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▌UNGG reactor and graphite waste in France 

▌A metrological problem  

▌The mathematical reverse method proposed by EDF 

▌Modelisations performed at IRSN 

▌Perspectives 
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UNGG reactor and graphite waste in France 
Natural Uranium Graphite-moderated, Gas-cooled  (air or CO2 ) 

20 years of operation 
 

17000 t of irradiated graphite radwaste (6 reactors EDF 1963-1994) 

 

A disposal design is under study in France, and needs radiochemical characterisations  

Fuel element bared by graphite sleeves 

 
 

Graphite stack of the moderator 

 

Credits @ 

ANDRA 
Credits @ 

ANDRA 
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A metrological problem  

▌Activity measurements are highly dispersed for nearly every RN by 2-4 

orders of magnitude 

▌  Uncertainties do not correlate to: 

• any in-pile physical parameter (neutron flux, temperature, gas flow…) 

(<1 order of magnitude)  

• nor  the radiological measurement uncertainties (<1order of magnitude) 
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Illustration on 36Cl 

Surface disposal 

Deep disposal 

Disposal design?  

Near surface disposal 
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The reason why 

activation 

1 gram 1 gram 
Random distribution 

« Nugget »  effect 

Lab sampling for 

radiological 

measurement  

High purity  (impurities are below 1 ppm) of graphite implies random 

distribution of impurities at small scale, with some nugget effect 

 

Whatever dispersed, measurements reflect local reality, no one as to be 

eliminated 
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Combination of mathematical 

methods and physical studies 

2014: A mathematical method has been proposed by EDF to handle 

uncertainties and help the disposal design 

2015: It has been analysed by IRSN 
 

Conclusion: the method is convinient in principles but it needs deeper 

studies to asses that the outcoming results are physically consistent.  

2016: IRSN has started a research task on graphite irradiation modelisation 
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The reverse mathematical method 

C/M 
minimisation 

Impurity 
concentration  

Activation 

Calculation 

 RN1 

… 

… 

RNi 

… 

… 

RN144 

144 RN 

 X1 

… 

Xk 

… 

X52 

52 impurities 

Activation matrix 

Identifies and quantifies  

impurity-radionuclide 

relation 

 A1,1 … … A1,k … … A1,52 

…             …         … 

…             …         … 

Ai,1 … … Ai,k … … Ai,52 

…            …          … 

…            …          … 

A144,1 … A144,k   … A144,52 

x 
= 

The iteration process C/M~1 is performed simultanously on ~30 measurements  

Measure=1, ….30 

First step: indentification/adjustement (reverse and iterative)  
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The reverse mathematical method 

From step 1:  

 

<Optimised impurity vector> 

<Optimised activation matrix> 

Second step: reactor scale activation calculation (direct)  

Reactor scale final 

activation 

calculation 

Neutronic distribution 

Optimised 

radiological 

inventory 
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IRSN analysis 
 

 

1-  OPTIMISED IMPURITIES CONTENT 

35Cl (precursor of  36Cl) is evaluated to 81 mg/t on Bugey 1 reactor 

35Cl (precursor of  36Cl) is evaluated to 83 mg/t on Saint Laurent A2 reactor 

This similarity is promising. Results to be benchmark (IRSN work with VESTA code) 

  

 

2- OPTIMISED ACTIVATION MATRIX  

 

 

 

These schemes are obtained at reactor scale at the end of ajustement process. They need to be 

compared from a reactor to another (further work) to assess that the method is not reactor-dependant.  

 

 

 

14C 

27 % 

13C (n, g) 

14N (n, p) 

73 % 

36Cl 

35Cl (n, g) 

39K (n, a) 

96 %(direct) 

2 % 

2 % (indirect) 

35Cl (n, g) 34S (n, b-) 
t1/2= 87 d 

3H 6Li (n, a) 
~100 % 
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IRSN analysis 
Example of optimised activation matrix 
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IRSN analysis 
3- CALCULATED ACTIVITY CONCENTRATION PROFILE  

 

Measurements  14C 

Measurements  36Cl 

Measurements  
3H 

IRSN has found out a correlation between the shape of 

neutron flux and the profile of calculated activity 

concentration taken into account the neutron capture 

cross section of the precursors: 

 

- scapt
  of the 13C (n,g) 14C reaction is 10-3 barn 

- scapt
  of the 35Cl (n,g) 36Cl reaction is 43 barns 

- scapt
  of the 6Li (n, a) 3H reaction is 940 barns 

 

A very dependant to the neutron flux profile of 14C 

activity concentration distribution, and a flat profile of 3H 

(saturation) are very physical results regarding to scapt 

Vertical coordinate (m) 
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IRSN research 

Use of VESTA code (MCNPX module + depletion module) to 

perform analytical studies on activation schemes 

Fuel 
238U 99,3% 
235U 0,7% 

Cooling fluid 
CO2 

 

Graphite 

12C 98,88% 
13C 1,12% 

 

Clad 

Alliage Mg-Zr 

Mg 99,5% 

Zr 0,5% 

Graphite 

Fuel 

Clad 

Gap 
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IRSN research 

Calculated neutron energy 

spectrum (MCNP X module with 

43 000 groups) for UNGG reactor  
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Test-1: 12C+13C 

• First test: absolutely pure natural carbon irradiation (10 y) and cooling (10 000 y) 

• 1m3 (1685kg), f=1013n/cm²/s  

Observations: 

14C is not the main product of 12C+13C activation, but stables 4He and 9Be.  

14C and 10Be are the main radioactive products through activation process 

Activation schemes are complex 
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Test-1: 12C+13C 

 • Cooling phase 

Cooled 10 000 y 
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Observations: 

At long term 14C and 10Be are the only radioactive RN coming from 12C+13C activation  

Chemical aspects (stable isotopes): 9Be is the main chemically active product overall. 

However, quantity created is low: 0,1 ppm  

radioactive stable 

14C 
9Be 10Be 

14C 
9Be 10Be 
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Test-2: 12C+13C + e 235U 

 • Second test: activation / fission 

• 1m3(1685 kg), <f>~1014n/cm²/s, realistic in-pile irradiation sequences, 105y cooling  

• pure nat. carbon+ 7,2 ppb 235U (1 ppm nat. U, chemical detection limit hypothesis) 
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Test-2: 12C+13C + e 235U 

 • Second test: activation / fission 

12C+13C 

activation 
235U + other fissile (formed by captured) fission 

235U neutron 

capture products  

a filiation chains 

from   capture 

products  

Observations: 

High complexity: 3RN1618 RN, but decorrelation is OK 

Max concentration of elements produced by fissions is ~1ppb in graphite 
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Test-2: 12C+13C + e 235U 

 • Second test: activation / fission 

Observations: 

10Be remains the main radioactive component, 9Be the main component (2,5 ppm)   

Long term radiological inventory might not only be a matter of pure activation 
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Test-3: 12C+13C+ 1ppm (6Li+7Li) + e 235U 

 • Third test: kinetics of 6Li (n, a) 3H reaction and saturation  

Observations: 

Saturation level of tritium is reached at 3 years of operation, a flat profile obtained par EDF clearly 

explained 
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Conclusions and further work 
Preliminary conclusions 

 

• 10Be reveals to be the main holder of activity in irradiated high 

purity graphite at long term (100 000 y) 

 

• 9Be reveals to be the main stable element from by activation of 

carbon (2,5 ppm for 20 y of in pile irradiation) 

 

• Other elements that can be created by fission are ~1ppb for 7 ppb 

of fissile impurity 

 

Further work 

 

• Adding impurities step by step: Cl, Co, Ni, Sm, Eu… 

 

• Building a realistic activation matrix and comparing to the 

optimised EDF one 
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