IRSN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Enhancing nuclear safety

Radiological characterization of in-pile irradiated graphite Metrological problem, mathematical method and physical modelisation

Dr. Grégory NICAISE © IRSN

INTERNATIONAL WORKSHOP

Treatment processes for the sustainable management of radioactive waste including innovative techniques

> 4-6 JULY 2016 IAEA, Vienne (Austria)

UNGG reactor and graphite waste in France

A metrological problem

The mathematical reverse method proposed by EDF

Modelisations performed at IRSN

Perspectives

UNGG reactor and graphite waste in France

Natural Uranium Graphite-moderated, Gas-cooled (air or CO_2) 20 years of operation

Graphite stack of the moderator

17000 t of irradiated graphite radwaste (6 reactors EDF 1963-1994)

Fuel element bared by graphite sleeves

A disposal design is under study in France, and needs radiochemical characterisations

ANDRA

Radiological characterization of in-pile irradiated graphite- Metrological problem, mathematical method and physical modelisation - ETSON INTERNATIONAL WORKSHOP - 04/07/2016 - AIEA Vienne © IRSN

3/21

A metrological problem

- Activity measurements are highly dispersed for nearly every RN by 2-4 orders of magnitude
- Uncertainties do not correlate to:
- any in-pile physical parameter (neutron flux, temperature, gas flow...) (<1 order of magnitude)
- nor the radiological measurement uncertainties (<1order of magnitude)

Illustration on ³⁶Cl

Disposal design?

Radiological characterization of in-pile irradiated graphite- Metrological problem, mathematical method and physical modelisation - ETSON INTERNATIONAL WORKSHOP - 04/07/2016 - AIEA Vienne © IRSN

IRSN

5/21

The reason why

High purity (impurities are below 1 ppm) of graphite implies random distribution of impurities at small scale, with some *nugget effect*

Whatever dispersed, measurements reflect local reality, no one as to be eliminated

Radiological characterization of in-pile irradiated graphite- Metrological problem, mathematical method and physical modelisation - ETSON INTERNATIONAL WORKSHOP - 04/07/2016 - AIEA Vienne © IRSN

IRSL

Combination of mathematical methods and physical studies

2014: A mathematical method has been proposed by EDF to handle uncertainties and help the disposal design

2015: It has been analysed by IRSN

Conclusion: the method is convinient in principles but it needs deeper studies to asses that the outcoming results are physically consistent.

2016: IRSN has started a research task on graphite irradiation modelisation

The reverse mathematical method

First step: indentification/adjustement (reverse and iterative)

The iteration process C/M~1 is performed simultanously on ~30 measurements

Radiological characterization of in-pile irradiated graphite- Metrological problem, mathematical method and physical modelisation - ETSON INTERNATIONAL WORKSHOP - 04/07/2016 - AIEA Vienne © IRSN

RSN 8/21

The reverse mathematical method

Second step: reactor scale activation calculation (direct)

From step 1:

<Optimised impurity vector> <Optimised activation matrix>

Reactor scale final

Neutronic distribution

Optimised radiological inventory

IRSN analysis

1- OPTIMISED IMPURITIES CONTENT

³⁵Cl (precursor of ³⁶Cl) is evaluated to **81 mg/t on Bugey 1 reactor**

³⁵Cl (precursor of ³⁶Cl) is evaluated to 83 mg/t on Saint Laurent A2 reactor

This similarity is promising. Results to be benchmark (IRSN work with VESTA code)

2- OPTIMISED ACTIVATION MATRIX

These schemes are obtained at reactor scale at the end of ajustement process. They need to be compared from a reactor to another (further work) to assess that the method is not reactor-dependent.

IRSN analysis

Example of optimised activation matrix

Radiological characterization of in-pile irradiated graphite- Metrological problem, mathematical method and physical modelisation - ETSON INTERNATIONAL WORKSHOP - 04/07/2016 - AIEA Vienne © IRSN

11/21

IRSN analysis

3- CALCULATED ACTIVITY CONCENTRATION PROFILE

IRSN has found out a correlation between the shape of neutron flux and the profile of calculated activity concentration taken into account the neutron capture cross section of the precursors:

- σ_{capt} of the ¹³C (n, γ) ¹⁴C reaction is 10⁻³ barn
- σ_{capt} of the ³⁵Cl (n, γ) ³⁶Cl reaction is 43 barns
- σ_{capt} of the ⁶Li (n, α) ³H reaction is 940 barns

A very dependant to the neutron flux profile of ^{14}C activity concentration distribution, and a flat profile of ^{3}H (saturation) are very physical results regarding to σ_{capt}

IRSN research

Use of VESTA code (MCNPX module + depletion module) to perform analytical studies on activation schemes

Fuel	²³⁸ U 99,3% ²³⁵ U 0,7%
Cooling fluid	CO ₂
Graphite	¹² C 98,88% ¹³ C 1,12%
Clad	Alliage Mg-Zr Mg 99,5% Zr 0,5%

37 cm

Radiological characterization of in-pile irradiated graphite- Metrological problem, mathematical method and physical modelisation - ETSON INTERNATIONAL WORKSHOP - 04/07/2016 - AIEA Vienne © IRSN

IRSN research

Calculated neutron energy spectrum (MCNP X module with 43 000 groups) for UNGG reactor

Radiological characterization of in-pile irradiated graphite- Metrological problem, mathematical method and physical modelisation - ETSON INTERNATIONAL WORKSHOP - 04/07/2016 - AIEA Vienne © IRSN

Test-1: ¹²C+¹³C

« Cooling »=pure depletion, no neutronic flux

• First test: absolutely pure natural carbon irradiation (10 y) and cooling (10 000 y)

• 1m³ (1685kg), φ=10¹³n/cm²/s

Observations:

¹⁴C is not the main product of ¹²C+¹³C activation, but stables ⁴He and ⁹Be.

¹⁴C and ¹⁰Be are the main radioactive products through activation process

Activation schemes are complex

Radiological characterization of in-pile irradiated graphite- Metrological problem, mathematical method and physical modelisation - ETSON INTERNATIONAL WORKSHOP - 04/07/2016 - AIEA Vienne © IRSN

15/21

Test-1: ¹²C+¹³C

• Cooling phase

Observations:

At long term ¹⁴C and ¹⁰Be are the only radioactive RN coming from ¹²C+¹³C activation

Chemical aspects (stable isotopes): ⁹Be is the main chemically active product overall. However, quantity created is low: 0,1 ppm

Test-2: ¹²C+¹³C + ε ²³⁵U

- Second test: activation / fission
- 1m³(1685 kg), < ϕ >~10¹⁴n/cm²/s, realistic in-pile irradiation sequences, 10⁵y cooling
- pure nat. carbon+ 7,2 ppb ²³⁵U (1 ppm nat. U, chemical detection limit hypothesis)

System initial state

Test-2: ¹²C+¹³C + ε ²³⁵U

• Second test: activation / fission

Observations:

High complexity: $3RN \rightarrow 1618$ RN, but decorrelation is OK

Max concentration of elements produced by fissions is ~1ppb in graphite

Test-2: ¹²C+¹³C + ε ²³⁵U

Second test: activation / fission

Observations:

¹⁰Be remains the main radioactive component, ⁹Be the main component (2,5 ppm)

Long term radiological inventory might not only be a matter of pure activation

Radiological characterization of in-pile irradiated graphite- Metrological problem, mathematical method and physical modelisation - ETSON INTERNATIONAL WORKSHOP - 04/07/2016 - AIEA Vienne © IRSN

Test-3: ${}^{12}C+{}^{13}C+1ppm$ (${}^{6}Li+{}^{7}Li$) + ϵ ${}^{235}U$

Third test: kinetics of ⁶Li (n, α) ³H reaction and saturation

Observations:

Saturation level of tritium is reached at 3 years of operation, a flat profile obtained par EDF clearly explained

Conclusions and further work

Preliminary conclusions

- ¹⁰Be reveals to be the main holder of activity in irradiated high purity graphite at long term (100 000 y)
- ⁹Be reveals to be the main stable element from by activation of carbon (2,5 ppm for 20 y of in pile irradiation)
- Other elements that can be created by fission are ~1ppb for 7 ppb of fissile impurity

Further work

- Adding impurities step by step: Cl, Co, Ni, Sm, Eu...
- Building a realistic activation matrix and comparing to the optimised EDF one

