
HAL Id: hal-04258708
https://hal.science/hal-04258708

Preprint submitted on 25 Oct 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Computing character tables and Cartan matrices of
finite monoids with fixed point counting

Balthazar Charles

To cite this version:
Balthazar Charles. Computing character tables and Cartan matrices of finite monoids with fixed point
counting. 2023. �hal-04258708�

https://hal.science/hal-04258708
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Computing character tables and Cartan matrices of finite
monoids with fixed point counting.

Balthazar Charlesa

aLISN, Université Paris-Saclay, 6 Rue Noetzlin, Gif-sur-Yvette, 91190, France

Abstract

In this paper we present an algorithm for efficiently counting fixed points in a
finite monoid M under a conjugacy-like action. We then prove a formula for
the character table of M in terms of fixed points, which allows for the effective
computation of both the character table of M other a field of null characteristic,
as well as its Cartan matrix, using a formula from [Thiéry ’12], again in terms of
fixed points. We discuss the implementation details of the resulting algorithms
and provide benchmarks of their performances.

Introduction

The last two decades have seen the development of a new dynamic around
the study of monoid representation theory. This is due to applications to certain
types of discrete Markov chains and especially Markov chains used to randomly
generate combinatorial objects first uncovered in the seminal article of Brown
[? ]. This has lead to an exploration of the combinatorial properties of monoid
representations, for instance in [? ], [? ] or [? ].

In this last article [? ], Thiéry gives a formula for the Cartan matrix of a finite
monoid of M in terms of the number of fixed points and the character table of
M . More precisely, the formula involves computing the cardinality of the set
{s ∈ M |hsk = s} for any h, k ∈ M . In this paper, we set out to use this formula
to effectively compute the Cartan matrix of the algebra of M over a perfect field
k of null characteristic.

Two difficulties have to be overcome in the pursuit of this goal. Firstly, the car-
dinality of many interesting families of monoids tends the increase very quickly.
For instance, the cardinality of the full transformation monoid Tn of all functions
from J1, nK to J1, nK is nn, making the naive computation of |{s ∈ M |hsk = s}|

Preprint submitted to Elsevier October 23, 2023



impractical even for small n. To remedy this we provide an algorithm to effi-
ciently compute this statistic. Secondly, to use the formula one has to compute
the character table of the monoid. The Clifford-Munn-Ponizovskii Theorem (such
as presented in [? ]) gives an explicit description of the simple kM -modules.
This technically makes the computation of the character table possible, provided
that we know how to compute the simple modules associated to certain groups.
However, this approach is rather computationally inefficient as it necessitates it-
erating over explicitly constructed irreducible group representations and dealing
with high dimensional tensor products and quotients. In contrast, the method
we propose allows for a "bundling" of the group representations using the easier
to compute L-class modules. Moreover, although themselves high dimensional,
these modules are combinatorial and the action of the monoid can be efficiently
computed. We also note that although some results on character tables are known
in the case of interesting families of monoids (full transformation monoids, in-
verse monoids), no algorithms are available to compute the character table of an
arbitrary finite monoid. Thus, for the general case, we prove a formula for the
character table that allows for computation exploiting the Green structure of the
monoid for increased efficiency.

In the first section of this paper, we present the results necessary for our fixed-
points counting algorithm, with a particular emphasis on the notions of Green
classes and Schützenberger groups. In the second section, we prove a formula for
the character table of a finite monoid, after recalling the necessary module and
character theoretic results. In the third section, we give and discuss the algorithms
and equation systems used for computing the Cartan matrix with two focuses:
the algorithms for fixed point counting and the equation system to compute the
character table. Finally, in the last section, we discuss the performance of these
algorithms in terms of execution time and size of tractable problems.

I. Combinatorics of fixed point counting.

In this section we first recall essential and elementary results on the Green
structure of finite monoids and on Schützenberger groups. The informed reader
may skip this first paragraph, with the exception of the notations (4) that are used
throughout this paper. We then use these results to devise a fixed point counting
method.

In the totality of this paper, we assume that all monoids are finite. We will of-
ten use the following special case of finite monoid to illustrate the various results
presented hereafter.

2



Definition 1 (The full transformation monoid). Consider the set Tn of all trans-
formations of the set {1, . . . , n}, equipped with the multiplication given by map
composition: ∀f, g ∈ Tn, fg = f ◦ g (with the argument on the right : f ◦ g(x) =
f(g(x))). This is a monoid, aptly named the full transformation monoid. A sub-
monoid of Tn is called a transformation monoid and n is called its rank.

1. Green structure and Schützenberger groups

Although finite monoids have been considered to be much wilder objects than
groups, it turns out that, with the right optics, they are actually highly structured
by their internal multiplication. Consider the divisibility relation: x divides y if
x = yz for some z. If x, y, z are taken in a group G, the relation is trivial. If
however, we take them in a general monoid M , left or right translation by an
arbitrary element need not be surjective, making the question of x ∈ M being a
left (or right) multiple of y ∈ M non-trivial. These questions of "divisibility" in a
general monoid are studied under the name of Green structure, of which we give a
brief overview necessary for our purpose in the subsection below. In the following
subsection, we also present the related notion of Schützenberger groups.

1.1. Green Structure

Definition 2 (Green’s relations). Let M be a finite monoid and a, b two of its
elements. The Green relations are:

• The L preorder is defined by a ≤L b ⇔ b = ua for some u ∈ M . The
associated equivalence relation is : a ∈ L(b) ⇔ a ≤L b and b ≤L a ⇔
Ma = Mb.

• The R preorder is defined by a ≤R b ⇔ b = av for some v ∈ M . The
associated equivalence relation is : a ∈ R(b) ⇔ a ≤R b and b ≤R a ⇔
aM = bM .

• The J preorder is defined by a ≤J b ⇔ b = uav for some u, v ∈ M . The
associated equivalence relation is: a ∈ J (b) ⇔ a ≤J b and b ≤J a ⇔
MaM = MbM .

• The H equivalence relation is defined by a ∈ H(b) ⇔ a ∈ L(b) and a ∈
R(b).

It can be proven (see for instance [? , Theorem 1.9]) that in finite monoids, the
relation J is the smallest equivalence relation containing R and L. This is not

3



true in general, and this smallest relation is usually denoted byD in the literature.
Since we are only interested in finite monoids, we shall only use the terms J -
relation, J -class, etc. From the definition, it is clear that the relation L andR are
finer than J and that H is finer that both L and R. Because of this, "the L-class
of some H-class H" or "the J -class of some R-class R", etc... are well-defined
and we shall denote them by L(H),J (R), etc.

Example 3 (Green relations in Tn). Let a, b be two elements ofM .

• Wehave aLb if and only if they have the same kernel ker a = {a−1{i} | i ∈
J1, nK}.

• We have aRb if and only if they have the same image, Im a = {a(i) | i ∈
J1, nK}.

• Since Tn is finite, J is generated by L andR so aJ b if and only if Im (a)
and Im (b) (or equivalently ker(a) and ker(b)) have the same cardinality.

• SinceH is the intersection of L andR, aHb if and only a and b have the
same image and the same kernel.

These conditions are necessary conditions in any transformation monoid. To
get that they are sufficient, we use the fact that Sn ⊂ Tn and that we can
rearrange both image and kernel as we please.

The following notation will prove useful, as the study of Green relations is, in
part, the study of the maps given by left and right translations in the monoid.

Notation 4. Let h, k be elements ofM and S be a subset ofM . We denote by:

• h×S the application from S to hS defined by s 7→ hs,

• ×Sk the application from S to Sk defined by s 7→ sk,

• M Stab(S) = {m ∈ M |mS = S},

• StabM (S) = {m ∈ M |Sm = S},

• FixS(h, k) = {s ∈ S |hsk = s}.

Using these notations, let us recall Green’s Lemma, which is one of the central
elements of the theory of Green relations, as it shows that the structure of the
relations is actually heavily constrained, making their study practical.

4



Lemma 5 (Green’s Lemma). Let a, a′ be two elements in the same L-class and let
λ, λ′ such that λa = a′ and λ′a′ = a. Then λ×R(a) and λ′×R(a′) are reciprocal
bijections. Moreover, for any L-class L λ×R(a)∩L and λ′×R(a′)∩L are reciprocal
bijections.

Similarly, if a, b are two elements in the same R-class and ρ, ρ′ are such that
ρa = b and ρ′b = a, then ×L(a)ρ and ×L(b)ρ

′ are reciprocal bijections. Moreover,
for any R-class R ×L(a)∩Rρ and ×L(b)∩Rρ

′ are reciprocal bijections.

An important consequence of Green’s Lemma is that J -classes can be neatly
organized as eggbox pictures1: the J -class can be represented as a rectangular
array with the L-classes as columns, the R-classes as rows and the H-classes,
the eggs, in the cases. This level organization is actually what allows for efficient
computer representation of monoids and most of their algorithmic exploration.

1.2. Schützenberger groups

The Green structure offers a second way of facilitating computer exploration
of monoids through groups that arise as stabilizers of some Green classes. These
are called the Schützenberger groups and – this a running theme of monoid theory
– allow for a number of monoid theoretic questions to be formulated in terms of
groups for which we dispose of an array of efficient algorithms.

Definition 6 (Schützenberger groups). LetH be aH-class. The set {h×H |h ∈
M Stab(H)} equipped with map composition is a subgroup of S(H) called the
left Schützenberger group and denoted by Γ(H).

Similarly, ({×Hk | k ∈ StabM (H)}, ◦) is a subgroup ofS(H) called the right
Schützenberger group and denoted by Γ′(H).

Example 7. ConsiderH = H([1 3 1]) (the elements of Tn are given in function
notation in all examples). We have :

M Stab(H) = {[1 2 3], [3 2 1], [1 3 3], [3 1 1], [1 1 3], [3 3 1]}

and subsequently, Γ(H) = {[1 2 3]×H , [3 3 1]×H}. Notice that, as elements
of Γ(H), [3 3 1]×H = [3 2 1]×H and that the only important thing is the
permutations induced by the elements of M Stab(H) on ImH . Thus, in the
case of transformation monoids, the left Schützenberger group of a H-class
H can be represented as a subgroup of S(ImH). In the same way, the right

1Terminology introduced in [? ]

5



Schützenberger groups can be represented as subgroups ofS(kerH). This fact
is used to represent the Schützenberger groups in Section III.

Our precedent remark on exploiting Schützenberger groups to get efficient
algorithms for computational monoid theoretic questions is seconded by the fact
that Schützenberger groups do not contain any "superfluous information" in the
following sense.

Proposition 8. LetH be aH-class. The natural actions of Γ(H) and Γ′(H) onH
are free and transitive.

We reproduce below a proof for Proposition 8 from [? ] for the purpose of
showcasing the main argument. The argument itself is widely known, and we
will use it multiple times in the remainder of this paper.

Proof. Two elements h, h′ ∈ H are in the same L-class so there is some u ∈ M
such that uh = h′. By Green’s Lemma, this means that u ∈ M Stab(H), so Γ(H)
acts transitively onH . Suppose that uh = h for some u ∈ M . Since h, h′ are also
in the sameR class, there is some v such that h′ = hv, so uh′ = uhv = hv = h′ :
an element of Γ(H) either fixes all points inH or fixes none. The only element of
Γ(H) that fixes all points (and, consequently, the only one that fixes any point) is
the identity and thus the action is free. The same arguments apply for Γ′(H).

A special case that is interesting to note, and that will be important later, is
the case where H is theH-class of an idempotent :

Definition 9. An element e ∈ M is idempotent if e2 = e. Given an idempotent
e, the set Ge = {x ∈ M | ∃y ∈ M,xy = yx = e} is called the maximal subgroup
at e. One can check that Ge is indeed a group and that Ge = H(e).

In that case, Γ(H) and Γ′(H) can be defined as before, and are canonically
isomorphic toGe, simply becauseGe ⊂ M Stab(H) naturally induce a map mak-
ing it a subgroup of Γ(H) and that sinceGe acts freely and transitively onH , this
map must be injective and surjective (and similarly for Γ′(H)).

Example 10. Consider, in Example 3, e = [1 2 2] and H = H(e). e is an
idempotent, and, indeed, H = Ge is group : setting t = [2 1 1], we have
e2 = e, t2 = e and et = te = t. As noted in Example 7 :

Γ(H) = S({1, 2}), Γ′(H) = S({{1}, {2, 3}}).

Note that the canonical isomorphism between Γ(H) andH(e) is simply given

6



by g ∈ Γ(H) 7→ g · e ∈ H .

2. Counting fixed points

Consider the problem of counting the number of elements of the setFixG(h, k)
where G is a finite group and h, k ∈ G. If FixG(h, k) is non-empty, it contains
an element γ such that hγk = γ, or equivalently h = γk−1γ−1. So for any
g ∈ FixG(h, k) we have:

hgk = g ⇔ γk−1γ−1gk = g ⇔ γ−1gk = kγ−1g.

Thismeans that g ∈ γCG(k)whereCG(k) is the centralizer of k inG. Because the
other inclusion is obvious, we get a description of |FixG(h, k)|: either h and k−1

are conjugated in which case there are |CG(k)| fixed points, or they are not, and
there are no fixed points. In the case of amonoid, this reasoningmostly breaks: we
crucially used the invertibility property, whichmonoids lack. The Schützenberger
groups seem to be ideal candidates to get back some of this invertibility. In this
section we clarify the role of the Schützenberger groups for counting fixed points,
how to give meaning to "h×H and×Hk are in the same conjugacy class", and how
to factorize our previous remark over all theH-classes of the same J -class.

As the bijections between L (and R) classes will play a major role in the re-
mainder of this section, we introduce the following notation.

Notation 11. GivenR,R′ twoR-classes in the same J -class, we say that (λ, λ′)
is a left Green pair with respect to (R,R′) if:

• λR = R′ and λ′R′ = R.

• (λλ′)×R = IdR and (λ′λ)×R′ = IdR′

Similarly, given two L-classes L,L′ in the same J -classes, (ρ, ρ′) is a right Green
pair with respect to (L,L′) if:

• Lρ = L′ and L′ρ′ = L.

• ×L(ρρ
′) = IdL and ×L′(ρ′ρ) = IdL′

Using Green pairs, one can transport the problem of counting fixed points in
an arbitrary H-class to a reference H-class.

Proposition 12. LetH1, H2 ⊂ J be twoH-classes contained in the same J -class.
Then there exists λ, λ′, ρ, ρ′ such that:

7



• (λ, λ′) is a left Green pair with respect to (R(H1),R(H2)),

• (ρ, ρ′) is a right Green pair with respect to (L(H1),L(H2)).

and the maps x 7→ λ′xρ′ and x 7→ λxρ are reciprocal bijections between H2 and
H1. Moreover, let (h, k) ∈ M Stab(R(H2))×StabM (L(H2)) and define (h′, k′) =
(λ′hλ, ρkρ′). Then the maps restrict to bijection between the sets FixH2(h, k) =
{a ∈ H2 |hak = a} and FixH1(h

′, k′) = {a ∈ H1 |h′ak′ = a}.

Proof. The first part is exactly [? , Proposition 2.3 (a)]. The second part is imme-
diately deduced from [? , Proposition 2.3 (c)]. Still, for completeness, we provide
a proof in our very simple (and less general) setup. Let a1 be an element of H1

and denote by a2 = λa1ρ. Then:

ha2k = a2 ⇔ λ′ha2kρ
′ = λ′a2ρ

′ ⇔ (λ′hλ)a1(ρkρ
′) = a1 ⇔ h′a1k

′ = a1

so these bijections restrict to FixH1(h
′, k′) and FixH2(h, k).

Keeping in mind our computational goals, transporting the problem of count-
ing fixed points from H2 to H1 is helpful, as for the price of 4 monoid multi-
plications, we can use a lot of precomputations specific to a particular H-class,
avoiding the repetition of multiple similar computations for eachH-class.

The question is now to determine the fixed points in a single H-class, using
our previous remark on conjugacy. Let us first clarify the idea of elements of the
left and right Schützenberger groups being in the same conjugacy class.

Proposition 13. Given and H-class H , a ∈ H and g ∈ Γ(H), we define τa(g) as
the unique element of Γ′(H) such that g ·a = a ·τa(g). Then τa : Γ(H) −→ Γ′(H)
is an anti-isomorphism2. Moreover τa gives rise to a bijection between the conjugacy
classes of Γ(H) and Γ′(H) that is independent of the choice of a.

Proof. The first part is known since [? ]. We want to check that for a ∈ H, g ∈
Γ(H), the conjugacy class of τa(g) is defined independently of a. Take any a, b ∈
H . By definition of Γ(H), there exist some h ∈ Γ(H) such that b = h · a. So :

b · τa(g) = (h · a) · τa(g) = h · (g · a) = hgh−1 · (h · a) = b · τb(hgh−1).

2Note that some authors equip the right Schützenberger group with reversed composition, and
thus obtain an isomorphism instead of anti-isomorphism.

8



SinceΓ′(H) acts freely, this means that τa(g) = τb(h)τb(g)τb(h)
−1 and thus τa(g)

is conjugated with τb(g), which proves that the conjugacy class of τa(g) is indeed
defined independently of a. Finally, as τa is a group morphism, the image are of
two conjugated elements are conjugated, meaning that τa does indeed induces bi-
jection between the conjugacy classes of the left and right Schützenberger groups,
independently of the choice of a.

In the next proposition, we formalize the idea of searching the fixed points as
some centralizer, but in the context of a monoid.

Proposition 14. Let H be a H-class, a ∈ H and (h, k) ∈ M Stab(R(H)) ×
StabM (L(H)). Then

|FixH(h, k)| =

{
|CΓ′(H)(×Hk)| if τa(h×H)−1 ∈ ×Hk

0 otherwise

where ×Hk is the conjugacy class of ×Hk in Γ′(H) and CΓ′(H)(×Hk) is the cen-
tralizer in Γ′(H) of ×Hk.

Proof. For simplicity, we commit an abuse of notation by denoting h×H as h and
×Hk as k. Let a be any element of H .

FixH(h, k) = {b ∈ H |hbk = b}
= {a · g | g ∈ Γ′(H) and ha · gk = a · g}
= {a · g | g ∈ Γ′(H) and a · τa(h)gk = a · g}
= {a · g | g ∈ Γ′(H) and τa(h)gk = g}.

The last equality comes from the fact that Γ′(H) acts freely so we can simplify the
a. Suppose that FixH(h, k) is non-empty and let γ ∈ Γ′(H) such that τa(h)γk =
γ. Then, for any g ∈ Γ′(H) :

τa(h)gk = g ⇔ g−1τa(h)gk = e ⇔ g−1γk−1γ−1gk = e ⇔ [γ−1g, k] = e

where [·, ·] is the commutation bracket. This means that

FixH(h, k) = {a · g | g ∈ γCΓ′(H)(k)}.

Note that because, again, Γ′(H) acts freely, FixH(h, k) has the same cardinality
as CΓ′(H)(k) and that, from Proposition 13 this is independent from the choice of
a which proves the result.

9



Example 15. Consider a = [1 2 2 3] ∈ T4 and H = H(a). We have Im a =
{1, 2, 3} and ker a = {{1}, {2, 3}, {4}}. Notice that H is not a group since
a2 = [1 2 2 2] /∈ H . Considering the Schützenberger groups as symmetric
groups on the image and kernel common to all elements ofH as in Example 7,
we have Γ(H) = S(Im a) and Γ′(H) = S(ker a).

Let us first check for fixed points under the action of h = [1 2 3 4] on the
left and k = [2 1 1 4] on the right. Seen as an element of Γ(H), h corresponds
to IdIm a and k corresponds to ({2, 3} {1}) in Γ′(H). Since we have τa(h) =
Idker a, it follows that |FixH(h, k)| = 0.

If we now take h to be [1 3 2 4], the corresponding element in Γ(H) is (2 3)
and τa(h) = ({2, 3} {4}). Since ({2, 3} {4}) and ({2, 3} {1}) are conjugated in
S(ker a), the set of fixed points is non-empty. Their centralizers have cardinal
2 and one can indeed check that [2 3 3 1] and [3 2 2 1] are the only fixed points
in H .

Putting together the previous results, we get the following corollary on the
cardinality of FixJ(h, k).

Corollary 16. Let J be aJ -class, a any element of J and denote byH0 = H(a), R0 =
R(a), L0 = L(a). Let h, k be any elements ofM . We denote by:

• (λR, λ
′
R) a left Green pair with respect to (R0, R) for eachR-class R ⊂ J ,

• (ρL, ρ
′
L) a right Green pair with respect to (L0, L) for each L-class L ⊂ J ,

• SR(h) = {R ⊂ J |R is aR-class and hR = R},

• SL(k) = {L ⊂ J |R is a L-class and Lk = L}

Denoting the set of conjugacy classes of Γ′(H0) as C , we further define two vectors:

• rJ(h) = (|CΓ′(H)(g)| · |{R ∈ SR(h) | τa(λ′
RhλR) ∈ ḡ}|)ḡ∈C ,

• lJ(k) = (|{L ∈ SL(k) | ρ′LkρL ∈ ḡ}|)ḡ∈C .

Then FixJ(h, k) has cardinality the dot product of rJ(h) with lJ(k).

10



II. Modules: character table and Cartan matrix

We will discuss the representation theory of a monoid M over k using the
language of modules, for which we assume a level a familiarity from the reader.
For a full introduction (and more!) to the representation theory of finite monoids
in module theoretic terms, we refer to Representation theory of finite monoids from
Benjamin Steinberg [? ]. For a comprehensive guide to thewider theory of algebra
representations we refer to the very comprehensive Representation theory of finite
groups and associative algebras [? ] from Charles W. Curtis and Irving Reiner,
or, for a gentle introduction to the subject to Introduction to representation theory
from Pavel Etingof et al. [? ].

In the remainder of this paper, k is a perfect field of null characteristic and
M is still a finite monoid. Furthermore, we suppose that k is "big enough", mean-
ing that if not algebraically closed, at least a splitting field for the characteristic
polynomials of the elements ofM seen as linear maps on kM .

As previously mentioned, we will refer to representations in terms of mod-
ules, let us recall the language that we use. A representation of M over k will
be a k-vector space V equipped with a linear action of the algebra kM . As is
usage, whenever the action is on the left we will say that V is a kM −mod and
a mod−kM if the action is on the right. If M , M ′ are two finite, possibly dif-
ferent monoids, a kM −mod−kM ′ is simply simultaneously a kM −mod and
a mod−kM ′. For a monoid M , we denote by Mop the opposite monoid, with
multiplication defined bym ·Mop m′ = m′m. We will use liberally the fact that a
kM−mod−kM ′ is naturally a kM⊗kM ′op−mod and a k(M×M ′op)−mod,
and reciprocally. In the totality of this paper, we assume that the modules are
finite dimensional as vector spaces over k. Because of this, the Jordan-Hölder
Theorem applies and the set of composition factors counted with multiplicities
of a module is independent of the choice of a composition series. If S is a kM -
module and S is a simple kM -module, we denote by [V : S] the multiplicity of S
as a composition factor of V .

In this section, we deal with monoid representation theory, with the goal in
mind to compute the character table ofM . Using the Clifford-Munn-Ponizovskii,
this can largely be reduced to group representation theory. Stated differently, the
representation theory of a monoidM is an extension of the representation theory
of certain groups embedded inM . The groups in question are precisely the groups
of Definition 9. In the first part of this section, we use this fact to find a description
of a L-class containing an idempotent e quotiented by its radical as a product of
simple kGe-modules and simple kM -modules. In the second part, we translate

11



this decomposition in terms of characters, which gives us the formula we seek.
Finally, we recall and discuss the formula for the Cartan matrix from Thiéry [? ].

1. On modules

Note that if we choose an element a ∈ M and denote by L its L-class and H
itsH-class, we can equip kLwith a kM−mod−kΓ′(H) structure. kL is already
a mod−kΓ′(H) by definition of Γ′(H). We can also make it into a kM −mod
by setting, for every m ∈ M and l ∈ L:

m · l =

{
ml ifml ∈ L

0 otherwise
.

This is well-defined, as ml /∈ L implies that l >L ml and so for every m′ ∈ M ,
l >L m′ml /∈ L : once fallen out of L, we cannot climb back in.

We have previously stated that the representation theory of monoids is an
extension of the representation theory of some subgroups. This mainly expressed
using the two following functors.

Definition 17. Let e ∈ M be an idempotent, L(e) its L-class, Ge the associated
maximal subgroup. We define the two following maps :

IndMGe
:

{
kGe−mod −→ kM−mod

V 7−→ kL(e)⊗kGe V

Ne :

{
kM−mod −→ kM−mod

V 7−→ {v ∈ V | eMv = 0}
.

The idempotents and their maximal subgroups play a central role in the the-
ory. One can show (see for instance [? , Proposition 1.14]) that if e, f are two
idempotents in the same J -class, there are some x, x′ ∈ M such that xx′ = e
and x′x = f and that Ge

∼= Gf . A J -class containing an idempotent is called a
regular J -class.

We are almost ready to state the Clifford-Munn-Ponizovskii theorem, which
is the central piece connecting group and monoid representation theory. We
will need the notion of apex of a kM -module. A proof of the Clifford-Munn-
Ponizovskii Theorem can be found in [? , Section 5.2].

Definition 18. LetV be akM−mod, we denote its annihilator inM byAnnM (V ) =
{m ∈ M |mV = {0}}. This is clearly a two-sided ideal of M and as such is a

12



union ofJ -classes. A regularJ -class J is said to be the apex of V ifAnnM (V ) =
IJ where IJ = {J ̸≤L J (s) | s ∈ M}. If e ∈ J is an idempotent, we also say that
V has apex e.

Théorème 19 (Clifford-Munn-Ponizovskii). LetM be a finite monoid, e ∈ M an
idempotent and k be a field.

1. There is a bijection between isomorphism classes of simple M -modules with
apex e and isomorphism classes of simple Ge-modules given by :

V 7−→ V # = IndMGe
(V )/ rad(IndMGe

(V )).

The reciprocal bijection is given by S 7−→ eS.
2. rad(IndMGe

(V )) = Ne(rad(Ind
M
Ge

(V )))

3. Every simpleM -module has an apex.
4. Every composition factor of IndMGe

(V ) with the exception of V # has an apex
strictly J -greater than e. Moreover, V # has apex e and is a factor of multi-
plicity one.

This allows us the following description of the L-class of an idempotent e.

Proposition 20. Let e ∈ M be an idempotent and Ge be the maximal subgroup
at e. Let Irre be a set of representatives of the isomorphism classes of simple kGe-
modules. Then:

kL(e) =
⊕

V ∈Irre

IndMGe
(V )⊗k V ∗

where V ∗ is the dual of V .

Proof. By definition, IndMGe
(V ) = L(e)⊗kGe V . Now, since direct sum and tensor

product over a ring with identity commute :

⊕
V ∈Irre

IndMGe
(V )⊗V ∗ =

⊕
V ∈Irre

kL(e)⊗GeV⊗V ∗ = kL(e)⊗Ge

( ⊕
V ∈Irre

V ⊗ V ∗

)

Because k is of null characteristic, kGe is semisimple. By the Wedderburn-Artin
theorem, kGe =

⊕
V ∈Irre V ⊗ V ∗ so :⊕

V ∈Irre

IndMGe
(V )⊗ V ∗ = kL(e)⊗kGe kGe = L(e)

since kGe is a ring with identity.

13



Note that this puts in relation three kinds ofmodules : the simplekGe-modules,
which are well understood, kL(e) which is understood as well because it is a
combinatorial module3, and finally the modules IndMGe

(V ) which contain, in a
sense, the simple kM -modules that we are after. According to the Clifford-Munn-
Ponizovskii Theorem, we still need to remove the radical of each IndMGe

(V ) factor.
Proposition 23 puts the radical in a form similar to Theorem 19 while Proposition
24 does exactly this. Lemma 21 and its Corollary are technical results on radicals
used in the proof of Proposition 23.

Lemma 21. LetA,B be two finite dimensional algebras over a perfect field k. Then:

rad(A⊗B) = rad(A)⊗B +A⊗ rad(B).

While we haven’t be able to find a source for that claim it seems to be folk-
lore in the algebra representation community. For the sake of completeness, we
reproduce a proof communicated to us by Pr. Pierre-Guy Plamondon4.

Proof. Because k is perfect, Wedderburn’s Principal Theorem applies, and we get
the decompositionsA = A′⊕rad(A), B = B′⊕rad(B), withA′ andB′ semisim-
ple algebras. To prove the result, we show that rad(A)⊗B+A⊗ rad(B) is a nil
radical and that

A⊗B⧸rad(A)⊗B +A⊗ rad(B)

is semisimple. Let us first show that the quotient is semisimple. We have:

A⊗B = (A′ ⊕ rad(A))⊗ (B′ ⊕ rad(B))

= A′ ⊗B′ ⊕A′ ⊗ rad(B)⊕ rad(A)⊗B′ ⊕ rad(A)⊗ rad(B).

On the other hand, the same decompositions give us

A⊗ rad(B)⊕ rad(A)⊗B = A′ ⊗ rad(B)⊕ rad(A)⊗B′ ⊕ rad(A)⊗ rad(B).

Finally,
A⊗B⧸A⊗ rad(B)⊕ rad(A)⊗B = A′ ⊗B′

which, sinceA′, B′ are semisimple, is also semisimple. A⊗rad(B)⊕rad(A)⊗B is
also nil, because rad(B) and rad(A) are, so, indeed, rad(A⊗B) = A⊗rad(B)⊕
rad(A)⊗B.

3That is, the multiplication of an element of the basis of the module by an element ofM is either
another element of the basis or 0.

4Pr. Pierre-Guy Plamondon, Laboratoire de Mathématiques de Versailles, Université Paris-
Saclay, website.

14

https://www.imo.universite-paris-saclay.fr/~plamondon/


From Lemma 21, we get the following Corollary by recalling that if V is an
A-module, radA(V ) = rad(A) · V .

Corollary 22. Let A,B be two finite dimensional unitary algebras over a perfect
field. If VA ⊗ VB is an A−mod−B (or equivalently an A⊗Bop −mod), then

radA⊗Bop(VA ⊗ VB) = radA(VA)⊗B +A⊗ radB(VB).

This allows us to identify the radical of kL(e).

Proposition 23. LetM be a finite monoid, e ∈ S an idempotentGe be themaximal
subgroup at e and k be a perfect field. Then:

radkM⊗kGop
e
(kL(e)) = Ne(kL(e)).

Proof. Using Lemma 21, for V a simple Ge-module, we have that :

radkM⊗kGop
e
(IndSGe

(V )⊗k V ∗)

= radkM IndMGe
(V )⊗ V ∗ + IndMGe

(V )⊗ radkGop
e
(V ∗)

(1)
= radkM IndMGe

(V )⊗ V ∗

(2)
=Ne(Ind

M
Ge

(V ))⊗ V ∗

where equality (1) comes from the simplicity of V ∗ as a kGop
e -module and (2) is

the second point of Theorem 19.
Since radical and direct sums commute, denoting by Irre a set of representa-

tives of the isomorphism classes of simple kGe-modules, we know that:

radkM⊗kGop
e
(L(e)) =

⊕
V ∈Irre

Ne(Ind
M
Ge

(V ))⊗ V ∗.

It remains to be seen why⊕
V ∈Irre

Ne(Ind
M
Ge

(V ))⊗ V ∗ = Ne(kL(e)).

It is clear the direct sum on the left is a subset of the set on the right. For the
other inclusion, we see that if V, V ′ are kM -modules, Ne(V ⊕ V ′) = Ne(V ) ⊕
Ne(V

′). Given the proposition 20, it is enough to show that Ne(Ind
M
Ge

(V )) ⊗
V ∗ = Ne(Ind

M
Ge

(V ) ⊗ V ∗). Let x ∈ IndMGe
(V ) ⊗ V ∗ be such that for every

15



m ∈ M, emx = 0. x can be written as
∑

i(
∑

j xi,jbj)⊗ b′i where {bj}j is a basis
of IndMGe

(V ) and {b′i}i is a basis of V ∗. For everym ∈ M , we have :

em · x = em ·
∑
i

(
∑
j

xi,jbj)⊗ b′i =
∑
i

(em ·
∑
j

xi,jbj)⊗ b′i = 0

that is, for every b′i we get em ·
∑

j xi,jbj = 0 so
∑

j xi,jbj ∈ Ne(Ind
M
Ge

(V ))

which means x ∈ Ne(Ind
M
Ge

(V ))⊗ V ∗.

Proposition 24. Let e ∈ M be an idempotent and Ge be the maximal subgroup
at e. Let Irre be a set of representatives of the isomorphism classes of simple kGe-
modules. Then:

kL(e)/ radkM⊗kGop
e
(kL(e)) ∼=

⊕
V ∈Irre

V # ⊗ V ∗.

Proof. From Proposition 23, we have a decomposition of radkM⊗kGop
e
(L(e)) as a

direct sum adapted to the decomposition of kL(e) as
⊕

V ∈Irre Ind
S
Ge

(V )⊗k V ∗.
So:

kL(e)/ radkM⊗kGop
e
(kL(e)) ∼=

⊕
V ∈Irre

(IndSGe
(V )⊗kV

∗)/(Ne(Ind
S
Ge

(V ))⊗V ∗).

From Theorem 19, we know that

0 −→ Ne(Ind
S
Ge

(V )) −→ IndSGe
(V ) −→ V # −→ 0

is a short exact sequence. SinceNe(Ind
S
Ge

(V ))⊗V ∗ a submodule of IndSGe
(V )⊗

V ∗ and because tensor product over a field is exact we have a short exact sequence:

0 −→ Ne(Ind
S
Ge

(V ))⊗ V ∗ −→ IndSGe
(V )⊗ V ∗ −→ V # ⊗ V ∗ −→ 0

which proves the result.

2. On characters

One of the major features of the finite group representation theory is the fact
that all the information on a representation can be summarized in its character.
This (partially) carries over to monoid representation theory, as we shall see in
this section where we reformulate the results of the previous section in terms of
characters.

16



Definition 25. If V is a finite dimension kM -module, its character is the map
from M to k defined by χV

kM : m 7−→ Tr(v 7→ m · v).

We recall the following well-known facts about characters. Proofs for fact 2
and 3 are respectively (ii) and (iii) of [? , Proposition 7.12]5.
Proposition 26. 1. Let V be a kM -module. We have χV

kM = χV ∗
kMop .

2. Consider the short exact sequence of kM -modules:

0 −→ A −→ B −→ B/A −→ 0.

Then χ
B/A
kM = χB

kM − χA
kM .

3. ConsiderM,M ′ two finitemonoids, V akM -module andW akM ′op-module.
Then χV⊗W

kM⊗kM ′ = χV
kMχW

kM ′ .

The previous properties are simply extensions of similar properties on groups,
and their proof is similar. From groups, we also keep in the case of monoids the
linear independence of irreducible characters (see [? , Theorem 7.7] for reference):

Proposition 27. The irreducible characters {χS
kM |S is a simple kM −mod} are

linearly independent as k valued functions.

This, together with the second point in the Proposition 26, has a nice conse-
quence. As we are interested in finite dimensional module over finite monoids,
those modules have a composition series. Say that a kM -module V , has S as a
composition factor with multiplicity [V : S] for any simple kM -module S. Then:

χV
kM =

∑
S

[V : S]χS
kM .

In that way, since characters of the simple modules are linearly independent, the
character of a module can be seen as a record of its composition factors.

The question of where to compute characters is worth asking: in the case of
groups, one needs only to compute the character for a transversal of conjugacy
classes to get its value everywhere. The case of monoids was described for the
first time by McAlister in [? ].

Definition 28. We say that two elements m,m′ in M are in the same gener-
alized conjugacy class or character equivalency class if for every kM -module V ,
χV
M (m) = χV

M (m′). We note CM the set of generalized conjugacy classes.

5Note that for Fact 3, our reference deals only with the caseM = M ′, but the proof is the same.

17



Proposition 29. ([? , Proposition 2.5]) Let E = {e1, . . . , en} be idempotent repre-
sentatives of the regular J -classes of M and for each ei let Ci = {ci,1, . . . , ci,mi}
be representatives of the conjugacy classes of Gei . Then the set CM =

⋃
ei∈E Ci is a

set of representatives of character equivalency classes ofM .

We can now recall the definition of the character table of a monoid.

Definition 30. Let IrrM be the set of isomorphism classes of simplekM -modules
and CM as in definition 28. The character table ofM over k is the (square) matrix
defined by :

X(M) = (χV
kM (m))V ∈IrrM ,m∈CM

.

Moreover, if e ∈ M is an idempotent, we define Xe(M) as the matrix obtained
by extracting from X(M) only the lines corresponding to simple modules with
apex e.

Finally, we can apply the language of characters to Proposition 24, which yield
a formula for computing the character table ofM overk given the character tables
of the groups Ge over k.

Proposition 31. Let e ∈ M be an idempotent, Ge be the maximal subgroup at e.
We have the formula for Xe(M) :

Xe(M) = tX(Ge)
−1 ·

(
χ
kL(e)
kM⊗kGop

e
(m, g)− χ

Ne(kL(e))
kM⊗kGop

e
(m, g)

)
g∈CGe ,m∈CM

where the dot is the matrix product.

Proof. First, we have, because of Proposition 26-2, we have:

χ
kL(e)/Ne(kL(e))
kM⊗kGop

e
= χ

kL(e)
kM⊗kGop

e
(m, g)− χ

Ne(kL(e))
kM⊗kGop

e
(m, g)

Then, from Proposition 24, we know that:

χ
kL(e)/Ne(kL(e))
kM⊗kGop

e
(m, g) = χ

⊕
V ∈Irre

V #⊗V ∗

kM⊗kGop
e

=
∑

V ∈Irre

χV #⊗V ∗

kM⊗kGop
e

=
∑

V ∈Irre

χV #

kM (m)χV
kGe

(g)

This last sum is clearly the dot product between the column ofX(Ge) indexed by g
and the column ofXe(M) indexed bym. That is, the coefficient in position (g,m)

of χL(e)/ rad(L(e))
M−Ge

is equal to the coefficient in position (g,m) of tX(Ge) ·Xe(M),
which, together with Proposition 26(ii), proves the equality.

18



3. One step beyond: The Cartan matrix

We are, at last, in measure to state the formula from Thiéry for the Cartan
Matrix. Without getting into the specific details, the Cartan matrix can be seen
as measure of how "not semisimple" the algebra of the monoid is. We use a non
standard definition of the Cartan matrix, first given in [? , Definition 2.6]. A
formal proof that this is equivalent to the usual definition can be found in [? ,
Corolary 7.28].

Definition 32. Let {S1, . . . , Sn} be a set of representatives of the isomorphism
classes of simple kM -modules. The simple kM ⊗kMop modules are the Si⊗S∗

j

for all i, j ∈ J1, nK. Denote by [kM : Si ⊗ S∗
j ] the multiplicity of Si ⊗ S∗

j as a
composition factor of kM .

The Cartan matrix of kM is defined by:

C(kM) = ([kM : Si ⊗ S∗
j ])i,j .

In other words, the Cartan matrix is a recording of the multiplicities of the
composition factors of kM as a kM ⊗kMop module. But so is its character! The
difference being that the character of kM as it is computed is expressed in the
basis of the character equivalency classes of M × Mop while the Cartan matrix
is expressed directly in the basis of the simple modules. Since the basis change
between the two is precisely given by the character table and hence, we have the
Thiéry’s Formula for the Cartan matrix.

Proposition 33. The Cartan matrix is given by the formula:

C(kM) = tX−1
M BX−1

M

where B = (|{s ∈ M |msm′}|)m,m′∈CM

III. Some explicit computations

In this section, M is a fixed submonoid of Tn. We explain how to combina-
torially compute the characters of three interesting modules: kJ for a J -class J ,
kM as kM−mod−kM and kL(e) for aL-class containing an idempotent e as a
kM −mod−kGe. For clarity, we will designate these characters as bicharacters.

We begin by discussing the computational hypotheses we make before pre-
senting the algorithms themselves. In a third subsection, we detail how to com-
pute the radical of kL(e) to apply our formula from Proposition 31 to compute
the character table of a monoid. This latter case is not as tidy as the former ones,
as we don’t have a purely combinatorial way of computing the radical.

19



1. Computational hypotheses

In this section we discuss the computational hypotheses necessary for the
algorithms in the next section. This section is based on the work [? ] in which
East, Egri-Nagy, Mitchell and Péresse provide efficient algorithms for all basic
computational questions on finite semigroups (which includemonoids). Although
we limit our scope to the case of transformation monoids, methods described [? ]
allow the algorithms described below to be applied to other interesting classes of
monoids. Moreover, they can theoretically be applied to any finite monoid using
a Cayley embedding in a full transformation monoid. In general however, this is
very inefficient and not feasible in practice.

Following the authors of [? ], we make the following fundamental assump-
tions that we can compute:

• Assumption I : a product of two elements of the monoid.

• Assumption II : the image and kernel of a transformation (note that we do
not explicitly use this assumption, but that it is necessary for the algorithms
of [? ] that we do use).

• Assumption III : Green’s pairs.

• Assumption IV : Given h ∈ M Stab(H) compute the corresponding ele-
ment in Γ(H) (understood as a permutation group of the image common
to all elements of H as seen in Example 7), and similarly on the right.

Not only do we directly need to be able to do these computations for our own
algorithm, but they are also prerequisite for the algorithms from [? ]. As such, we
refer to the top of Section 5.2 of [? ] on how to realize these computations in the
case of transformation monoids.

We, again, refer to [? ] for the specific algorithms meeting our computational
prerequisites.

• Computing the Schützenberger groups: [? , Algorithm 4]

• Checking membership of an element in a Green’s class: [? , Algorithms 7
& 8].

• Finding idempotents: [? , Algorithm 10]. This algorithm also allows for
finding the regular J -classes.

20



• Decomposing the monoid in R,L and J -classes : [? , Algorithm 11] and
its discussion. Note that by storing this decomposition, we can, given an
element of the monoid, find the classes that contain it.

• Obtaining a representative of a Green’s class: this is given by the data struc-
ture representing the Green’s classes described at the top of [? , Section 5.4].

Finally, we require the following points that, although they are not described
in [? ], are easily obtained from it.

• Computing a setCM of character equivalency representatives: given Propo-
sition 29, this can be done in four steps:

1. compute a set E of idempotent representatives of the regularJ -classes,
2. compute Γ(H(e)) for each e ∈ E ,
3. compute a setCe of representatives of the conjugacy classes ofΓ(H(e))

for each e ∈ E , using for instance the procedure described in [? ],
4. for each e ∈ E and c ∈ Ce compute the corresponding element of

H(e) as in Example 10.

• Computing τa as in Proposition 13 : given g ∈ Γ(H), τa(g) is simply, seen
as an element of S(ker a) :

a−1{i} 7→ (g · a)−1{g · a(i)},

which can be computed in O(n). Note that this is a special case of the
application described in [? , Proposition 3.11 (a)]

• Testing that two elements g, g′ in Γ′(H(a)) are conjugated : Γ′(H) is rep-
resented as a subgroup ofS(ker a) and known procedures, such as the one
described in [? ], can be used.

• Computing the cardinality of a conjugacy class of a Schützenberger group:
for instance, the computer algebra system GAP uses the method described
in [? ].

2. Combinatorial bicharacter computing: 3 applications.

We are now ready to present the algorithm for fixed-point counting, keeping
in mind that we want first to use the formula from Section II.2 to compute the
character table of the monoid and further to compute the Cartan matrix of the
monoid. In the cases we are interested in, we use the formalism of character
computing, since, as stated in the Lemma below, computing the characters of so
called combinatorial modules is actually counting fixed points.

21



Lemma34. LetM,M ′ be two finite monoids and (V,B) a finite dimensionalkM−
mod−kM ′ space equipped with a basis B. If the actions of M,M ′ on (V,B) are
combinatorial, meaning for any (m, b,m′) ∈ M × B ×M ′,mbm′ ∈ (B ∪ {0}),
then:

χV
kM⊗kM ′op = |{b ∈ B |mbm′ = b}|.

Proof. In the basis B, the matrix of the linear map x 7→ mxm′ is a {0, 1}-matrix,
with for every b ∈ B exactly one 1 in the b-th column, that 1 being on the b-th
row if mbm′ = b. Thus, the trace counts the number of fixed points.

Note thatwe have already defined a structure of combinatorialkM−mod−kGe

on (kL(e),L(e)) for any idempotent e. In the same way, kJ for a J -class J , can
be equipped with a structure of kM −mod−kM by setting for every (m, j) ∈
M × J :

m · j =

{
mj if mj ∈ J

0 otherwise
and j ·m =

{
jm if jm ∈ J

0 otherwise
.

As before, this is well defined: firstly because the actions on the left and on the
right commute (because the monoid’s law is associative by assumption) and sec-
ondly because either m ≤L m′ or m ≤R m′ imply m ≤J m′ so, as in Section
II.1, if ml or lm has "fallen to 0", it can’t "climb back up" to J .

This structure makes (kJ, J) into a combinatorial module and we may apply
our fixed points counting methods to compute its character.

Algorithm 35 (Computing the bicharacter of a J -class). Keeping the assump-
tions and notations of the previous Paragraph 1, we get from Corollary 16 an
algorithm to compute the bicharacter of kJ as a kM −mod−kM :

• Input : A J -class J , a set of representatives of the character equivalency
classes CM .

• Output : A matrix (|{m ∈ J |hmk = m}|)(h,k)∈C2
M

1. Preparations:
(a) Choose a ∈ J and define H = H(a).
(b) Compute Green’s pairs (λR, λ

′
R) (respectively (ρL, ρ′L)) for (R(a), R)

(resp. (L(a), L)) for allR-class R ⊂ J (resp. L-class L ⊂ J ).
(c) Compute the set C of conjugacy classes of Γ′(H).

2. For each character equivalency representative h ∈ CM , initialize rJ(h) and
lJ(h) to both be (0)ḡ∈C .

22



(a) For each R-class R ⊂ J , test if hλRa ∈ R. If so, denoting by ḡ
the conjugacy class of τa((λ′

RhλR)×H) in Γ′(H), increment rJ(h)
by |CΓ′(H)(g)| at position ḡ.

(b) For each L-class L ⊂ J , test if aρRh ∈ L. If so, denoting by ḡ the
conjugacy class of×H(ρ′LhρL) in Γ′(H), increment rJ(h) by 1 at po-
sition ḡ.

3. Compute the matrix χ = (rJ(h) · lJ(k))(h,k)∈C2
M
using the previously com-

puted vectors and return χ.

Example 36. An aperiodic monoid is a monoid where all H-classes are sin-
gletons. Let us apply the algorithm we just described in the case of a J -class
J with trivial H-classes. Several simplifications occur : first, we don’t need
to check for the conjugacy class, as there is only one. Secondly, the conju-
gacy class has cardinality one. Consider the vectors rJ = (|SR(h)|)h∈CM

and
rJ = (|SL(h)|)h∈CM

with SL(h) and SR(h) defined as in Corollary 16. The
bicharacter is simply the matrix product of rTj with lJ . The particular case of
this algorithm for aperiodic monoid is described in [? , Section .1]

Algorithm 37 (Computing the bicharacter of kM ). If we consider (kM,M) as
a combinatorial kM −mod−kM , we immediately have that:

χkM
kM⊗kM ′op =

∑
J∈J

χkJ
kM⊗kM ′op

and we can therefore compute the bicharacter of the whole monoid M : we first
compute a set CM of representatives of the character equivalency classes and we
the iterate Algorithm 35 over all J -classes and sum the results.

The final useful example is the case of counting fixed points in a single regular
L-class, for the purpose of computing the character table of the monoid.

Algorithm 38 (Computing the bicharacter of a L-class). Let e be an idempotent
en let L = L(e). In this example kL is still a combinatorial module, but it has
the particularity, compared with the other two examples, that the monoids on the
left and right are not the same. However, as the maximal subgroup at e, Ge, is a
subsemigroup of M , the same results apply at no extra costs.

We can simply adapt the algorithm of Algorithm 35. Since an element of CGe

acts "as itself" on the right, we don’t need to keep track of the action of the right
with a vector rL as we did previously.

1. Initialize χ to (0)(h,k)∈CM×C

23



2. For each h ∈ CM , for eachH-classH , test if hλHa ∈ H . If so, denoting by
k the conjugacy class of λ′

HhλH inGe, increment χ by |CGe(h)| at position
(h, k).

3. Return χ

3. Computing Ne(kL)

We are now almost in position to use the formula of Proposition 31: the char-
acter tables of the groups are supposed to be given, as we dispose of efficient group
algorithms in the literature to compute them, from Algorithm 38 we now know
how the efficiently compute the bicharacter of kL(e) as a kM ⊗ kGop

e -module
for some idempotent e ∈ M . It remains to compute the bicharacter ofNe(kL(e))
as a kM ⊗ kGop

e -module, which we discuss now.
Let L = L(e). Recall that, by definition, Ne(kL) = {x ∈ kL | eMx = 0}.

Taking L as a basis for kL, we can form a matrix with rows indexed by M × L
and columns indexed by L, with the coefficient at ((m, l), l′) = 1 if eml = l′ and
0 otherwise. Computing the kernel of this matrix yields a basis forNe(kL) but is
extremely inefficient as the number of rows is many times the cardinality of the
monoïd.

Notice first that for any m ∈ M , em ≤R e so we can consider only the
elements of M that are R-smaller than e. Conversely, recall that the structure of
kM -module on M is defined by m · l = ml if ml ∈ L and 0 otherwise and that
this latter case happens ifml ≤L l. Since ifm ≤L l impliesml ≤L l we have that
the (m, l)-th row of the matrix is null and that wemay omit it. This shows that we
need only to consider the element ofM that are notL-below e. Together with the
previous point, this means that the similarly defined matrix but whose rows are
only indexed byR(e)×L has the same kernel. This is good news, as we may now
exploit the structure of the J -class given by Green’s Lemma to further reduce the
dimension of this matrix. Indeed, another consequence of Green’s Lemma is the
so called "Location Theorem" from Clifford and Miller. A proof can be found in [?
, Theorem 1.11].

Lemma 39 (Location Theorem). Let r, l be two elements in the same J -class. We
have:

rl =

{
γ ∈ R(r) ∩ L(l) if L(r) ∩R(l) contains an idempotent,

γ <J l, r otherwise.

24



l

rl

e

r

=
×

R(r)

R(l)

L(l) L(r)

Figure 1: Location Theorem
Since there is an idempotent e in L(r) ∩R(l), rl stays in the same J -class, in

L(l) ∩R(r).

Lemma 40. Let e ∈ M be an idempotent, R = R(e) its R-class and R′ another
R-class of J (e). Let (λ, λ′) be a left Green’s pair for (L,L′). Then (λe, eλ′) is a
left Green’s pair for (R,R′).

Similarly, if L = L(e), L′ is a L-class of J (e) and (ρ, ρ′) is a right Green’s pair
for (L,L′), then (eρ, ρ′e) is a right Green’s pair for (L,L′)

Proof. Let g be any element of H(e) and g′ = λg. Since e is idempotent, H(e)
is a group with identity e so we have eλ′λeg = eλ′λg = eg = g and λeeλ′g′ =
λeg = λg = g′ which, from Green’s Lemma, make (λe, eλ′) a left Green’s pair
for (L,L′). A similar argument applies for the second part of the proposition.

Remark. This lemma means that for a regular J -class J and for any twoL-class
(or R-class) it contains, we may choose a corresponding Green’s pair among the
elements of those two classes.

Proposition 41. Let e ∈ M be an idempotent and H = H(e), L = L(e), R =
R(e) and J = J (e). For each R-class R′ ⊂ J , we choose a left Green’s pair
(l, l′) ∈ J2. We denote by L the set of all l for the chosen left Green’s pairs. We
define R similarly. Then Ne is the set of solutions of :

∀r ∈ R, ∀g ∈ H,
∑
l∈L

1H(rl)xl(rl)−1g = 0

Proof. Consider an element a ∈ R. a can be written in a unique way as gr, with
g ∈ H and r ∈ R corresponding to L(a). Similarly, an element b in L as a unique

25



decomposition as lγ, l ∈ L, γ ∈ H . For an element x ∈ kL we note:

x =
∑

l∈L,γ∈H
xlγlγ

its decomposition over the basis L.
We want to find the equations that describe ker(gr×L) (where gr×L is the

linear map on kL obtained by extending themonoid’s multiplication by linearity).
From the Location Theorem, we get that Im (gr×L) ⊂ kH . For k ∈ H , denote by
fk,gr the k-th coordinate function of gr×L. Because gr×L acts combinatorially
on kL, we have :

fk,gr(x) =
∑

l∈L,γ∈H
1{k}(grlγ)xlγ

Note that xlγ appears in the sum if and only if grlγ = k. From the Location
Theorem, and becausewe chose l ∈ L, r ∈ R, we have grlγ = k if and only if rl ∈
H and γ = (rl)−1g−1k and thus the equation becomes:

fk,gr(x) =
∑
l∈L

1H(rl)xl(rl)−1g−1k.

For x to be in ker(gr×L), x must cancel simultaneously fk,gr for all k ∈ H . We
now have a set of equations for ker(gr×L), and we can deduce that the set of
equations

∀r ∈ R,∀g, k ∈ H, fk,gr(x) =
∑

l∈L,γ∈H
1H(rl)xl(rl)−1g−1k = 0

describes Ne(kL). However, the equation system is redundant as the equation
fk,gr(x) = 0 is the same for all pairs (g, gk′) with k′ ∈ H . Removing the dupli-
cates equations gives the system announced in the proposition.

Example 42 (Ne in the case of an aperiodic monoid). As in Example 36, let
us consider the case of a J -class with trivial H-classes. In this case, we have
L = L, R = R and H = {1H}, so the equations become:

∀r ∈ R,
∑
l∈L

1H(rl)xl.

Again from the Location Theorem, we have that 1H(rl) = 1 if and only if
there is an idempotent in L(r) ∩ R(l). So if we form a matrix A with rows
indexed byL and columns indexed byR, and with coefficients 1 at (L(r),R(l))
if L(r) ∩ R(l) contains an idempotent and 0 otherwise, the above equations

26



becomes :
(xl)

T
l∈LA = 0,

that is, in the case of aH-trivialJ -class,Ne(kL) is the left kernel of the eggbox
picture seen as a {0, 1}-matrix.

Note that given this set of equations, we can compute the characterχNe(kL(e))
kM⊗kGop

e

from the formula in Proposition 31 using classical linear algebra algorithms to
find a basis of Ne(kL(e)) and then computing the value of the character at any
(m, g) ∈ CM×CGe by iterating over the basis vectors, applying (m, g) as a linear
map and computing the relevant coefficient in the image vector.

IV. Performance, computational complexity and benchmarks

To begin with, in this section, we discuss the challenges and choices we have
been led to make to measure the performance of our algorithms. In a second part,
we present the experimental results as well as, when possible, their complexity
analysis. We discuss performance for the computation of the number of fixed
points, the character table and finally the Cartanmatrix. At the end of this section,
in Figures 3, 4 and 5, we give experimental measures of the complexity of our
algorithms as a function of cardinality.

1. Challenges, experimental choices and methodology

Monoids being as diverse as they are, a meaningful analysis of the time and
space complexities of the above algorithms is difficult, as many relevant metrics
(such as the number of Green classes of a given type) cannot be straightforwardly
computed. Moreover, in some sense these metrics vary a lot: two transformation
monoid acting on the same number of points with the same number of generators
can have vastly different Green structures. Although we can provide some time
complexities in terms of number of L,R-classes and cardinality of H-classes (as
we do below), the real test of viability is to see if the algorithm effectively ter-
minates in practice. Thus, we provide timings and memory usage measures for
the computation of the three main objects of our discussion: the bicharacter, the
character table and the Cartan matrix.

The performance measures provided for these new algorithms (as well as the
computation results presented hereafter) all come from an implementation using
the computer algebra system GAP. All performance measures are realized on a
laptop equipped with an Intel Core i7-10850H @ 2.7GHz (on one core) and 16
GB memory. Our specific implementation, as well as the test cases used and the

27



raw data, are publicly available on our git repository6. As the following section
will show, these algorithms are, on our test machine, memory limited. We have
made some test computations on a machine equipped with 128 GB of RAM. Even
then, due to the rapid explosion of memory requirements, we cannot compute the
character table of T8 using these methods, and it seems that monoids containing
S12 generally fail to reach the end of the bicharacter computation. Since in the
cases where this more powerful machine enables more computation by bypassing
memory limitations, computation time can reach the hour range, we choose to
focus on the smaller scale tests allowed by our smaller machine.

We consider three families of monoids implemented by the package GAP
Semigroups [? ]: transformation monoids, which we have introduced before, par-
tition monoids, and partial permutation monoids.

Definition 43. A partition P of a set S is a collection of subsets of S such that⋃
P = S and for all p, p′ ∈ P, p∩ p′ = ∅. The elements of P are called its blocks.

Given s ∈ S, P (s) is the unique block of P containing s.
Let P ,Q be two set partitions of the set S = J−n,−1K∪ J1, nK. The partition

product of P by Q is the partition PQ where i, j ∈ S are in the same block if:

• i, j > 0 and are in the same P -block.

• i, j < 0 and are in the same Q-block.

• i > 0 and j < 0 and there exists k ∈ J−n,−1K such that k ∈ P (i) and
k ∈ Q(j).

• i and j are related in the transitive closure of the relation given by the
previous point.

This defines the partition monoid Pn (with identity {{i,−i} | i ∈ J1, nK}). A
partition monoid (of rank n) is a submonoid of Pn.

Definition 44. A partial permutation of J1, nK is an injective partial function
from J1, nK to itself. Equipped with the identity function and the partial map
composition, this defines the inverse symmetric monoid In. A partial permutation
monoid (of rank n) is a submonoid of In.

We test our functions on the families Tn,Pn and In, with numeric values
provided for our canonical example Tn in Tables 2, 3 and 4. However, many

6github.com/ZoltanCoccyx/monoid-character-table

28

github.com/ZoltanCoccyx/monoid-character-table


computer algebra systems, including GAP, are smart enough to detect that the
Schützenberger groups are actually symmetric groups and thus use some non-
general algorithms that could not be used on a typical finite monoid. This has
the potential to falsify our measures (and indeed probably does, given Figures
3-(a), 4-(a) and 5-(a)). To mitigate this issue, we provide timings for randomly
chosen finite monoids. The question of picking a “generic” monoid is entirely
outside the scope of this paper. We simply choose a monoid R(m,n) of rank m
with n generators by picking uniformly n element of Tm,Pm or Im. The set of
(rank, number of generators) pairs used is given in Table 1. For reasons discussed
hereafter, we have chosen to have “enough” generators to have non-trivial J -
structure. Experimentally, we note that the resources in time and memory used
by two transformation monoids acting of the same rank with the same number of
generators can differ by up to an order of magnitude. Thus, for each pair (m,n),
we measure performance on 10 randomly chosen test cases. To experimentally
evaluate the complexity as a function of cardinality, we do a linear regression of
the logarithm of the (time and memory) measures against the logarithm of the
cardinality. In the case of transformation monoids and partition monoid, the data
follows a relatively tight distribution (see Figures 3 and 4). To mitigate thresh-
old effects, we weight the sample values linearly (and not logarithmically) so that
the higher values have more importance. By contrast, the randomly generated
partial permutation monoids give more dispersed samples. Given this dispersion,
considering only (or with a heavy weight) the highest values makes for an over-
estimation of necessary resources in most cases. Thus, in that case, we do the
linear regression with equal weights on all samples. This does not dramatically
change the measured complexity (we refer to the actual code as the final arbiter),
but we advise caution when using these figures. For ease of discussion, we will
call structured monoids the non-random ones present in our tests.

2. Performances and experimental results.

In the case of Algorithm 35, we can give some analysis of the time complexity
in terms of the Green structure of the particular J -class Algorithm 35 is applied
to.

Proposition 45. Consider a J -class J containing nL L-classes, nR R-classes, con-
taining a H-class H with nC conjugacy classes in Γ′(H), and let CM be a set of
representatives of the character equivalence classes, as before. Then, the Algorithm
35 does:

• nC computations of conjugacy classes of Γ′(H) cardinality (if we precompute

29



Type Bicharacter Character table andCar-
tan matrix

Transformation (4,3), (5,3), (5,4), (6,5),
(7,6), (8,8), (9,8)

(4,3), (5,3), (5,4), (6,5),
(7,6)

Partition
(4,3), (4,6), (5,10), (5,15),
(6,18), (7,20), (8,20),
(9,25), (10,30), (12,40)

(4,3), (4,6), (5,10), (5,15),
(6,18), (7,20), (8,20),
(9,25), (10,30), (12,40)

Partial Permutation

(3,6), (3,9), (4,8), (4,12),
(5,15), (6,20), (7,21),
(7,25), (7,30), (8,25),
(8,30)

(3,6), (3,9), (4,8), (4,12),
(5,15), (6,20), (7,21),
(7,25), (7,30)

Table 1: Rank and number of generators for random monoids

those cardinalities to be able to do a lookup in step 2-a of Algorithm 35, instead
of computing it on the fly),

• O(|CM |(nL + nR)) monoid multiplications, Green class membership tests
and conjugacy class of Γ′(H) membership tests,

• O(|CM |nR) computations of τa,

• O(|CM |nL) conjugacy class of Γ′(H) cardinality lookups,

• nC |CM |2 integer multiplications.

Proof. This simply results from an inspection of Algorithm 35, with the caveat
that we precompute the cardinalities of the conjugacy classes of Γ′(H).

In the case of Algorithm 37 applied to an arbitrary monoid, such an analysis
is mostly meaningless because we would need to express the number of Green
classes and understand their breakdown. However, because of the vast variety
of possible monoids, there is no meaningful way to do it from simple parameters
such as the rank or the number of generators.

Note that we do not provide a cumulative formula for the complexity of Al-
gorithm 35 as, for instance, the complexity of a conjugacy class membership test
heavily depends on the algorithm used by the computer algebra system, that can
itself vary depending on the characteristics of the Schützenberger groups. This

30



makes the task of providing a meaningful evaluation of the global complexity of
the algorithm quite difficult, mainly because expressing the complexity of those
“elementary” operations of monoid multiplications, membership testing, etc. . . in
terms of the same parameters is not straightforward. However, we can at least
compare this to the naive algorithm of testing if every element of J is a fixed
point which demands O(nLnR|H|2|CM |2) monoid multiplications: as long as
the complexity of the more complex operations of Green class or conjugacy class
membership testing remains limited in terms of monoid multiplications, our com-
plexity is better. For instance, in the case of the monoid Tn, all the required op-
erations can be done on O(n), making Algorithm 35 (and, in turn, Algorithm 37)
more efficient than the naive algorithm, as can be seen in Table 2, with a sublinear
(with respect to cardinality) measured complexity (Figure 3).

Monoid Cardinality Coefficients Naive Ours
T3 27 62 29 ms 8 ms
T4 256 112 92 ms 32 ms
T5 3125 182 1.44 s 84 ms
T6 46656 292 53.0 s 0.30 s
T7 823543 442 >30 min 1.54 s
T8 16777216 662 · · · 8.65 s
T9 387420489 962 · · · 58.2 s

Table 2: Computation time of the regular representation bicharacter.

As shown in Table 3, the computation of the character table takesmuch longer.
This is because, to compute the radical of kL(e) for an idempotent e, we must
solve a linear system of size |R(e)|×|L(e)|, which necessitatesO(|R(e)|2|L(e)|)
arithmetic operations. In the case of the full transformation semigroup Tn, if e
has k elements in its image, |L(e)| = k!×

(
n
k

)
, while |R(e)| = k!×S(n, k)where

S(n, k) is a Stirling number of the second kind, which gives |R(e)| ∼ kn. The
size of that linear system becomes rapidly intractable. Moreover, once we have
a basis of Ne(kL) of cardinality d, we still have to compute the C2

M character
values inO(d2) operations each. Experiments indicate that the computation time
of the character tables of the maximal subgroups is small in comparison to all
radical related computations. As can be seen in Figures 3-(b, c), 4-(b, c) and 5-(b,
c) the limiting factor is memory (the test on randommonoids fails for the random
transformation monoids of the form R(9, 8) by exceeding the 16 GB memory
capacity of our testing machine). Although computation requirements are close
to linear in the cardinality, the cardinality tends to be more than exponential in
the rank, limiting these methods to small ranks.

31



Monoid Cardinality Coefficients Ours
T3 27 62 80 ms
T4 256 112 182 ms
T5 3125 182 1.30 s
T6 46656 292 17.6 s
T7 823543 442 5.93 min

Table 3: Computation time of the character table.

Finally, for the computation of the Cartan Matrix, the previous timings show
that the vast majority of the computation time is spent computing the character
table of the monoid. As the computation of the combinatorial bicharacter is more
than a hundred times faster than the computation of the character table, this is a
clear invitation to improve in particular the computation of the character of the
radical of the L-classes. In Table 4, we show some timings for that computation,
and a comparison with Sage’s generalist algorithm (based on the Peirce decom-
position of the monoid algebra) for the computation of the Cartan Matrix: despite
its limitations, our specialized algorithm allows for the handling of larger objects.
Indeed, our algorithm has near linear performance with respect to cardinality,
while Sage’s has roughly cubic complexity.

Monoid Coefficients Sage’s Ours
T3 62 575 ms 42 ms
T4 112 5.23 min 146 ms
T5 182 >2h 1.29 s
T6 292 · · · 17.7 s
T7 442 · · · 5.48 min

Table 4: Computation time of the Cartan matrix.
In the case T5, Sage’s algorithm was interrupted before the end of the computation.

Again, memory fails before time for T8 and onward. For the transformation
monoids of the form R(9, 8), using the regression, we can predict a computation
time of around 6 hours on our testing machine if it was not memory limited.

An example of a Cartan matrix obtained using our Algorithms and Thiéry’s
formula is pictured in Figure 2.

Generally, our algorithms achieve (at worst) near linear measured complex-
ity. The fixed point counting is most efficient in the structured monoids, where
there are few, big J -class with big Schützenberger groups. In the contrary, on
“sparse” monoid with many small J -class, the efficiency of the algorithm drops.

32



Figure 2: Cartan Matrix of T7
For legibility, the entries are represented as gray values. The entries are integers from 0

(in white) to 4 (the single black pixel).

This most apparent in Figure 5, where the blue clusters are (roughly) semigroups
of the same rank with the same number of generators. The partial permutation
semigroups generated that way tends to have either (at our scale) low tens or mul-
tiple thousands J -classes (without intermediate values). The latter kind tends to
be much more expensive to deal with, despite implementing “lazy” fixed point
counting on small J -classes and J -classes with trivial Schützenberger groups to
avoid costly computations. The situation balances out (or even inverses itself, see
Figure 4) when it comes to computing the character table and the Cartan matrix.
This seems to come from the fact that bigger J -classes mean higher dimensional
radical and bigger Schützenberger groups mean less sparse basis vectors in the
radical. Still, the measured complexity remains near linear in our experiments.

33



101 102 103 104 105 106 107 108

Cardinality

10−1

100

101

102

103

104

105

106
Co

m
pu

ta
tio

n 
tim

e 
(m

 )

Linear regre  ion (a = 0.92)
Random monoid 
Linear regre  ion (a = 0.57)
Tn, n=3… 9

101 102 103 104 105 106 107 108

Cardinality

105

106

107

108

109

1010

1011

1012

M
em

or
y 

al
lo

ca
te

d 
(b

yt
es

)

Linear regression (a = 0.92)
Random monoids
Linear regression (a = 0.58)
Tn, n=3… 9

(a) Bicharacter

101 102 103 104 105 106
Cardinality

100

101

102

103

104

105

Co
m
pu

ta
tio

n 
tim

e 
(m

s)

Linear regression (a = 1.06)
Random monoids
Linear regression (a = 1.00)
Tn, n=3… 7

101 102 103 104 105 106

Cardinality

106

107

108

109

1010

1011

M
em

or
y 

al
lo

ca
te

d 
(b

yt
es

)

Linear regression (a = 1.02)
Random monoids
Linear regression (a = 1.01)
Tn, n=3… 7

(b) Character table

101 102 103 104 105 106
Cardinality

101

102

103

104

105

Co
m
pu

ta
tio

n 
tim

e 
(m

s)

Linear regression (a = 1.03)
Random monoids
Linear regression (a = 1.01)
Tn, n=3… 7

101 102 103 104 105 106

Cardinality

106

107

108

109

1010

1011

M
em

or
y 

al
lo

ca
te

d 
(b

yt
es

)

Linear regression (a = 0.98)
Random monoids
Linear regression (a = 1.00)
Tn, n=3… 7

(c) Cartan Matrix

Figure 3: Time and memory usage: transformation monoids



101 102 103 104 105 106 107 108

Cardinality

10−1

100

101

102

103

104

105

106

Co
m
pu

ta
tio

n 
tim

e 
(m

 )

Linear regre  ion (a = 0.96)
Random monoid 
Linear regre  ion (a = 0.55)
Pn, n=2… 7

101 102 103 104 105 106 107 108

Cardinality

104

105

106

107

108

109

1010

1011

M
em

or
y 

al
lo

ca
te

d 
(b

yt
es

)

Linear regression (a = 1.00)
Random monoids
Linear regression (a = 0.56)
Pn, n=2… 7

(a) Bicharacter

101 102 103 104 105
Cardinality

100

101

102

103

104

Co
m
pu

ta
tio

n 
tim

e 
(m

s)

Linear regression (a = 0.84)
Random monoids
Linear regression (a = 1.20)
Pn, n=2… 5

101 102 103 104 105

Cardinality

106

107

108

109

1010

M
em

or
y 

al
lo

ca
te

d 
(b

yt
es

)

Linear regression (a = 0.69)
Random monoids
Linear regression (a = 1.13)
Pn, n=2… 5

(b) Character table

101 102 103 104 105
Cardinality

100

101

102

103

104

Co
m
pu

ta
tio

n 
tim

e 
(m

s)

Linear regression (a = 0.94)
Random monoids
Linear regression (a = 1.17)
Pn, n=2… 5

101 102 103 104 105

Cardinality

106

107

108

109

1010

M
em

or
y 

al
lo

ca
te

d 
(b

yt
es

)

Linear regression (a = 0.91)
Random monoids
Linear regression (a = 1.10)
Pn, n=2… 5

(c) Cartan Matrix

Figure 4: Time and memory usage: partition monoids



102 104 106 108
Cardinality

100

102

104

106
Co

m
pu

ta
tio

n 
tim

e 
(m

s)

Linear regression (a = 0.60)
Random monoids
Linear regression (a = 0.45)
In, n=2… 11

102 104 106 108

Cardinality

105

107

109

1011

1013

M
em

or
y 

al
lo

ca
te

d 
(b

yt
es

)

Linear regression (a = 0.56)
Random monoids
Linear regression (a = 0.44)
In, n=2… 11

(a) Bicharacter

101 102 103 104 105
Cardinality

101

102

103

104

Co
m
pu

ta
tio

n 
tim

e 
(m

s)

Linear regression (a = 0.71)
Random monoids
Linear regression (a = 0.69)
In, n=2… 7

101 102 103 104 105

Cardinality

106

107

108

109

1010

M
em

or
y 

al
lo

ca
te

d 
(b

yt
es

)

Linear regression (a = 0.70)
Random monoids
Linear regression (a = 0.72)
In, n=2… 7

(b) Character table

101 102 103 104 105
Cardinality

101

102

103

104

Co
m
pu

ta
tio

n 
tim

e 
(m

s)

Linear regression (a = 0.72)
Random monoids
Linear regression (a = 0.56)
In, n=2… 7

101 102 103 104 105

Cardinality

106

107

108

109

1010

M
em

or
y 

al
lo

ca
te

d 
(b

yt
es

)

Linear regression (a = 0.71)
Random monoids
Linear regression (a = 0.69)
In, n=2… 7

(c) Cartan Matrix

Figure 5: Time and memory usage: partial permutation monoids



Conclusion and perspectives

The methods presented in this paper provide a new tool for the computa-
tional exploration of finite monoids representation theory. We give a method
to compute the character table of a finite monoid in the general case as well as a
method for the computation of the Cartanmatrix. In the latter case, although gen-
eral algorithms for any finite dimensional algebra already exist, by specializing to
monoid algebras, we achieve vastly shorter computation times, thus making the
question tractable for bigger monoids. Although we have presented the methods
in details only for transformation monoids, the underlying formulas are true in
general for finite monoids, and it remains computationally applicable whenever
the hypotheses of Section III are verified. We also invite the reader to consult and
test our implementation, available on our GitHub repository7. As this paper is
inspired by the combinatorial research on monoid representation theory which
have seen renewed activity in recent years, we hope that providing this effective
tool will allow for the observation of new phenomena.

This work has two natural continuations: improving and expanding. For the
improvement part, we have noted that by far the most inefficient part of our al-
gorithm is the computation of the radical of the L-classes. It happens to be the
only point where linear algebra is necessary and combinatorics are seemingly not
enough. We can ask whether this step could be replaced by a combinatorial com-
putation. Some experiments show that, even in relatively small and very regular
cases (T5 for instance) the basis we find for the radical by solving the equation
system described in Proposition 41 does not have easily understandable struc-
ture, once the common denominator of the coefficients is eliminated. It therefore
seems unlikely to us that a general method for computing the radical of an entirely
combinatorial nature exists. However, we remain optimistic that in very regular
cases (again, Tn), the issue lies with us not finding the method rather than it not
existing. More modestly, in a general context, we could try to exploit further the
structure of the equations that define the radical to reduce the size of the system,
which is a major bottleneck.

Another improvement, although perhaps less impactful, could be made by
exploiting redundancy: it can happen that two L-classes L1, L2 of a submonoid
M ofTn are contained in the sameL-classL ofTn. Thus, in step 2−b of Algorithm
35 (for instance), instead of visiting each L of M , we could visit each L of Tn

that contains a L-class of M and count them with some multiplicity. Although
this probably would not lead to great improvements in efficiency, this has the

7github.com/ZoltanCoccyx/monoid-character-table

37



advantage of making, in some sense, Tn the worst case scenario, allowing for a
finer complexity analysis.

As for extending this work, the natural path seem to adapt these methods
for fields of finite characteristic. At this point it appears to us that this question
is tractable as the theory remains essentially the same, although it is somewhat
difficult to implement in practice. The main hurdle arises, again, when comput-
ing the radical of a L-class: an equivalent of Proposition 23 would have to take
into account the role of the radical of the maximal subgroup algebra, which can
be non-trivial in positive characteristic. This would translate in needing to ef-
fectively compute this radical. Although algorithms are available (for instance
in GAP), this is a theoretically difficult and computationally expensive problem,
considerably reducing the maximum size of a tractable problem. While modular
representation theory is known to be a difficult subject in groups it seems that,
again, the situation is notmuchmore complicated formonoids than it is for groups
as it is standard practice to reduce monoid theoretic questions to group theoretic
ones. Treating modular group representation theory as a black box coming with
already existing algorithms (much as we did here for null characteristic group rep-
resentation theory as a matter of fact), we hope to be able to provide a modular
version of our algorithms along with an implementation in the near future.

Acknowledgements

The research work devoted to this project was funded by a PhD grant from
the French Ministère de la recherche et de l’enseignement supérieur, in the form
of a Contrat Doctoral Spécifique Normalien attributed for a PhD in the STIC (Sci-
ences et Technologies de l’Information et de la Communication) doctoral school of
Paris-Saclay University, in the LISN (Laboratoire Interdisciplinaire des Sciences du
Numérique) under the supervision of Pr. Nicolas Thiéry.

38



Annex: Given P,Q two set partitions on {±1,±2, . . . ,±n}, one can create a
new partition P,Q on the same set in the following way:

• if i, j < 0 are in the same P -block, they are PQ-related,

• if i, j > 0 are in the same Q-block, they are PQ-related,

• if i < 0, j > 0 and there exists k ∈ J1, nK such that i, k are in the same
P -block, −k, j are in the same Q-block, then i, j are PQ-related,

• the partition PQ is the set of classes of the equivalence relation generated
by the three previous PQ relations.

The partitionmonoid Pn is the set of all set partitions on {±1,±2, . . . ,±n} equipped
with the previous composition law, with identity element {{i,−i} | i ∈ J1, nK}.
Since the maximal subgroups at the idempotents of Pn are symmetric groups, we
can meaningfully label the coefficients of the character table and of the Cartan
matrix by integer partitions.

1
5

2
1
13

22
1
1

3
1
1
2

3
1
2
1

41
11

5
1

14 2
1
1
2

22 31
11

4
1

13 2
1
11

3
1

12 21 1
1

1
1



51 1 1 1 1 1 1 1 . . . . . . . . . . . .
4111 4 2 . 1 1 . 1 . . . . . . . . . . . .
3121 5 1 1 1 1 1 . . . . . . . . . . . . .
3112 6 . 2 . . . 1 . . . . . . . . . . . .
2211 5 1 1 1 1 1 . . . . . . . . . . . . .
2112 4 2 . 1 1 . 1 . . . . . . . . . . . .
15 1 1 1 1 1 1 1 . . . . . . . . . . . .
41 15 7 3 3 1 1 . 1 1 1 1 1 . . . . . . .
3111 45 9 1 . . 1 . 3 1 1 . 1 . . . . . . .
22 30 2 2 2 1 . . 2 . 2 1 . . . . . . . .
2112 41 1 2 1 1 1 1 3 1 1 . 1 . . . . . . .
14 15 5 1 3 1 1 . 1 1 1 1 1 . . . . . . .
31 75 21 11 3 3 1 . 10 4 2 1 . 1 1 1 . . . .
2111 109 23 5 1 1 1 1 17 3 1 1 1 2 . 1 . . . .
13 75 1 9 3 1 1 . 10 2 2 1 . 1 1 1 . . . .
21 51 19 11 6 4 3 1 14 6 6 2 2 4 2 1 1 1 . .
12 160 32 . 7 1 . . 31 5 5 1 1 6 . . 1 1 . .
11 151 47 19 13 5 5 1 37 13 5 4 1 10 4 1 3 1 1 .
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 6: Character table of P5.
For readability, zeroes are replaced with dots.

39



15 2
1
1
3

2
2
1
1

31
12

3
1
21

4
1
1
1

51 14 2
1
1
2

2
2

31
11

4
1

1
3

21
1
1

31 1
2

2
1

11 1
1



15 1 . . . . . . . . . . . . . . . . . .
2113 . 1 . . . . . . . . . . . . . . . . .
2211 . . 1 . . . . . . . . . . . . . . . .
3112 . . . 1 . . . . . . . . . . . . . . .
3121 . . . . 1 . . . . . . . . . . . . . .
4111 . . . . . 2 . . . . 1 . . . . . . . .
51 . . . . . . 1 . . . . . . . . . . . .
14 . . . . . . . 1 . . . . . . . . . . .
2112 . . . . . . . . 1 . . . . . . . . . .
22 . . . . . . . . . 1 . . . . . . . . .
3111 . . . . . 1 . . . . 2 . . 1 . . . . .
41 . . . . . . . . . . . 1 . . . . . . .
13 . . . . . . . . . . . . 1 . . . . . .
2111 . . . . . . . . . . 1 . . 2 . 1 . . .
31 . . . . . . . . . . . . . . 1 . . . .
12 . . . . . . . . . . . . . 1 . 2 . . 1
21 . . . . . . . . . . . . . . . . 1 . .
11 . . . . . . . . . . . . . . . . . 1 .
11 . . . . . . . . . . . . . . . 1 . . 1

Figure 7: Cartan Matrix of the P5.
For readability, zeroes are replaced with dots.

40


	Combinatorics of fixed point counting.
	Green structure and Schützenberger groups
	Green Structure
	Schützenberger groups

	Counting fixed points

	Modules: character table and Cartan matrix
	On modules
	On characters
	One step beyond: The Cartan matrix

	Some explicit computations
	Computational hypotheses
	Combinatorial bicharacter computing: 3 applications.
	Computing Ne(kL)

	Performance, computational complexity and benchmarks
	Challenges, experimental choices and methodology
	Performances and experimental results.


