Under these conditions, the optimal measure is shown to be unique and sufficient conditions for the existence of the solution are presented. This result unveils the fact that all parameters are involved in guaranteeing the existence of a solution.

Remarkably, the f -divergence regularizer can be transformed into a different f -divergence regularizer by a transformation of the empirical risk. The mutual absolute continuity of the ERM-f DR solutions to the reference measure can be understood in light of the equivalence between the regularization. The analytical results have also enabled us to provide insights into choices of f -divergences for algorithm design in statistical machine learning.

Appendices

A Proof of Lemma 4.1

Proof: The properties of the function N Q,z in (46b) are proven into two parts.

The first part uses the properties of the f -divergences regularization to prove it is strictly increasing. The second part proves the continuity of the function

N Q,z in (46b).
The first part is as follows. For N Q,z defined in (46), assume that t ∈ B, and

γ ∈ A satisfy that N Q,z ptq = γ, (61) 
which implies that

1 = dP pQ,tq Θ|Z=z dQ pθqdQpθq (62a) = 9 f -1 ˆ-t + L z pθq γ ˙dQpθq, (62b) 
with B and A defined in (10a) and (46a), respectively. Note that the inverse 9 f -1 exists from the fact that f is strictly convex, which implies that 9 f is a strictly increasing function. Hence, 9

f -1 is also a strictly increasing function in B [41, Theorem 5.6.9]. Moreover, from the assumption that f is strictly convex and differentiable, it holds that 9

f is continuous [START_REF] Douchet | Analyse : Recueil d'Exercices et Aide-Mémoire[END_REF]Proposition 5.44]. This implies that 9 f -1 is continuous.

From (62) and the fact that 9 f -1 is continuous, if t ∈ B, then it holds that

0 < 9 f -1 p-t -L z pθqqdQpθq < ∞. (63) 
From (63) and the fact that 9 f -1 is strictly increasing, for all pt 1 , t 2 q ∈ B 2 , such that t 1 < t 2 , for all θ ∈ supp Q, it holds that

9 f -1 p-t 1 -L z pθqq > 9 f -1 p-t 2 -L z pθqq, (64) 
which implies that

9 f -1 p-t 1 -L z pθqqdQpθq > 9 f -1 p-t 2 -L z pθqqdQpθq. (65) 
Therefore, from equality (62) and inequality (65) for all pt 1 , t 2 q ∈ B 2 , such that t 1 < t 2 , the function N Q,z in (46) satisfies

N Q,z pγ 1 q < N Q,z pγ 2 q, (66) 
From ( 73) and the fact that N Q,z is strictly increasing, for all t ∈ {s ∈ R : s ≥ t 1 }, it holds that

9 f -1 p-t 1 -L z pθqqdQpθq > 9 f -1 p-t -L z pθqqdQpθq. (74) 
From ( 74) and the fact that 9 f -1 is continuous and decreasing, there exists a λ ∈ p0, ∞q such that for all t ∈ {s ∈ R : s ≥ t 1 } constrain in (10b) is satisfied, which implies that B ⊇ rt, ∞q. This completes the first part of the proof.

The second part is as follows. There are two cases considered under the assumption that t = t Q,z with t Q,z defined in (49). In the first case, if t Q,z ∈ B, then it holds that

9 f -1 `-t Q,z -L z pθq ˘dQpθq < ∞, (75a) 
which implies that B = " t Q,z , ∞ ˘, with B defined in (46a). In the second case, if t Q,z ∈ B, then it holds that 9 f -1 `-t Q,z -L z pθq ˘dQpθq = ∞, (75b) 
which implies that B = `t Q,z , ∞ ˘, with B defined in (46a). Note that the integral in (75) is never zero as it would be a contradiction with [START_REF] Vapnik | Principles of risk minimization for learning theory[END_REF]. Hence, from (74) and (75) the set B in (10b) is either the open set `t Q,z , ∞ ˘or the closed set " t Q,z , ∞ ˘, which completes the proof.

C Proof of Lemma 4.3

Proof: The following proof by contradiction is divided into three parts. In the first part, an auxiliary function is introduced and proven to be continuous. In the second part, a contradiction is shown under the assumption that 9 f -1 is nonnegative and the continuity of the auxiliary. Finally, it is shown that for nonnegative 9 f -1 , the set of admissible regularization factors is the positive reals.

The first part is as follows. Let the function k : B → p0, +∞q be such that

kptq= 9 f -1 ˆ-t -L z pθq λ ˙dQpθq. (76) 
The first step is to prove that the function k in (76) is continuous in B. This is proved by showing that k always exhibits a limit. Note that from the fact that 9 f -1 is strictly increasing, it holds that for all t ∈ B and for all θ ∈ supp Q, it holds that

9 f -1 ˆ-t -L z pθq λ ˙≤ 9 f -1 ˆ-t λ ˙, (77) 
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where equality holds if and only if L z pθq = 0. Now, from the fact that 9 f -1 is continuous it follows that for all a ∈ B, it holds that

lim t→a 9 f -1 ˆ-t -L z pθq λ ˙= 9 f -1 ˆ-a -L z pθq λ ˙. (78) 
Hence, from the dominated convergence theorem [38, Theorem 1.6.9], the following limit exists and satisfies The second part is as follows. Under the assumption that f induces a nonnegative 9 f -1 and that B is nonempty, from Lemma 4.2 the set B is either

" t Q,z , ∞ ˘or `t Q,z , ∞ ˘.
Hence, it is sufficient to show that assuming B is equal to " t Q,z , ∞ ȃnd 9 f -1 is nonnegative leads to a contradiction. From Lemma 4.2 it follows that

k `t Q,z ˘< ∞, (83) 
with the function k in (76) and t Q,z defined in (49). Thus, from the fact that k in (76) is continuous, for t < t Q,z , it follows that kptq < ∞, which implies there exists a set C = θ ∈ supp Q : 9 f -1 ´-t-Lzpθq λ ¯< 0 such that t ∈ B. However, this contradicts the assumption that 9 f -1 is nonnegative, which implies that B = `t Q,z , ∞ ˘. This completes the second part of the proof. The third part is as follows. From the fact that B is nonempty, there is a t ∈ B and a λ ∈ p0, ∞q such that,

1 = 9 f -1 ˆ-t + L z λ ˙dQpθq. ( 84 
)
From the fact that the function 9 f -1 is continuous and strictly increasing, for all t 1 ∈ `t Q,z , t ˘and for all t 2 ∈ pt, ∞q, it holds that

9 f -1 ˆ-t 1 + L z λ ˙dQpθq > 1 > 9 f -1 ˆ-t 2 + L z λ ˙dQpθq. (85) 
Under the same argument, for all λ 1 ∈ p0, λq and for all λ 2 ∈ pλ, ∞q, it holds that 9

f -1 ˆ-t + L z λ 1 ˙dQpθq > 1 > 9 f -1 ˆ-t + L z λ 2 ˙dQpθq. (86) 

Inria

Hence, given that the function k in (76) is continuous, strictly decreasing, from (85) then, there always exists two reals t 1 and t 2 in B such that kpt 1 q < 1 < kpt 2 q, it follows from the intermediate-value theorem [START_REF] Rudin | Principles of mathematical analysis[END_REF]Theorem 4.23] that there always exists a unique real t ∈ B such that kptq = 1. Furthermore, for all t ∈ B there always exists two reals λ 1 and λ 2 in p0, ∞q such that inequality (86) holds, it follows from the intermediate-value theorem [START_REF] Rudin | Principles of mathematical analysis[END_REF]Theorem 4.23] that there always exists a unique real t ∈ B for all λ ∈ p0, ∞q such that kptq = 1.

Finally, from the fact that N Q,z in ( 46) is continuous and strictly increasing, if B = `t Q,z , ∞ ˘then the set of admisible regularization factors A in (46a) is identical to p0, ∞q, which completes the proof. 

Corollary 3 . 1 .

 31 pQ,λqΘ|Z=z , which completes the proof. Theorem 3.1 implies that the Radon-Nikodym derivative dP pQ,λq Θ|Z=z dQ in (11) is strictly positive. A consequence of this observation is the following corollary. The probability measures Q and P pQ,λq Θ|Z=z in (11) are mutually absolutely continuous.

Lemma 4 . 1 .

 41 The function N Q,z in (46) is strictly increasing and continuous.

9 f

 9 -1 ˆ-t -L z pθq λ ˙˙dQpθq (80) = 9 f -1 ˆ-a -L z pθq λ ˙dQpθq (81) =kpaq,(82)which proves that the function k in (76) is continuous.
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Proof: The proof is presented in Appendix C.

Under the assumptions of Lemma 4.3, the ERM-f DR optimization in [START_REF] Bousquet | Stability and generalization[END_REF] exhibits a unique solution for all λ ∈ p0, ∞q. This is the case of the Kullback-Leibler Divergence, Jeffrey's Divergence and Hellinger Divergence, which makes them easy to implement regularizers as the constraint for existence in (10a) is always satisfied.

In the case of divergences such as the Reverse Relative Entropy Divergence, Jensen-Shannon Divergence and χ 2 Divergence, the existence of a lower bound on the regularization factor is dependent on the parameters of the ERM-f DR optimization in [START_REF] Bousquet | Stability and generalization[END_REF] 

Let also the function h

and the risk function in (2) be

which implies

with the function L z defined in (3). Under the current assumptions, the objective of this example is to show that B = " t Q,z , ∞ ˘. For this purpose, it is sufficient to show that the inequality in (52) holds. From Theorem 3.1, it follows that P pQ,λq Θ|Z=z in [START_REF] Aminian | An exact characterization of the generalization error for the Gibbs algorithm[END_REF] 

with β satisfying [START_REF] Vapnik | On the uniform convergence of relative frequencies of events to their probabilities[END_REF]. Thus,

where equality (55a) follows from (53), the assumption that px, yq = p1, 0q and the fact that t Q,z = 0. Finally, the function

Inria which implies that the function N Q,z in ( 46) is strictly increasing. Furthermore, from inequality (66) and the fact that P pQ,tq

Θ|Z=z is unique (see Theorem 3.1), it follows that N Q,z is bijective, which completes the proof of the first part.

The second part is as follows. The continuity of the function N Q,z in ( 46) is shown by considering an arbitrary > 0 and a pair pγ 1 , γ 2 q ∈ A 2 under the condition

From the fact that N Q,z is bijective and strictly increasing, let the pair γ 1 , and γ 2 satisfy γ 1 < γ 2 , without loss of generality. Thus, it holds that

Substituting equality (68) into (67) yields

From the fact that N Q,z is bijective, evaluating inequality (69) with N Q,z in (46a) leads to

Subtracting γ 1 from both sides in (70), results in

where equality (71b) follows from the condition that γ 2 > γ 1 . Thus, from (71) it follows that for all > 0, there exist a δ > 0 that satisfies

which implies the function N Q,z in (46) is continuous for all γ ∈ A. From (72) the function N Q,z is continuous and strictly increasing, which completes the proof.

B Proof of Lemma 4.2

Proof: The proof shows that if B in (10a) is not empty, then the domain of the function N Q,z in (46) is an interval of R. The proof is divided into two parts, in the first part it is shown that B is always open from the right. The second part uses t Q,z the set from the left.

The first part is as follows. From Lemma 4.1, if there exists a t 1 ∈ B, then it holds

Inria