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Abstract. Efficient computation of hard reasoning tasks is a key issue
in abstract argumentation. One recent approach consists in defining ap-
proximate algorithms, i.e. methods that provide an answer that may not
always be correct, but outperforms the exact algorithms regarding the
computation runtime. One such approach proposes to use the grounded
semantics, which is polynomially computable, as a starting point for de-
termining whether arguments are (credulously or skeptically) accepted
with respect to various semantics. In this paper, we push further this
idea by defining various approaches to evaluate the acceptability of ar-
guments which are not in the grounded extension, neither attacked by
it. We have implemented our approaches, and we describe the result of
their empirical evaluation.

Keywords: Abstract argumentation · Approximate reasoning.

Note: This paper has been accepted at ECSQARU 2023. In this version, we fix
minor mistakes in some examples. Please refer to the original publication [9] to

refer this work.

1 Introduction

Designing algorithms that are computationally effective is an important issue for
many fields of Artificial Intelligence. Traditionally, existing approaches addressed
for automated reasoning can be divided into two families responding to different
philosophies, namely complete or approximate approaches. While the former aim
to produce the correct answer however long it takes to produce it, the latter focus
on responding as quickly as possible at the expense of the risk of missing it.

Among many symbolic representations offered by the literature of Artificial
Intelligence to model a problem, Abstract Argumentation [10] is an intuitive and
convenient framework to reason with conflicting pieces of information. Classical
semantics for reasoning with an abstract argumentation framework (AF) are
based on the notion of extension, i.e. sets of collectively acceptable arguments.

⋆ This work benefited from the support of the project AGGREEY ANR-22-CE23-0005
of the French National Research Agency (ANR).
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However, a potential drawback of this framework is the high complexity of many
classical reasoning tasks for most of the semantics [11]. Among recent approaches
for solving these problems, many exact algorithms (which always provide a cor-
rect answer, but may require an exponential runtime in the worst case since
the problems at hand are theoretically intractable) have been proposed (e.g. the
SAT-based approaches by [16, 20, 12]). Fewer approximate algorithms have been
proposed. We are particularly interested in the Harper++ approach [21], which
consists in using the grounded semantics (which is polynomially computable)
as a shortcut for determining which arguments are acceptable with respect to
various extension-based semantics. Indeed, it is known that any argument be-
longing to the (unique) grounded extension also belongs to all the extensions for
several classical semantics, while an argument which is attacked by the grounded
extension cannot belong to any extension (again, for most classical semantics).
Thus, the question is how to determine the acceptability of other arguments,
those which do not belong to the grounded extension nor are attacked by it.
Harper++ proposes to consider that all these arguments should be credulously
accepted (i.e. belong to at least one extension), and none of them should be
skeptically accepted (i.e. none of them belongs to any extension). In this paper,
we study the question of approximating the acceptability of these arguments,
and propose two families of approaches to solve this problem. In the first one,
we compare the out-degree and in-degree of arguments (i.e. the number of ar-
guments they attack or which attack them), and in the second one we rely on
a classical gradual semantics, namely h-categorizer [3]. Each of these families
of approaches depends on some parameters. We show that they generalize the
Harper++ algorithm in the sense that setting some value to the parameters
induces that our approaches have the same behaviour as Harper++. Then, we
empirically evaluate the accuracy of our approaches, i.e. the ratio of correct an-
swers that we obtain. Finally, we show that our approach is (as expected from an
approximate algorithm) significantly faster than a SAT-based exact algorithm.

In Section 2 we recall background notions of abstract argumentation and
the Harper++ approach. We describe our new methods for approximating the
acceptability of arguments in Section 3. Section 4 presents our experimental
evaluation and we analyse the results in Section 5. We describe some related
work in Section 6, and Section 7 concludes the paper.

2 Background

2.1 Abstract Argumentation

Let us first recall some basic notions of abstract argumentation [10].

Definition 1. An argumentation framework (AF) is a directed graph F = ⟨A,R⟩
where A is a finite and non-empty set of arguments and R ⊆ (A×A) is an attack
relation over the arguments. We say that a ∈ A (resp. S ⊆ A) attacks b ∈ A if
(a, b) ∈ R (resp. ∃c ∈ S s.t. (c, b) ∈ R). Then, S ⊆ A defends an argument a if
S attacks all the arguments that attack a.
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Reasoning with an AF can then be achieved through the notion of extension,
i.e. sets of arguments which are collectively acceptable. An extension S must sat-
isfy some requirements, namely conflict-freeness i.e. no arguments in S attack
each other, and admissibility i.e. S must be conflict-free and defend all its ele-
ments. Conflict-free and admissible sets are denoted by cf(F) and ad(F). Then,
Dung defines four semantics which induce different sets of extensions. Thus, a
set of arguments S ⊆ A is:

– a complete extension iff S ∈ ad(F) and S does not defend any argument
outside of S;

– a preferred extension iff S is a ⊆-maximal admissible set;
– a stable extension iff S ∈ cf(F) and S attacks every a ∈ A \ S;
– a grounded extension iff S is a ⊆-minimal complete extension.

We use co(F), pr(F), stb(F) and gr(F) for representing these sets of extensions.

It is well known [10] that, for every AF F , stb(F) ⊆ pr(F) ⊆ co(F), and
|gr(F)| = 1. For these reasons, any argument a ∈ E (where E is the unique
grounded extension) belongs to every complete extension (since E is the unique
⊆-minimal one), and thus to every preferred and stable extension (which are all
complete extensions as well). And similarly, any argument b attacked by E is
attacked by an argument a which belongs to every stable, preferred or complete
extension, so b does not belong to any stable, preferred or complete extension.
Finally, given an extension-based semantics σ, an argument is credulously (resp.
skeptically) accepted w.r.t. σ if it belongs to some (resp. each) σ-extension. This
is denoted by a ∈ credσ(F) (resp. a ∈ skepσ(F)).

Example 1. Figure 1 gives an example of AF F = ⟨A,R⟩. Its extensions and sets
of (credulously and skeptically) accepted arguments for the four extension-based
semantics described previously are also given.

a

b c d

σ σ(F) credσ(F) skepσ(F)

co {∅, {a, d}, {b, d}} {a, b, d} ∅
pr {{a, d}, {b, d}} {a, b, d} {d}
stb {{a, d}, {b, d}} {a, b, d} {d}
gr {∅} ∅ ∅

Fig. 1. An example of AF F (left) with the extensions and accepted arguments for the
four semantics σ ∈ {co, pr, stb, gr} (right).

2.2 Harper++ for Approximate Reasoning

From the previous observation on the relation between the grounded extension
and the other semantics, one can notice that using the grounded extension as an
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approximation of reasoning with other semantics makes sense, especially since
computing the grounded semantics is achieved in polynomial time, while other
semantics are generally computationally hard [11]. This has conducted to an
empirical evaluation of the similarity between the grounded semantics and the
other forms of reasoning in argumentation [7]. A consequence of this work is the
development of the approximate argumentation solver Harper++ [21], which
works as follows. First consider an AF F = ⟨A,R⟩, an argument a ∈ A, and a
reasoning task among DS-σ and DC-σ, corresponding to the skeptical and cred-
ulous acceptability, i.e. checking whether the argument a belongs to skepσ(F) or
credσ(F). Then, for any semantics, Harper++ computes the grounded extension
E of F , and answers:

– YES if a belongs to E,

– NO if a is attacked some b ∈ E,

– otherwise, YES if the problem is DC-σ, and NO if the problem is DS-σ.

This last category of arguments corresponds to the UNDEC arguments with
respect to the grounded labelling [5]. We use IN(F) to denote the set of argu-
ments which belong to the grounded extension of F , OUT(F) for the arguments
attacked by a member of the grounded extension, and UNDEC(F) for the last
category. Formally, the Harper++ approach works as follows:

Definition 2. Given F = ⟨A,R⟩ an AF, a ∈ A an argument and x ∈ {DC,DS},
the function Acc++ is defined by:

Acc++(F , a, x) =

Y ES if a ∈ IN(F)
or (a ∈ UNDEC(F) and x = DC),

NO otherwise.

Example 2. Continuing the previous example, since the grounded extension is
empty, all the arguments belong to UNDEC(F). So, Acc++(F , ai,DC) = Y ES
and Acc++(F , ai,DS) = NO for all ai ∈ A. This means, for instance, that
Acc++ answers correctly for 3 arguments for the problem DC-stb (a, b and d)
and for 3 arguments (a, b and c) for the problem DS-stb.

3 New Approaches to Acceptability Approximation

A natural question is then whether one can find a better way to approximate the
acceptability of arguments with respect to the stable, preferred and complete
semantics when they belong to UNDEC(F). We propose two approaches for
addressing this issue, respectively based on a comparison between the out-degree
and the in-degree associated with the considered argument on one side, and on
an evaluation of its acceptability using a gradual semantics on the other side.
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3.1 ARIPOTER-degrees: ARgumentatIon apPrOximaTE
Reasoning using In/Out Degrees of Arguments

First, let us define some additional notations. Given an AF F = ⟨A,R⟩ and an
argument a ∈ A, define a+ = {b ∈ A | (a, b) ∈ R} and a− = {b ∈ A | (b, a) ∈ R},
i.e. the set of arguments attacked by a or attacking a, respectively. We call in-
degree of a the number of attackers of a, i.e. |a−|, and out-degree of a the number
of arguments attacked by a i.e. |a+|.

The intuition behind this approach is that an argument which attacks more
arguments than the number of its attackers has good chances to defend itself,
and then being accepted. Then, given some k ∈ R, we assume that a is accepted
when |a+| ≥ k × |a−|.

Definition 3. Given F = ⟨A,R⟩ an AF, a ∈ A an argument and k ∈ R, the
function AccOut/In is defined by:

AccOut/In(F , a, k) =

Y ES if a ∈ IN(F)
or (a ∈ UNDEC(F) and |a+| ≥ k × |a−|),

NO otherwise.

This means that arguments in IN(F) and OUT(F) are respectively accepted
and rejected, as expected, and UNDEC arguments are considered as accepted
iff their out-degree is at least k times higher than their in-degree. We will see
in Section 5 that this parameter can be adapted according to the type of AF
evaluated and the problem considered.

Example 3. We continue the previous example. Fixing k = 1, we observe that
AccOut/In(F , ai, 1) = Y ES for ai ∈ {a, b} and AccOut/In(F , aj , 1) = NO for
aj ∈ {c, d}. So this approach provides a correct answer to e.g. DC-stb for 3
arguments (a, b and c), and to DS-stb for 1 argument (c).

3.2 ARIPOTER-hcat: ARgumentatIon apPrOximaTE Reasoning
using the h-Categorizer semantics

Our second approach is to use gradual semantics to assess the acceptability
of UNDEC arguments. A gradual semantics [2] is a function mapping each
argument in an AF to a number representing its strength, classically in the
interval [0, 1]. As explained in [1], the acceptability of an argument is, in this
case, related to its strength in the sense that only “strong” arguments can be
considered accepted. It should also be noted that existing gradual semantics use
evaluation criteria that differ from extension-based semantics, such as the quality
or quantity of direct attackers, but does not necessarily satisfy the condition of
conflict-freeness. However, although these two families of semantics are different,
certain aspects of gradual semantics can be used to try to assess whether an
argument seems acceptable or not in the context of extension-based semantics.
For example, a characteristic shared by most gradual semantics is that the less
an argument is attacked, the stronger it is. This suggests that an argument
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with a high score is more likely to belong to an extension. The aim of our
approach is therefore to accept UNDEC arguments whose score is greater than
a given threshold w.r.t. some gradual semantics. Although our approach can be
generalised to all gradual semantics, we focus here on the h-categorizer semantics
[3]. This gradual semantics uses a function whose purpose is to assign a value
which captures the relative strength of an argument taking into account the
strength of its attackers which takes into account the strength of their attackers,
and so on. Formally, given an AF F = ⟨A,R⟩ and a ∈ A, h-cat(F , a) =

1
1+

∑
b∈a− h-cat(F,b) .

To use this gradual semantics for deciding the acceptability an UNDEC
argument a, we consider that a is accepted if h-cat(F , a) ≥ τ with τ ∈ [0, 1].

Definition 4. Given F = ⟨A,R⟩ an AF, a ∈ A an argument and τ ∈ [0, 1], the
function Acch-cat is defined by:

Acch-cat(F , a, τ) =

Y ES if a ∈ IN(F)
or (a ∈ UNDEC(F) and h-cat(F , a) ≥ τ),

NO otherwise.

Example 4. Again, continuing the previous example, we see that h-cat(F , a) =
h-cat(F , b) ≈ 0.62, h-cat(F , c) ≈ 0.45 and h-cat(F , d) ≈ 0.69. So, setting
τ = 0.5 allows Acch-cat to give perfect answers to DC-σ queries for the AF F ,
and τ = 0.65 leads to perfect answers to DS-σ queries for F , for σ ∈ {stb, pr}.

3.3 Relationships between Approaches

Both our new approaches generalize the Harper++ approach, i.e. by choosing
a good value for τ or k, our approach recovers the result of Harper++ for the
UNDEC arguments (it is obvious that arguments in IN(F) or OUT(F) are
treated equally by Harper++ and our new approaches).

Proposition 1. For any AF F = ⟨A,R⟩ and a ∈ A, the following hold:

– Acc++(F , a,DC) = AccOut/In(F , a, 0);
– Acc++(F , a,DC) = Acch-cat(F , a, 0).

Proof. Recall that Harper++ considers as accepted any UNDEC argument
in the case of credulous acceptability, i.e. Acc++(F , a,DC) = Y ES if a ∈
UNDEC(F). Obviously, with k = 0, the inequality |a+| ≥ k × |a−| is sat-
isfied for any argument, which means that AccOut/In(F , a, 0) = Y ES when
a ∈ UNDEC(F). Similarly, any argument has a h-categorizer value greater
than 0, so Acch-cat(F , a, 0) = Y ES when a ∈ UNDEC(F). □

Proposition 2. For any AF F = ⟨A,R⟩ and a ∈ A, the following hold:

– Acc++(F , a,DS) = AccOut/In(F , a, |A|+ 1);
– Acc++(F , a,DS) = Acch-cat(F , a, 1).
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Proof. We know that Acc++(F , a,DS) = NO when a ∈ UNDEC(F).
For the approach based on the out-degree and in-degree, observe that for

a ∈ UNDEC(F), |a+| cannot be greater than the number of arguments in the
AF, and |a−| cannot be equal to 0 (because otherwise, a would belong to IN(F)).
So, by setting k = |A|+1 the inequality |a+| ≥ k× |a−| can never be true. This
means that for any argument a ∈ UNDEC(F), AccOut/In(F , a, |A|+ 1) = NO.

Consider now Acch-cat, i.e. the approach based on h-categorizer. We know
that only unattacked arguments have a value of h-categorizer equal to 1, and
these arguments are in IN(F). So for any a ∈ UNDEC(F), h-cat(a) < 1. This
means that for any such argument, Acch-cat(F , a, 1) = NO. □

4 Experimental Settings

We focus on four decision problems: DC-stb, DS-stb, DC-pr and DS-pr. Recall
that DC-σ is NP-complete for σ ∈ {stb, pr}, and DS-σ is coNP-complete for
σ = stb and ΠP

2 -complete for σ = pr [11]. Among Dung’s classical semantics,
we ignore the grounded semantics since it is polynomially computable and at the
base of all the approaches described here. We also ignore the complete semantics
because DS-co is equivalent to DS-gr, and DC-co is equivalent to DC-pr.

4.1 Benchmarks

Random graphs We consider an experimental setting representing three dif-
ferent models used during the ICCMA competition [13] as a way to generate
random argumentation graphs: the Erdös-Rényi model (ER) which generates
graphs by randomly selecting attacks between arguments; the Barabási-Albert
model (BA) which provides networks, called scale-free networks, with a structure
in which some nodes have a huge number of links, but in which nearly all nodes
are connected to only a few other nodes; and the Watts-Strogatz model (WS)
which produces graphs which have small-world network properties, such as high
clustering and short average path lengths.
The generation of these three types of AFs was done by the AFBenchGen2
generator [6]. We generated a total of 9460 AFs almost evenly distributed be-
tween the three models (3000 AFs for the WS model and 3230 AFs for the
ER and BA model)1. For each model, the number of arguments varies among
Arg = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The parameters used to generate
graphs are as follows: for ER, 19 instances for each (nbArg, pAtt) in Arg ×
{0.15, 0.2, . . . , 0.95}; for BA, 17 instances for each (nbArg, pCyc) in
Arg× {0, 0.05, 0.1, . . . , 0.9}; for WS, 5 instances for each (nbArg, pCyc, β, K) in
Arg × {0.25, 0.5, 0.75} × {0, 0.25, 0.5, 0.75, 1} × {k ∈ 2N s.t. 2 ≤ k ≤ nbArg−1}.
We refer the reader to [6] for the meaning of the parameters. For each instance,
an argument is randomly chosen to serve as the query for DC and DS problems.

1 The set of instances can be found at the following address:
https://cloud.parisdescartes.fr/index.php/s/diZAz5sTzWbNCMt
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In the following, we collectively refer to the group of AFs generated using the
Erdös-Rényi model (resp. Barabási-Albert model and Watts-Strogatz model) as
rER (resp. rBA and rWS). Finally, the notation randomAF refers to the union of
these three groups.

Instances from ICCMA 2019/2021 We have also selected the “2019” set of
instances from the ICCMA 2021 competition [17]. These instances were sampled
from the ICCMA 2019 competition benchmarks in order to provide challenging
instances, but not too challenging (in order to avoid a high number of timeouts,
which does not help to rank solvers). For our purpose, these instances are also
relevant since we want to compare the approximate methods with an exact
method, which could often reach the timeout if the instances are too hard. This
set of instances is made of 107 AFs, distributed as follows:

– A1 (2), A2 (10), A3 (13), A4 (4), B1 (1), B2 (10), B3 (16), B4 (1), C1 (5),
C2 (6), C3 (1), T2 (8), T3 (13), T4 (5) (instances from ICCMA 2017 [13]),

– S (1), M (7) (instances from [23]),
– N (4) (instances from [14]).

The number of arguments in these AFs varies between 102 and 8034 arguments.
In the following, we collectively refer to this group of AFs as iccma19.

5 Empirical Analysis

A Python implementation of the SAT-based encoding from [16], called Pygarg,
was used to obtain the correct answers, allowing us to evaluate the solvers accu-
racy, i.e. the ratio of instances that are correctly solved. We can also compare
the runtime of approximate algorithms with the runtime of exact algorithms.

5.1 Solving Time

Table 1 contains the running time of the exact solver Pygarg, our two approx-
imate solvers (ARIPOTER-hcat2 and ARIPOTER-degrees3) and the approxi-
mate solver Harper++ on iccma19. Note that we have chosen to display only
the time taken by the solvers to solve the problem, without including the import
time. Indeed, the import time is the same for both exact and approximate ap-
proaches, and takes an average of 0.1 seconds for these instances. As expected, we
observe that the running time of approximate reasoning is effectively much lower
(always under one second) with respect to exact solvers. This clearly justifies the
interest of using approximate approaches in practice whenever possible.

5.2 Accuracy

Now we provide the accuracy of our solvers on the benchmarks from Section 4.1.

2 https://github.com/jeris90/approximate_hcat
3 https://github.com/jeris90/approximate_inout
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solver DC-pr DC-stb DS-pr DS-stb

Pygarg 57.0923 24.0770 48.6878 39.8206
ARIPOTER-hcat 0.0148 0.0169 0.0201 0.0168

ARIPOTER-degrees 0.0019 0.0020 0.0019 0.0019
Harper++ 0.0019 0.0020 0.0019 0.0019

Table 1. Average running time (in seconds, rounded to 10−4) of Pygarg, ARIPOTER-
hcat, ARIPOTER-degrees and Harper++ on iccma19. This time includes only the
solving of the problem (and not the import of the graph).

Instances randomAF - Table 2 shows the accuracy of the different approximate
solvers on random instances. Columns represent the decision problems (DC-pr,
DC-stb, DS-pr, DS-stb), and rows correspond to solvers for each family of
instances (rER, rBA, rWS) and for the full set of instances randomAF. For each
family of instances, the highest accuracy for each problem is bold-faced.
Let us start by focusing on the last line (randomAF). We observe that ARIPOTER-
hcat reaches the best accuracy for the credulous acceptability problems with
around 93% correct answers. It is followed by ARIPOTER-degrees (≃ 83%) and
finally Harper++ (≃ 42%). For DS-pr, ARIPOTER-degrees slightly dominates
the other approaches. Note however that the three solvers have an excellent
accuracy with more than 97% correct answers. Finally, the accuracy for DS-
stb is globally lower than the other problems. Indeed, it is better solved by
ARIPOTER-degrees with around 78% correct answers. This can be explained
by the particularity of the stable semantics whose set of extensions may be
empty, which implies that all arguments are skeptically accepted.

We also study the results specifically for each family of instances. Indeed,
unlike Harper++, our approaches are parameterised and the optimal choice of
parameters may depend on both the topology of the graphs and the problem to
be solved. For example, ARIPOTER-degrees and ARIPOTER-hcat obtain the
best results (more than 95% correct answers) for all problems except DS-stb
on rER and rWS when the parameter values are high. Conversely, the accuracy is
highest when the parameter values are minimum for the DS-stb problem. For
these two families of instances, we can also see that Harper++ has a very low
accuracy on all problems except DS-pr. Finally, for the instances from rBA, it
is interesting to note that the results returned by the three approximate solvers
match perfectly with the exact solvers. This is explained first by the fact that
more instances are directly “solved” by the grounded semantics (1925 against
245 for rER and 161 for rWS). The second reason comes from the way these
AFs are constructed because it allows each argument to appear in at least one
extension.

Instances iccma19 - We have also computed the accuracy of our solvers on
the instances iccma19. As we do not know the exact structure of the AFs, we
have chosen to use the values of k and τ that obtained the best accuracy for
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Instances Solver DC-pr DC-stb DS-pr DS-stb

rER

Harper++ 0.125387 0.121053 0.960991 0.220433
ARIPOTER-degrees 0.951084 (8) 0.951084 (10) 0.961610 (8) 0.841796 (0)
ARIPOTER-hcat 0.950464 (1) 0.950464 (1) 0.960991 (1) 0.841796 (0.1)

rBA

Harper++ 1.0 1.0 1.0 1.0
ARIPOTER-degrees 1.0 (0) 1.0 (0) 1.0 (|A|) 1.0 (|A|)
ARIPOTER-hcat 1.0 (0) 1.0 (0) 1.0 (1) 1.0 (1)

rWS

Harper++ 0.100333 0.098333 0.977333 0.18
ARIPOTER-degrees 0.953333 (|A|) 0.953333 (|A|) 0.977333 (|A|) 0.863 (0)
ARIPOTER-hcat 0.953333 (1) 0.953333 (1) 0.977333 (1) 0.863 (0.1)

randomAF

Harper++ 0.416068 0.413953 0.979443 0.473784
ARIPOTER-degrees 0.830550 (8) 0.830550 (10) 0.979655 (8) 0.780233 (0.1)
ARIPOTER-hcat 0.932135 (0.5) 0.930444 (0.5) 0.979443 (1) 0.764799 (0.1)

Table 2. Accuracy comparison of the three approximate solvers for rER, rBA, rWS and
randomAF, with the values of k (for ARIPOTER-degrees) or τ (for ARIPOTER-hcat)
between brackets.

Instances Solver DC-pr DC-stb DS-pr DS-stb

iccma19

Harper++ 0.754902 0.757009 0.971154 0.826923
ARIPOTER-degrees 0.794118 (|A|) 0.813084 (|A|) 0.971154 (|A|) 0.548077 (0.1)
ARIPOTER-hcat 0.794118 (0.5) 0.813084 (0.5) 0.971154 (1) 0.538462 (0.1)

Table 3. Accuracy comparison of the three approximate solvers for iccma19, with the
values of k (for ARIPOTER-degrees) or τ (for ARIPOTER-hcat) between brackets.

the instances randomAF (see Table 2). Thus, we have k = |A| and τ = 0.5 for
DC-pr; k = |A| and τ = 0.5 for DC-stb; k = |A| and τ = 1 for DS-pr; and
k = τ = 0.1 for DS-stb. The results can be found in Table 3.
The first observation is that, once again, ARIPOTER-degrees and ARIPOTER-
hcat return results that are very similar for the four problems studied. In com-
parison with previous results, we can see that the accuracy is slightly lower for
the DC problems, but is still around 80% of correct answers. However, this de-
crease is more significant for the DS-stb problem where our solvers obtain an
accuracy which is around 0.54. Indeed, contrary to the random instances, most
of which have no stable extensions (i.e., all arguments are skeptically accepted),
here 94 instances over 107 have at least one extension, so determining skeptical
acceptability is not trivial. Finally, it is interesting to note that for the DS-pr
problem, the accuracy remains extremely high (around 0.97) and is therefore a
serious alternative to the exact approach.

6 Related Work

Besides Harper++, the only approaches in the literature on approximate reason-
ing in abstract argumentation are based on machine learning approaches. Among
them, the solver AFGCN [18] participated to ICCMA 2021. This solver is based
on Graph Convolutional Networks. While AFGCN globally performed better
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than Harper++ regarding the accuracy of the result, the computation time was
much higher (and it is reasonable to assume that our approaches would also out-
perform AFGCN regarding runtime). The other approaches [15, 19, 8] also use
graph neural networks to predict the acceptability of arguments. While these
approaches can achieve really high accuracies, they require learning data and
time for performing this learning task, which is not the case with Harper++
and our new approaches. An empirical comparison of these techniques with ours
is an interesting idea for future work. Finally, in structured argumentation, an
approach has been proposed to solve problems in ASPIC+ by using only a sub-
set of the full set of arguments, thus diminishing drastically the runtime while
attaining a high accuracy [22]. A direct comparison of our approach with this
method is not relevant, since the framework is not the same. However, adapting
the idea of argument sampling to abstract argumentation and comparing this
method with ours is also an interesting track for future research.

7 Conclusion

We have studied new approaches for approximate reasoning in abstract argumen-
tation, solving credulous and skeptical acceptability problems. We have shown
that our two solvers (ARIPOTER-degrees and ARIPOTER-hcat) are competi-
tive, in terms of accuracy, with respect to the state of the art approach which
was implemented in the solver Harper++ at the last ICCMA competition. They
also clearly outperform a standard SAT-based approach for solving these prob-
lems.
We are planning to extend this work in three directions. First, we would like to
continue studying how to select the parameters that give the best accuracy in re-
lation to the type of AF, the semantics, and the inference task. Second, it would
be interesting to extend our approaches for reasoning with other extension-based
semantics (e.g. ideal, stage, semi-stable, etc), using other gradual semantics in-
stead of h-categorizer (or an extension of it [4]), and the comparison with the
approaches using machine learning. Third, we would like to determine the cases
(e.g. types of graph and their characteristics such as the number of nodes, the
density of the attack relation, etc.) where the use of an approximate solver would
become preferable to the use of an exact solver.
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