

Supporting Information

Identification of Favorable Silica Surface Sites for Single-Molecule Magnets

Moritz Bernhardt, Lukas Lätsch, Boris Le Guennic,* and Christophe Copéret*© 2023 The Authors. Helvetica Chimica Acta published by Wiley-VHCA AG. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Madal	Averaged bond distance	Averaged bond distance
Model	anionic ligands [Å]	neutral ligands [Å]
1	2.066	—
2	2.063	_
3	2.142	_
4	2.142	2.153
5	2.142	2.142
6	2.108	2.523
7	2.142	2.177
8	2.122	2.151
9	2.122	2.224
10	2.120	2.688

Table S1: Average bond distances for the anionic and neutral ligand for all ten investigated model structures.

Table S2: Calculated shielding and the resulting chemical shift for all ten investigated model structures. The experimental spectrum shows a broad signal spanning the range from around -50 to 240 ppm representing a distribution of sites without resolving different species.^[1]

Model	Shielding	Chemical shift [ppm]
1	2715	140
2	2764	104
3	2806	73
4	2711	143
5	2634	198
6	2702	149
7	2705	147
8	2715	140
9	2664	176
10	2708	144

Figure S1: Computed magnetization blocking barriers for **1**. The four lowest Kramers doublets (thick black lines) are represented according to their magnetic moment along the main magnetic axis. The blue lines represent vertical excitations, the green dashed lines correspond to possible Orbach relaxation processes while the red lines correspond to QTM/TA-QTM processes. The values correspond to the mean value of the corresponding transversal matrix element of the transition magnetic moment.

Figure S2: Representation of the total electrostatic potential (expressed in $e^{-}\cdot bohr^{-1}$) at 2.5 Å around the Dy(III) ion with g_z direction in blue line for **1**. The lowest and highest values are in blue and red, respectively.

	wave function composition*	$99.2\pm 1/2>$	$99.2 \pm 3/2>$	$99.8 \pm 5/2>$	$99.8 \pm 7/2>$	$100.0 \pm 9/2>$	$100.0 \pm 11/2>$	$100.0 \pm 13/2>$	$100.0 \pm 15/2>$
	$g_{ m z}$	1.335	4.076	6.834	9.559	12.243	14.799	17.271	19.842
	g_{y}	8.733	2.160	1.071	0.779	0.013	0.002	0.002	0.000
	g_{x}	12.406	1.515	0.487	0.761	0.012	0.001	0.002	0.000
-	$E~(\mathrm{cm}^{-1})$	0	63.3	193.5	403.6	700.4	1075.5	1458.8	1693.3
	KD		2	3	4	ഹ	9	2	∞

Table S3: Computed energy levels (the ground state is set at zero), composition of the g-tensor and contributions to the wave function for each M_J state of the ground-state multiplet for the model 1. KD stands for Kramers doublet.

* Contributions < 10% are omitted.

Figure S3: Computed magnetization blocking barriers for **2**. The four lowest Kramers doublets (thick black lines) are represented according to their magnetic moment along the main magnetic axis. The blue lines represent vertical excitations, the green dashed lines correspond to possible Orbach relaxation processes while the red lines correspond to QTM/TA-QTM processes. The values correspond to the mean value of the corresponding transversal matrix element of the transition magnetic moment.

Figure S4: Representation of the total electrostatic potential (expressed in $e^{-}\cdot bohr^{-1}$) at 2.5 Å around the Dy(III) ion with g_z direction in blue line for **2**. The lowest and highest values are in blue and red, respectively.

HOUGH Z. IND SUMMUS TOF INT MILLER ADURATION	wave function composition [*]	$84.9 \pm 15/2 > + 10.7 \pm 11/2 >$	$33.2 \pm 13/2> + 23.4 \pm 9/2> + 16.5 \pm 5/2> + 11.7 \pm 1/2>$	$28.5 \pm 13/2> + 21.8 \pm 7/2> + 17.3 \pm 3/2> + 13.4 \pm 11/2>$	$27.4 \pm 11/2> + 22.7 \pm 13/2> + 19.6 \pm 5/2> + 13.6 \pm 1/2>$	$27.8 \pm 11/2> + 23.7 \pm 9/2> + 20.9 \pm 3/2> + 11.0 \pm 13/2>$	$28.7 \pm 9/2> + 25.6 \pm 7/2> + 18.8 \pm 1/2> + 14.8 \pm 11/2>$	$31.7 \pm 5/2> + 26.8 \pm 7/2> + 19.6 \pm 3/2> + 13.6 \pm 9/2>$
	$g_{ m z}$	18.642	2.841	6.589	9.473	12.149	14.662	17.187
nondinir	g_{y}	0.908	8.288	0.481	0.253	0.059	0.010	0.003
DUDUC TIL	g_{x}	0.314	9.444	0.005	0.175	0.039	0.006	0.003
TIC BIOMIN-	$E~({ m cm}^{-1})$	0	118.9	222.1	397.8	640.7	940.2	1249.4
יינים הדור	KD		2	3	4	ഹ	9	2
one (TA								

Table S4: Computed energy levels (the ground state is set at zero), composition of the g-tensor and contributions to the wave function for each M_J state of the ground-state multiplet for the model 2. KD stands for Kramers doublet.

* Contributions < 10% are omitted.

 $0.000 \quad 0.000 \quad 19.756$

1249.41507.9

 ∞

 $39.9 \pm |1/2> + 30.7 \pm |3/2> + 17.9 \pm |5/2>$

Figure S5: Computed magnetization blocking barriers for **3**. The four lowest Kramers doublets (thick black lines) are represented according to their magnetic moment along the main magnetic axis. The blue lines represent vertical excitations, the green dashed lines correspond to possible Orbach relaxation processes while the red lines correspond to QTM/TA-QTM processes. The values correspond to the mean value of the corresponding transversal matrix element of the transition magnetic moment.

Figure S6: Representation of the total electrostatic potential (expressed in $e^{-}\cdot bohr^{-1}$) at 2.5 Å around the Dy(III) ion with g_z direction in blue line for **3**. The lowest and highest values are in blue and red, respectively.

adal 9 IVD at and a faw Kuamana damblat	DAGE 3. IND STATUS FOR INTALLETS HOUDED.	wave function composition*	$99.9 \pm 15/2>$	$98.8 \pm 13/2>$	$88.4 \pm 11/2>$	$31.6 \pm 1/2>+ 24.2 \pm 5/2>+ 20.3 \pm 9/2>+ 16.5 \pm 3/2>$	$47.9 \pm 9/2> + 23.8 \pm 3/2> + 13.4 \pm 7/2>$	$38.3 \pm 7/2> + 21.8 \pm 9/2> + 20.8 \pm 1/2> + 12.5 \pm 5/2>$	$37.5 \pm 5/2\rangle + 29.6 \pm 7/2\rangle + 21.4 \pm 3/2\rangle$	$38.5 \pm 1/2\rangle + 32.0 \pm 3/2\rangle + 20.3 \pm 5/2\rangle$
+ Po		g_{z}	19.867	16.858	13.296	13.995	9.711	13.805	16.889	19.712
t: to lot fo	inpred to	g_{y}	0.000	0.000	0.988	4.186	3.610	1.155	0.389	0.025
	nur ane	$g_{\rm x}$	0.000	0.000	0.535	2.949	3.305	0.395	0.247	0.007
o meened of	e-nimorg al	$E (\mathrm{cm}^{-1})$	0	597.6	1118.3	1341.6	1535.4	1808.7	2112.1	2317.4
dt to o		KD	,	2	с,	4	ю	9	4	∞
NT atot	IVLJ SUAU									
-4	CII									

omputed energy levels (the ground state is set at zero), composition of the g-tensor and contributions to the wave function	state of the ground-state multiplet for the model 3 . KD stands for Kramers doublet.	
le S5: Computed e	each M _J state of th	
Tab	for	

Figure S7: Computed magnetization blocking barriers for 4. The four lowest Kramers doublets (thick black lines) are represented according to their magnetic moment along the main magnetic axis. The blue lines represent vertical excitations, the green dashed lines correspond to possible Orbach relaxation processes while the red lines correspond to QTM/TA-QTM processes. The values correspond to the mean value of the corresponding transversal matrix element of the transition magnetic moment.

Figure S8: Representation of the total electrostatic potential (expressed in $e^{-}\cdot bohr^{-1}$) at 2.5 Å around the Dy(III) ion with g_z direction in blue line for 4. The lowest and highest values are in blue and red, respectively.

e wave function		
ro), composition of the g-tensor and contributions to th	KD stands for Kramers doublet.	waw function composition*
te is set at ze	the model 4.	0
nd sta	et for	
grour	ultiple	0
ls (the	tate m	c
y level	s-pun	-1
energ	he gro	E (0
Jomputed	state of t	KD
Table S6: C	for each M _J	

wave function composition [*]	$99.6 \pm 15/2>$	$37.1 \pm 13/2> + 19.2 \pm 1/2> + 15.2 \pm 5/2> + 13.2 \pm 3/2>$	$53.1 \pm 13/2 > + 17.4 \pm 3/2 > + 14.5 \pm 1/2 >$	$43.7 \pm 11/2> + 15.5 \pm 5/2> + 15.4 \pm 7/2>$	$36.4 \pm 11/2> + 29.9 \pm 9/2> + 15.9 \pm 3/2>$	$36.7 \pm 9/2> + 30.0 \pm 7/2> + 14.4 \pm 1/2> + 11.8 \pm 11/2>$	$33.3 \pm 5/2> + 31.2 \pm 7/2> + 17.2 \pm 3/2> + 14.3 \pm 9/2>$	$38.6 \pm 1/2> + 32.1 \pm 3/2> + 20.0 \pm 5/2>$
$g_{ m z}$	19.821	13.243	7.914	4.573	11.551	14.430	16.955	19.625
g_{y}	0.000	6.776	3.953	7.253	1.396	0.555	0.117	0.035
g_{x}	0.000	1.715	3.411	7.595	0.839	0.377	0.079	0.030
$E~(\mathrm{cm}^{-1})$	0	484.2	571.1	847.8	1166.5	1600	2046.8	2277.1
KD		2	3	4	ы	9	2	∞

Figure S9: Computed magnetization blocking barriers for 5. The four lowest Kramers doublets (thick black lines) are represented according to their magnetic moment along the main magnetic axis. The blue lines represent vertical excitations, the green dashed lines correspond to possible Orbach relaxation processes while the red lines correspond to QTM/TA-QTM processes. The values correspond to the mean value of the corresponding transversal matrix element of the transition magnetic moment.

Figure S10: Representation of the total electrostatic potential (expressed in $e^{-}\cdot bohr^{-1}$) at 2.5 Å around the Dy(III) ion with g_z direction in blue line for 5. The lowest and highest values are in blue and red, respectively.

									\wedge
IND STATICS TOT IN ATTICES CONTRACT.	wave function composition [*]	$94.4 \pm 1/2>$	$94.8 \pm 3/2>$	$89.6 \pm 5/2>$	$84.4 \pm 7/2> + 10.2 \pm 13/2>$	$79.8 \pm 9/2> + 10.9 \pm 15/2>$	$77.4 \pm 11/2>+ 11.8 \pm 13/2>$	$63.7 \pm 13/2\rangle + 18.6 \pm 15/2\rangle$	$66.5 \pm 15/2\rangle + 13.3 \pm 9/2\rangle + 11.9 \pm 13/2\rangle$
TONCE O.	$g_{ m z}$	1.409	4.394	7.050	9.998	12.750	15.005	16.946	19.026
	g_{y}	9.472	1.999	2.087	1.313	0.264	0.120	0.150	0.032
nandmm	g_{x}	11.662	0.166	0.221	0.850	0.186	0.075	0.071	0.024
III Anphe-DIII	$E~(\mathrm{cm}^{-1})$	0	49.5	138	247.2	359.3	458.2	515.6	568.4
	KD		2	3	4	ഹ	9	2	8
L UL									

Table S7: Computed energy levels (the ground state is set at zero), composition of the g-tensor and contributions to the wave function for each M_J state of the ground-state multiplet for the model 5. KD stands for Kramers doublet.

Figure S11: Computed magnetization blocking barriers for **6**. The four lowest Kramers doublets (thick black lines) are represented according to their magnetic moment along the main magnetic axis. The blue lines represent vertical excitations, the green dashed lines correspond to possible Orbach relaxation processes while the red lines correspond to QTM/TA-QTM processes. The values correspond to the mean value of the corresponding transversal matrix element of the transition magnetic moment.

Figure S12: Representation of the total electrostatic potential (expressed in $e^{-}\cdot bohr^{-1}$) at 2.5 Å around the Dy(III) ion with g_z direction in blue line for **6**. The lowest and highest values are in blue and red, respectively.

							r		
t the model 6 . KD stands for Kramers doublet.	wave function composition*	$87.0 \pm 15/2 > + 11.1 \pm 11/2 >$	$64.1 \pm 13/2> + 23.8 \pm 9/2>$	$28.0 \pm 7/2\rangle + 23.6 \pm 11/2\rangle + 18.3 \pm 3/2\rangle + 10.4 \pm 1/2\rangle$	$24.8 \pm 5/2>+ 23.8 \pm 11/2>+ 16.9 \pm 1/2>+ 14.8 \pm 13/2>$	$24.9 \pm 9/2>+ 23.3 \pm 3/2>+ 22.8 \pm 11/2>$	$26.3 \pm 9/2>+ 25.8 \pm 7/2>+ 20.1 \pm 1/2>+ 13.1 \pm 11/2>$	$28.8 \pm 5/2> + 22.8 \pm 7/2> + 21.9 \pm 3/2> + 11.5 \pm 9/2> + 10.4 \pm 1/2>$	$33.3 \pm 1/2>+ 28.7 \pm 3/2>+ 20.4 \pm 5/2>+ 11.3 \pm 7/2>$
tiplet for	g_{z}	19.024	14.436	4.526	9.418	12.227	14.842	18.077	19.793
tate mul	g_{y}	0.273	2.299	6.719	1.183	0.233	0.054	0.002	0.001
round-s ¹	$g_{\rm x}$	0.113	1.220	7.568	0.654	0.167	0.047	0.002	0.000
te of the g	$E (\mathrm{cm}^{-1})$	0	151.4	285.5	424.2	624.2	867.1	1072.9	1180.7
n M _J sta	KD		2	က	4	ų	9	2	8

function		ſ
wave		
o the		
ions t		
cribut		
d cont		-
or and	et.	
g-tense	lduob	
the ε	mers	
ion of	r Kra	,
nposit	nds fc	
), con	D sta	
t zero	6 . K	
set a	model	
ate is	the 1	
ind st	let for	
e grou	nultip	_
ls (the	tate r	_
y leve	s-pund-s	
energ.	he grc	
outed	e of t	
Comp	J stat	
e S8:	ach M	
Tabl	for ea	

Figure S13: Computed magnetization blocking barriers for 7. The four lowest Kramers doublets (thick black lines) are represented according to their magnetic moment along the main magnetic axis. The blue lines represent vertical excitations, the green dashed lines correspond to possible Orbach relaxation processes while the red lines correspond to QTM/TA-QTM processes. The values correspond to the mean value of the corresponding transversal matrix element of the transition magnetic moment.

Figure S14: Representation of the total electrostatic potential (expressed in $e^{-}\cdot bohr^{-1}$) at 2.5 Å around the Dy(III) ion with g_z direction in blue line for 7. The lowest and highest values are in blue and red, respectively.

the wave function		
and contributions to		*****
), composition of the g-tensor	D stands for Kramers doublet.	The second secon
state is set at zero	for the model 7. K	2
e ground	multiplet	
els (th	-state	~
): Computed energy leve	M _J state of the ground-	$[VD] E / 2m^{-1}$
Fable S9	or each	

wave function composition [*]	$99.3 \pm 15/2>$	$31.8 \pm 13/2> + 21.2 \pm 1/2> + 16.4 \pm 5/2> + 14.7 \pm 3/2>$	$57.2 \pm 13/2 > + 16.9 \pm 3/2 > + 13.3 \pm 1/2 >$	$41.7 \pm 11/2> + 14.7 \pm 5/2> + 13.6 \pm 7/2> + 10.6 \pm 1/2>$	$38.1 \pm 11/2> + 28.2 \pm 9/2> + 15.4 \pm 3/2>$	$38.4 \pm 9/2> + 30.6 \pm 7/2> + 12.3 \pm 1/2> + 11.5 \pm 11/2>$	$31.2 \pm 5/2> + 28.0 \pm 7/2> + 17.4 \pm 3/2> + 13.5 \pm 9/2>$	$31.4 \pm 1/2> + 30.4 \pm 3/2> + 22.2 \pm 5/2> + 12.6 \pm 7/2>$
$g_{ m z}$	19.783	14.726	9.071	3.988	11.350	14.240	17.502	19.547
g_{y}	0.015	5.137	4.104	7.254	2.032	0.938	0.363	0.152
g_{x}	0.008	1.670	1.393	7.667	0.985	0.509	0.080	0.149
$E~(\mathrm{cm}^{-1})$	0	433.5	539.4	794.6	1066.9	1371.1	1621.5	1696.1
KD		2	e	4	ю	9	2	∞

Figure S15: Computed magnetization blocking barriers for 8. The four lowest Kramers doublets (thick black lines) are represented according to their magnetic moment along the main magnetic axis. The blue lines represent vertical excitations, the green dashed lines correspond to possible Orbach relaxation processes while the red lines correspond to QTM/TA-QTM processes. The values correspond to the mean value of the corresponding transversal matrix element of the transition magnetic moment.

Figure S16: Representation of the total electrostatic potential (expressed in $e^{-}\cdot bohr^{-1}$) at 2.5 Å around the Dy(III) ion with g_z direction in blue line for 8. The lowest and highest values are in blue and red, respectively.

		·					·		
DOEL S. N.D. STANDS IOT NTAMERS GOUDIET.	wave function composition [*]	$99.7 \pm 15/2>$	$98.0 \pm 13/2>$	$86.2 \pm 11/2>$	$52.7 \pm 1/2>+ 20.5 \pm 9/2>$	$38.7 \pm 9/2> + 34.6 \pm 3/2> + 10.0 \pm 7/2>$	$40.1 \pm 5/2> + 32.2 \pm 7/2> + 10.0 \pm 3/2>$	$27.5 \pm 1/2\rangle + 24.6 \pm 3/2\rangle + 23.9 \pm 9/2\rangle + 13.5 \pm 7/2\rangle$	$35.1 \pm 7/2> + 34.4 \pm 5/2> + 15.5 \pm 3/2>$
or the mo	$g_{ m z}$	19.830	16.818	13.299	15.211	11.055	13.815	15.034	16.550
tuplet re	g_{y}	0.007	0.131	1.628	3.633	2.847	4.518	2.111	2.859
tate mu	g_{x}	0.005	0.106	1.578	2.926	0.487	0.568	0.330	0.783
le ground-s	$E (\mathrm{cm}^{-1})$	0	529.2	943.8	1137.2	1235.3	1320.6	1469.7	1557.5
OI TT	KD		2	c,	4	ю	9	-1	∞
State	_	_	_			-	_	_	-

Table S10: Computed energy levels (the ground state is set at zero), composition of the g-tensor and contributions to the wave function $f_{\Delta m} \to 0^{-1} M_{-1}$ of the maximal state multiplat for the model **2** KD stands for Kramers doublet for each M_J state

Figure S17: Computed magnetization blocking barriers for **9**. The four lowest Kramers doublets (thick black lines) are represented according to their magnetic moment along the main magnetic axis. The blue lines represent vertical excitations, the green dashed lines correspond to possible Orbach relaxation processes while the red lines correspond to QTM/TA-QTM processes. The values correspond to the mean value of the corresponding transversal matrix element of the transition magnetic moment.

Figure S18: Representation of the total electrostatic potential (expressed in $e^{-}\cdot bohr^{-1}$) at 2.5 Å around the Dy(III) ion with g_z direction in blue line for **9**. The lowest and highest values are in blue and red, respectively.

) 0 0		H			
KD	$ E (\mathrm{cm}^{-1})$	g_{x}	g_{y}	$g_{ m z}$	wave function composition [*]
Η	0	0.031	0.350	19.176	$94.9 \pm 15/2>$
2	140	11.544	8.718	1.072	$83.3 \pm 1/2>$
က	162.9	10.227	7.621	0.298	$52.5 \pm 3/2\rangle + 24.6 \pm 5/2\rangle + 13.0 \pm 13/2\rangle$
4	281.8	8.112	7.271	6.029	$52.7 \pm 13/2> + 25.2 \pm 3/2> + 12.6 \pm 5/2>$
ю	534.4	7.059	5.055	1.040	$47.3 \pm 5/2\rangle + 27.4 \pm 13/2\rangle + 16.0 \pm 11/2\rangle$
9	590.6	8.847	7.288	0.657	$57.1 \pm 7/2\rangle + 21.7 \pm 9/2\rangle$
2	641.2	9.253	6.804	1.094	$55.1 \pm 11/2\rangle + 15.2 \pm 3/2\rangle + 15.2 \pm 7/2\rangle$
∞	705.6	1.793	3.142	14.604	$64.4 \pm 9/2> + 13.2 \pm 7/2> + 11.4 \pm 11/2>$

Table S11: Computed energy levels (the ground state is set at zero), composition of the g-tensor and contributions to the wave function for each M_J state of the ground-state multiplet for the model 9. KD stands for Kramers doublet.

Figure S19: Computed magnetization blocking barriers for 10. The four lowest Kramers doublets (thick black lines) are represented according to their magnetic moment along the main magnetic axis. The blue lines represent vertical excitations, the green dashed lines correspond to possible Orbach relaxation processes while the red lines correspond to QTM/TA-QTM processes. The values correspond to the mean value of the corresponding transversal matrix element of the transition magnetic moment.

Figure S20: Representation of the total electrostatic potential (expressed in $e^{-}\cdot bohr^{-1}$) at 2.5 Å around the Dy(III) ion with g_z direction in blue line for **10**. The lowest and highest values are in blue and red, respectively.

ne wave function		
z zero), composition of the g-tensor and contributions to the	10 . KD stands for Kramers doublet.	wave function composition*
s set at	model	
state is	or the 1	a_{τ}
ground a	ultiplet fo	<i>a</i>
els (the	tate m	$a_{\mathbf{v}}$
2: Computed energy leve	M _J state of the ground-st	$[\text{ KD} \mid E \ (\text{cm}^{-1})]$
Table S12	for each 1	

wave function composition [*]	$98.6 \pm 15/2>$	$82.9 \pm 13/2>$	$28.8 \pm 11/2\rangle + 19.5 \pm 3/2\rangle + 19.1 \pm 7/2\rangle + 13.9 \pm 1/2\rangle$	$38.2 \pm 11/2\rangle + 19.4 \pm 5/2\rangle + 18.4 \pm 1/2\rangle + 12.8 \pm 9/2\rangle$	$34.2 \pm 9/2> + 21.3 \pm 3/2> + 19.3 \pm 11/2>$	$30.8 \pm 7/2> + 27.6 \pm 9/2> + 16.9 \pm 1/2> + 11.1 \pm 5/2>$	$27.9 \pm 5/2> + 23.5 \pm 3/2> + 21.3 \pm 7/2> + 16.0 \pm 1/2>$	$28.3 \pm 1/2\rangle + 27.8 \pm 3/2\rangle + 23.5 \pm 5/2\rangle + 14.5 \pm 7/2\rangle$
g_{z}	19.780	16.080	11.689	7.978	11.612	14.518	17.715	19.737
g_{y}	0.011	0.886	4.519	4.546	1.254	0.243	0.044	0.012
$g_{\rm x}$	0.007	0.434	3.184	2.945	0.821	0.173	0.024	0.008
$E (\mathrm{cm}^{-1})$	0	331	504	646.2	839.5	1066.3	1259.3	1345
KD		2	က	4	ю	9	2	∞

		1				2	
Y	-0.006463	0.009208	-0.000037	Y	-0.00099	0.354378	-0.96939
Ο	1.588596	1.324173	0.000011	Si	-3.2121	1.422897	0.270973
Ο	-1.934395	0.750302	-0.000018	Si	3.20832	1.428886	0.270955
Ο	0.321246	-2.031413	-0.000037	Si	0.004394	-3.08965	0.155776
Si	2.830483	2.347983	0.000048	F	-4.37707	0.956563	-0.71053
F	4.222517	1.576493	0.000029	F	-3.51566	2.926596	0.691208
F	2.804181	3.285852	1.285842	F	-3.30178	0.526104	1.584056
F	2.804187	3.285919	-1.285698	F	4.371863	0.959401	-0.71078
Si	-3.461898	1.257204	0.000017	F	3.299935	0.536294	1.586734
F	-3.554505	2.845937	-0.000371	F	3.512488	2.93394	0.685859
F	-4.240044	0.734356	1.286717	F	-1.27491	-3.95835	-0.21862
F	-4.240308	0.733722	-1.286266	F	0.001416	-2.87418	1.732717
Si	0.635258	-3.61023	-0.000032	F	1.290248	-3.95032	-0.21481
F	-0.700761	-4.474671	-0.000079	0	-1.77059	1.272936	-0.4304
F	1.474259	-4.028979	1.286389	0	1.765899	1.276709	-0.42806
F	1.474329	-4.028963	-1.286412	0	0.001123	-1.67404	-0.61582

		3	
Y	-0.40698	-0.97158	-0.05155
0	-2.53731	-0.76453	-0.01383
Ο	1.722194	-1.17756	-0.0892
Ο	-0.20008	1.166573	-0.04843
Si	3.326889	-1.16254	0.019306
F	3.958356	-2.41465	-0.74196
F	3.808266	-1.25288	1.535316
F	3.962052	0.143056	-0.62903
Si	-4.07684	-0.31054	0.019546
F	-5.05353	-1.57211	0.018386
F	-4.46037	0.573683	-1.24807
F	-4.41551	0.536593	1.324857
Si	1.029667	2.206218	-0.00718
F	2.100111	1.785116	1.104644
F	0.546216	3.678606	0.351905
F	1.785269	2.281661	-1.40733

		4		5				
Y	0.009941	0.335517	-0.054697	Y	0.001528	0.346146	0.043319	
Si	2.620898	2.749638	0.071728	0	-1.06613	-1.48632	-0.26184	
Si	-3.087051	2.388324	-0.322937	0	-1.37156	1.962854	0.346628	
Si	3.298909	-1.371973	0.166286	0	1.230399	0.760535	-1.66188	
F	3.445127	2.844138	-1.290498	Si	-2.7774	-1.54046	-0.27851	
F	2.598474	4.214561	0.702392	F	-3.13959	-3.04202	-0.60179	
F	3.481557	1.847634	1.080724	F	-3.23564	-0.56483	-1.42017	
F	-2.797084	3.81981	0.309191	F	-3.25521	-1.11635	1.154746	
F	-3.708706	2.618868	-1.77267	Si	-2.79084	2.675759	0.51703	
F	-4.239725	1.720162	0.569229	F	-2.98076	3.366824	1.938534	
F	4.266092	-0.484576	-0.735335	F	-3.96635	1.586045	0.382546	
F	3.972135	-1.556612	1.597078	F	-3.0745	3.781372	-0.59284	
F	3.259619	-2.824744	-0.510169	Si	2.677702	1.370248	-1.98943	
Ο	1.151613	2.152954	-0.142948	F	3.696445	0.264445	-2.51795	
Ο	1.816858	-0.770121	0.244949	F	3.317228	2.032338	-0.67952	
Ο	-1.797614	1.44248	-0.354671	F	2.616045	2.509866	-3.10158	
0	-1.134786	-1.486713	0.033781	0	1.249516	0.149935	1.773205	
Si	-2.644114	-1.441962	0.814597	Si	2.771492	-0.16743	2.165177	
F	-2.874033	-2.879556	1.422739	F	2.867779	-1.38915	3.188979	
F	-3.78872	-1.080785	-0.193228	F	3.521946	1.064914	2.833852	
F	-2.397376	-0.385476	1.965455	F	3.609402	-0.60607	0.87211	
Si	-0.449769	-2.865534	-0.688097	Si	-0.14234	-2.90176	-0.50284	
F	0.334897	-2.240144	-1.911964	F	1.324927	-2.3417	-0.35488	
F	-1.653683	-3.749291	-1.195941	F	-0.43082	-3.45999	-1.94171	
F	0.432483	-3.665418	0.32991	F	-0.50848	-3.94178	0.615409	

6					7				
Y	0.006681	-0.008716	0.357694	Y	0.02562	0.079922	-0.82293		
Ο	-2.269839	0.301502	-0.702432	Si	-0.62725	3.216222	-0.65135		
Ο	2.468661	-0.340896	0.755843	Si	1.82463	2.487275	0.831067		
Si	3.457289	0.973238	0.415922	Si	-3.63619	0.674078	-0.64027		
Si	2.883928	-1.933732	1.008092	Si	3.679888	-0.51192	-1.33228		
Si	-3.251192	1.395246	0.077721	Si	-1.22724	-3.16581	-1.25687		
Si	-2.660153	-0.821223	-1.885023	F	-1.87139	3.459031	0.268778		
Ο	0.143278	-0.763426	-1.614902	F	0.203373	4.547583	-0.81883		
Ο	0.799402	1.930688	0.576419	F	-0.95083	2.595357	-2.07827		
Ο	-0.798032	-1.067347	1.982972	F	2.192974	1.256467	1.741314		
F	-2.252682	-2.265247	-1.395427	F	2.956417	2.899964	-0.17516		
F	-2.073258	-0.44779	-3.301358	F	1.402766	3.721165	1.723691		
F	-4.241901	-0.730493	-1.989122	F	-3.86425	2.10336	-1.33154		
F	-2.322034	1.83209	1.296267	F	-4.34819	0.742719	0.787728		
F	-4.589967	0.760073	0.604737	F	-4.42552	-0.39122	-1.51715		
F	-3.581825	2.611407	-0.866202	F	4.575953	0.550566	-0.53484		
F	1.547285	-2.699175	0.613254	F	4.131586	-0.43496	-2.85895		
F	3.127307	1.534341	-1.021485	F	4.098825	-1.94763	-0.7766		
F	4.921077	0.359038	0.40429	F	-1.20803	-3.37992	0.352756		
F	3.41207	2.062105	1.555903	F	-0.67109	-4.52168	-1.88291		
Si	0.511227	3.496714	0.389364	F	-2.76962	-3.07739	-1.65278		
F	1.713518	4.24398	-0.338401	0	0.4285	2.041747	-0.02836		
F	0.240189	4.253532	1.762683	0	2.123781	-0.2104	-1.13505		
F	-0.798421	3.690937	-0.51751	Ο	-2.0707	0.370562	-0.51189		
Si	1.187757	-1.188614	-2.751358	0	-0.37491	-1.8749	-1.61688		
F	0.761791	-2.516833	-3.515227	Ο	0.085518	-0.85137	1.170758		
F	2.619445	-1.474752	-2.069194	Si	-1.12308	-0.42125	2.283418		
F	1.427707	-0.057943	-3.84387	F	-0.54069	-0.74563	3.717856		
Si	-2.061432	-1.911168	2.483087	F	-2.46832	-1.19412	2.05512		
F	-2.516766	-1.546427	3.963516	F	-1.26529	1.154151	2.175203		
F	-1.827115	-3.484829	2.429854	Si	1.165519	-2.13298	1.539473		
F	-3.316339	-1.5952	1.524395	F	2.453251	-1.46389	2.159667		
F	3.20393	-2.160706	2.536316	F	1.550339	-2.96057	0.264321		
F	4.106852	-2.400411	0.137415	F	0.448342	-3.02008	2.629547		

8							
Y	-0.03831	0.371465	-0.14898				
Si	0.522776	-2.91854	1.570293				
Si	2.850949	0.15482	1.602221				
Si	-2.7207	1.920525	1.719503				
Si	2.362215	-0.87183	-2.43554				
Si	-2.80134	-1.61434	-0.14654				
Si	-2.47248	0.505276	-2.21482				
F	1.053349	-3.87739	0.411724				
F	1.607474	-2.97936	2.744433				
F	-0.81633	-3.5867	2.134293				
F	3.251526	-1.21605	0.949659				
F	4.128746	1.089937	1.738401				
F	2.151568	0.026689	3.002528				
F	-3.05428	1.528224	3.225719				
F	-2.96785	3.492258	1.584863				
F	-3.85901	1.227806	0.803142				
F	3.455686	0.075092	-1.70563				
F	2.949299	-2.34945	-2.38587				
F	2.372538	-0.42018	-3.96726				
F	-2.05693	-2.956	-0.49743				
F	-4.20684	-1.58216	-0.87733				
F	-2.93191	-1.39173	1.400957				
F	-1.29383	1.589086	-2.27167				
F	-3.8604	1.213555	-2.03787				
F	-2.47528	-0.41399	-3.48931				
0	0.268969	-1.41694	1.096494				
0	1.862071	1.074626	0.56138				
Ο	0.952135	-0.6805	-1.72574				
0	-1.28484	1.460799	1.213424				
0	-1.94692	-0.33046	-0.86186				
Si	2.262823	2.608946	0.014959				
F	3.625274	2.712266	-0.75165				
F	2.200111	3.6531	1.188651				
F	1.018592	2.794398	-0.97817				

9				10				
Y	0.007804	0.002708	0.324527	Y	-0.01109	-0.4302	0.312008	
Ο	1.703719	-0.484562	1.566093	0	0.37053	1.376812	1.388696	
Ο	-1.190943	-1.220249	1.446083	0	0.967784	1.833561	-1.31142	
Ο	-1.807378	0.54279	-0.854579	Ο	0.348487	-1.35174	-1.59825	
Ο	1.408907	1.28488	-0.815679	0	-0.98869	-1.86843	1.436934	
Ο	-0.431605	1.680225	1.616438	Si	0.246956	2.307946	-2.71053	
Ο	0.410651	-1.86695	-0.817059	F	0.808548	3.724781	-3.13539	
Si	-3.259581	-0.063698	-0.161603	F	-1.3104	2.442105	-2.41948	
F	-4.363367	0.680731	-1.03225	F	0.482133	1.259667	-3.86361	
F	-3.502969	0.291441	1.345948	Si	2.208701	2.528458	-0.46943	
F	-3.325369	-1.607867	-0.493869	F	1.734757	3.731026	0.438369	
Si	-1.972692	1.537949	-2.21001	F	3.242396	3.102583	-1.52637	
F	-0.491948	1.679267	-2.770905	F	2.970007	1.399075	0.351743	
F	-2.527422	2.955932	-1.825618	Si	0.568698	1.99085	2.861255	
F	-2.867826	0.847528	-3.3068	F	0.244755	0.923649	4.001859	
Si	2.35222	0.924317	-2.171946	F	-0.37211	3.252202	3.117706	
F	2.213642	2.046722	-3.268515	F	2.078301	2.458889	3.087005	
F	1.724511	-0.422658	-2.736575	Si	-2.36511	-2.4233	2.044082	
F	3.855112	0.684574	-1.784462	F	-2.37177	-2.45792	3.634173	
Si	1.624611	2.848467	-0.128269	F	-2.71959	-3.88739	1.53481	
F	0.312596	3.665634	-0.459068	F	-3.5801	-1.46735	1.595691	
F	2.816291	3.42794	-1.007452	Si	-0.43691	-2.56364	-2.30272	
F	2.060165	2.886853	1.376119	F	-0.51257	-2.44016	-3.88653	
Si	3.146818	-0.116447	2.130688	F	-1.94952	-2.5929	-1.74514	
F	3.909945	0.870898	1.106582	F	0.175401	-3.99342	-1.96333	
F	4.089234	-1.398767	2.277492	0	2.349602	-1.39008	0.297117	
F	3.133486	0.61559	3.543292	0	-2.31065	0.579985	-0.20398	
Si	-1.674259	-2.543307	2.205242	Si	3.047515	-1.57156	1.797078	
F	-1.285194	-3.841182	1.341868	F	3.402233	-3.08706	2.050606	
F	-3.261622	-2.581033	2.374244	F	1.891197	-1.0902	2.772574	
F	-1.035948	-2.725873	3.649048	F	4.329355	-0.67448	1.971108	
Si	-0.368977	-2.530531	-2.15964	Si	3.089469	-1.57131	-1.19498	
F	0.669876	-2.986584	-3.252637	F	2.936911	-0.25713	-2.06284	
F	-1.233943	-1.338452	-2.756439	F	2.682217	-2.88059	-1.97235	
F	-1.315177	-3.709515	-1.730203	F	4.626146	-1.72525	-0.80993	
Si	1.650714	-2.823469	-0.103669	Si	-3.24433	0.242197	-1.55892	
F	1.556268	-4.153719	-0.973743	F	-4.2312	-0.95174	-1.29107	
Si	-1.489692	2.755568	2.125074	F	-2.24462	-0.0892	-2.73922	
F	-2.696717	2.899641	1.060828	F	-4.0702	1.548085	-1.89506	
F	-0.861377	4.21877	2.261137	Si	-2.88601	1.564847	1.029484	
F	-2.161622	2.406483	3.525127	F	-2.35148	1.003377	2.406811	
F	1.428964	-3.22651	1.395436	F	-4.4646	1.515908	0.98035	
F	3.029365	-2.123462	-0.430706	F	-2.3895	3.041705	0.792442	

References

 M. F. Delley, G. Lapadula, F. Núñez-Zarur, A. Comas-Vives, V. Kalendra, G. Jeschke, D. Baabe, M. D. Walter, A. J. Rossini, A. Lesage, L. Emsley, O. Maury, C. Copéret, *Journal of the American Chemical Society* 2017, 139, 8855–8867.