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Minimisation du Risque Empirique avec
Régularisation par f-Divergences dans

l’Apprentissage Statistique
Résumé : Ce rapport présente la solution au problème de minimisation du
risque empirique avec régularisation par une f -divergence dans des faibles con-
traintes sur f . Dans ces conditions, la mesure optimale s’avère unique et existe
toujours. La solution est présentée comme une expression sous forme fermée de
la dérivée de Radon-Nikodym de la mesure de probabilité optimale par rapport
à la mesure de référence. Des exemples de choix particuliers de la fonction f sont
présentés. Pour certains choix, des résultats existants sont obtenus comme cas
particuliers du résultat principal. Il s’agit notamment des solutions uniques aux
problèmes de minimisation du risque empirique avec régularisation par entropie
relative (Type-I et Type-II).

Mots-clés : Minimisation du Risque Empirique, f -divergence, Régularisation,
apprentissage statistique.
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4 Daunas, Esnaola, Perlaza, and Poor

1 Introduction

Empirical Risk Minimization (ERM) is a fundamental principle in machine
learning. It is a tool for selecting a model from a given set by minimizing
the empirical risk, which is the average loss or error induced by such a model on
each of the labelled patterns available in the training dataset [1, 2]. In simpler
terms, ERM aims to find a model that performs well on a given training dataset.
However, ERM is prone to overfitting [3–5], which affects the generalization ca-
pability of the resulting optimal model [6–8]. To remediate this phenomenon,
the solution of the ERM shall exhibit a small sensitivity to variations in the
training dataset, which is often obtained via regularization [9–14].

In statistical learning theory, the ERM problem consists in the minimization
of the expected empirical risk over a subset of all probability measures that
can be defined upon the set of models. In this case, regularization is often
obtained by adding (up to a constant factor) a statistical distance from the
optimization measure to a reference measure to the expected empirical risk
(w.r.t. the optimization measure). Such a statistical distance is essentially a
non-negative measure of dissimilarity between the optimization measure and
the reference measure, which might be a σ-finite measure and not necessarily a
probability measure. A key observation is that such a reference measure often
represents prior knowledge and/or desired features on the solution.

A typical example of a statistical distance is an f -divergence. The notion of
f -divergence was introduced in [15] and further studied in [16, 17]. A popu-
lar f -divergence is the relative entropy [18], which due to its asymmetry, leads
to two different problems when it is used for regularizing the ERM problem.
Those problems are known as Type-I and Type-II ERM with relative entropy
regularization (ERM-RER). In the Type-I ERM-RER, the regularizer is the rel-
ative entropy of the optimization measure with respect to (w.r.t.) the reference
measure [12]. Alternatively, in the Type-II ERM-RER, the regularizer is the
relative entropy of the reference measure w.r.t. the optimization measure [13].
The Type-I ERM-RER problem exhibits a unique solution, which is a Gibbs
probability measure. In the case in which the reference measure is a probability
measure, the existence of the solution is always ensured. Alternatively, in the
case in which it is a σ-finite measure, the existence of a solution is subject to
strict conditions. The Type-II ERM-RER problem also exhibits a unique solu-
tion when the reference measure is a probability measure. Such a solution is a
probability measure that exhibits properties that are analogous to those of the
Gibbs probability measure, as pointed out in [13]. Nonetheless, despite these
similarities, Type-I ERM-RER appears to be the most popular regularized ERM
problem in statistical learning theory. See for instance, [19–30] and references
therein.

Optimization problems with f -divergence regularization has been explored in
[31,32] and [33]. Nonetheless, the problem of ERM with f -divergence regulariza-
tion (ERM-fDR), with a general f function, has not been studied before. Only
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ERM with f -Divergence Regularization in Statistical Learning 5

the special cases, fpxq = −x logpxq (Type-I ERM-RER) and fpxq = − logpxq

(Type-II ERM-RER), mentioned above have attracted particular attention.
This work presents the solution to the ERM-fDR problem using a method
of proof that differs from those in [31, 32] and [33] and goes along the lines
of the methods in [12, 13] and [14], which rely on the notion of the Gateaux
derivative [34].

The remainder of this report is organized as follows. Section 2 presents the
standard ERM problem and introduces the notation. The ERM-fDR problem
and its solution, which is the main contribution of this work, is presented in
Section 3. Section 4 presents examples for specific choices of the function f .
Finally, Section 5 draws the main conclusions and finalizes this report.

2 Empirical Risk Minimization Problem
Let M, X and Y, with M ⊆ Rd and d ∈ N, be sets of models, patterns, and
labels, respectively. A pair px, yq ∈ X×Y is referred to as a labeled pattern or data
point. Given the data points px1, y1q, px2, y2q, . . ., pxn, ynq with n ∈ N, a dataset
is represented by the tuple ppx1, y1q, px2, y2q, . . . , pxn, ynqq ∈ pX × Yq

n.

Let the function h : M×X → Y be such that the label assigned to a pattern
x ∈ X according to the model θ ∈M is hpθ, xq. Then, given a dataset

z = ppx1, y1q, px2, y2q, . . . , pxn, ynqq ∈ pX × Yq
n
, (1)

the objective is to obtain a model θ ∈ M, such that, for all i ∈ {1, 2, . . . , n},
the label assigned to patern xi, which is hpθ, xiq, is “close” to the label yi
specified by the training dataset. This notion of “closeness” is formalized by the
function

` : Y × Y → r0,+∞q, (2)

such that the loss or risk induced by choosing the model θ ∈ M w.r.t. the la-
belled pattern pxi, yiq, with i ∈ {1, 2, . . . , n}, is `phpθ, xiq, yiq. The risk function
` is assumed to be nonnegative and satisfy `py, yq = 0, for all y ∈ Y.

The empirical risk induced by a model θ with respect to the dataset z in (1) is
determined by the function Lz :M→ r0,+∞q, which satisfies

Lzpθq,
1

n

n∑
i=1

`phpθ, xiq, yiq. (3)

The ERM problem w.r.t. the dataset z in (1) consists of the optimization
problem:

min
θ∈M

Lzpθq. (4)

The set of solutions to such a problem is denoted by

T pzq , arg min
θ∈M

Lzpθq. (5)

RR n° 9521



6 Daunas, Esnaola, Perlaza, and Poor

Note that if the set M is finite, the ERM problem in (4) has a solution, and
therefore, it holds that |T pzq| > 0. Nevertheless, in general, the ERM problem
does not always have a solution. That is, there exist choices of the loss function
` and the dataset z that yield |T pzq| = 0.

3 The ERM with f-Divergence Regularization

3.1 Preliminaries
For the ease of notation, the expected empirical risk with respect to a given
measure is expressed via the following functional Rz, defined hereunder.

Definition 3.1 (Expected Empirical Risk). The expectation of the empirical
risk Lzpθq in (3), when θ is sampled from a probability measure P ∈ 4pMq, is
determined by the functional Rz : 4pMq→ r0,+∞q, such that

RzpP q =

∫
LzpθqdP pθq. (6)

Similarly, a particular notation is used for the f -divergences, as shown in the
following definition.

Definition 3.2 (f -divergence [17]). Let f : p0,∞q → R be a convex function
with fp1q = 0 and fp0q = limx→0+ fpxq. Let P and Q be two probability mea-
sures on the same measurable space, with P absolutely continuous with Q. The
f -divergence of P w.r.t. Q, denoted by Df pP‖Qq, is

Df pP‖Qq ,
∫
f

ˆ

dP

dQ
pθq

˙

dQpθq, (7)

where the function dP
dQ is the Radon-Nikodym derivative of P with respect to Q.

The set of probability measures that can be defined upon the measurable space
pM,BpMqq, with BpMq being the Borel σ-field onM, is denoted by 4pMq.
Given a probability measure Q ∈ 4pMq the set containing exclusively the
probability measures in 4pMq that are absolutely continuous with Q is denoted
by 4QpMq. That is,

4QpMq , {P ∈ 4pMq : P � Q}, (8)

where the notation P � Q stands for the measure P being absolutely continuous
with respect to measure Q.

3.2 Problem Formulation
The ERM-fDR problem is parametrized by a probability measure Q ∈ 4pMq,
a positive real λ, and an f -divergence (Definition 3.2). The measure Q is re-
ferred to as the reference measure, λ as the regularization factor and f as the

Inria
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regularization function. Given the dataset z ∈ pX × Yq
n in (1), the ERM-fDR

problem, with parameters Q , λ and f , consists of the following optimization
problem:

min
P∈4QpMq

RzpP q + λDf pP‖Qq. (9)

3.3 Solution to the ERM-fDR
The solution of the ERM-fDR problem in (9) is presented in the following
theorem under the assumption that the function f is strictly convex and differ-
entiable.

Theorem 3.1. Let the function f in (9) be strictly convex and differentiable.
Denote by 9f : R → R and 9f−1 : R → p0,∞q the derivative and the reciprocal
of the function f , respectively, and assume that 9f−1 is strictly positive. Then,
the optimization problem in (9) always possesses a unique solution, denoted by
P

pQ,λq

Θ|Z=z, whose Radon-Nikodym derivative with respect to the probability mea-
sure Q satisfies for all θ ∈ suppQ

dP
pQ,λq

Θ|Z=z

dQ
pθq = 9f−1

ˆ

−β + Lzpθq

λ

˙

, (10)

where the function Lz is defined in (3); and β is a real chosen such that∫
9f−1

ˆ

−β + Lzpθq

λ

˙

dQpθq = 1. (11)

Proof: The optimization problem in (9) can be re-written in terms of the Radon-
Nikodym derivative of the optimization measure P w.r.t. the measure Q, which
yields:

min
P∈4QpMq

„ ∫
Lzpθq

dP

dQ
pθq dQpθq + λ

∫
f

ˆ

dP

dQ
pθq

˙

dQpθq



(12a)

s.t.

∫
dP

dQ
pθqdQpθq = 1. (12b)

The remainder of the proof focuses on the problem in which the optimization
is over the function dP

dQ : M → r0,∞q, which represents the Radon-Nikodym
derivate of P w.r.t. Q. Hence, instead of optimizing the measure P , the opti-
mization is over the function dP

dQ . This is due to the fact that for all P ∈ 4QpMq,
the Radon-Nikodym derivate dP

dQ is unique up to sets of zero measure w.r.t. Q.
Let M be the set of measurable functionsM→ R with respect to the measur-
able spaces pM,F q and pR,BpRqq that are absolutely integrable with respect
to Q. That is, for all ĝ ∈M , it holds that∫

|ĝpθq|dQpθq<∞. (13)

RR n° 9521



8 Daunas, Esnaola, Perlaza, and Poor

Hence, the optimization problem of interest is:

min
g∈M

„ ∫
Lzpθqgpθq dQpθq + λ

∫
fpgpθqqdQpθq



(14a)

s.t.

∫
gpθqdQpθq = 1. (14b)

Let the Lagrangian of the optimization problem in (14) be L : M × R → R

such that

Lpg, βq=

∫
Lzpθqgpθq dQpθq+λ

∫
fpgpθqq dQpθq+β

ˆ∫
gpθq dQpθq−1

˙

, (15)

=−β +

∫
´

gpθqpLzpθq + βq + λfpgpθqq

¯

dQpθq, (16)

where β is a real that acts as a Lagrange multiplier due to the constraint (14b).

Let ĝ :M→ R be a function in M . The Gateaux differential of the functional
L in (15) at pg, βq ∈M ×R in the direction of ĝ, if it exists, is

∂Lpg, β; ĝq,
d

dγ
Lpg + γĝ, βq

ˇ

ˇ

ˇ

ˇ

γ=0

. (17)

Let the function r : R → R satisfy for all γ ∈ p−ε, εq, with ε arbitrarily small,
that

rpγq=Lpg + γĝ, βq (18)

=

∫
Lzpθqpgpθq + γĝpθqq dQpθq + λ

∫
fpgpθq + γĝpθqq dQpθq

+β

ˆ∫
pgpθq + γĝpθqqdQpθq− 1

˙

(19)

=−β +

∫
gpθqpLzpθq + βqdQpθq + γ

∫
ĝpθqpLzpθq + βqdQpθq

+λ

∫
fpgpθq + γĝpθqq dQpθq. (20)

Note that the first two terms in (20) are independent of γ; the third term is
linear with γ; and the fourth term can be written using the function r̂ : R→ R

such that for all γ ∈ p−ε, εq, with ε arbitrarily small, it holds that

r̂pγq=λ

∫
fpgpθq + γĝpθqq dQpθq. (21)

Hence, if the function r̂ in (21) is differentiable at zero, so is the function r in
(18), which implies that the Gateaux differential of the functional ∂L in (17)
exists. The objective is to prove that the function r̂ is differentiable at zero,
which boils down to proving that the limit

lim
δ→0

1

δ
pr̂pγ + δq− r̂pγqq (22)

Inria
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exists for all γ ∈ p−ε, εq, with ε arbitrarily small. The proof of the existence of
such a limit relies on the fact that from the assumption that f is strictly convex,
it follows that f is continuous. This implies that f is also Lipschitz continuous,
which implies that for all θ ∈ M and for all γ ∈ p−ε, εq, with ε > 0 arbitrarily
small, it holds that

|fpgpθq + pγ + δqĝpθqq− fpgpθq + γĝpθqq|6c |ĝpθq| |δ|, (23)

for some constant c positive and finite, which implies that
ˇ

ˇ

ˇ

ˇ

fpgpθq + pγ + δqĝpθqq− fpgpθq + γĝpθqq

δ

ˇ

ˇ

ˇ

ˇ

6c |ĝpθq|. (24)

From the assumption that f is differentiable, let 9f : p0,∞q → R be the first
derivative of f . Using these arguments, the limit in (22) satisfies for all γ ∈
p−ε, εq, with ε > 0 arbitrarily small, that

lim
δ→0

1

δ
pr̂pγ + δq− r̂pγqq

=λ lim
δ→0

1

δ

ˆ∫
fpgpθq + pγ + δqĝpθqq dQpθq−

∫
fpgpθq + γĝpθqq dQpθq

˙

(25)

=λ lim
δ→0

∫
fpgpθq + pγ + δqĝpθqq− fpgpθq + γĝpθqq

δ
dQpθq (26)

=λ

∫
9fpgpθq + γĝpθqqĝpθq dQpθq (27)

<∞, (28)

where both the equality in (27) and the inequality in (28) follow from noticing
that the conditions for the dominated convergence theorem hold [35, Theo-
rem 1.6.9], namely:

• For all γ ∈ p−ε, εq, with ε > 0, the inequality in (24) holds;

• The function ĝ in (24) satisfies the inequality in (13); and

• For all θ ∈M and for all γ ∈ p−ε, εq, with ε > 0 arbitrarily small, it holds
that

lim
δ→0

fpgpθq + pγ + δqĝpθqq− fpgpθq + γĝpθqq

δ
=

d

dγ
fpgpθq + γĝpθqq (29)

= 9fpgpθq + γĝpθqqĝpθq (30)

which follows from the fact that f is assumed to be differentiable.

From (28), it follows that the function r̂ in (21) is differentiable in the interval
p−ε, εq, with ε > 0 arbitrarily small. This implies that the function r in (18)
is differentiable within the same interval. The derivative of the real function r
in (18) at γ ∈ p−ε, εq, with ε > 0 arbitrarily small, is

d

dγ
rpγq=

∫
ĝpθqpLzpθq + βqdQpθq + λ

∫
9fpgpθq + γĝpθqqĝpθq dQpθq (31)

RR n° 9521



10 Daunas, Esnaola, Perlaza, and Poor

=

∫
ĝpθq

´

Lzpθq + β + λ 9fpgpθq + γĝpθqq

¯

dQpθq. (32)

Hence, the Gateaux differential ∂Lpg, β; ĝq in (17) exists and satisfies

∂Lpg, β; ĝq=
d

dγ
rpγq

ˇ

ˇ

ˇ

ˇ

γ=0

(33)

=

∫
ĝpθq

´

Lzpθq + β + λ 9fpgpθqq

¯

dQpθq. (34)

The relevance of the Gateaux differential in (33) stems from [36, Theorem 1,
page 178], which unveils the fact that a necessary condition for the functional

L in (15) to have a stationary point at
ˆ

dP
pQ,λq

Θ|Z=z

dQ , β

˙

∈M× r0,+∞q is that for

all functions ĝ ∈M ,

∂L

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
, β; ĝ

˛

‚= 0. (35)

From (35), it follows that
dP

pQ,λq

Θ|Z=z

dQ must satisfy for all functions ĝ in M that

∫
ĝpθq

¨

˝Lzpθq + β + λ 9f

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

˛

‚dQpθq = 0. (36)

This implies that for all θ ∈ suppQ,

Lzpθq + β + λ 9f

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚= 0, (37)

and thus,
dP

pQ,λq

Θ|Z=z

dQ
pθq = 9f−1

ˆ

−β − Lzpθq

λ

˙

, (38)

where β is chosen to satisfy (11).

Now, the objective is to show the existence of such a β. For this purpose, note
that the inverse 9f−1 exists from the fact that f is strictly convex, which implies
that 9f is a strictly increasing function. Hence, 9f−1 is also a strictly increasing
function [37, Theorem 5.6.9]. Moreover, from the assumption that f is convex
and differentiable, it holds that 9f is continuous [38, Proposition 5.44]. This
implies that 9f−1 is continuous. These elements are used hereunder to study the
function k : R→ p0,∞q such that

kptq=

∫
9f−1

ˆ

−t− Lzpθq

λ

˙

dQpθq, (39)

and prove that there always exists a β ∈ R such that kpβq = 1. The first
step is to prove that the function k in (39) is continuous. This is proved by

Inria



ERM with f -Divergence Regularization in Statistical Learning 11

showing that k always exhibits a limit. Note that from the fact that 9f−1 is
strictly increasing, it holds that for all β ∈ R and for all θ ∈ suppQ, it holds
that

9f−1

ˆ

−β − Lzpθq

λ

˙

6 9f−1

ˆ

−β
λ

˙

, (40)

where equality holds if and only if Lzpθq = 0. Now, from the fact that 9f−1 is
continuous it follows that for all a ∈ R

lim
t→a

9f−1

ˆ

−t− Lzpθq

λ

˙

= 9f−1

ˆ

−a− Lzpθq

λ

˙

. (41)

Hence, from the the dominated convergence theorem [35, Theorem 1.6.9], it
holds that

lim
t→a

kptq=lim
t→a

∫
9f−1

ˆ

−β − Lzpθq

λ

˙

dQpθq (42)

=

∫ ˆ

lim
t→a

9f−1

ˆ

−β − Lzpθq

λ

˙˙

dQpθq (43)

=

∫
9f−1

ˆ

−a− Lzpθq

λ

˙

dQpθq (44)

=kpaq, (45)

which proves that the function k in (39) is continuous. Note also that such a
function k is strictly decreasing, from the fact that 9f−1 is strictly increasing. The
proof continues by showing that there always exists a pair pt1, t2q ∈ R2, such that
kpt1q < 1 6 kpt2q. Consider the set At1 =

{
θ ∈M : 9fp1q 6

´

−t1−Lzpθq

λ

¯}
={

θ ∈M : 9f−1
´

−t1−Lzpθq

λ

¯

> 1
}
and let Lz and L̄z be two reals such that

Lz=inf{t ∈ R : t = Lzpθq,θ ∈ suppQ}, and (46)
L̄z=sup{t ∈ R : t = Lzpθq,θ ∈ suppQ}, (47)

and note that 0 6 Lz 6 L̄z < +∞.

Assume that 1 < kpt1q. Hence,

1<kpt1q (48)

=

∫
At1

9f−1

ˆ

− t1 + Lzpθq

λ

˙

dQpθq +

∫
M\At1

9f−1

ˆ

− t1 + Lzpθq

λ

˙

dQpθq(49)

6
∫
At1

9f−1

ˆ

− t1 + Lzpθq

λ

˙

dQpθq +

∫
M\At1

dQpθq (50)

6
∫
At1

9f−1

ˆ

− t1 + Lz
λ

˙

dQpθq +

∫
M\At1

dQpθq (51)

6QpAt1q 9f−1

ˆ

− t1 + Lz
λ

˙

+ 1−QpAt1q, (52)
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which implies that t1 must satify 9f−1
´

− t1+Lz

λ

¯

> 1. This is the same as
requiring that

9fp1q<− t1 + Lz
λ

, (53)

as a consequence of the function 9f monotonically increasing.

Assume now that 1 > kpt2q. Hence,

1>kpt2q (54)

=

∫
At2

9f−1

ˆ

− t2 + Lzpθq

λ

˙

dQpθq +

∫
M\At2

9f−1

ˆ

− t2 + Lzpθq

λ

˙

dQpθq(55)

>
∫
At2

dQpθq +

∫
M\At2

9f−1

ˆ

− t2 + Lzpθq

λ

˙

dQpθq (56)

>
∫
At2

dQpθq +

∫
M\At2

9f−1

ˆ

− t2 + L̄z
λ

˙

dQpθq (57)

=QpAt2q + p1−QpAt2qq 9f−1

ˆ

− t2 + L̄z
λ

˙

, (58)

which implies that t2 must satify 9f−1
´

− t2+L̄z

λ

¯

6 1. This is the same as
requiring that

9fp1q>− t2 + L̄z
λ

, (59)

as a consequence of the function 9f monotonically increasing. It has already
been established that 9f is continuous and thus, there always exist two reals t1
and t2 that satisfy that

− t2 + L̄z
λ

< 9fp1q 6− t1 + Lz
λ

, (60)

which implies that kpt1q < 1 6 kpt2q. Hence, given that the function k is
continuous, strictly decreasing, and there always exists two reals t1 and t2 such
that kpt1q < 1 6 kpt2q, it follows from the intermediate-value theorem [39,
Theorem 4.23] that there always exists a unique real t such that kptq = 1.

Finally, note that the objective function in (14) is the sum of two terms. The first
one, i.e.,

∫
LzpθqgpθqdQpθq, is linear with g. The second, i.e.,

∫
fpgpθqqdQpθq,

is strictly convex with g from the assumption that f is strictly convex. Hence,
given that λ > 0, the sum of both terms is strictly convex with g. This implies
the uniqueness of P pQ,λq

Θ|Z=z.

4 Examples
This section describes some examples for particular choices of the function f in
Theorem 3.1.
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4.1 Kullback-Leibler Divergence
Let the function f : p0,+∞q→ R be such that

fpxq = x logpxq, (61)

whose derivative satisfies

9fpxq = 1 + logpxq. (62)

In this case, the resulting f -divergence Df pP‖Qq is the relative entropy of P
with respect to Q. From equation (62) and Theorem 3.1 it holds that for all
θ ∈ suppQ

1 + log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚= −β + Lzpθq

λ
, (63)

which implies

dP
pQ,λq

Θ|Z=z

dQ
pθq = exp

ˆ

−β + λ+ Lzpθq

λ

˙

(64)

=
exp

`

− 1
λLzpθq

˘∫
exp

`

− 1
λLzpνq

˘

dQpνq
, (65)

which is the result independently by several authors in [12, 25, 27, 29, 40], and
references therein.

4.2 Reverse Relative Entropy Divergence
Let the function f : p0,+∞q→ R be such that

fpxq = − logpxq, (66)

whose derivative satisfies

9fpxq = − 1

x
. (67)

In this case, the resulting f -divergence Df pP‖Qq is the relative entropy of Q
with respect to P . From equation (67) and Theorem 3.1 it holds that for all
θ ∈ suppQ

−

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

−1

= −β + Lzpθq

λ
, (68)

which implies

dP
pQ,λq

Θ|Z=z

dQ
pθq =

λ

β + Lzpθq
, (69)

which is the result reported in [14,41].
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4.3 Jeffrey’s Divergence

Let the function f : p0,+∞q→ R be such that

fpxq = x logpxq− logpxq, (70)

such that

9fpxq = logpxq + 1− 1

x
. (71)

In this case, the resulting f -divergence Df pP‖Qq is Jeffrey’s divergence between
P and Q. From equation (71) and Theorem 3.1 it holds that,

log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+ 1− dQ

dP
pQ,λq

Θ|Z=z

pθq = −β + Lzpθq

λ
, (72)

which implies

0 = − dQ

dP
pQ,λq

Θ|Z=z

pθq + log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+ 1 +
β + Lzpθq

λ
(73)

= −1 +
dP

pQ,λq

Θ|Z=z

dQ
pθq

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+
β + λ+ Lzpθq

λ

˛

‚ (74)

= exp

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

˛

‚

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+
β + λ+ Lzpθq

λ

˛

‚

−1 (75)

=

¨

˝exp

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

˛

‚

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+
β + λ+ Lzpθq

λ

˛

‚

− 1

˛

‚

exp
´

β+λ+Lzpθq

λ

¯

exp
´

β+λ+Lzpθq

λ

¯ (76)

= exp

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+
β + λ+ Lzpθq

λ

˛

‚

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚

+
β + λ+ Lzpθq

λ

˙

− exp

ˆ

β + λ+ Lzpθq

λ

˙

. (77)

Let W0 : r0,∞q → r0,∞q be the Lambert function, which for a function g :
R→ R such that gpxq = x exppxq satisfies W0pgpxqq = x.

exp

ˆ

β + λ+ Lzpθq

λ

˙

Inria
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= exp

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+
β + λ+ Lzpθq

λ

˛

‚

¨

˝log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+
β + λ+ Lzpθq

λ

˛

‚. (78)

Hence, from the equality in (77), it holds that

W0

ˆ

exp

ˆ

β + λ+ Lzpθq

λ

˙˙

= log

¨

˝

dP
pQ,λq

Θ|Z=z

dQ
pθq

˛

‚+
β + λ+ Lzpθq

λ
, (79)

which in terms of the Lambert function yields

dP
pQ,λq

Θ|Z=z

dQ
pθq

= exp

ˆ

W0

ˆ

exp

ˆ

β + λ+ Lzpθq

λ

˙˙

− β + λ+ Lzpθq

λ

˙

. (80)

4.4 Hellinger Divergence

Let the function f : p0,+∞q→ R be such that

fpxq =
`

1−
?
x
˘2
, (81)

which implies

9fpxq = 1− 1
?
x
. (82)

From equation (82) and Theorem 3.1 it holds that,

1− 1
c

dP
pQ,λq

Θ|Z=z

dQ pθq

= −β + Lzpθq

λ
. (83)

Hence, from (83) it follows that

dP
pQ,λq

Θ|Z=z

dQ
pθq =

ˆ

λ

β + λ+ Lzpθq

˙2

. (84)
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4.5 Jennsen-Shannon Divergence
Let the function f : p0,+∞q→ R be such that

fpxq = x log

ˆ

2x

x+ 1

˙

+ log

ˆ

2

x+ 1

˙

, (85)

which implies

9fpxq = log

ˆ

2x

x+ 1

˙

. (86)

From equation (86) and Theorem 3.1 it holds that,

log

¨

˚

˝

2
dP

pQ,λq

Θ|Z=z

dQ pθq

dP
pQ,λq

Θ|Z=z

dQ pθq + 1

˛

‹

‚

= −β + Lzpθq

λ
. (87)

Hence, from (87) it follows that

dP
pQ,λq

Θ|Z=z

dQ
pθq =

exp
´

−β+Lzpθq

λ

¯

2− exp
´

−β+Lzpθq

λ

¯ (88)

=
1

2 exp
´

β+Lzpθq

λ

¯

− 1
. (89)

5 Conclusions
This work has presented the solution to the ERM-fDR problem under mild
conditions on f , namely, paq strict convexity; and pbq differentiability. Un-
der these conditions, the optimal measure is shown to be unique and always
exists. This result allows obtaining closed-form expressions for ERM prob-
lems with regularizations by relative entropy (fpxq = x logpxq), reverse rela-
tive entropy (fpxq = − logpxq); Jeffrey’s divergence (fpxq = x logpxq − logpxq);
Hellinger divergence (fpxq = p1−

?
xq

2); Jensen-Shannon divergence (fpxq =

x log
´

2x
x+1

¯

+ log
´

2
x+1

¯

); among others. The result is limited in the sense that
popular regularizations such as the one by total variation (fpxq = |x− 1|) can-
not be studied via the main result. This is because in this case, f is not strictly
convex.
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