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Minimisation du Risque Empirique avec
Régularisation par f-Divergences dans

l’Apprentissage Statistique
Résumé : La solution à la minimisation du risque empirique avec régular-
isation par une f -divergence (ERM-fDR) est présentée sous faibles conditions
sur f . Dans de telles conditions, il est démontré que la mesure optimale est
unique et des exemples pour des choix particuliers de la fonction f sont présen-
tés. Les solutions précédemment connues sont obtenues comme des cas spéciaux,
y compris la minimisation du risque empirique avec régularisation d’entropie
relative (Type-I et Type-II). L’analyse de la solution révèle les propriétés suiv-
antes : piq la régularisation de divergence f force le support de la solution à
coïncider avec le support de la mesure de référence, introduisant un fort biais
inductif qui domine l’évidence fournie par les données d’entraînement ; et piiq
toute régularisation par une f -divergence est équivalente à une autre régular-
isation par f -divergence avec une transformation appropriée de la fonction de
risque empirique.

Mots-clés : Minimisation empirique des risques, régularisation de f -divergence,
apprentissage statistique.
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4 Daunas, Esnaola, Perlaza, and Poor

1 Introduction

Empirical Risk Minimization (ERM) is a fundamental principle in machine
learning. It is a tool for selecting a model from a given set by minimizing
the empirical risk, which is the average loss or error induced by such a model
on each of the labeled patterns available in the training dataset [1,2]. In a nut-
shell, ERM aims to find a model that performs well on a given training dataset.
However, ERM is prone to overfitting [3–5], which affects the generalization ca-
pability of the selected model [6–8]. To remediate this phenomenon, the solution
of ERM must exhibit a small sensitivity to variations in the training dataset,
which is often obtained via regularization [9–13].

In statistical learning theory, the ERM problem amounts to the minimization
of the expected empirical risk over a subset of all probability measures that can
be defined on the set of models. In this case, regularization is often obtained by
adding to the expected empirical risk a statistical distance from the optimization
measure, weighted by a regularization factor. Such a statistical distance is
essentially a non-negative measure of dissimilarity between the optimization
measure and the reference measure, which might be a σ-finite measure and not
necessarily a probability measure, as shown in [12] and [14]. A key observation
is that the reference measure often represents prior knowledge or the inductive
bias on the solution.

The notion of f -divergence, introduced in [15], and further studied in [16] and
[17], describes a family of hallmark statistical distances. A popular f -divergence
is the relative entropy [18], which due to its asymmetry, leads to two different
problem formulations known as Type-I and Type-II ERM with relative entropy
regularization (ERM-RER) [19–21]. Relative entropy regularization also plays
a central role in obtaining the worst-case data-generating probability measure
introduced in [13] and [22]. The Type-I ERM-RER problem exhibits a unique
solution, which is a Gibbs probability measure, independently of whether the
reference measure is a probability measure or a σ-finite measure, as shown in
[12]. The Type-II ERM-RER problem also has a unique solution when the
reference measure is a probability measure. This solution exhibits properties
that are analogous to those of the Gibbs probability measure [20]. Type-I ERM-
RER appears to be the more popular regularized ERM problem, despite the fact
that both types of regularization have distinct advantages. See for instance,
[14, 20,23–32] and references therein.

Optimization problems with f -divergence regularization have been explored
before in [33] and [34] for the discrete case. In [35], the problem of non-
exponentially weighted aggregation is studied. Such a problem involves an ERM
with f -divergence regularization (ERM-fDR) identical to the one studied in this
work. Nonetheless, the ERM-fDR imposes strong solution existence conditions
on the function f , and thus, it holds for a reduced number of f -divergences. This
work presents the solution to the ERM-fDR problem using a method of proof
that differs from those in [33,34] and [35] and goes along the lines of the methods
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ERM with f -Divergence Regularization in Statistical Learning 5

in [12,13] and [20], which rely on the notion of the Gateaux derivative [36] and
vector space methods [37].

The method of proof favored in this paper enables the derivation of new results
that have not been reported before. Firstly, the permissible values of the regu-
larization factor that guarantee the existence of a solution are analytically char-
acterized. Secondly, the obtained solution holds for a family of f -divergences
that is larger than the one in [35]. For instance, the Type-II ERM-RER studied
in [21] and the ERM with Jensen-Shannon divergence regularization are both
special cases of the ERM-fDR problem studied in this paper. These are exam-
ples of ERM-fDR problems that are not considered in [35]. More importantly,
the new method of proof allows showing that any f -divergence regularization is
equivalent to a different f -divergence regularization with an appropriate trans-
formation of the empirical risk function.

2 Empirical Risk Minimization Problem
Let M, X and Y, with M ⊆ Rd and d ∈ N, be sets of models, patterns, and
labels, respectively.

A pair px, yq ∈ X×Y is referred to as a labeled pattern or data point, and a dataset
is represented by the tuple ppx1, y1q, px2, y2q, . . . , pxn, ynqq ∈ pX × Yq

n.

Let the function h :M×X → Y be such that the label assigned to a pattern
x ∈ X according to the model θ ∈M is hpθ, xq. Then, given a dataset

z = ppx1, y1q, px2, y2q, . . . , pxn, ynqq ∈ pX × Yq
n
, (1)

the objective is to obtain a model θ ∈ M, such that, for all i ∈ {1, 2, . . . , n},
the label assigned to pattern xi, which is hpθ, xiq, is “close” to the label yi. This
notion of “closeness” is formalized by the function

` : Y × Y → r0,+∞q, (2)

such that the loss or risk induced by choosing the model θ ∈ M with respect
to the labeled pattern pxi, yiq, with i ∈ {1, 2, . . . , n}, is `phpθ, xiq, yiq. The
risk function ` is assumed to be nonnegative and to satisfy `py, yq = 0, for all
y ∈ Y.

The empirical risk induced by a model θ with respect to the dataset z in (1) is
determined by the function Lz :M→ r0,+∞q, which satisfies

Lzpθq,
1

n

n∑
i=1

`phpθ, xiq, yiq. (3)

The ERM problem with respect to the dataset z in (1) consists of the optimiza-
tion problem:

min
θ∈M

Lzpθq. (4)

RR n° 9521



6 Daunas, Esnaola, Perlaza, and Poor

The set of solutions to such a problem is denoted by

T pzq , arg min
θ∈M

Lzpθq. (5)

Note that if the set M is finite, the ERM problem in (4) has a solution, and
therefore, it holds that |T pzq| > 0. Nevertheless, in general, the ERM problem
does not always have a solution. That is, there exist choices of the loss function
` and the dataset z that yield |T pzq| = 0.

3 The ERM with f-Divergence Regularization

3.1 Preliminaries
For ease of notation, the expected empirical risk with respect to a given measure
is expressed via the following functional Rz, defined below.

Definition 3.1 (Expected Empirical Risk). The expectation of the empirical
risk Lzpθq in (3), when θ is sampled from a probability measure P ∈ 4pMq, is
determined by the functional Rz : 4pMq→ r0,+∞q, such that

RzpP q =

∫
LzpθqdP pθq. (6)

In the following, the family of f -divergences is defined.

Definition 3.2 (f -divergence [17]). Let f : r0,∞q → R be a convex function
with fp1q = 0 and fp0q , limx→0+ fpxq. Let P and Q be two probability mea-
sures on the same measurable space, with P absolutely continuous with Q. The
f -divergence of P with respect to Q, denoted by Df pP‖Qq, is

Df pP‖Qq ,
∫
f

ˆ

dP

dQ
pθq

˙

dQpθq, (7)

where the function dP
dQ is the Radon-Nikodym derivative of P with respect to Q.

In the case in which the function f is continuous and differentiable, denote by
9f : r0,+∞q→ R and 9f−1 : R→ r0,+∞q, the derivative of f and the inverse of
the function 9f , respectively.

The set of probability measures that can be defined upon the measurable space
pM,BpMqq, with BpMq being the Borel σ-field onM, is denoted by 4pMq.
Given a probability measure Q ∈ 4pMq the set containing exclusively the
probability measures in 4pMq that are absolutely continuous with respect to
Q is denoted by 4QpMq. That is,

4QpMq , {P ∈ 4pMq : P � Q}, (8)

where the notation P � Q stands for the measure P being absolutely continuous
with respect to the measure Q.

Inria
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3.2 Problem Formulation
The ERM-fDR problem is parametrized by a probability measure Q ∈ 4pMq,
a positive real λ, and an f -divergence (Definition 3.2). The measure Q is re-
ferred to as the reference measure, λ as the regularization factor, and f as the
regularization function. Given the dataset z ∈ pX × Yq

n in (1), the ERM-fDR
problem, with parameters Q , λ and f , consists of the following optimization
problem:

min
P∈4QpMq

RzpP q + λDf pP‖Qq. (9)

3.3 Solution to the ERM-fDR
The solution of the ERM-fDR problem in (9) is presented in the following
theorem under the assumption that the function f is strictly convex.

Theorem 3.1. If the function f in (9) is strictly convex, differentiable and
there exists a β in

B =

{
t ∈ R : ∀θ ∈ suppQ, 0 < 9f−1

ˆ

− t+ Lzpθq

λ

˙}
, (10a)

such that ∫
9f−1

ˆ

−β + Lzpθq

λ

˙

dQpθq = 1, (10b)

then the solution to the optimization problem in (9), denoted by P
pQ,λq

Θ|Z=z ∈
4QpMq, is unique, and for all θ ∈ suppQ satisfies

dP
pQ,λq

Θ|Z=z

dQ
pθq = 9f−1

ˆ

−β + Lzpθq

λ

˙

. (11)

Proof: The optimization problem in (9) can be re-written in terms of the Radon-
Nikodym derivative of the optimization measure P with respect to the measure
Q, which yields

min
P∈4QpMq

∫
Lzpθq

dP

dQ
pθqdQpθq + λ

∫
f

ˆ

dP

dQ
pθq

˙

dQpθq (12a)

s.t.

∫
dP

dQ
pθqdQpθq = 1. (12b)

The remainder of the proof focuses on the problem in which the optimization
is over the function dP

dQ : M → r0,∞q, which represents the Radon-Nikodym
derivate of P with respect to Q. Hence, instead of optimizing the measure P ,
the optimization is over the function dP

dQ . This is due to the fact that for all P ∈
4QpMq, the Radon-Nikodym derivate dP

dQ is unique up to sets of zero measure

RR n° 9521



8 Daunas, Esnaola, Perlaza, and Poor

with respect to Q. Let M be the set of measurable functions M → R with
respect to the measurable spaces pM,F q and pR,BpRqq that are absolutely
integrable with respect to Q. That is, for all ĝ ∈M , it holds that∫

|ĝpθq|dQpθq<∞. (13)

Hence, the optimization problem of interest is

min
g∈M

∫
LzpθqgpθqdQpθq + λ

∫
fpgpθqqdQpθq (14a)

s.t.

∫
gpθqdQpθq = 1. (14b)

Let the Lagrangian of the optimization problem in (14) be L : M × R → R

such that

Lpg, βq=

∫
LzpθqgpθqdQpθq + λ

∫
fpgpθqqdQpθq

+ β

ˆ∫
gpθqdQpθq− 1

˙

, (15)

=

∫
´

gpθqpLzpθq + βq + λfpgpθqq

¯

dQpθq− β, (16)

where β is a real that acts as a Lagrange multiplier due to the constraint (14b).
Let ĝ :M→ R be a function in M . The Gateaux differential of the functional
L in (15) at pg, βq ∈M ×R in the direction of ĝ, if it exists, is

∂Lpg, β; ĝq,
d

dγ
Lpg + γĝ, βq

ˇ

ˇ

ˇ

ˇ

γ=0

. (17)

The proof continues under the assumption that the function g and ĝ are such
that the Gateaux differential in (17) exists. Under such an assumption, let
the function r : R → R satisfy for all γ ∈ p−ε, εq, with ε arbitrarily small,
that

rpγq=Lpg + γĝ, βq (18)

=

∫
Lzpθqpgpθq + γĝpθqq dQpθq + λ

∫
fpgpθq + γĝpθqqdQpθq

+ β

ˆ∫
pgpθq + γĝpθqqdQpθq− 1

˙

(19)

=

∫
gpθqpLzpθq + βqdQpθq + γ

∫
ĝpθqpLzpθq + βqdQpθq− β

+λ

∫
fpgpθq + γĝpθqqdQpθq, (20)

where the last equality is simply an algebraic re-arrangement of terms. From
the assumption that the function g and ĝ are such that the Gateauz differential

Inria
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in (17) exists, it follows that the function r in (18) is differentiable at zero. Note
that the first two terms in (20) are independent of γ; the third term is linear
with γ; and the fourth term can be written using the function r̂ : R → R such
that for all γ ∈ p−ε, εq, with ε arbitrarily small, it holds that

r̂pγq=λ

∫
fpgpθq + γĝpθqqdQpθq. (21)

Under the same assumption, it follows that the function r̂ in (21) is differentiable
at zero. That is, the limit

lim
δ→0

1

δ
pr̂pγ + δq− r̂pγqq (22)

exists for all γ ∈ p−ε, εq, with ε arbitrarily small. The proof of the existence
of such a limit relies on the fact that f is strictly convex and continuous. This
implies that f is Lipschitz continuous, which implies that for all θ ∈M and for
all γ ∈ p−ε, εq, with ε > 0 arbitrarily small, it holds that

|fpgpθq + pγ + δqĝpθqq− fpgpθq + γĝpθqq| ≤ c |ĝpθq| |δ|, (23)

for some constant c positive and finite, which implies that
ˇ

ˇ

ˇ

ˇ

fpgpθq + pγ + δqĝpθqq− fpgpθq + γĝpθqq

δ

ˇ

ˇ

ˇ

ˇ

≤ c |ĝpθq|. (24)

Using these arguments, the limit in (22) satisfies for all γ ∈ p−ε, εq, with ε > 0
arbitrarily small, that

lim
δ→0

1

δ
pr̂pγ + δq− r̂pγqq=λ lim

δ→0

1

δ

ˆ∫
fpgpθq + pγ + δqĝpθqqdQpθq

−
∫
fpgpθq + γĝpθqqdQpθq

˙

(25)

=λ lim
δ→0

∫ ˆ

fpgpθq + pγ + δqĝpθqq

δ

− fpgpθq + γĝpθqq

δ

˙

dQpθq (26)

=λ

∫
9fpgpθq + γĝpθqqĝpθqdQpθq (27)

<∞, (28)

where both the equality in (27) and the inequality in (28) follow from noticing
that the conditions for the dominated convergence theorem hold [38, Theo-
rem 1.6.9], namely:

• For all γ ∈ p−ε, εq, with ε > 0, the inequality in (24) holds;

• The function ĝ in (24) satisfies the inequality in (13); and

RR n° 9521



10 Daunas, Esnaola, Perlaza, and Poor

• For all θ ∈M and for all γ ∈ p−ε, εq, with ε > 0 arbitrarily small, it holds
that

lim
δ→0

fpgpθq + pγ + δqĝpθqq− fpgpθq + γĝpθqq

δ

=
d

dγ
fpgpθq + γĝpθqq (29)

= 9fpgpθq + γĝpθqq, (30)

which follows from the fact that f is differentiable.

Hence, the derivative of the real function r in (20) is

d

dγ
rpγq=

∫
ĝpθqpLzpθq + βqdQpθq + λ

∫
9fpgpθq + γĝpθqqĝpθqdQpθq (31)

=

∫
ĝpθq

´

Lzpθq + β + λ 9fpgpθq + γĝpθqq

¯

dQpθq. (32)

From (17) and (32), it follows that

∂Lpg, β; ĝq=
d

dγ
rpγq

ˇ

ˇ

ˇ

ˇ

γ=0

(33)

=

∫
ĝpθq

´

Lzpθq + β + λ 9fpgpθqq

¯

dQpθq. (34)

The relevance of the Gateaux differential in (33) stems from [37, Theorem 1],
which unveils the fact that a necessary condition for the functional L in (15) to

have a stationary point at
ˆ

dP
pQ,λq

Θ|Z=z

dQ , β

˙

∈M× r0,∞q is that for all functions

ĝ ∈M ,

∂L

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
, β; ĝ

˛

‚= 0. (35)

From (34) and (35), it follows that
dP

pQ,λq

Θ|Z=z

dQ must satisfy for all functions ĝ in
M that ∫

ĝpθq

¨

˝Lzpθq + β + λ 9f

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

˛

‚dQpθq = 0. (36)

This implies that for all θ ∈ suppQ,

Lzpθq + β + λ 9f

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚= 0, (37)

and thus,
dP

pQ,λq

Θ|Z=z

dQ
pθq = 9f−1

ˆ

−β + Lzpθq

λ

˙

, (38)

Inria
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where β is chosen to satisfy (10b) and guarantee that for all θ ∈ suppQ, it holds
that 9f−1

´

−β+Lzpθq

λ

¯

∈ p0,∞q. That is,

β ∈
{
t ∈ R : ∀θ ∈ suppQ, 0 < 9f−1

ˆ

− t+ Lzpθq

λ

˙}
, (39)

which is an assumption of the theorem.

Finally, note that the objective function in (14) is the sum of two terms. The first
one, i.e.,

∫
LzpθqgpθqdQpθq, is linear with g. The second, i.e.,

∫
− logpgpθqqdQpθq,

is strictly convex with g from the assumption that f is strictly convex. Hence,
given that λ > 0, the sum of both terms is strictly convex with g. This implies
the uniqueness of P pQ,λq

Θ|Z=z, which completes the proof.

Theorem 3.1 implies that the Radon-Nikodym derivative
dP

pQ,λq

Θ|Z=z

dQ in (11) is
strictly positive. A consequence of this observation is the following corol-
lary.

Corollary 3.1. The probability measures Q and P pQ,λq

Θ|Z=z in (11) are mutually
absolutely continuous.

Corollary 3.1 reveals that, as is also the case with Type-II regularization, the
support of the reference measure Q establishes an inductive bias that cannot
be overcome, regardless of the f -divergence choice. That is, the support of the
solution is the support of the reference measure. In a nutshell, the use of any
strictly convex f -divergence regularization inadvertently forces the solution to
coincide with the support of the reference independently of the training data.
Remarkably, from [39, Corollary 23.5.1] the function 9f−1 is the derivative of the
convex conjugate of f .

3.4 Examples
Under the assumptions in Theorem 3.1 and assuming that B in (10a) is not
empty, this section presents the solutions for typical choices of the function f .

Kullback-Leibler Divergence

Let the function f : p0,+∞q→ R be such that fpxq = x logpxq, whose deriva-
tive satisfies

9fpxq = 1 + logpxq. (40a)

In this case, the resulting f -divergence Df pP‖Qq is the relative entropy of P
with respect to Q. From (40a) and Theorem 3.1, it holds that for all θ ∈
suppQ,

dP
pQ,λq

Θ|Z=z

dQ
pθq = exp

ˆ

−β + λ+ Lzpθq

λ

˙

(40b)

RR n° 9521



12 Daunas, Esnaola, Perlaza, and Poor

=
exp

`

− 1
λLzpθq

˘∫
exp

`

− 1
λLzpνq

˘

dQpνq
. (40c)

This result has been independently reported by several authors in [12, 14, 29,
31,40], and the references therein.

Reverse Relative Entropy Divergence

Let the function f : p0,+∞q → R be such that fpxq = − logpxq, whose deriva-
tive satisfies

9fpxq = − 1

x
. (41a)

In this case, the resulting f -divergence Df pP‖Qq is the relative entropy of Q
with respect to P . From (41a) and Theorem 3.1, it holds that for all θ ∈
suppQ,

dP
pQ,λq

Θ|Z=z

dQ
pθq =

λ

β + Lzpθq
. (41b)

This result has been reported in [13] and [21].

Jeffrey’s Divergence

Let the function f : p0,+∞q→ R be such that fpxq = x logpxq− logpxq, whose
derivative satisfies

9fpxq = logpxq + 1 − 1

x
. (42a)

In this case, the resulting f -divergence Df pP‖Qq is Jeffrey’s divergence between
P and Q. From equation (42a) and Theorem 3.1, it holds that for all θ ∈
suppQ,

log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+ 1− dQ

dP
pQ,λq

Θ|Z=z

pθq = −β + Lzpθq

λ
, (42b)

which implies

0 = − dQ

dP
pQ,λq

Θ|Z=z

pθq + log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+ 1 +
β + Lzpθq

λ
(42c)

= −1 +
dP

pQ,λq

Θ|Z=z

dQ
pθq

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+
β + λ+ Lzpθq

λ

˛

‚ (42d)

= exp

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

˛

‚

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+
β + λ+ Lzpθq

λ

˛

‚
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−1 (42e)

=

¨

˝exp

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

˛

‚

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+
β + λ+ Lzpθq

λ

˛

‚

− 1

˛

‚

exp
´

β+λ+Lzpθq

λ

¯

exp
´

β+λ+Lzpθq

λ

¯ (42f)

= exp

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+
β + λ+ Lzpθq

λ

˛

‚

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

+
β + λ+ Lzpθq

λ

˙

− exp

ˆ

β + λ+ Lzpθq

λ

˙

. (42g)

LetW0 : r0,∞q→ r0,∞q be the Lambert function, which for a function g : R→
R such that gpxq = x exppxq satisfies W0pgpxqq = x. Hence, from the equality
in (42g), it holds that

exp

ˆ

β + λ+ Lzpθq

λ

˙

= exp

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+
β + λ+ Lzpθq

λ

˛

‚

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+
β + λ+ Lzpθq

λ

˛

‚, (42h)

which in terms of the Lambert function yields

W0

ˆ

exp

ˆ

β + λ+ Lzpθq

λ

˙˙

= log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+
β + λ+ Lzpθq

λ
. (42i)

From (42a) and Theorem 3.1, it holds that for all θ ∈ suppQ,

dP
pQ,λq

Θ|Z=z

dQ
pθq = exp

ˆ

W0

ˆ

exp

ˆ

β + λ+ Lzpθq

λ

˙˙

−β + λ+ Lzpθq

λ

˙

. (42j)

Hellinger Divergence

Let the function f : p0,+∞q → R be such that fpxq = p1−
?
xq

2, whose
derivative satisfies

9fpxq = 1− 1
?
x
. (43a)
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In this case, the resulting f -divergence Df pP‖Qq is Hellinger’s divergence of
P with respect to Q. From (43a) and Theorem 3.1, it holds that for all θ ∈
suppQ,

dP
pQ,λq

Θ|Z=z

dQ
pθq =

ˆ

λ

β + λ+ Lzpθq

˙2

. (43b)

Jensen-Shannon Divergence

Let the function f : p0,+∞q→ R be such that fpxq = x log
´

2x
x+1

¯

+ log
´

2
x+1

¯

,
whose derivative satisfies

9fpxq = log

ˆ

2x

x+ 1

˙

. (44a)

From (44a) and Theorem 3.1, it holds that for all θ ∈ suppQ,

dP
pQ,λq

Θ|Z=z

dQ
pθq =

1

2 exp
´

β+Lzpθq

λ

¯

− 1
. (44b)

χ2 Divergence

Let the function f : p0,∞q→ R be such that fpxq = px− 1q
2, whose derivative

satisfies

9fpxq = 2px− 1q. (45a)

In this case, the resulting f -divergence Df pP‖Qq is the Pearson-divergence, also
known as, the χ2-divergence. From (45a) and Theorem 3.1, it holds that for all
θ ∈ suppQ,

dP
pQ,λq

Θ|Z=z

dQ
pθq =

2λ− β − Lzpθq

2λ
. (45b)

4 Analysis of Regularization Factor
This section explores the set of permissible regularization factors, which is de-
fined as the collection of regularization factors for which the optimization prob-
lem in (9) admits a solution. The analysis of the set B, as defined in (10a),
forms the basis for comprehending this set and facilitates the introduction of
the normalization function described below. Let the function

NQ,z : A → B, (46a)

where A ⊆ p0,∞q represents the set of permissible regularization factors, and
B is defined in (10a). This function is defined such that for all γ ∈ A,

NQ,zpγq = t, (46b)
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where t satisfies ∫
9f−1

ˆ

− t+ Lzpθq

γ

˙

dQpθq = 1, (47)

and the function Lz is defined in (3). Combining (46) and (47), it follows
that ∫

9f−1
ˆ

−NQ,zpλq + Lzpθq

λ

˙

dQpθq = 1, (48)

which justifies calling the function NQ,z as the normalization function. Some of
the properties of interest of the function NQ,z in (46) are characterized by

t?Q,z , inf B, (49)

under the assumption that B 6= ∅. The following lemma introduces relevant
properties of the function NQ,z in (46).

Lemma 4.1. The function NQ,z in (46) is strictly increasing and continuous.

Proof: The proof is presented in Appendix A.

Since the function f is strictly convex, then 9f−1 is strictly increasing, which in
conjunction with Lemma 4.1, connects the term t?Q,z to the infimum of the set
A in (46a). More specifically,

λ? , inf A = NQ,z
`

t?Q,z
˘

. (50)

Lemma 4.2. If the set B in (10a) is not empty, then it satisfies
`

t?Q,z,∞
˘

⊆ B ⊆
“

t?Q,z,∞
˘

. (51)

Moreover, the set B is identical to
“

t?Q,z,∞
˘

if and only if∫
9f−1

`

−t?Q,z − Lzpθq
˘

dQpθq <∞, (52)

with t?Q,z defined in (49).

Proof: The proof is presented in Appendix B.

For the case in which B is closed from the left, Lemma 4.1 and Lemma 4.2
imply the existence of a minimum regularization factor λ? > 0, with λ? ∈
A. As a result, the solution to the optimization problem in (9) only exists
for regularization factors λ ≥ λ?. For the case in which B is open from the
left, the following lemma shows sufficient conditions for observing that A =
p0,∞q.

Lemma 4.3. If the function 9f−1 in (11) is nonnegative and B is not empty,
then B in (10a) is identical to

`

t?Q,z,∞
˘

and A in (46a) is identical to p0,∞q,
with t?Q,z defined in (49).
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Proof: The proof is presented in Appendix C.

Under the assumptions of Lemma 4.3, the ERM-fDR optimization in (9) ex-
hibits a unique solution for all λ ∈ p0,∞q. This is the case of theKullback-Leibler
Divergence, Jeffrey’s Divergence and Hellinger Divergence, which makes them
easy to implement regularizers as the constraint for existence in (10a) is always
satisfied.

In the case of divergences such as the Reverse Relative Entropy Divergence,
Jensen-Shannon Divergence and χ2 Divergence, the existence of a lower bound
on the regularization factor is dependent on the parameters of the ERM-fDR
optimization in (9), which complicates their implementation in practical set-
tings. The following examples illustrate this dependence on the parameters by
providing cases in which B in (51) is the open set

`

t?Q,z,∞
˘

and closed set
“

t?Q,z,∞
˘

for the Reverse Relative Entropy Divergence.

Example 4.1. Consider the ERM-fDR problem in (9) for fpxq = − logpxq and
assume that: paq M = X = Y = r0,∞q; pbq z = p1, 0q and pcq Q � µ, with µ
the Lebesgue measure, such that for all θ ∈ suppQ,

dQ

dµ
pθq = 4θ2 expp−2θq. (53a)

Let also the function h :M×X → Y be

hpθ, xq = xθ, (53b)

and the risk function ` in (2) be

`phpθ, xq, yq = pxθ − yq
2
, (53c)

which implies

Lzpθq = pxθ − yq
2
, (53d)

with the function Lz defined in (3). Under the current assumptions, the objective
of this example is to show that B =

“

t?Q,z,∞
˘

. For this purpose, it is sufficient
to show that the inequality in (52) holds. From Theorem 3.1, it follows that
P

pQ,λq

Θ|Z=z in (11) satisfies for all θ ∈ suppQ,

dP
pQ,λq

Θ|Z=z

dµ
pθq =

λ

Lzpθq + β
4θ2 expp−2θq, (54)

with β satisfying (10). Thus,∫
1

Lzpθq + t?Q,z
dQpθq =

∫ ∞
0

4 expp−2θqdθ (55a)

= 2, (55b)

where equality (55a) follows from (53), the assumption that px, yq = p1, 0q and
the fact that t?Q,z = 0. Finally, the function NQ,z in (46) satisfies NQ,z

`

1
2

˘

= 0,
which implies t?Q,z ∈ B, that is, B = r0,∞q and A =

“

1
2 ,∞

˘

.
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Example 4.2. Consider Example 4.1 with z = p1, 1q. Under the current as-
sumptions, the objective of this example is to show that B =

`

t?Q,z,∞
˘

. For this
purpose, it is sufficient to show that the inequality in (52) does not hold:∫

1

Lzpθq− t?Q,z
dQpθq =

∫
4θ2 expp−2θq

Lzpθq + t?Q,z
dµpθq (56a)

=

∫ ∞
0

4θ2 expp−2θq

pθ − 1q
2 dθ (56b)

=∞. (56c)

where equality (56a) follows from equality (53a); equality (56b) follows from the
assumption that px, yq = p1, 1q and the fact that t?Q,z = 0; and the equality (56c)
follows from an algebraic development. Finally, the function NQ,z in (46) is
undefined at zero, which implies t?Q,z 6∈ B, that is, B = p0,∞q.

These examples illustrate that even if the reference measure Q and functions
` and h in (3) are fixed, the set B might be either

“

t?Q,z,∞
˘

or
`

t?Q,z,∞
˘

depending on the dataset z. This observation underscores that the existence of
the minimum regularization factor λ? is coupled on the specific choices of Q, `,
f , and z.

5 Equivalence of the f-Regularization via Trans-
formation of the Empirical Risk

This section shows that given two strictly convex and differentiable functions
f and g that satisfy the conditions in Definition 3.2, there exists a function
v : r0,∞q → r0,∞q, such that the solution to the optimization problem in (9)
is identical to the solution of the following problem:

min
P∈4QpMq

∫
vpLzpθqqdP pθq + λDgpP‖Qq, (57)

with λ and Q in (9). The main result of this section is presented in the following
theorem.

Theorem 5.1. Let f and g be two strictly convex and differentiable functions
satisfying the conditions in Definition 3.2. If the problem in (9) possesses a
solution, then

min
P∈4QpMq

∫
LzpθqdP pθq + λDf pP‖Qq

= min
P∈4QpMq

∫
vpLzpθqqdP pθq + λDgpP‖Qq, (58)

where the function v : r0,∞q→ r0,∞q is such that

vpxq = λ 9g

ˆ

9f−1
ˆ

−NQ,zpλq + x

λ

˙˙

−N ′Q,zpλq, (59)
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where NQ,z and N ′Q,z are the normalization functions of the optimization prob-
lems in (9) and (57).

Proof: Note that from Theorem 3.1 the functions f and g are differentiable and
strictly convex. Hence, the functional inverse of the derivative is well-defined
from the fact that 9f and 9g are strictly increasing and bijective. Denote by
P̂

pQ,λq

Θ|Z=z the solution to the optimization problem in (57). Then, from Theo-
rem 3.1, for all θ ∈ suppQ, it follows that

dP̂
pQ,λq

Θ|Z=z

dQ
pθq= 9g−1

ˆ

−
N ′Q,zpλq + vpLzpθqq

λ

˙

(60a)

= 9g−1
ˆ

9g

ˆ

9f−1
ˆ

−NQ,zpλq + Lzpθq

λ

˙˙˙

(60b)

= 9f−1
ˆ

−NQ,zpλq + Lzpθq

λ

˙

(60c)

=
dP

pQ,λq

Θ|Z=z

dQ
pθq, (60d)

where the equality in (60b) follows from (59), which completes the proof.

Theorem 5.1 establishes an equivalence between two ERM problems subject to
different f -divergence regularizations. Such equivalence can always be estab-
lished as long as the corresponding divergences are defined by strictly convex
and differentiable functions. More importantly, for all strictly convex f func-
tions, the solution to the corresponding ERM with f -divergence regularization
is mutually absolutely continuity with respect to the reference measure.

6 Conclusions
This work has presented the solution to the ERM-fDR problem under mild
conditions on f , namely, paq strict convexity; and pbq differentiability. Under
these conditions, the optimal measure is shown to be unique and sufficient con-
ditions for the existence of the solution are presented. This result unveils the
fact that all parameters are involved in guaranteeing the existence of a solution.
Remarkably, the f -divergence regularizer can be transformed into a different
f -divergence regularizer by a transformation of the empirical risk. The mutual
absolute continuity of the ERM-fDR solutions to the reference measure can be
understood in light of the equivalence between the regularization. The analyti-
cal results have also enabled us to provide insights into choices of f -divergences
for algorithm design in statistical machine learning.
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Appendices

A Proof of Lemma 4.1

Proof: The properties of the function NQ,z in (46b) are proven into two parts.
The first part uses the properties of the f -divergences regularization to prove
it is strictly increasing. The second part proves the continuity of the function
NQ,z in (46b).

The first part is as follows. For NQ,z defined in (46), assume that t ∈ B, and
γ ∈ A satisfy that

NQ,zptq = γ, (61)

which implies that

1 =

∫ dP
pQ,tq
Θ|Z=z

dQ
pθqdQpθq (62a)

=

∫
9f−1

ˆ

− t+ Lzpθq

γ

˙

dQpθq, (62b)

with B and A defined in (10a) and (46a), respectively. Note that the inverse
9f−1 exists from the fact that f is strictly convex, which implies that 9f is a
strictly increasing function. Hence, 9f−1 is also a strictly increasing function in
B [41, Theorem 5.6.9]. Moreover, from the assumption that f is strictly convex
and differentiable, it holds that 9f is continuous [42, Proposition 5.44]. This
implies that 9f−1 is continuous.

From (62) and the fact that 9f−1 is continuous, if t ∈ B, then it holds that

0 <

∫
9f−1p−t− LzpθqqdQpθq <∞. (63)

From (63) and the fact that 9f−1 is strictly increasing, for all pt1, t2q ∈ B2, such
that t1 < t2, for all θ ∈ suppQ, it holds that

9f−1p−t1 − Lzpθqq > 9f−1p−t2 − Lzpθqq, (64)

which implies that∫
9f−1p−t1 − LzpθqqdQpθq >

∫
9f−1p−t2 − LzpθqqdQpθq. (65)

Therefore, from equality (62) and inequality (65) for all pt1, t2q ∈ B2, such that
t1 < t2, the function NQ,z in (46) satisfies

NQ,zpγ1q < NQ,zpγ2q, (66)
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which implies that the function NQ,z in (46) is strictly increasing. Furthermore,
from inequality (66) and the fact that P pQ,tq

Θ|Z=z is unique (see Theorem 3.1), it
follows that NQ,z is bijective, which completes the proof of the first part.

The second part is as follows. The continuity of the function NQ,z in (46) is
shown by considering an arbitrary ε > 0 and a pair pγ1, γ2q ∈ A2 under the
condition

ε > |NQ,zpγ2q−NQ,zpγ1q|. (67)

From the fact that NQ,z is bijective and strictly increasing, let the pair γ1, and
γ2 satisfy γ1 < γ2, without loss of generality. Thus, it holds that

|NQ,zpγ2q−NQ,zpγ1q| = NQ,zpγ2q−NQ,zpγ1q. (68)

Substituting equality (68) into (67) yields

NQ,zpγ1q + ε > NQ,zpγ2q. (69)

From the fact that NQ,z is bijective, evaluating inequality (69) with NQ,z
in (46a) leads to

N−1Q,zpNQ,zpγ1q + εq > N−1Q,zpNQ,zpγ2qq (70a)
= γ2. (70b)

Subtracting γ1 from both sides in (70), results in

N−1Q,zpNQ,zpγ1q + εq− γ1 > γ2 − γ1 (71a)
= |γ2 − γ1|, (71b)

where equality (71b) follows from the condition that γ2 > γ1. Thus, from (71)
it follows that for all ε > 0, there exist a δ > 0 that satisfies

δ = N−1Q,zpNQ,zpγ1q + εq− γ1, (72)

which implies the function NQ,z in (46) is continuous for all γ ∈ A. From (72)
the function NQ,z is continuous and strictly increasing, which completes the
proof.

B Proof of Lemma 4.2
Proof: The proof shows that if B in (10a) is not empty, then the domain of the
function NQ,z in (46) is an interval of R. The proof is divided into two parts,
in the first part it is shown that B is always open from the right. The second
part uses t?Q,z the set from the left.

The first part is as follows. From Lemma 4.1, if there exists a t1 ∈ B, then it
holds

0 <

∫
9f−1p−t1 − LzpθqqdQpθq <∞. (73)

Inria



ERM with f -Divergence Regularization in Statistical Learning 25

From (73) and the fact thatNQ,z is strictly increasing, for all t ∈ {s ∈ R : s ≥ t1},
it holds that∫

9f−1p−t1 − LzpθqqdQpθq >

∫
9f−1p−t− LzpθqqdQpθq. (74)

From (74) and the fact that 9f−1 is continuous and decreasing, there exists a
λ ∈ p0,∞q such that for all t ∈ {s ∈ R : s ≥ t1} constrain in (10b) is satisfied,
which implies that B ⊇ rt,∞q. This completes the first part of the proof.

The second part is as follows. There are two cases considered under the assump-
tion that t = t?Q,z with t?Q,z defined in (49). In the first case, if t?Q,z ∈ B, then
it holds that ∫

9f−1
`

−t?Q,z − Lzpθq
˘

dQpθq <∞, (75a)

which implies that B =
“

t?Q,z,∞
˘

, with B defined in (46a). In the second case,
if t?Q,z 6∈ B, then it holds that∫

9f−1
`

−t?Q,z − Lzpθq
˘

dQpθq =∞, (75b)

which implies that B =
`

t?Q,z,∞
˘

, with B defined in (46a). Note that the
integral in (75) is never zero as it would be a contradiction with (2). Hence,
from (74) and (75) the set B in (10b) is either the open set

`

t?Q,z,∞
˘

or the
closed set

“

t?Q,z,∞
˘

, which completes the proof.

C Proof of Lemma 4.3
Proof: The following proof by contradiction is divided into three parts. In
the first part, an auxiliary function is introduced and proven to be continuous.
In the second part, a contradiction is shown under the assumption that 9f−1

is nonnegative and the continuity of the auxiliary. Finally, it is shown that
for nonnegative 9f−1, the set of admissible regularization factors is the positive
reals.

The first part is as follows. Let the function k : B → p0,+∞q be such that

kptq=

∫
9f−1

ˆ

−t− Lzpθq

λ

˙

dQpθq. (76)

The first step is to prove that the function k in (76) is continuous in B. This is
proved by showing that k always exhibits a limit. Note that from the fact that
9f−1 is strictly increasing, it holds that for all t ∈ B and for all θ ∈ suppQ, it
holds that

9f−1
ˆ

−t− Lzpθq

λ

˙

≤ 9f−1
ˆ

− t
λ

˙

, (77)
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where equality holds if and only if Lzpθq = 0. Now, from the fact that 9f−1 is
continuous it follows that for all a ∈ B, it holds that

lim
t→a

9f−1
ˆ

−t− Lzpθq

λ

˙

= 9f−1
ˆ

−a− Lzpθq

λ

˙

. (78)

Hence, from the dominated convergence theorem [38, Theorem 1.6.9], the fol-
lowing limit exists and satisfies

lim
t→a

kptq=lim
t→a

∫
9f−1

ˆ

−t− Lzpθq

λ

˙

dQpθq (79)

=

∫ ˆ

lim
t→a

9f−1
ˆ

−t− Lzpθq

λ

˙˙

dQpθq (80)

=

∫
9f−1

ˆ

−a− Lzpθq

λ

˙

dQpθq (81)

=kpaq, (82)

which proves that the function k in (76) is continuous.

The second part is as follows. Under the assumption that f induces a nonnega-
tive 9f−1 and that B is nonempty, from Lemma 4.2 the set B is either

“

t?Q,z,∞
˘

or
`

t?Q,z,∞
˘

. Hence, it is sufficient to show that assuming B is equal to
“

t?Q,z,∞
˘

and 9f−1 is nonnegative leads to a contradiction. From Lemma 4.2 it follows
that

k
`

t?Q,z
˘

<∞, (83)

with the function k in (76) and t?Q,z defined in (49). Thus, from the fact that k
in (76) is continuous, for t < t?Q,z, it follows that kptq <∞, which implies there

exists a set C =
{
θ ∈ suppQ : 9f−1

´

−t−Lzpθq

λ

¯

< 0
}

such that t 6∈ B. However,

this contradicts the assumption that 9f−1 is nonnegative, which implies that
B =

`

t?Q,z,∞
˘

. This completes the second part of the proof.

The third part is as follows. From the fact that B is nonempty, there is a t ∈ B
and a λ ∈ p0,∞q such that,

1 =

∫
9f−1

ˆ

− t+ Lz
λ

˙

dQpθq. (84)

From the fact that the function 9f−1 is continuous and strictly increasing, for all
t1 ∈

`

t?Q,z, t
˘

and for all t2 ∈ pt,∞q, it holds that∫
9f−1

ˆ

− t1 + Lz
λ

˙

dQpθq > 1 >

∫
9f−1

ˆ

− t2 + Lz
λ

˙

dQpθq. (85)

Under the same argument, for all λ1 ∈ p0, λq and for all λ2 ∈ pλ,∞q, it holds
that ∫

9f−1
ˆ

− t+ Lz
λ1

˙

dQpθq > 1 >

∫
9f−1

ˆ

− t+ Lz
λ2

˙

dQpθq. (86)
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Hence, given that the function k in (76) is continuous, strictly decreasing, from
(85) then, there always exists two reals t1 and t2 in B such that kpt1q < 1 < kpt2q,
it follows from the intermediate-value theorem [43, Theorem 4.23] that there
always exists a unique real t ∈ B such that kptq = 1. Furthermore, for all
t ∈ B there always exists two reals λ1 and λ2 in p0,∞q such that inequality (86)
holds, it follows from the intermediate-value theorem [43, Theorem 4.23] that
there always exists a unique real t ∈ B for all λ ∈ p0,∞q such that kptq = 1.
Finally, from the fact that NQ,z in (46) is continuous and strictly increasing,
if B =

`

t?Q,z,∞
˘

then the set of admisible regularization factors A in (46a) is
identical to p0,∞q, which completes the proof.
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