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1. Introduction

Along with their development, manufacturing systems re-
placed human involvement in the process one step at a time.
Nowadays, humans are still present in the product lifecycle,
from design to manufacturing. This process is known as the de-
sign for Additive Manufacturing (DfAM) process. Finding the
solutions to blend this interaction is the only guarantee of a per-
formant manufacturing system. Indeed, computer-aided tech-
nologies in the design, analysis, manufacture, and assembly
phases optimized manufacturing systems regarding time and
costs. Nevertheless, the phase with the highest impact on the
overall product cost (≥ 70%) is the design phase; it allows han-
dling defects at a lower cost. From this, the concept of ”first-
time correct” has emerged. The goal is to find the most optimal
and free-from-defects design at an early phase of the product’s
lifecycle [7]. Thus, much research has been put into exploring
new approaches to accelerate the DfAM process.
We classify the state-of-the-art approaches proposed to acceler-
ate the DfAM process into four major approaches.
The first one consisted of creating AM guidelines for design

Fig. 1: DL-AM-TO’s training procedure. The difference between this figure
and the figure 3 in [4] consists of the addition of the structural similarity loss
(LS S IM) and the thmin, lenmax, and Θmin geometrical discriminators’ architec-
ture (in purple); in this work, they were converted from regression models to
classification models.
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Abstract

This paper improves on the performance of the Deep Learning Additive Manufacturing driven Topology Optimization (DL-AM-TO) approach
that was proposed in [4]. DL-AM-TO is a data-driven generative method that integrates the mechanical and geometrical constraints concurrently
at the same conceptual level and generates a 2D design accordingly. Furthermore, DL-AM-TO tailors the design’s geometry to comply with
manufacturing criteria, which facilitates the designer’s interpretation phase and prevents him/her from getting stuck in a loop of drawing the CAD
and testing its performance. The geometry needs less support structure and hence is printed faster. Consequently, DL-AM-TO accelerates the
Design for AM process.
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engineers to help them in the re-interpretation phase to draw
AM-compliant designs. While this approach was a significant
step into the adoption of design for AM, the designers still got
stuck in the drawing phase due to the mechanical performance
deterioration induced by updating the shape to comply with AM
constraints [1, 8, 12].
Thus, for a reason mentioned previously, the second approach
proposed integrating AM constraints into finite elements based
TO (FE-TO) methods so that generated designs would be com-
pliant with both mechanical and AM constraints simultane-
ously; the top common AM constraints are the minimum over-
hang [13, 6] or support structures [24], the thin features [10, 22].
Nevertheless, this approach faced several challenges. AM con-
straints are contradictory [25], informal [11], and geometrical),
making formulating them analytically challenging, especially
with FE-TO, the geometry is unknown beforehand. Moreover,
FE-TO identifies the shape at early iterations, restraining it from
changing to account for other constraints. Finally, FE-TO has
a hard time converging [18] (i.e., finding the optimal design
complying with all the constraints) with the increasing number
of constraints, and when it converges, the computational power
needed can be significantly expensive.
The third approach modeled a hybrid TO method; they replaced
some FE blocks with Machine (ML) or Deep Learning (DL)
techniques [16, 21, 9, 15]. Unfortunately, this approach focused
on the design phase and not the whole DfAM process and in-
herited the convergence and computational flaws of FE.
The fourth approach replaced FE with ML/DL models [19, 14,
17]. This last approach accelerated TO and eliminated all FE-
TO setbacks but did not integrate any AM constraints and did
not impede getting stuck in a loop in later phases of the DfAM
process.
We aim to accelerate the entire DfAM process and have the
best quality/cost ratio. Indeed, the design phase is the least
costly and the most impactful on the overall product cost [7].
Nevertheless, more than accelerating this phase is required, as
we have seen with state-of-the-art approaches. Moreover, while
AM-driven FE-TO methods aim to accelerate the whole DfAM
process by preventing repetitive iterations, the analytical for-
mulation of AM constraints, the methods’ convergence, and
their computational costs are still a hurdle. Conversely, the in-
troduction of ML and DL only accelerated one phase. Thus,
we propose to get the best of both worlds in this work; this
new DL approach allows manufacturing constraints’ integration
within mechanical ones concurrently at the same level, and any
constraints, even ones lacking a mathematical definition [23]
like experts’ rules and knowledge while benefiting from DL’s
speed and scalability advantages. Thus, DL-AM-TO, a TO ap-
proach based on DL that integrates AM and mechanical con-
straints concurrently at the same level, was proposed in [4].
DL-AM-TO is a generative model that takes as input the me-
chanical (Boundary conditions BC, loads F, volume fraction
V) and geometrical (number of bars Nbrbars, minimum thick-
ness thmin, maximum length lenmax, minimum overhang Θmin)
constraints and generates a 2D image-like design. The training
designs and constraints come from the open-source dataset, Ge-
ometrical and Mechanical CAD (GMCAD) dataset [3], which

was inspired by designs outputted by the top common industrial
TO method, Solid Isotropic Material with penalization (SIMP)
[5]. In [4], DL-AM-TO showed poor performance regarding the
generated designs’ quality. This behavior was identified to be
tied to several criteria, the most impactful one being the geo-
metrical discriminators’ performance. The better the discrimi-
nator predicts the geometrical condition, the more informative
the generator’s loss function is; hence, DL-AM-TO is more reli-
able. We note that it is trained within GAN frameworks known
for their unstable oscillating losses, which explains its sensi-
tivity to the losses delivered by its discriminators. This phe-
nomenon is observed with the thmin variable; integrating the
latter into the model deteriorated its performance. The thmin dis-
criminator should have been more precise. As a matter of fact,
the image-like designs in GMCAD are CAD models converted
to images with computer vision filtering techniques, which can
easily alter the thicknesses of the design.
Consequently, to improve on the previous results, several ac-
tions are taken into consideration in this paper: (1) Improve the
performance of the geometric discriminators, for their perfor-
mance dramatically impacts the generator’s performance. (2)
Retrain DL-AM-TO with the new geometrical discriminators
(Fig.1). (3) Propose several geometries for the same mechani-
cal conditions using DL-AM-TO, draw these geometries, print
them, and compare their manufacturability.
The major contribution of this article is validating the capability
of DL-AM-TO to accelerate the whole DfAM, not simply the
design phase. The article is organized as follows: section 2 de-
tails the geometric discriminators’ improvement. DL-AM-TO’s
training is summarized in section 3. Sections 4 and 5 outline
DL-AM-TO’s performance. Section 6 presents DL-AM-TO’s
limitations. Finally, section 7 summarizes the methodology and
its outcomes and presents future perspectives.

2. Improving the geometric discriminators’ performance

The geometrical constraints are scalar values; thus, previ-
ously, we have chosen a regression-like architecture. Unfortu-
nately, this architecture only convenes some constraints; thmin

discriminator needed to be more precise. Hence, we decided to
convert the regression problem into an ordinal regression one;
it is a special case of classification problems. Instead of predict-
ing the scalar value of a constraint, we will predict an interval in
which it falls. The geometrical constraints that were concerned
are lenmax, thmin, and Θmin.
The lenmax constraint was divided into twenty-one classes (fig-
ure 3a). As described in [3], the lenmax and thmin are measured
with respect to the unit measure, with it being the width of the
design space, which is equal to its height in our work.
The thmin constraint was divided into nine classes (figure 3b).
The Θmin constraint was divided into fourteen classes (figure
3c). It is essential to highlight here that we exclude the ro-
tational data augmentation for two reasons. First, the Θmin is
the only geometrical value affected by the rotation of the de-
sign space. Also, we realized that the distribution of Θmin val-
ues after rotational data augmentation became not uniform and
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(a) Train set of lenmax CORN discriminator.

(b) Train set of thmin CORN discriminator.

(c) Train set of Θmin CORN discriminator.

Fig. 2: Distribution of the geometric intervals of lenmax, thmin, & Θmin, from
left to right respectively, in the training sets of the lenmax, thmin, & Θmin CORN
discriminators, from top to down respectively.

did not include all the value intervals for the designs present
in GMCAD; thus, this data augmentation will affect the rep-
resentativeness of some classes in the dataset and deteriorate
the model’s performance. Second, we train DL-AM-TO with no
data augmentation; hence, theΘmin discriminator is only needed
to predict on non-rotated designs with Θmin ranging from 0 to
70°.
To comply with the problem’s formulation as a classification in-
stead of a regression, the discriminators’ architectures defined
in [4] will only differ on the last fully connected layer; the out-
put is a binary vector of K nodes with K being the number of
classes of the variable described above; i.e., K = 21 for the
lenmax model, K = 9 for the thmin model, K = 14 for the Θmin

model.
The geometric discriminators are trained via the state-of-the-art
Conditional Ordinal Regression for Neural networks (CORN)
framework [20].

2.1. Training dataset

To further improve the geometric discriminator’s accuracy,
we have increased the number of training data samples per ge-
ometric variable to ensure that every class (i.e., every interval
of values) is well represented. The distribution of the intervals
of lenmax, Θmin and thmin values in the training set for every ge-
ometric discriminator is shown in figure 2.

2.2. Results

On the test set, the global accuracy score of the thmin is
93.7%, of lenmax is 86.1%, and of Θmin is 91.2%. However,
when it comes to multi-class classification, the global macro
accuracy score can be deceiving, and a better approach is to
use the micro scores, i.e., scores per class. Thus, figure 3 plots
the confusion matrices computed on the test set. We define an
admissible misclassification as a point belonging to the class k
classified into the class k ± 1.
For the thmin discriminator, the highest percentage of admissi-
ble confusion is 16.77%, for the class (0.07, 0.08]; it is con-
fused with the class (0.08, 0.14], which is admissible. More-
over, the class (0.07, 0.08] is the least represented class in the
training set (figure 2b shows the distribution of the classes of
thmin). As for the remaining classes, this percentage never ex-
ceeds the 8%. The highest percentage of inadmissible confusion
is of 1.8%, for the class (0.06, 0.07]; with this class being con-
fused by 0.53% with the class (0.03, 0.04], 0.11% with the class
(0.03, 0.04], and 1.16% with the class (0.08, 0.14].
For the lenmax discriminator, the least accurate CORN discrim-
inator, the highest percentage of admissible confusion is 82%,
for the class (0.349, 0.4]; this class is the least represented class
in the training dataset (0.05%, figure 2a), which makes it chal-
lenging for the model to predict the exact class. Nevertheless,
the model confuses it with the exact following class (0.4, 0.45],
which is admissible. Similarly, the highest percentage of inad-
missible confusion is 5.17% for the class (0.45, 0.05].
For theΘmin discriminator, the highest percentage of admissible
confusion is 28.6%, for the class (55°, 60°]; it seems that an-
gles belonging to (55°, 60°] are highly confused with the class
(60°, 65°]. As a matter of fact, this confusion is understandable,
for these two classes are less represented than the others (fig-
ure 2c shows the distribution of the classes of Θmin). The high-
est percentage of inadmissible confusion is 1.68%, for the class
(5°, 10°].
Finally, the global percentage of inadmissible predictions are
1.23% for lenmax discriminator, 0.92% for the Θmin discrimina-
tor, and 0.4% for the thmin discriminator. Thus, all three geomet-
rical discriminators are precise enough to forward the training
of DL-AM-TO.

3. Training DL-AM-TO with new discriminators

We recall DL-AM-TO’s training procedure described in
section 3 in [4]. First, the mechanical (the boundary conditions
BC, the loads F, and the volume fraction V) and geometrical
(the number of bars Nbrbars, the minimum thickness thmin, the
maximum length lenmax, and the minimum overhang Θmin)
constraints are inputted to DL-AM-TO, which generates a 2D
design accordingly. Second, this design is input to the thmin,
lenmax, and Θmin discriminators, which predict its geometric
constraints. Third, the design and the mechanical constraints
are input to the Nbrbars discriminator, which predicts its
Nbrbars. Fourth, the generated design and all input constraints
are input to the traditional discriminator, which computes the
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(a) lenmax discriminator.

(b) thmin discriminator.

(c) Θmin discriminator.

Fig. 3: The confusion matrices of the lenmax, thmin, and Θmin CORN discrimi-
nators computed on the test set.

probability of the design being real. Finally, the losses from
the different discriminators are computed, summed, and fed
to the generator to penalize it in case of non-conformity. The
reconstruction and structural similarity losses are added for
better training stability and guaranteed convergence.
With the new geometric discriminators, we retrain DL-AM-TO
from [4]. Besides the geometric discriminators, we added the
structural similarity loss (LS S IM) to the training loss function.

LG = Lr+λadversarialLadv+LNbrbars+Lthmin+Llenmax+LΘmin+LS S IM ,
with (1) the reconstruction loss Lr =

1
N
∑N

i=1(xi − x̂i)2 and

LS S IM = 1 − ∑N
i=1( (2µxiµx̂i+k1)(2σxi x̂i+k2)

(µxi
2+µx̂i

2+k1)(σxi
2+σx̂i

2+k2) ) s.t. xi and x̂i

are the real and generated 2D design, N is the batch size,
µ and σ the pixel sample mean and standard deviation, k1
and k2 are constants set to 0.01 and 0.03, respectively, (2)
{Lc =

∑N
i=1 |ci − ĉi|, c ∈ {Nbrbars, thmin, lenmax,Θmin}} s.t. c and

ĉ are the input and predicted geometrical values respectively,
and (3) the adversarial loss Ladv is the Binary Cross Entropy.
λadversarial was set to 0.01.

4. DL-AM-TO’s overall performance

In the first version of DL-AM-TO [4], the authors reported
an average Structural Similarity (S S IM) computed over the
generated designs of 0.33, demonstrating a poor generation
quality. In this work, the average S S IM increased to 0.72, i.e.,
a 118% increase. This result validates our assumption that the
geometrical discriminators’ performance highly influences the
generator’s performance. Moreover, the global geometry of the
design tells a lot about the placement of the loads and bound-
ary conditions; thus, having a high S S IM implies the confor-
mity of the designs with these two mechanical constraints. To
complete the mechanical performance, We also compute the en-
ergy of deformation (the compliance C in joules J) and vol-
ume fractions (the percentage of material in the design) of the
DL-AM-TO designs and compare them to the metrics com-
puted over SIMP designs. The metrics are the relative errors
of volume fraction and compliance; the latter was computed
using the FE method. 89.5% of the generated designs show a
Vgenerated ≤ 1.1 × Vinput. 44.4% of the generated designs show a
compliance that is less or equal to 1.2 times the SIMP designs’
compliance (i.e. Cgenerated ≤ 1.2 × Cground−truth). It is important
to note that the compliance is sensitive to intermediate density
values. The compliance can be deceiving when the design is
modeled as an image with continuous values. For a fair me-
chanical performance comparison, it is better to draw the CAD
designs of the SIMP and DL-AM-TO designs, then perform a
FE analysis (section 5). Another solution would be to retrain
DL-AM-TO with an additional compliance discriminator or run
a few iterations of SIMP on the shape outputted by DL-AM-TO.
Lastly, we examine the geometrical conformity of DL-AM-TO
to the geometrical input values. The metric used is the dif-
ference ∆X = Xgenerated − Xinput; X ∈ lenmax, thmin, Θmin, and
Nbrbars. For the Nbrbars constraint, the same metric used in [4]
is used here to check the generated designs’ conformity; If the
absolute difference between the |∆Nbrbars| ≤ 2, the generated
design is considered compliant with the Nbrbars constraint, such
that the Nbrbars is predicted via the regression-based Nbrbars

discriminator. For the remaining geometrical constraints, a gen-
erated design is geometrically compliant if its geometrical value
is, at most, distant by ± one class from the input value, such
that the class value is predicted by the corresponding CORN
geometrical discriminator.
96.3% of the generated designs are compliant with the lenmax
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Fig. 4: Design generated by SIMP. This design is clamped on the bottom edge
(BC in red), it is loaded on the top right corner (F in green), and the V

(a) Changing thmin.

(b) Changing Θmin. Input Nbrbars = 5 & input lenmax = 1u.

(c) Changing lenmax. Input Nbrbars = 5 & input Θmin = 18°.

(d) Changing Nbrbars. Input lenmax = 1u & input Θmin = 18°.

Fig. 5: Tailoring a geometrical constraint at a time.

constraint, 89.3% with the thmin constraint, 87.9% with theΘmin

constraint, and 88.7% with the Nbrbars constraint.
On the computational performance, DL-AM-TO is thousands
of times faster; it takes 0.03 seconds to generate a design, while
SIMP needs 140 seconds to output the same design.
To recapitulate, DL-AM-TO generates designs with good qual-
ity and geometrically valid within a fraction of a second.

5. Tailoring a design’s geometry with DL-AM-TO

For the sake of this article, we limited our experiments to
one set of mechanical constraints (figure 4). This experiment
tests DL-AM-TO’s ability to tailor a design’s geometry while
always complying with mechanical constraints. Thus, we fix
all input constraints except for one geometrical constraint. We
scan a range of values for this constraint and generate the
geometries accordingly. It is important to note that modify-

(a) Mechanical performance of the designs.

(b) Printed designs with support structures.

Fig. 6: Printing phase. The material used is the Polylactic acid (PLA).
Θmin printer = 60°. umax is the maximum displacement in mm. BT is the build
time. L and M are the PLA filament length and mass, respectively.

ing the Nbrbars and thmin constraints induce modifying the V ,
for increasing/decreasing these two constraints requires addi-
tional/less material as demonstrated in [2].
Figure 5 shows six geometries generated by DL-AM-TO after
changing a geometrical constraint at a time.
Figure 5a illustrates the geometries outputted with increasing
input thmin. As we can clearly see, DL-AM-TO generates de-
signs thicker with the increasing thmin while respecting the other
constraints; the shape is conserved, in other terms the BC and
F are respected, the Nbrbars vary in the range Nbrbarsinput ± 2,
which is admissible, the lenmaxgenerated = lenmaxinput = 1u, the
Θmingenerated = Θmininput = 18°.
When Θmin is modified, DL-AM-TO’s generated geometries re-
spect the lenmax and Nbrbars input constraints (figure 5b).
Figure 5c shows that the lenmax of the generated geome-
tries increases with the increasing input lenmax. For the other
constraints, the generated designs’ Nbrbars vary in the range
Nbrbarsinput ± 2, and their Θmin in the range Θmininput ± 6° (i.e.,
±1 class, section 2), except for the first geometry, which is ad-
missible.
When the Nbrbars is changed, we see that DL-AM-TO has dif-
ficulty conforming with the other geometrical constraints; 3 out
of 6 geometries comply with the Θmininput and only 2 out of 6
comply with the lenmaxinput. DL-AM-TO’s non-conformity with
lenmax could be justified. DL-AM-TO adds bars to respect me-
chanical constraints, in other words, keeping the outer geometry
intact, which makes that additional bars are internal transmis-
sion ones, which affects the lenmax constraint that is reduced.
On the other hand, the non-conformity with Θmin is intriguing.
This result should be further analyzed to understand the corre-
lations between these two constraints.
To complete DL-AM-TO’s evaluation, we chose the Θmin ex-
periment of figure 5b. We picked three designs generated by
DL-AM-TO (the first, third, and last) and the one output by
SIMP, drawn them using FreeCAD, tested their mechanical per-
formance (measure by the maximum displacement ulmax) using
Patran/Nastran, and produced them using 3D printer Creality
Ender 3; the support structures were added by the slicing soft-
ware Cura. At every printing, we note the build time (BT ) and
the length (L) mass (M) of the PLA material consumed to pro-
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duce the part. We compare the mechanical and manufacturing
metrics of the SIMP design versus the ones proposed by DL-
AM-TO.
Figure 6b shows that DL-AM-TO designs are 30.7% cheaper
in material (9g versus 13g for the SIMP design) and 10 to 22%
faster to print while conserving the same mechanical perfor-
mance as the one shown by SIMP; DL-AM-TO’s designs show
the same order of magnitude of umax as the SIMP one (figure
6a).
To sum up, DL-AM-TO tailors design geometry to adapt it
to manufacturing criteria. The test example described above
demonstrates that DL-AM-TO proposes different geometries
printable up to 22% faster and 30% cheaper than the SIMP de-
sign without deteriorating the mechanical performance.

6. Discussion

It is imperative to note that this approach is not intended to
replace robust FE-TO but to help compensate for its difficulties
in integrating various complex constraints. Indeed, a better ap-
proach would be a hybrid approach with the first draft generated
by DL-AM-TO and the final optimized by an FE-TO method.
DL-AM-TO’s capability to tailor a design’s geometry was
demonstrated in section 5. However, as we have noticed, when
the Nbrbars constraint is modified, DL-AM-TO has difficulty
complying with the other constraints. This result can be ex-
plained in different ways: this constraint is correlated with the
other geometrical constraints and seems to dominate over them.
Hence, it would be interesting to push the analysis further and
train several DL-AM-TO models with one geometrical con-
straint at a time to understand the influence of every constraint
on the others when controlled alone to understand their corre-
lations when controlled altogether eventually.

7. Conclusion

This paper improves on the setbacks reported in [4]. It pro-
poses and validates a Deep Learning-based Additive Manu-
facturing driven Topology Optimization approach called DL-
AM-TO. DL-AM-TO integrates the mechanical and geometri-
cal constraints at the same level and generates 2D designs. More
interestingly, it tailors the design’s geometry easily to propose
several geometries AM compliant corresponding to the engi-
neer’s input while keeping a similar mechanical performance
as the one proposed by SIMP.
In the future, a pushed analysis of the correlations between the
geometrical manufacturing-related constraints and further tests
will be conducted and published to validate DL-AM-TO’s per-
formance and quantify its acceleration on the overall DfAM
process. Additionally, DL-AM-TO could be enhanced to gen-
erate 3D designs. Finally, DL-AM-TO could be industrialized
as a light and fast generative module in industrial design soft-
ware.
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