Guy Barrand 
  
Pure real solutions to the Dirac-Coulomb problem in Majorana representation

By exploiting the Majorana representation of the gamma matrices, we first rewrite the free Dirac equation without complex numbers, then we show that the minimal complex electromagnetic coupling could be handled also without complex numbers by just considering two coupled real fields instead of one complex field. When done, we show how to get pure real solutions for the hydrogen atom. Concerning the angular part, we present angular operators based only on real numbers, which is the original part of this work. We give real solutions to their eigenvalues and eigenvectors. Equipped with these we finally reach the traditional radial part equations for which we recall a way to find real solutions. We reach the same conclusions concerning the quantization of the energy of the hydrogen atom as found in textbooks, but with an overall approach involving much simpler mathematics than by using the Dirac representation of the gamma matrices. We show also that the concept of probability is not mandatory to reach the energy discrete spectrum. This may interest people sensitive to the problem of which ideas and ontology to attach to micro-physics.

The Dirac equation

Over a ψ α (x) tuple, it reads traditionally:

i(γ µ ) α β ∂ µ ψ β (x) = mc ψ α (x)
or in a more compact matrix notation:

iγ µ ∂ µ ψ(x) = mc ψ(x) (1) 
with the γ µ being four 4x4 complex matrices verifying:

{γ µ , γ ν } = 2(η -1 ) µ ν I (2) 
η def =     1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1     dem = η -1
Written in this way, it compells that the ψ(x) tuple is a priori complex.

An important quantity related to the Dirac equation is the density:

ρ[ψ](x) def = ψγ 0 ψ(x)
with the Dirac conjugate being ψ def = t ψ * γ 0 , which induces that ρ dem = t ψ * ψ is always a pure real positive quantity.

Notation

For functions/fields depending of parameters, we use:

name[parameters](arguments)

We use also def = in case an equality is a definition (left side is defined by the right side), and dem = when an equality comes from a demonstration (left side is demonstrated to be the right side).

We definitely avoid the practice of setting = c = 1 which complicates the reading of the dimensionality of quantities.

The Sα ξ Dirac equation

We introduce now the four real symmetric matrices:

S0 def = I def =     1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1     S1 def =     0 0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 0     S2 def =     1 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 -1     S3 def =     0 0 -1 0 0 0 0 1 -1 0 0 0 0 1 0 0    
and the real antisymmetric one:

ξ def =     0 0 0 1 0 0 -1 0 0 1 0 0 -1 0 0 0    
We can show that the γ µ matrices in the Majorana representations (see [START_REF] Itzykson | Quantum Field Theory[END_REF] p.694):

γ 0 def = i     0 0 0 -1 0 0 1 0 0 -1 0 0 1 0 0 0     γ 1 def = i     1 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 -1     γ 2 def = i     0 0 0 1 0 0 -1 0 0 -1 0 0 1 0 0 0     γ 3 def = i     0 -1 0 0 -1 0 0 0 0 0 0 -1 0 0 -1 0    
can be written:

γ µ dem = -iη µα Sα ξ
which induces that we have:

{ Sµ ξ, Sν ξ} dem = -2η µ ν I (3) 
Equipped withe these, we can rewrite now the Dirac equation without complex numbers as:

h µα Sα ξ ∂ µ ψ(x) = mc ψ(x) (4) 
h µα def = η µα def = (η -1 ) µ α dem = η µ α
Since all matrices are real, the ψ(x) tuple is now a priori real (and then containing only four real fields instead of eight if complex). See [START_REF] Barrand | Antisymmetric Dirac-Majorana[END_REF] for a detailed presentation on this way to write the Dirac equation and about its Lorentz invariance.

Electromagnetism

Thanks to the Majorana representation of the gamma matrices, we have been able to have a pure real version of the free Dirac equation, but traditionally complex numbers appear again when handling electromagnetism by writing:

iγ µ {∂ µ ψ(x) + i q c Φ µ (x)ψ(x)} = mc ψ(x) (5) 
with q being the electromagnetic charge and Φ µ (x) being the electromagnetic potential related to the three dimensional Maxwell real U(t, x) and A(t, x) with:

Φ µ (x def = (ct, x)) def = (U(t, x), -A(t, x))
By using our Sα ξ representation, the upper equation becomes:

h µα Sα ξ {∂ µ ψ(x) + i q c Φ µ (x)ψ(x)} = mc ψ(x) (6) 
which exhibits the fact that "i" appears now only in the electromagnetic coupling to Φ µ (x).

The complex coupling induces that ψ(x) has to be complex, but if writing:

ψ[V , W ](x) def = V (x) + iW (x)
we see that (6) can be written as two equations without complex numbers on two real coupled fields V (x) and W (x):

h µα Sα ξ {∂ µ V (x) - q c Φ µ (x)W (x)} = mc V (x) h µα Sα ξ {∂ µ W (x) + q c Φ µ (x)V (x)} = mc W (x)
or:

[h µα Sα ξ ∂ µ - mc I]V (x) = [ q c Φ µ (x)h µα Sα ξ ]W (x) (7) [h µα Sα ξ ∂ µ - mc I]W (x) = -[ q c Φ µ (x)h µα Sα ξ ]V (x) (8) 
We see now that complex numbers appear for electromagnetism in (5) and (6) mainly to write in a more compact form two coupled real quantities. About density, ρ(x)

def = ψγ 0 ψ(x) is now here: ρ[V , W ](x) dem = t V (x)V (x) + t W (x)W (x) (9)
which is clearly positive or null.

A word on charge conjugation

With (5), charge conjugation transformation would consist to find a transformation C (ψ) such that:

iγ µ {∂ µ -i q c Φ µ (x)}C (ψ)(x) = mc C (ψ)(x) (10) 
By using the Dirac (or Chiral) representation of the gamma matrices, we get that:

C (ψ)(x) dem = iγ 2 ψ * (x) (11) 
but by working with (7, 8), we see that:

C (V , W )(x) dem = (W , V )(x) (12) 
that is to say the charge conjugation is reduced to just a swapping of the two coupled real fields! We find this much more appealing than the much more algebraic (11). (On ψ(x), (12) would be written C (ψ)(x)

dem = iψ * (x)).

The hydrogen atom

By taking:

A(t, x) def = 0 U(t, x) def = e 4πε 0 x q def = -e e > 0 inducing: q c U(t, x) dem = - α x α def = e 2 4πε 0 c ≈ 1 137
we are going to show that the two upper real coupled equations can be solved without using any complex numbers at all. To reach this we need first to introduce some maths related to the h µα Sα ξ ∂ µ {} operator in spherical coordinates.

Spherical coordinates

Passing from cartesian to spherical coordinates in three dimensions is a question of a transformation S such that:

S 1 (x, y, z) def = x 2 + y 2 + z 2 def = r(x, y, z) 0 r(x, y, z) S 2 (x, y, z) def = arctan( x 2 + y 2 z ) def = θ(x, y, z) 0 θ(x, y, z) π S 3 (x, y, z) def = arctan( y x ) def = φ(x, y, z) 0 φ(x, y, z) 2π
with the invert transformation reading:

(S -1 ) 1 (r, θ, ϕ) dem = r sin θ cos ϕ (S -1 ) 2 (r, θ, ϕ) dem = r sin θ sin ϕ (S -1 ) 3 (r, θ, ϕ) dem = r cos θ A function f (x, y, z) is transformed in S {f }(r, θ, ϕ) def = f (r, θ, ϕ) with: S {f }(S (x)) def = f (x) def = f (r(x, y, z), θ(x, y, z), φ(x, y, z)) ⇔ S {f }(r, θ, ϕ) def = f (r, θ, ϕ) dem = f (S -1 (r, θ, ϕ))
An issue is around derivatives, we have:

∂ j f (x, y, z) dem = ∂ k [S {f }](S (x, y, z))∂ j S k (x, y, z) ⇔ ∂ j f (S -1 (r, θ, ϕ)) dem = ∂ k f (r, θ, ϕ)∂ j S k (S -1 (r, θ, ϕ)) ⇔ ∂ j f (S -1 (r, θ, ϕ)) dem = ∂ k f (r, θ, ϕ)S k j (r, θ, ϕ)
with the matrix:

S k j (r, θ, ϕ) def = ∂ j S k (S -1 (r, θ, ϕ)) dem =   sin θ cos ϕ sin θ sin ϕ cos θ cos θ cos ϕ/r cos θ sin ϕ/r -sin θ/r -sin ϕ/(r sin θ) cos ϕ/(r sin θ) 0   8 Notation, 3D indices
In all the below, latin letters (j, k, l) are used for 3D indices. They go from one to three.

In expressions where the same letter appear, the summation is assumed and this whatever their up or down position. Then for example:

A j B j = A j B j = A j B j = A j B j = A 1 B 1 + A 2 B 2 + A 3 B 3

Laplace operators

On the Laplace operator defined as:

∆{f }(x, y, z) def = (∂ 2 1 f + ∂ 2 2 f + ∂ 2 3 f )(x, y, z)
we can show that:

∆{f }(x, y, z) dem = ∆{ f }(r(x, y, z), θ(x, y, z), φ(x, y, z)) with: ∆{ f }(r, θ, ϕ) dem = [ 1 r 2 ∂ r (r 2 ∂ r f ) + 1 r 2 Θ{ f }](r, θ, ϕ)
and the Laplace angular operator Θ, acting only on the angular part of an angular function a(θ, ϕ), being defined as:

Θ{a}(θ, ϕ) def = [ 1 sin θ ∂ θ (sin θ∂ θ a) + 1 sin 2 θ ∂ 2 ϕ a](θ, ϕ)
10 ñj (θ, ϕ) functions, Nj and Âj operators

We introduce the functions ñj (θ, ϕ):

ñ1 (θ, ϕ) def = sin θ cos ϕ ñ2 (θ, ϕ) def = sin θ sin ϕ ñ3 (θ, ϕ) def = cos θ
the operators Nj on any angular function a(θ, ϕ):

N1 {a}(θ, ϕ) def = cos θ cos ϕ∂ θ a - sin ϕ sin θ ∂ ϕ a N2 {a}(θ, ϕ) def = cos θ sin ϕ∂ θ a + cos ϕ sin θ ∂ ϕ a N3 {a}(θ, ϕ) def = -sin θ∂ θ a
and the operators Âj :

Âl {a}(θ, ϕ) def = ε ljk ñj (θ, ϕ) Nk {a}(θ, ϕ) dem =   -sin ϕ∂ θ a -cot θ cos ϕ∂ ϕ a cos ϕ∂ θ a -cot θ sin ϕ∂ ϕ a ∂ ϕ a   (ε ljk is the traditional Levi-Civita symbol with ε 123 def = 1).
We have various nice relations:

ñj ñj dem = 1 Nj {ñ j } dem = 2 ε ljk Nj {ñ k } dem = 0 ñj Nj dem = 0 ε ljk Nj • Nk dem = Âl ε ljk Âj • Âk dem = -Âl Âj • Âj dem = Θ (13) 
If having an expression with matrices M j of the type:

M j ∂ j ψ(x, y, z) = ψ(x, y, z)
it becomes in spherical:

M j S k j (r, θ, ϕ)∂ k ψ(r, θ, ϕ) = ψ(r, θ, ϕ) M j S k j (r, θ, ϕ)∂ k ψ(r, θ, ϕ) dem = 1 r M j Nj { ψ}(r, θ, ϕ) + ñj (θ, ϕ)M j ∂ r ψ(r, θ, ϕ) (14)
11 Properties of the three Sj=1,2,3 and S j=1,2,3 matrices

Let us introduce the extra symmetric matrices:

S 1 def = 1 2     0 -1 0 0 -1 0 0 0 0 0 0 1 0 0 1 0     S 2 def = 1 2     0 0 -1 0 0 0 0 -1 -1 0 0 0 0 -1 0 0     S 3 def = 1 2     -1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 -1    
If considering only the Sj=1,2,3 matrices of the section (3) (then ignoring the S0 ), we can show that:

{ Sj , ξ} dem = 0 ξ Sj ξ dem = Sj { Sj , Sk } dem = 2δ jk I [ Sj , Sk ] dem = -2ε jkl (2S l ξ) ⇒ Sj Sk dem = δ jk I -ε jkl (2S l ξ) (2S j ξ)(2S k ξ) dem = -δ jk I + ε jkl (2S l ξ) (15)
12 Sj , Nj and their relation to Θ

By introducing the angular matrix function:

Σ(θ, ϕ) def = Sj ñj (θ, ϕ) (⇒ {Σ, ξ} dem = 0 Σ 2 (θ, ϕ) dem = I)
we can show that:

Sj Σ Nj dem = -Σ Sj Nj Sj Sk Nk {ñ j } dem = Sk Sj Nk {ñ j } dem = Sk Nk {Σ} dem = 2I
An important relation is:

Sj Σ Nj dem = 2 S l ξ Âl so that if Z (θ, φ
) is a four angular fields such that:

Sj Σ Nj {Z } def = λZ ( ⇔ Sj Nj {ΣZ } dem = (λ + 2)Z )
we have:

Sj Σ Nj { Sk Σ Nk {Z }} dem = (λ) 2 Z ⇔ 2 S j ξ Âj {2 S k ξ Âk {Z }} dem = (λ) 2 Z
which leads, by using (15) and (13), to:

Θ{Z } def = 1 sin θ ∂ θ (sin θ∂ θ Z ) + 1 sin 2 θ ∂ 2 ϕ Z dem = -λ(λ + 1)Z
It permits to connect λ to the l eigenvalues of the Laplace angular operator.

8

For the hydrogen atom, an important step in finding solutions for the coupled (7, 8) equations is to find the eigenvalues and eigenvectors of the operator Sj Σ Nj , that is to say to find the couples (λ, Z (θ, ϕ)) such that:

Sj Σ Nj {Z } def = λZ ⇒ Θ{Z α } dem = -λ(λ + 1)Z α
This second equation pushes to look for solutions of the form:

Z [l, m] α (θ, ϕ) def = z α (l, m)C m l (θ, ϕ) or: Z [l, m] α (θ, ϕ) def = z α (l, m)S m l (θ, ϕ)
with C m l , S m l being the cosine and sine spherical harmonics defined as:

C m l (θ, ϕ) def = y(l, m)P m l (cos(θ)) cos(mφ) S m l (θ, ϕ) def = y(l, m)P m l (cos(θ)) sin(mφ) y(l, m) def = 2l + 1 4π (l -m)! (l + m)!
with l ∈ N, m ∈ Z such that -l m l and P m l (x) being the associated Legendre functions. The C m l , S m l angular functions verify:

Θ{C m l }(θ, ϕ) dem = -l(l + 1)C m l (θ, ϕ) Θ{S m l }(θ, ϕ) dem = -l(l + 1)S m l (θ, ϕ)
By using the recursive property of the P m l (x) functions:

2(m + 1) cot θP m+1 l (cos θ) + P m+2 l (cos θ) dem = -(l + m + 1)(l -m)P m l (cos θ)
we can show, with rather lengthy calculations, that for 1 l and -l m l -2: 

λ -(l) def = -(l + 1) -2 Z [λ -(l), m](θ, ϕ) def = Z -[l, m](θ, ϕ) def = 1 √ 2l + 1     √ l + m + 1 C m+1 l (θ, ϕ) √ l -m C m l (θ, ϕ) - √ l -m S m l (θ, ϕ) √ l + m + 1 S m+1 l (θ, ϕ)     verifies: Sj Σ Nj {Z [λ -(l), m]} dem = λ -(l) Z [λ -(l), m] (16) 
λ + (l) def = l 1 Z [λ + (l), m](θ, ϕ) def = Z + [l, m](θ, ϕ) def = 1 √ 2l + 1     - √ l -m C m+1 l (θ, ϕ) √ l + m + 1 C m l (θ, ϕ) - √ l + m + 1 S m l (θ, ϕ) - √ l -m S m+1 l (θ, ϕ)     verifies: Sj Σ Nj {Z [λ + (l), m]} dem = λ + (l) Z [λ + (l), m] ( 17 
) 2π 0 dϕ π 0 dθ sin(θ) t Z + [l, m](θ, ϕ)Z + [l, m](θ, ϕ) dem = 1
The relations (16, 17) had been checked numerically by computer with various values of l, m, θ, ϕ. See also Appendix A for a proof that they correspond to what is done traditionally in textbooks by using angular operators defined with Pauli matrices.

Noting that any constant Z (θ, ϕ) function is an eigenvector with the 0 eigenvalue, then we have eigens for all λ in Z except for -1. (Not so clear to us if -1 is an eigenvalue or not).

Unfolding the real Dirac equation

For the hydrogen atom, the coupled (7, 8) equations become:

[h µα Sα ξ∂ µ - mc I]V (x) = - Zα r( x) ξW (x) ⇒ [ξ∂ 0 -Sj ξ∂ j - mc I]V (x) = - Zα r( x) ξW (x) [h µα Sα ξ∂ µ - mc I]W (x) = Zα r( x) ξV (x) ⇒ [ξ∂ 0 -Sj ξ∂ j - mc I]W (x) = Zα r( x) ξV (x)
We look for (V (x),W (x)) of the form:

V (ct, x) def = cos( E t)a( x) + sin( E t)b( x) W (ct, x) def = -sin( E t)a( x) + cos( E t)b( x)
By injecting these in the upper right equations and isolating the sin( E t) and cos( E t) parts, we get the two equations on the spatial a( x), b( x) fields:

- E c ξa -Sj ξ∂ j b - mc b = Zα r( x) ξa ⇒ E c a -Sj ∂ j b - mc ξb = - Zα r( x) a E c ξb -Sj ξ∂ j a - mc a = - Zα r( x) ξb ⇒ - E c b -Sj ∂ j a - mc ξa = Zα r( x) b
By passing to spherical coordinates and exploiting (14) with M j = Sj , we have:

1 r Sj Nj { b} + Σ∂ r b + mc ξ b = E c ã + Zα r ã 1 r Sj Nj {ã} + Σ∂ r ã + mc ξã = - E c b - Zα r b
Now we look for separable solutions in r, (θ, ϕ) with:

ã(r, θ, ϕ) def = -f (r)Y (θ, ϕ) -g(r)ξZ (θ, ϕ) b(r, θ, ϕ) def = f (r)ξY (θ, ϕ) + g(r)Z (θ, ϕ)
It leads to (with ′ for first derivative):

f ′ ΣξY + f r Sj Nj {ξY } + g ′ ΣZ + g r Sk Nk {Z } = -( E c + Zα r - mc )f Y -( E c + Zα r + mc )gξZ -f ′ ΣY - f r Sj Nj {Y } -g ′ ΣξZ - g r Sk Nk {ξZ } = -( E c + Zα r - mc )f ξY -( E c + Zα r + mc )gZ
We look now for Z (θ, ϕ) and Y (θ, ϕ) such that:

Sj Σ Nj {Z } def = λZ Y (θ, ϕ) def = Σ(θ, ϕ)Z (θ, ϕ)
We can show that we have:

Sj Nj {ΣZ } dem = (λ + 2)Z Sj Nj {ΣY } dem = -λY Sj Σ Nj {Y } dem = -(λ + 2)Y Sj Nj {Z } dem = -λY Sj Nj {Y } dem = (λ + 2)Z
By using all these in the two upper equations, we have:

-f ′ ξZ - λ + 2 r f ξZ + g ′ Y - λ r gY = -( E c + Zα r - mc )f Y -( E c + Zα r + mc )gξZ -f ′ Z - λ + 2 r f Z + g ′ ξY - λ r gξY = -( E c + Zα r - mc )f ξY -( E c + Zα r + mc )gZ
Then we multiply the first one by -1 and the second one by -ξ:

f ′ ξZ + λ + 2 r f ξZ -g ′ Y + λ r gY = ( E c + Zα r - mc )f Y + ( E c + Zα r + mc )gξZ f ′ ξZ + λ + 2 r f ξZ + g ′ Y - λ r gY = -( E c + Zα r - mc )f Y + ( E c + Zα r + mc )gξZ
Adding and subtracting the two upper equations, we get:

f ′ ξZ + λ + 2 r f ξZ = ( E c + Zα r + mc )gξZ g ′ Y - λ r gY = -( E c + Zα r - mc )f Y
Finally, by multiplying the first upper one by -ξ, and assuming that Y , Z are not null, we get the two radial equations on f (r), g(r):

f ′ + λ + 2 r f = ( E c + Zα r + mc )g g ′ - λ r g = -( E c + Zα r - mc )f
We reach here a standard situation concerning the radial part. In textbooks, there are various ways to solve these. We are going to follow the "Landau, Lifshitz" way which is rather easy to follow by using only common real functions calculus. We sum up in the next section what is done in the paragraph $ 36 (Motion in a Coulomb field) of [START_REF] Berestetskii | Pitaevskii Relativistic Quantum Theory. Part 1[END_REF] for the "Discrete spectrum (ε < m)" case, which leads to the quantization of the energy for the hydrogen atom.

15 Solving the radial part for |E| < mc 2

To simplify the readability of formulas, we introduce:

χ def = λ + 1 u def = E mc v def = mc τ def = Zα
which lead to:

f ′ + 1 + χ r f = ( τ r + u + v)g (18) g ′ + 1 -χ r g = -( τ r + u -v)f (19) 
If looking to |u| < v, we can introduce:

β def = √ v 2 -u 2 γ def = χ 2 -τ 2
and look for solutions of the form:

f (r) def = √ v + u e -βr (2βr) γ-1 (Q 1 + Q 2 )(2βr) g(r) def = - √ v -u e -βr (2βr) γ-1 (Q 1 -Q 2 )(2βr)
By injecting these in (18), ( 19) and doing the change of variable x def = 2βr, we reach:

x(Q ′ 1 + Q ′ 2 )(x) + (γ + χ)(Q 1 + Q 2 )(x) -xQ 2 (x) + τ v -u v + u (Q 1 -Q 2 )(x) = 0 x(Q ′ 1 -Q ′ 2 )(x) + (γ -χ)(Q 1 -Q 2 )(x) + xQ 2 (x) -τ v + u v -u (Q 1 + Q 2 )(x) = 0
Adding and subtracting the two upper equations give:

xQ ′ 1 (x) + (γ - τ u β )Q 1 (x) + (χ - τ v β )Q 2 (x) = 0 (20) xQ ′ 2 (x) + (γ + τ u β -x)Q 2 (x) + (χ + τ v β )Q 1 (x) = 0 (21) By taking Q 2 (x), depending of Q 1 (x), Q ′ 1 (x)
, from the first one and injecting it in the second one (and the same for Q 1 (x) from the second one injected in the first one), we get two second order equations only on Q 1 (x) and Q 2 (x) respectively:

xQ ′′ 1 (x) + (2γ + 1 -x)Q ′ 1 (x) -(γ - τ u β )Q 1 (x) = 0 xQ ′′ 2 (x) + (2γ + 1 -x)Q ′ 2 (x) -(γ + 1 - τ u β )Q 2 (x) = 0
These are nothing more than two Kummer equations!

xf ′′ (x) + (b -x)f ′ (x) -af (x) = 0
It is well known that such equation has the solution 1 F 1 [a, b](x) (the confluent hypergeometric function). We get then:

Q 1 (x) dem = 1 F 1 [γ - τ u β , 2γ + 1](x) A Q 2 (x) dem = 1 F 1 [γ + 1 - τ u β , 2γ + 1](x) B
By setting x = 0 in (20) and (21) (and noting that 1 F 1 [a, b](0) = 1), we get:

B dem = - γ -τ u β χ -τ v β A The function 1 F 1 [a, b](x) is "well-behaved" only if -a ∈ N.
Such condition leads here to:

γ - τ u β def = -p p ∈ N γ + 1 - τ u β def = -q q ∈ N ⇒ γ - τ u β dem = γ - τ u √ v 2 -u 2 def = -n r n r ∈ N *
Which gives:

|u| dem = v 1 + τ 2 (n r +γ) 2 n r ∈ N *
By returning to the (E, λ, Zα, m) variables, we reach the well known, and rather impressive, quantization formula:

|E[n r , λ]| = mc 2 1 + (Zα) 2 (n r + √ (1+λ) 2 -(Zα) 2 ) 2 (22) 
with n r ∈ N * and λ ∈ Z -{-1, 0} being the eigenvalues of the Sj Σ Nj operator defined in the previous section. (Strangely, despite that λ = 0 is an eigenvalue, it is not considered in [START_REF] Berestetskii | Pitaevskii Relativistic Quantum Theory. Part 1[END_REF]).

15.1 Normalization of f (r),

In order to have:

∞ 0 dr r 2 (f 2 + g 2 )(r) dem = 1
A should be:

A dem = β 2 v 1 Γ[2γ + 1] 2Γ[2γ + 1 + n r ]|χ -τ v/β| n r !τ ⇒ [A] dem = 1 L ⇒ [f ] = [g] dem = 1 √ L 3
See [START_REF] Berestetskii | Pitaevskii Relativistic Quantum Theory. Part 1[END_REF] for the proof. We checked it numerically by computer.

Put all together

By gathering backward the various pieces, we write, at last, the full coupled real solutions (V (x), W (x)):

λ -(l) def = -(l + 1) -2 λ + (l) def = l 1 l ∈ N * γ[λ] def = (1 + λ) 2 -(Zα) 2 E[n r , λ] def = ± mc 2 1 + (Zα) 2 (n r +γ) 2 n r ∈ N * β def = ( mc ) 2 -( E mc ) 2 v def = mc A def = β 2 v 1 Γ[2γ + 1] 2Γ[2γ + 1 + n r ]|λ + 1 -Zαv/β| n r !Zα Q 1 (x) def = 1 F 1 [γ - ZαE mcβ , 2γ + 1](x) A B def = - γ -ZαE mcβ λ + 1 -Zαmc β A Q 2 (x) def = 1 F 1 [γ + 1 - ZαE mcβ , 2γ + 1](x) B f (r) def = mc + E mc e -βr (2βr) γ-1 (Q 1 + Q 2 )(2βr) g(r) def = - mc - E mc e -βr (2βr) γ-1 (Q 1 -Q 2 )(2βr) -l p l -2 p ∈ Z Z [λ -, p](θ, ϕ) def = 1 √ 2l + 1     √ l + p + 1 C p+1 l (θ, ϕ) √ l -p C p l (θ, ϕ) - √ l -p S p l (θ, ϕ) √ l + p + 1 S p+1 l (θ, ϕ)     Z [λ + , p](θ, ϕ) def = 1 √ 2l + 1     - √ l -p C p+1 l (θ, ϕ) √ l + p + 1 C p l (θ, ϕ) - √ l + p + 1 S p l (θ, ϕ) - √ l -p S p+1 l (θ, ϕ)     ã(r, θ, ϕ) def = -[f (r)Σ(θ, ϕ) + g(r)ξ] Z (θ, ϕ) b(r, θ, ϕ) def = [f (r)ξΣ(θ, ϕ) + g(r)I] Z (θ, ϕ) r(x, y, z) def = x 2 + y 2 + z 2 θ(x, y, z) def = arctan( x 2 + y 2 z ) φ(x, y, z) def = arctan( y x ) V (ct, x, y, z) def = [cos( E t)ã + sin E t) b] (r(x, y, z), θ(x, y, z), φ(x, y, z)) W (ct, x, y, z) def = [-sin( E t)ã + cos( E t
) b] (r(x, y, z), θ(x, y, z), φ(x, y, z))

We enforce that no complex numbers appear here. The found functions f (r), g(r) had been tested numerically in (18), (19) by computer for various values of n r , λ, r. The same with the two upper (V (x), W (x)) in (7,8). The open source C++ programs are available at the author GitHub gbarrand in the repository "papers" under the directory "Dirac_Coulomb_real".

Conclusions

By relying on the E.Majorana gamma matrices, we wrote the Dirac equation without complex numbers and showed that we can solve the hydrogen discrete spectrum by using only real numbers. Put all together, had been used only 4x4 real matrix algebra, taking up to the second derivative of real functions and a set of them as cosine, sine, exponential, associated Legendre and the confluent hypergeometric functions. This approach may then interest people satisfied by doing physics with mathematics that stay close, as much as possible, to real numbers and common calculus.

It is rather interesting to note that to reach the energy quantization (22), which does the connection with what is observed by doing the spectroscopy of an hydrogen gaz, it had not been needed to attach to the couple (V (x), W (x)) the concept of probability, in particular because the density (9) is not used to get the energy spectrum. In this article we stay agnostic about any interpretation of these fields, but the fact that the concept of probability is not mandatory to get the hydrogen discrete spectrum may interest people sensitive to the problem of which ideas and ontology to attach to micro-physics.

Appendix A Eigens of

Sj Σ Nj versus σ j (σ k ñk ) Nj A.1 Eigens of σ j (σ k ñk ) Nj
With the standard Pauli 2x2 matrices being:

σ 1 def = 0 1 1 0 σ 2 def = 0 -i i 0 σ 3 def = 1 0 0 -1
and the Y m l being the complex spherical harmonics:

Y m l (θ, ϕ) def = y(l, m)P m l (cos(θ))e imφ
we can show that for 1 l and -l m l -2:

λ -(l) def = -(l + 1) -2 Ω[λ -(l), m](θ, ϕ) def = Ω -[l, m](θ, ϕ) def = 1 √ 2l + 1 √ l -m Y m l (θ, ϕ) - √ l + m + 1 Y m+1 l (θ, ϕ) verifies: σ j (σ k ñk ) Nj {Ω[λ -(l), m]} def = λ -(l) Ω[λ -(l), m]
and:

λ + (l) def = l 1 Ω[λ + (l), m](θ, ϕ) def = Ω + [l, m](θ, ϕ) def = 1 √ 2l + 1 √ l + m + 1 Y m l (θ, ϕ) √ l -m Y m+1 l (θ, ϕ) verifies: σ j (σ k ñk ) Nj {Ω[λ + (l), m]} def = λ + (l) Ω[λ + (l), m]
These results correspond to what is found in textbooks up to a ± multiplication factor. The proofs are rather lengthy, but still manageable by hand. They could be checked numerically by computer with any software able to handle complex 2x2 matrices and the first partial derivative of a real function. These eigenvectors correspond to the ϕ (-) j,m and ϕ + j,m of [START_REF] Itzykson | Quantum Field Theory[END_REF] p77. They correspond also to the "spherical harmonic spinors" found in the paragraph $ 24 of [START_REF] Berestetskii | Pitaevskii Relativistic Quantum Theory. Part 1[END_REF].

A.2 dex()

When having a complex square matrix X + iY , with X, Y reals, we define the matrix dex(X + iY ) with: dex(X + iY

) def = X -Y Y X
On a complex column V + iW , with V, W reals, we define the column dex(V + iW which is equivalent to:

Sj Σ Nj { -Ĩa -b } dem = λ -Ĩa -b
with the 2x2 real matrix Ĩ being:

Ĩ def = 0 1 -1 0
The proof uses: 

  θ) t Z -[l, m](θ, ϕ)Z -[l, m](θ, ϕ)

A

  lot of properties can be shown about dex(), the most useful one being:dex((X + iY )(X ′ + iY ′ )) dem = dex(X + iY )dex(X ′ + iY ′ ) dex((X + iY )(V + iW )) dem = dex(X + iY )dex(V + iW )With Pauli matrices we have: dex(iσ 1 ) are related to the S 123 defined in section (11) with: dex(iσ 1 )dem = 2S 3 ξ dex(iσ 2 ) dem = -2S 2 ξ dex(iσ 3 ) dem = -2S 1 ξ (23)dex() is a very useful tool to help decomplexify some equation. We are going to use dex() to show the relation between the eigens of our real Sj Σ Nj operator and the eigens of the complex operator σ j (σ k ñk (θ, ϕ)) Nj described in the previous section. Indeed, we can show that if a, b(θ, ϕ) are two two real columns such that: σ j (σ k ñk ) Nj {a + ib} def = λ(a + ib) we have: dex[ σ j (σ k ñk ) Nj {a + ib} def = λ(a + ib) ]

σ j σ k dem =

 dem δ jk I + iε jkl σ l Sj Sk dem = δ jk I -ε jkl (2S l ξ) Ĩ 0 0 -I 2S j=123 ξ -Ĩ 0 0 -I dem = 2(-S 3 , S 2 , S 1 )ξ ⇔ (23)

A.3 Recovering Z -[l, m] and Z + [l, m] of section (13) Noting that:

we have:

which do the connection of what is found in textbooks with our real way of doing.