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Abstract

Our goal is to synthesize 3D human motions given textual in-
puts describing simultaneous actions, for example ‘waving hand’
while ‘walking’ at the same time. We refer to generating such
simultaneous movements as performing spatial compositions.
In contrast to temporal compositions that seek to transition from
one action to another, spatial compositing requires understand-
ing which body parts are involved in which action, to be able to
move them simultaneously. Motivated by the observation that
the correspondence between actions and body parts is encoded
in powerful language models, we extract this knowledge by
prompting GPT-3 with text such as “what are the body parts
involved in the action <action name>?", while also providing
the parts list and few-shot examples. Given this action-part
mapping, we combine body parts from two motions together
and establish the first automated method to spatially compose
two actions. However, training data with compositional actions
is always limited by the combinatorics. Hence, we further cre-
ate synthetic data with this approach, and use it to train a new
state-of-the-art text-to-motion generation model, called SINC
(“SImultaneous actioN Compositions for 3D human motions” ).
In our experiments, we find that training with such GPT-guided
synthetic data improves spatial composition generation over
baselines. Our code is publicly available at sinc.is.tue.mpg.de.

1. Introduction

Text-conditioned 3D human motion generation has recently
attracted increasing interest in the research community
[4, 15, 44], where the task is to input natural language
descriptions of actions and to output motion sequences that
semantically correspond to the text. Such controlled motion
synthesis has a variety of applications in fields that rely on
motion capture data, such as special effects, games, and virtual
reality. While there have been promising results in this direction,
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{put hands on the waist,
move torso left}

{put hands on the waist,
lean forwards}

{put hands on the waist,
move torso right}

{sit down,
drink from a cup}

{sit down,
eat with both hands}

{sit down,
stretch with both arms}

Figure 1. Goal: We demonstrate the task of spatial compositions in
human motion synthesis. We generate 3D motions for a pair of actions,
defined by a pair of textual descriptions. Here, we provide six sample
input-output illustrations from our model. For example, we input the
set of actions{ ‘put hands on the waist’, ‘move torso left’ } and generate
one motion that simultaneously performs both.

fine-grained descriptions remain out of reach. Consider the
scenario in which a movie production needs a particular motion
of someone jumping down from a building. One may generate
an initial motion with one description, and then gradually
refine it until the desired motion is obtained, e.g., { ‘jumping
down’, ‘with arms behind the back’, ‘while bending the knees’}.
State-of-the-art methods [9, 44] often fail to produce reasonable
motions when conditioned on fine-grained text describing
multiple actions. In this work, we take a step towards this
goal by focusing on the spatial composition of motions. In
other words, we aim to generate one motion depicting multiple
simultaneous actions; see Figure 1. This paves the way for
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further research on fine-grained human motion generation.

Previous work [2, s s ] initially explored the
text-conditioned motion synthesis problem on the small-scale
KIT Motion-Language dataset [46]. Recently, work [4, 15] has
shifted to the large-scale motion capture collection AMASS [37],
and its language labels from BABEL [47] or HumanML3D [15].
In particular, similar to this work, TEACH [4] focuses on fine-
grained descriptions by addressing temporal compositionality,
that is, generating a sequence of actions, one affer the other.
We argue that composition in time is simpler for a model to
learn since the main challenge is to smoothly transition between
actions. This does not necessarily require action-specific knowl-
edge, and a simple interpolation method such as Slerp [51] may
provide a decent solution. On the other hand, there is no such
trivial solution for compositions in space, since one needs to
know action-specific body parts to combine two motions. If one
knows that ‘waving’ involves the hand and ‘walking’ involves
the legs, then compositing the two actions can be performed
by cutting and pasting the hand motion into the walking motion.
This is often done manually in the animation industry.

To automate this process, we observe that pretrained
language models such as GPT-3 [7] encode knowledge about
which body parts are involved in different actions. This allows
us to first establish a spatial composition baseline (analogous
to the Slerp baseline for temporal compositions); i.e., indepen-
dently generating actions then combining with heuristics. Not
surprisingly, we find that this is suboptimal. Instead, we use
the synthesized compositions of actions as additional training
data for a text-to-motion network. This enriched dataset enables
our model, called SINC (“‘SImultaneous actioN Compositions
for 3D human motions”), to outperform the baseline. Our
GPT-based approach is similar in spirit to work that incorporates
external linguistic knowledge into visual tasks [6, 60, 64].

While BABEL [47] and HumanML3D [15] have relatively
large vocabularies of actions, they contain a limited number
of simultaneous actions. A single temporal segment is rarely
annotated with multiple texts. For example, BABEL contains
only roughly 2.5K segments with simultaneous actions, while
it has ~25K segments with only one action. This highlights the
difficulty of obtaining compositional data at scale. Moreover,
for any reasonably large set of actions, it is impractical to collect
data for all possible pairwise, or greater, combinations of actions
such that there exists no unseen combination at test time [62, 64].
With existing datasets, it is easy to learn spurious correlations.
For example, if waving is only ever observed by someone stand-
ing, a model will learn that waving involves moving the arm
with straight legs. Thus generating waving and sitting would
be highly unlikely. In our work, we address this challenge by
artificially creating compositional data for training using GPT-3.
By introducing more variety, our generative model is better able
to understand what is essential to an action like ‘waving’.

Our method, SINC, extends the generative text-to-motion
model TEMOS [44] such that it becomes robust to input text

describing more than one action, thanks to our synthetic training.
We intentionally build on an existing model to focus the analysis
on our proposed synthetic data. Given a mix of real single
actions, real pairs of actions, and synthetic pairs of actions, we
train a probabilistic text-conditioned motion generation model.
We introduce several baselines to measure sensitivity to the
model design, as well as to check whether our learned motion
decoder outperforms a simpler compositing technique (i.e.,
simply using our GPT-guided data creation approach, along with
a single-action generation model). We observe limited realism
when compositing different body parts together, and need
to incorporate several heuristics, for example when merging
motions whose body parts overlap. While such synthetic data is
imperfect, it helps the model disentangle the body parts that are
relevant for an action and avoid learning spurious correlations.
Moreover, since our motion decoder has also access to real
motions, it learns to generate realistic motions, eliminating the
realism problem of the synthetic composition baseline.

Our contributions are the following: (i) We establish a new
benchmark on the problem of spatial compositions for 3D hu-
man motions, compare a number of baseline models on this new
problem, and introduce a new evaluation metric that is based on
a motion encoder that has been trained with text supervision. (ii)
To address the data scarcity problem, we propose a GPT-guided
synthetic data generation scheme by combining action-relevant
body parts from two motions. (iii) We provide an extensive set
of experiments on the BABEL dataset, including ablations that
demonstrate the advantages of our synthetic training, as well
as an analysis quantifying the ability of GPT-3 to assign part
labels to actions. Our code is available for research purposes.

2. Related Work

Human motion generation. While motion prediction
[5, 10, 34, 38, 41, 49, 65, 71], synthesis [18, 31] and in-
betweening [19, 27, 54, 73] represent the most common motion-
generation tasks, conditional synthesis through other modalities
(e.g., text) has recently received increasing interest. Example
conditions include music [32, 40], speech [I, 17], scenes
[20, 53, 59, 69], action [16, 43] or text [2, 4, 13, 15, 33, 44].
In the following, we focus on work involving text-conditioned
motion synthesis, which is most closely related to our work.

3D human motion and natural language. Unlike methods
that use categorical action labels to control the motion synthesis
[16, 36, 43], text-conditioned methods [2, 4, 13, 15, 33, 44]
seek to input free-form language descriptions that go beyond
a closed set of classes. The KIT-ML dataset [40] comprises
textual annotations for motion capture data, representing
the first benchmark for this task. More recently, the larger
scale AMASS [37] motion capture collection is labeled with
language descriptions by BABEL [47] and HumanML3D [15].
A common solution to text-conditioned synthesis is to design
a cross-modal joint space between motions and language
[2, 13, 44]. TM2T [14] introduces a framework to jointly
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q right arm
raise arms S
left arm
GPT-3
with few-shot examples,
list of body parts
stroll left leg
Choose answers from the list
<list of body parts>.
Here are some examples:
[...]
[...]
Question: What are the body parts
involved in the action: stroll?
Answer:
Actions Prompt Body parts

Compositing

Composited motion

Single motions

Figure 2. GPT-guided synthetic training data creation: We illustrate our procedure to generate Synth-Pairs. Here, we combine two motion
sequences from the training set with the corresponding labels ‘stroll” and ‘raise arms’. We first prompt GPT-3 with the instructions, few-shot
examples containing question-answer pairs, and giving the action of interest in the last question without the answer. We minimally post-process the
output of GPT-3 to assign this action to a set of body parts. The relevant body parts from each motion are then stitched together to form a new

synthetically composited motion.

perform text-to-motion and motion-to-text, integrating a
back-translation loss. In contrast to the deterministic methods
of [2, 13], TEMOS [44] employs a VAE-based probabilistic
approach (building on ACTOR [43]) that can generate multiple
motions per textual input, and establishes the state of the art on
the KIT benchmark [46] with a non-autoregressive architecture.
Following the success of diffusion models [22, 52], very
recently, MDM [56], FLAME [28], MotionDiffuse [67], and
MoFusion [ 2] demonstrate diffusion-based motion synthesis.
Recent work [9] shows the potential of latent diffusion to
address the slow inference limitation. On the other hand,
T2M-GPT [66] obtains competitive performance compared with
diffusion using VQ-VAEs. Our approach is complementary
and applicable to existing models for text-to-motion synthesis.
In this work, we adopt TEMOS [44] and retrain it on the data
from [47] together with our proposed synthetic compositions.

In contrast to previous work, our focus is on the composition
of simultaneous actions. Prior work on compositional actions
focuses on temporal compositions; i.e., inputting a sequence
of textual descriptions). Early influential work [3] employs
dynamic-programming approaches to compose existing motions
from a motion database with action labels. Recently, Wang et
al. [59] generate a sequence of actions in 3D scenes by synthe-
sizing pose anchors that are then placed in the scene and refined
by infilling. TEACH [4] extends TEMOS [44] by incorporating
an action-level recursive design that generates the next action
conditioned on the past motion. ActionGPT [25] improves this
model by retraining it with text augmentations using language
models. Concurrently, MultiAct [30] similarly aims to produce

continuous transitions between generated actions. In contrast to
previous work [4, 25, 30], we focus on spatial compositionality,
inputting text that describes simultaneous actions. In this
direction, MotionCLIP [55] and MDM [56] test the composi-
tional capabilities of their methods, but only show preliminary
analyses. The concurrent work of MotionDiffuse [67] injects
manually labeled body-part information and performs noise
interpolation to obtain spatial compositionality.

External linguistic knowledge. Large language models have
been exploited for many visual tasks such as instruction-
conditioned image editing [6], visual relationship detection [64],
and human-object reconstruction [60], among others. Similar
to us, Wang et al. [60] incorporate GPT by asking what body
part is in contact with a given object, which in turn is used for
image-based 3D human-object reconstruction. On the other
hand, we exploit GPT to extract knowledge about body parts
that are involved in an action. To the best of our knowledge, we
are the first to systematically model such body part associations
from textual descriptions.

Training with synthetic data. Using synthetic data to
train machine learning models is a standard approach for
solving many visual recognition tasks, such as 3D body pose
estimation [8, 42], 2D body part segmentation [58], 3D hand
pose estimation [2 1], video action recognition [57], 2D body
pose estimation [48] pedestrian detection [45], and optical flow
estimation [24]. In a similar spirit to us, the recent work of
HUMANISE [61] creates a synthetic dataset of human-scene
interactions by combining 4 actions from BABEL [47] with
3D scenes, and pairing them with language descriptions. In



this work, we generate synthetic training data by combining
existing 3D motion assets and language labels to overcome the
data scarcity problem for compositional learning, helping our
method to avoid learning spurious correlations.
Compositionality. Compositionality has been explored in other
areas of computer vision, such as visual relation detection [62],
learning object attributes [39], human-object interaction [26],
video prediction [63], and video action recognition [!1]. For
example, Shuffle-then-assemble [62] explicitly forces their
visual relation detection model to become object-agnostic
to achieve generalization to unseen object pairs. Similarly,
COINS [70] aims to generate compositions of human-scene
static interactions, where poses that match a text description
are generated in a 3D scene. Here, we focus on action
compositionality in space, i.e., simultaneity in time.

3. Spatial Composition of Motions from Textual
Descriptions

Given a set of action descriptions in the form of text, such as
{“walk in a circle”, “wave with the right hand”}, and a desired
motion duration F', the goal is to probabilistically generate
realistic 3D human motions such that all the given actions are
performed simultaneously in each generated sequence. We refer
to this problem as spatial composition. Note that as a proof
of concept, we perform our experiments mainly with pairs of
actions, but the framework is applicable beyond pairs.

In the following, we first introduce our framework to
generate synthetic training data by extracting correspondence
between actions and body parts from large language models
(Section 3.1). Then, we describe our model training with
synthetically augmented data (Section 3.2), and finally present
implementation details (Section 3.3).

3.1. GPT-guided synthetic training data creation

As explained in Section 1, we leverage a large language
model, GPT-3 [7], to automatically assign a given action
description to a set of body parts from a predefined list. Given
such correspondence, we then synthetically combine existing
motions together to create compositional training data. This
process is illustrated in Figure 2.

Body part label extraction from GPT-3. We process the
entire set of motion descriptions in the dataset to associate
each action description to a set of body parts. We use the
Text-Completion tool from OpenAl’s API of GPT-3 [7] to
extract the body part correspondence for a given language
description. Specifically, for each individual action description

in the dataset, we construct a prompt consisting of three parts.

(i) We specity the instruction in the form of “choose answers
from the list <list of body parts>’, where the list is [‘left arm’,
‘right arm’, ‘left leg’, ‘right leg’, ‘torso’, ‘neck’, ‘buttocks’,
‘waist’]”. (ii) We provide few-shot examples as question-answer

pairs, where the question is “What are the body parts involved
in the action: <action>?’, and the answer is the list of manually
labeled body parts. (iii) The last part has the same form as the
question, but we do not give the answer.

With this approach, GPT-3 outputs require minimal
processing, i.e., the responses are words that correspond almost
always to the provided list in (i). We post-process GPT-3’s
responses by removing punctuation, lowercasing, and mapping
to a list of SMPL [35] body parts that we define separately, and
use in the subsequent steps of our approach to generate synthetic
data. We take a subset of SMPL body parts: [‘left arm’, ‘right
arm’, ‘left leg’, ‘right leg’, ‘torso’, ‘global orientation’]. We
coarsely define these six different body parts, but dealing with
more fine-grained body parts is certainly possible.

From the first list, ‘neck’ is mapped to ‘torso’, and [ ‘waist’,
buttocks’] are mapped to ‘global orientation’. This is because,
when prompting for free-form outputs without providing a
list (i) or few-shot examples (ii), we qualitatively observe that
GPT-3 refers to changes in global orientation of the body using
words such as ‘waist’” or ‘buttocks’. Hence, we replace ‘global
orientation’ with these two words instead. GPT-3 also outputs
the word ‘neck’ in some cases even when it is not included in
the list, which motivated us to add it to our list.

To evaluate our choices for the prompt, in Table 1 we
measure the contribution of providing (i) the list, and (ii)
few-shot examples in the prompt. For this, we manually label
100 action descriptions from BABEL. For each action, we
annotate each body part as Yes/No/Sometimes to mark whether
that body part is involved with that action. Note that we use
‘Sometimes’ for ambiguous cases, where it is acceptable to
include, but not necessarily mandatory. For example ‘hands’
may or may not be involved in ‘walking’. We then check the
accuracy of GPT-3 body part labeling, by counting Yes/No as
1/0, ignoring optional body parts to not bias our evaluation.

A prompt asking for a free-form answer (i.e., “List the
body parts involved in this action: <action>"") complicates the
required post-processing as one needs to handle over-detailed
answers such as ‘deltoids’, ‘triceps’, or different ways of
referring to the same body part. We manually built a lookup
table to map from GPT-3 outputs to SMPL body parts but
obtained suboptimal results. As can be seen from Table 1,
providing the list (rows a vs b) significantly boosts the labeling
accuracy, especially for picking the correct left/right arm/leg,
which is further improved by providing few-shot examples (row
¢). We provide examples from GPT-3’s responses for various
prompts in Section B of the Appendix.

Could we extract body part labels without GPT-3? To test the
effectiveness of our GPT-based body part labeling, we also
implement an alternative body-part labeling approach based
on part velocity magnitude. The assumption is that we have
action-motion pairs, and if a body part movement is above
a threshold, that part should be involved with the associated
action. Specifically, we compute average positional velocities



Body part labeling Global Torso Leftarm Rightarm Leftleg Rightleg | Mean
Part velocity magnitude 0.72 0.68 0.60 0.55 0.58 0.67 0.65
GPT-based (a) free-form 0.72 0.70 0.85 0.86 0.80 0.83 0.79
GPT-based (b) choose from list 0.79 0.68 0.89 0.90 0.88 0.89 0.84
GPT-based (c) choose from list + few-shot examples 0.84 0.72 0.89 0.89 0.89 0.90 0.85

Table 1. GPT body part labeling performance: We report the part-labeling accuracy of GPT-3, as well as a simpler baseline based on part velocity
magnitudes. For GPT-3, we experiment with various types of prompts on 100 manually annotated actions. (a) Asking which body parts are involved
with an action, and post-processing free-form language outputs to associate to part labels. (b) Asking to choose from a given list of body parts, and
(c) additionally also providing few-shot examples. See Section 3.1 for more details on these prompts.

across frames for each body part, standardize (subtracting the
mean, dividing by the standard deviation over frames), and
determine a threshold (by visual inspection) to decide if a body
part is involved in a given motion. This heuristic baseline has
the disadvantage that it may suffer from spurious correlations
(e.g., if we only see waving while walking, we will think that
leg motion is critical to waving). From the first row of Table 1,
we observe that the accuracy of this approach is significantly
lower than the GPT-based approaches.

Body part composition to create new motions. Given a set
of labeled motions to combine, and the extracted GPT-3 body
parts involved, we first determine if the actions are compatible;
i.e., whether a valid motion can be composited, based on the de-
scriptions. For example, the actions [ ‘walking’, ‘kicking with the
right leg’] may not be performed at the same time as they both
include the body part ‘right leg’. For the synthetic training data,
we only create compositions for valid pairs that are compatible
in terms of their body part involvement, and use real motions
from the database. Next, we detail the data creation procedure.

Given two motions A and B, along with the corresponding
selected body parts extracted by GPT-3, we compose these
motions into a new one by performing the following steps: (1)
We trim the longer motion to match the length of the shorter
one; (2) We order the motions A and B such that motion B
always has fewer body parts than motion A; (3) If motion
B involves at least one leg or the global orientation, we also
select both legs, the global orientation, and translation from
motion B (otherwise, we obtain these 4 values from motion
A); (4) The remaining unselected body parts (if any) are taken
from motion A; (5) The composited motion is obtained by
combining selected body parts from motion A and B, along
with the translation according to step 3. We perform step 3
to retain plausibility as much as possible, as the leg motions
are highly correlated with changes in global translation and
orientation. This procedure ensures realism and accuracy of the
compositions to some extent; but does not provide a guarantee.

Note that we also employ this approach as a baseline in
our experiments, where we combine the motions under these
assumptions using two generated motions from a single-action
trained model. In this case, body part incompatibilities may
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Figure 3. Model architecture: We extend TEMOS [44] such that it
is trained with compositional actions. We build multiple descriptions
given two action labels, by adding words such as ‘while’, ‘during’, etc.
‘We then randomly sample one version during training as input to the
text encoder.

occur ( ‘walking” and ‘kicking’ both involve the leg), and body
parts from motion B override the conflicting parts from motion
A (see Section C of the Appendix for further details).

3.2. Learning to generate spatial compositions

We employ the recent architecture TEMOS [44], which en-
codes the text into a distribution via a Transformer encoder (text
encoder 7.,.), and produces motions by using a Transformer
decoder (motion decoder M g..). Similar to Language2Pose [2],
TEMOS contains a motion encoder (M.,.) and encourages
a cross-modal joint space between text and motion embeddings.
A simplified overview of the architecture can be seen in
Figure 3. At test time, the motion encoder is not used.

The motion encoder takes as input a body motion sequence
B e R4 where d; is the feature dimension and [ the maxi-
mum motion length and outputs a single latent vector 2™ and a
distribution A/ (2 M), Similarly, the text encoder outputs 27,
which is sampled from the distribution A'(u”", $7). These dis-



tribution parameters are obtained by appending two extra learn-
able tokens in the transformer encoder, and taking their corre-
sponding outputs [43]. The latent vectors are sampled using the
re-parametrization trick [29]. The motion decoder then takes as
input (a) the duration encoded by positional encodings F' € R!*4,
where [ is the maximum motion length and d the latent dimen-
sion, (b) along with either the motion 2™ or text 27 latent vector.
The model is supervised with the standard normal
distribution losses, L] ,=KL(N (uT, £T), N(0, I)) and
LL=ICLN (M, M), N(0,I)) for the text and motion
distributions, respectively. Moreover, Lz = £, (2T, 2M) is
used to force the text latent vectors to be close to the motion
latent vector, where L~1 is the smooth L1 loss. Finally, the
distributions of different texts and the motion are supervised
via LT —ICL(N (T, 5T),N (™ £M)) and its symmetric
version L’;QM. The reconstruction losses for the generated mo-
tions, BM and BT, from both the motion and the text branches,
Lr=L1(B,BT)+L1(B,BM), are added to the total loss:

L=LT oL+ LT T WMy oLz (1)

While our experiments use TEMOS [44], our synthetic data
strategy is applicable to any text-to-motion generation model.
We provide further evidence on the benefits of synthetic
training on a diffusion-based approach (similar to MLD [9])
in Section A of the Appendix.

Input text format and augmentations. Here, we describe
how we provide the input to the text encoder. In case of a single
motion that is described by one action label, we simply input
the original label as in [44]. In case of two or more descriptions,
which is the focus of this work, we combine multiple descrip-
tions into a single text. Specifically, we use several keywords to
describe simultaneous actions (e.g., ‘while’, ‘at the same time’,
‘simultaneously’, ‘during’, etc.), and randomly place them in the
text description to form an input that imitates a free-form input.
Moreover, we shuffle the order of the labels, and add inflections
to verbs such as gerunds when grammatically applicable; e.g.,
when using ‘while’. Figure 3 shows some examples. Such
and input formation allows users to enter free-form language
descriptions at test time, which is a natural interface for humans.
During training, we pick a random text augmentation, and at
test time, we evaluate all the models using the conjunction word
‘while’. In Section E.1 of the Appendix, we provide results with
more conjunction words both seen and unseen during training.

3.3. Implementation details

We define a 3D human motion as a sequence of human poses
using the SMPL body model [35]. As in TEMOS [23, 44],
we represent the motion using the 6D rotations [72] for body
joints and the 2D-projection of the z,y trajectory along with
the 2 translation. This results in d¢ = 135 for each body pose
in each motion sequence. All the motions are canonicalized
to face the same forward direction and are standardized.

The input text is encoded with DistilBERT [50] (whose
parameters are frozen), followed by a learnable linear projection.
The latent dimension is fixed to d=256. We use 6 layers and
heads in the transformers with a linear projection of size 1024.
We set the batch size to 64 and the learning rate to 3-10~* for
all our experiments.

Our model is applicable to arbitrary numbers of actions for
a given motion. Therefore, we jointly train on single actions,
and multiple actions. Single actions are from real data. Multiple
actions can be (i) from synthetic pairs that are randomly
generated ‘on the fly’ or (ii) from real data where most such
motions have two labels, but we also include those with more
than two; see the supplementary video on our project page for
more details. For each sequence in a mini-batch, if it is a real
single action, with probability p, we combine it randomly with
another compatible action.

4. Experiments

We present data and evaluation metrics (Section 4.1),
followed by the baselines we introduce (Section 4.2). We
report quantitative experimental results with ablations (Sec-
tions 4.3 and 4.4). We conclude with a qualitative analysis
(Section 4.5) and a discussion of limitations (Section 4.6).

4.1. Data and evaluation metrics

We use the BABEL dataset [47], to exploit its unique po-
tential to study simultaneous actions. Some BABEL motions
come with multiple language descriptions where annotations
can overlap in time. We extract all such simultaneous action
pairs for both training (2851 motions), and validation sets (1232
motions). We only consider the sequences that have a length
between 600 (20 sec.) and 15 (0.5 sec.) frames. From the
validation set, we exclude redundant pairs with the label ‘stand’,
because this commonly occurs in the data while not representing
challenging cases. We also remove pairs that are seen in the
training set, and end up with 667 sequences that contain two
simultaneous actions. The results on the full validation set are
provided in Section E.4 of the Appendix. Besides the simulta-
neous pairs, we include the single-action data from BABEL in
training. Specifically, there are 24066 and 8711 single-action
motions for training and validation sets, respectively. In our
experiments, we denote the simultaneous actions from BABEL
with Real-Pairs, the single-motion segments from BABEL with
Real-Singles, and our synthetic data created by using body-part
labels from GPT with Synth-Pairs. We perform evaluation only
on the real spatial pairs of the BABEL validation set to assess the
quality of simultaneous action generation. We use the validation
set as test set and train all of our models for 500 epochs.

We report evaluation metrics adopted by [4, 13, 44]: Average
Positional Error (APE), and Average Variational Error (AVE).
However, we observe that these metrics do not always correlate
well with the visual quality of motions, nor their semantic
correspondence. We introduce, and additionally report, a new



Model Tr. Data TEMOS 1 Average Positional Error | Average Variance Error |,

Real-P  Real-S score rootjoint  global traj. mean local mean global | rootjoint global traj. meanlocal mean global
Single-action X v 0.601 0.592 0.551 0.286 0.712 0.076 0.075 0.013 0.083
Single-action GPT-compositing X v 0.618 0.546 0.507 0.282 0.666 0.076 0.075 0.013 0.082
SINC-STE v X 0.614 0.636 0.615 0.275 0.743 0.082 0.081 0.014 0.090
SINC v X 0.631 0.703 0.682 0.269 0.815 0.107 0.106 0.013 0.114
SINC v v 0.640 0.601 0.573 0.268 0.724 0.093 0.092 0.012 0.100

Table 2. Baseline comparison: We train only with Real-Pairs of the BABEL dataset and report performance when compositing naively or with
GPT-3 annotations. Furthermore, we ablate the model design for handling multiple textual inputs when extending TEMOS [44]. We observe better
performance at handling action pairs with a single text encoder (SINC) that takes as input the two text labels as a single free-form description
with various augmentations, as described in Section 3.2, compared to separate text encodings of the labels (SINC-STE). Moreover, we report the

performance of SINC when adding Real-Singles, as well.

Synthetic data Training Data TEMOS 1 Average Positional Error | Average Variance Error |
Y Real-P  Real-S%  Synth-P % score rootjoint  global traj. mean local mean global | rootjoint global traj. meanlocal mean global
N/A v 0 0 0.631 0.703 0.682 0.269 0.815 0.107 0.106 0.013 0.114
v 100 0 0.640 0.601 0.573 0.268 0.724 0.093 0.092 0.012 0.100
Random composition X 0 100 0.539 0.489 0.434 0.291 0.595 0.075 0.074 0.012 0.082
X 50 50 0.540 0.587 0.535 0.288 0.687 0.077 0.076 0.012 0.083
v 0 100 0.619 0.485 0.438 0.272 0.602 0.074 0.073 0.011 0.081
v 50 50 0.617 0.454 0.394 0.272 0.560 0.069 0.068 0.011 0.075
GPT composition X 0 100 0.618 0.478 0451 0.265 0.610 0.063 0.062 0.012 0.070
X 50 50 0.541 0.646 0.598 0.290 0.747 0.078 0.077 0.012 0.085
v 0 100 0.642 0.553 0.527 0.266 0.671 0.061 0.060 0.011 0.068
v 50 50 0.644 0.481 0.452 0.261 0.605 0.064 0.062 0.011 0.070

Table 3. Contribution of the synthetic data: We report performance when including two types of synthetic data created by body part combination,
either determined by GPT or randomly. We further experiment (i) with different percentages of sampling ratios between the Real-Singles and

Synth-Pairs, and (ii) with the inclusion of Real-Pairs.

TEMOS score, which compares the cosine similarity between
the generated motion and the ground truth after encoding them
into the motion encoder of TEMOS [44], which is trained on
BABEL Real-Singles (we do not observe significant changes
when altering this model with TEMOS trained on different
data; see Section E.2 of the Appendix). This is similar in spirit
to BERTScore [68], which evaluates text generation quality
by comparing to the ground truth in the text embedding space.
More details can be found in Section D of the Appendix. While
this metric is also imperfect (e.g., it still assumes a single ground
truth action), we observe that it better correlates with realism
and motion semantics as it has been trained to encode motions
controlled by text descriptions. An alternative performance
measure is adopted by [ 5] that reports motion-to-text retrieval
metrics, randomly selecting for each motion 31 negative text
descriptions along with the ground truth. Finally, we include
diversity metrics in Section E.3 of the Appendix.

4.2. Single-action baselines

In the following, we introduce and describe two baselines
using a model trained with one description per motion: (i)
A naive single-action baseline that relies on a text-to-motion
synthesis model trained on single actions, tested on pairs
of actions. (ii) Our proposed GPT-compositing applied on
independent motion generations from a single-action model.
Single-action model. Our first baseline tests the ability of

single-action models to synthesize compositions by only
modifying the input text. We train with Real-Singles from
BABEL. At test time, we concatenate the text descriptions
using ‘while’ as a keyword and evaluate the generated motions.

Single-action GPT-compositing. Another single-action
baseline generates two independent motions given two texts,
which are then combined using our proposed GPT-guided
composition, stitching body parts from two motions (as
described in our synthetic data creation; see Section 3.1). Note
that unlike the synthetic data, which combines real motions,
this baseline combines generated motions. The disadvantage
of this model is that it requires GPT at test time, and is based on
heuristics that may be error-prone, such as trimming the motions
to the same duration, and resolving common body part labels
(see the supplementary video on our project page for details). In
the presence of a model that is trained only on individual actions
(Real-Singles), we observe that the GPT-based compositing of
two independent generations improves the performance over
the single-action baseline (as shown in Table 2 top). Based
on qualitative observation (see Section 4.5), the single-action
baseline often generates one out of the two actions. The
GPT-compositing baseline better captures both actions; however,
lacks realism due to composing actions with heuristics. SINC,
which trains on compositional data, alleviates both issues.



4.3. The effect of the input text format

To confirm whether our free-form input format sacrifices per-
formance compared to a more controlled alternative of keeping
the two action texts separate, we experiment with a variant of our
SINC model by changing the text encoding. Instead of a single
text combining two actions, we concatenate them together with a
learnable separation token in between after independently encod-
ing the actions with DistiIBERT. We refer to this separate text
encoding variant as SINC-STE. In Table 2, we compare SINC
with SINC-STE when trained only with Real-Pairs, and observe
a better TEMOS score with the free-form text augmentations,
at the cost of worse positional errors. We observe that metrics
based on joint positions may score high even in the absence of
the second action, especially if it involves a fine-grained motion
(see supplementary video). Besides quantitative performance,
SINC has the advantage of allowing more flexible inputs.

4.4. Training with different sets of data

Contribution of Real-Singles and Real-Pairs. In Table 2, we
report the performance of SINC when adding both Real-Pairs
and Real-Singles to training. We see that training with the large
number of single actions of BABEL, in addition to the small
amount of action pairs, improves performance, and highlights
the limited scale of the available pairs.

Contribution of GPT-guided Synth-Pairs. We experiment
with different training sources in Table 3, mainly to assess the ef-
fect of adding synthetic training data. The percentages (0, 50, or
100) reflect the probability p that a real-single action is compos-
ited synthetically with another action (see Section 3.3). When
using all training data (i.e., Real-P, Real-S 50%, Synth-P 50%),
we obtain the best TEMOS score, and more importantly observe
better qualitative results (see Figure 5). In particular, the model
trained with GPT-guided synthetic data demonstrates superior
generalization capability to unseen combinations. In the supple-
mentary video, we provide results with input combinations that
are unseen both in the real training and validation sets.
Synthetic data without GPT guidance. We further test
whether our GPT-guidance to generate synthetic data is better
than just randomly mixing body parts (Random composition).
In Table 3, GPT compositions outperform Random composi-
tions, especially when training only on synthetic data (0.539
vs 0.618 TEMOS score).

4.5. Qualitative analysis

In Figure 5 (a), we present simultaneous action generations
using SINC for the validation set of BABEL. We show one ran-
dom generation from our model for each description pair (left),
along with the ground truth (right). Note that we display one
sample due to space constraints, but the model can synthesize
multiple diverse motions per input. We observe that, while being
sometimes different from the ground-truth motion, our gener-
ations follow the semantics of both actions, achieving spatial
compositionality. Moreover, we qualitatively compare different

Single-action GPT-compositing SINC [Real-P, Real-S, Synth-P]

go down the stairs}

| {walk forwards, turn left}

Figure 4. Single-action GPT-compositing vs SINC: We show two
examples that highlight the advantage of our model compared to GPT
compositions. Top: The detected body parts overlap causing the stitch-
ing to generate a forwards movement. Bottom: The global orientation
is taken from the ‘walk forwards’ failing to generate a left turn.

models trained with and without synthetic data in Figure 5 (b),
for the pair { stretch’, ‘sit down’} and {‘bend torso right’, ‘put
hands on hips’}. This action pair combination is unseen in Real-
Pairs, but is seen in the Synthetic-Pairs data. In both cases, the
Single-action model and the model that has not been trained on
Synthetic-Pairs (first two columns) fail to generate the motion
in contrast to SINC which is trained on spatial compositions.

Finally, in Figure 4 we show failure cases of GPT-
composition. Our baseline fails to generate a motion that
corresponds to the instruction when the body parts are
overlapping (top row). Another failure case happens when
global orientation is important for the semantics of an action
(‘turn left’) and is assigned to the walking action since it
involves both feet (bottom row).

4.6. Limitations

Our framework relies on synthetic data creation by combin-
ing arbitrary motions together. Even if the body parts are compat-
ible, in real life, not all actions appear simultaneously together.
Future work should also explore the semantic compatibility be-
tween actions by extracting this knowledge from language mod-
els to construct semantically meaningful compositions. How-
ever, language models are also prone to mistakes. In particular,
GPT-3 body part labels may be insufficient or ambiguous (e.g.,



Ground truth

{stand up, crossed legs}

SINC Ground truth

{climb down stairs, hold rail with left hand} {fight stance, right high kick} {walk forwards, lose balance}

{lift object with both hands,
bend down at the knees}

{spin arms backwards, walk}

(@)

Ground truth

{walk across a plank, raise both arms} {dodge, lift up left leg}

Single-action SINC [Real-P, Real-S] SINC [Real-P, Real-S, Synth-P] Single-action SINC [Real-P,Real-S]  SINC [Real-P, Real-S, Synth-P]  Ground truth

{stretch, sit down}

{bend torso right, place hands on hips}

Figure 5. Qualitative analysis: (a) We present qualitative results for our final model, SINC, for various description pairs from the validation set.
Our generations correctly correspond to the input semantics even when they are different from the ground truth, highlighting the challenge of
coordinate-based (positional) performance measures. We display the ground truth (GT) for reference to define what the given actions mean. (b)
‘We compare different models on two simultaneous action pairs. Both the Single-action model and the model not trained on synthetic data fail to
generate those two compositions. Our model trained with the synthetic data successfully generates the composition in both cases. We include more

comparisons in the supplementary video on our project page.

‘walking’ may or may not involve hands). Additionally, going
beyond our 6 course parts to obtain fine-grained body part label
association is important. In particular, this could involve the fin-
gers and even facial expressions. Another limitation of our work
(and the whole field) concerns the evaluation metrics. Despite in-
troducing a new TEMOS score, perceptually meaningful perfor-
mance measures are still missing. Finally, our model is conceptu-
ally not limited to pairs, but since it is rare to simultaneously per-
form more than two actions, we only focus on pairs in this work.

5. Conclusions

In this work, we established a new method to create spatial
compositions of 3D human motions. Given a set of textual
descriptions, our SINC model is able to generate motions that
simultaneously perform multiple actions presented as textual
input. We make use of the GPT-3 language model to obtain a
mapping between actions and body parts to automatically create
synthetic combinations of compatible actions. We use these syn-
thetic motions to enrich the training of our model and find that
it helps it generalize to new, complex, motions. We introduce
multiple baselines and experiment with different data sources

for this new problem. Our findings will open up possibilities for
further research in fine-grained motion synthesis. While here
we focus on spatial composition, future work should explore
jointly modeling spatial and temporal action composition.
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APPENDIX

This document provides additional details about our method
and experiments. In particular, we evaluate our synthetic data
approach on a recently proposed diffusion model [9] (Sec-
tion A), elaborate on our GPT-based body-part annotation
method (Section B), our synthetic data creation pipeline
(Section C), and our proposed TEMOS score (Section D). We
also provide additional quantitative evaluations (Section E).

Supplementary video. Along with this document, we provide
a video, available on the project page, which includes visual-
izations of a sample of generated motions; these are difficult
to convey in a static document. (i) We first briefly describe our
goal, motivation, and method. (ii) We then introduce baselines
and illustrate their failure modes. (iii) We provide qualitative
comparisons against baselines, while highlighting limitations of
the coordinate-based APE metric. (iv) Finally, we demonstrate
the ability of our model to generalize to out-of-distribution
input combinations, as well as combinations beyond pairs.

A. Additional experiment with diffusion models

To complement our study with the TEMOS model [44],
here, we provide an additional experiment by training a more
recent state-of-the-art architecture for text-conditioned motion
generation. Specifically, we implement Motion Latent Diffusion
(MLD) [9] with the same text input pipeline as our method (see
Section 3.2). Since MLD applies the diffusion on the latent
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Model Synthetic training TEMOS Score
MLD [9] X 0.612
MLD [9] v 0.638
TEMOS [44] X 0.640
TEMOS [44] v 0.644

Table A.1. Additional results with a diffusion model: We report the
performance of MLD [9] with and without adding the synthetic training
data. We observe that synthetic data helps for both MLD and TEMOS.

space, we extract a single latent vector per motion (using the
TEMOS model trained on Real-singles as a feature extractor).
We train the diffusion model for 1000 epochs on 2 GPUs, with
a batch size of 16, and learning rate of le-4. Instead of the
coordinate-based representation of Guo et al. [15], we directly
train on 6D rotation representation (as is done for TEMOS, see
Section 3.3). Apart from those adaptations, we use the same
architectural choices as in the original paper [9]. In Table A.1,
we report the results with and without synthetic data, as we
did for TEMOS in the main paper with the rows 10 and 2 of
Table 3, respectively. The same conclusion holds for MLD: the
model trained on additional synthetic data demonstrates better
performance than the one trained only on real data (Real-Pairs
and Real-Singles).

B. Body Part Labeling with GPT-3

BABEL includes 6518 unique language labels for
training and validation. We use these raw labels as in-
put in the GPT-3 query. We prompt the public API
https://openai.com/api/ for each of the BABEL
action labels and automatically retrieve the body parts that are
involved in the motion. We experimented with various prompts
before deciding on our final prompt template. We observed that
GPT-3 outputs are easier to parse and map to our predefined
list of body parts if we provide this list, as well as few-shot
examples consisting of question-answer pairs. We use the
following prompt, to extract the body part annotations for our
synthetic data creation, as described in Section 3.1:

The instructions for this task are to choose
your answers from the list below:

left arm
right arm
left leg
buttocks
waist
right leg
torso
neck

Here are some examples of the question and answer
pairs for this task:

Question: What are the body parts involved in the
action of: walk forwards?

Answer: right leg

left leg

buttocks


https://sinc.is.tue.mpg.de
https://openai.com/api/

Question: What are the body parts involved in the
action of: face to the left?

Answer: torso

neck

Question: What are the body parts involved in the
action of: put headphones over ears?

Answer: right arm

left arm

neck

Question: What are the body parts involved in the
action of: sit down?

Answer: right leg

left leg

buttocks

waist

Question: What are the body parts involved in the
action of: [ACTION]?

Listing 1. GPT prompt template

Listing 1 shows the full prompt used to extract the annotations
using GPT-3 for composing actions spatially. In Table 1 of
the main paper, we quantitatively evaluated the body part
labeling performance of this prompt, along with alternative
prompts. Here, in Table A.2, we provide qualitative examples to
illustrate the behavior of GPT-3 to each of the prompt types. (a)
“Free-form” prompt type contains only L40-41 from Listing 1.
(b) “Choosing from a list” contains both L1-11, L40-41. (c)
“Choosing from a list + Few-shot examples” refers to the full
prompt. As shown in Table A.2, using “Free-form” prompting
requires a tedious post-processing of GPT-3 responses, since
one needs a comprehensive mapping from all possible body
part namings to our list. Moreover, the level of details is not
consistent across actions (e.g., ‘left leg and hips’ versus ‘deltoid
and triceps muscles’). We extract the associated body parts by
detecting keywords from a manually constructed lookup table;
however, the labeling accuracy based on Table 1 of the main
paper is still lower than instructing GPT-3 to choose from a
list. We obtain further gains by including few-shot examples
in the prompt. This is demonstrated qualitatively in Table A.2
for the label ‘rotate shoulders’ which GPT-3 includes neck in
addition to torso or ‘walk backwards with arms attach to the
waist’ for which arms are mistakenly omitted for the “Choose
from a list” prompt. Our final prompt that provides both the
list and few-shot examples perform best, while also requiring
significantly less post-processing.

We explain the reasoning behind replacing ‘global orien-
tation’ with ‘waist’ and ‘buttocks’ in the list of body parts. In
our initial prompts we used ‘global orientation’ as part of the
list. However, we observed that the model frequently returned
‘waist’ and ‘buttocks’ even when they were not in the list.
Furthermore, GPT-3 responses included ‘global orientation’
even in cases when it was not necessary e.g., ‘lift arm’, ‘raise
leg’. Consequently, we chose to remove ‘global orientation’,
and add ‘waist’ and ‘buttocks’ instead.

Finally, we include the label ‘neck’ in addition to ‘torso°,
since GPT-3 tends to include ‘neck’ in its responses, especially
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Figure A.1. Body parts: Each color indicates a different body part.
Vertices (left) and the skeleton (right) are extracted from the SMPL
body model.

{walk, kick with the right leg}

Figure A.2. Testing incompatible simultaneous actions: We apply
our model SINC on the input{ ‘walk’, ‘kick with the right leg’} which
represents an example of two incompatible actions due to involving the
same body part ‘right leg’. We display two random generations from
our model, once with 2-second duration (left), and once with 4 seconds
(right). We observe that SINC generates one of the two actions in each
sample (‘kick’ on the left, ‘walk’ on the right).

when we prompt for the actions: ‘look left’ / ‘look right’.

We use 6 body part labels based on common body
segmentation maps [35], which we show in Figure A.1. Since
most of the AMASS dataset does not contain fine-grained
hand motions, we do not include hands as a separate body part.
Furthermore, we observe that GPT-3 behavior may become
inconsistent if we provide a long list of fine-grained parts
instead of few coarse labels. The main body parts include the
right/left extremities, the torso-neck part and the pelvis denoted
as global. Global, except for the pelvis rotation, includes global
translation of the body and it is used when either the waist or
buttocks are included in GPT-3’s response.

C. Synthetic Data Creation

We use GPT-3-guided spatial compositions in two parts of
this work. First, we use GPT-3 to benchmark how well a single-
action baseline can perform, by applying composition as post-
processing on independently generated motions (Figure A.3
bottom). Secondly, we use GPT-3 to create synthetic data to
train our model. In both cases, we employ the method described



Action

Prompt Type

GPT-3 Response

Free-form The person’s right arm, shoulder, and possibly the upper part of their body.
move right arm in circular motion Choosing from a list right arm

Choosing from a list + Few-shot examples ~ right arm

Free-form The left leg and the hips
make large circles with left leg in front of body ~ Choosing from a list left leg

Choosing from a list + Few-shot examples  left leg

overhead throw

Free-form
Choosing from a list
Choosing from a list + Few-shot examples

The deltoid muscle in the shoulder and the triceps muscle in the arm are moving when someone is doing an overhead throw.
left arm right arm
left arm right arm torso

walk backwards with arms attach to the waist

Free-form
Choosing from a list
Choosing from a list + Few-shot examples

The body parts involved in the action of walking backwards with arms attached to the waist are the legs, arms, back, and abdomen.
right leg left leg buttocks
left arm right arm left leg right leg waist

put down bottle with left hand

Free-form
Choosing from a list
Choosing from a list + Few-shot examples

Left arm Left hand Fingers
left arm
left arm torso

rotate shoulders

Free-form
Choosing from a list
Choosing from a list + Few-shot examples

The body parts involved in the action of rotating the shoulders are the neck, shoulders, arms, and back.
left arm right arm arm torso neck
left arm right arm arm torso

Table A.2. GPT response examples for different prompt types: We show the responses of GPT-3 on some examples that demonstrate the
differences between different prompt types (see Table 1 of the main paper). The output of the free-form prompt is non-trivial to parse and map to our
list of body parts. On the other hand, providing the list and few-shot examples encourages GPT-3 to follow a more strict format, and to describe the

body parts with the same words as in our list.

in Section 3.1 of the main paper. We use the heuristic of stitching
the motion with less body parts (motion B) on top of the other
motion (motion A), because the body parts of motion B are more
likely to be local (as in “waving the right hand”) and important
for keeping the semantic of the motion. On the other hand,
motion A is more likely to be a global motion (as in “walking” or
“sitting””) and grafting motion B onto motion A usually produces
a realistic motion and preserves the semantics of both motions.
Note that these heuristics were determined based on visual
inspection over several examples, and may not be optimal.

The difference in the case of synthetic data creation
is the compatibility test, which makes sure that no body
part is involved in both of the motions being composited.
Moreover, synthetic data combines existing real motions, and
the single-action baseline combines generated motions.

We only apply the compatibility check for the synthetic data
generation to avoid composing invalid motions, since a human
can physically not perform two actions with the same body part
in most cases. This choice was simply to ensure better synthetic
data quality, as without it, the composition may be reduced
down to one action (e.g., ‘walking” would overwrite ‘kicking’
as the leg cannot do both). At test time, when we query ‘walk’
and ‘kick with the right leg’ with two different durations, SINC
randomly generates one of the two actions, as seen in Figure A.2.

D. TEMOS Score

The position-based metrics typically used in prior
work [4, 13, 44] compare generated motions with the ground-
truth motion in the coordinate space local to the body: they
measure differences of positions and do not take into account
semantics. Here are four types of examples where the metrics
can fail: 1) with a cyclic motion such as “walking”, the
generation can be out of phase with the ground truth and still
be semantically valid; 2) even for a non-cyclic motion such as
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Single-action:

walk forwards while raising arms —» = TEMOS

Single-action GPT-compositing:

walk forwards —» = TEMOS
\ GPT-

compositing
raise arms —  TEMOS /

Figure A.3. Single-action baselines: For both baselines, TEMOS is
trained on Real-Singles of BABEL. On the top, we concatenate the
textual inputs by adding the word “while” in between actions. On the
bottom, we generate the two actions independently and combine them
with the body part guidance from GPT-3.

RealPairs >2
1.31%

RealSingles
89.4%

Figure A 4. Distribution of the training set: The simultaneous Real-
Pairs are the vast minority of the data, highlighting the importance
of automatically enriching training data through our synthetic spatial
compositions.

“throwing an object”, the timing can be different and can lead to
bad scores on common metrics; 3) if the input text description
is ambiguous such as “kick” (where the motion can be done
from one leg or the other), the metrics may not reflect the



Conjuction Word See.n 'dunng Model TEMOS 1 N Average Posmonal Error | N Average .Vanance Error |
training score root joint  global traj.  mean local mean global | root joint  global traj. meanlocal mean global
hile / Single-action |  0.601 0.592 0.551 0.286 0712 | 0076 0.075 0013 0.083
SINC 0.644 0493 0463 0.266 0616 | 0.066 0.065 0.012 0.072
durs , Single-action |  0.598 0.629 0.587 0.284 0752 | 0085 0.084 0.013 0.093
uring SINC 0.642 0.497 0471 0.261 0622 | 0065 0.063 0.012 0.071
o tt the same time o Single-action |  0.599 0.607 0.568 0.283 0722 | 0084 0.083 0.014 0.092
e SINC 0.643 0495 0468 0.264 0620 |  0.065 0.064 0.012 0.072
‘ el X Single-action |  0.600 0.611 0.570 0.294 0736 | 0081 0.081 0.012 0.089
0 paratie SINC 0.643 0583 0555 0266 0704 | 0074 0072 0012 0.080
ilet X Single-action |  0.599 0.551 0511 0.288 0670 | 0073 0.072 0.012 0.080
whiLs SINC 0.644 0.491 0.461 0.262 0614 | 0066 0.065 0.012 0.072
conchronousl X Single-action |  0.596 0.520 0476 0.294 0644 | 0074 0.072 0013 0.081
Y Y SINC 0.637 0.520 0.492 0.261 0.644 | 00644  0.0632 0011 0.070

Table A.3. Evaluation using different conjunction words: In Table 2 of the main paper, we evaluated the models with the conjunction word
while. Here, we report performance when joining the two actions using other conjunction words, for both seen and unseen conjunction words
during training. We observe similar trends for the TEMOS scores and the positional metrics as for using while to join the actions. Overall,
performance of Single-action methods remains significantly inferior, especially for the TEMOS score. Note that SINC refers to our best model

which is trained on both Real Singles, Real Pairs and Synthetic Pairs.

Model used for TEMOS score

Single-action SINC
Single-action 0.601 0.594
SINC 0.644 0.637

Table A.4. TEMOS score with various TEMOS models: We report
performance using different trained models to compute the TEMOS
score. While the absolute score slightly differs when measured with
a different model (e.g., 0.644 vs 0.637), the relative ranking of the
models we compare remains the same.

quality of the generated motion; 4) if the motion demonstrates
severe foot sliding or body translation artifacts, the error may
be dominated by the translation error, effectively ignoring the
overall implausibility of the limb motion e.g., feet not moving.

To avoid these issues, we introduce another performance
measure called TEMOS score. We train a TEMOS model on
BABEL Real-Singles for 1000 epochs, freeze its weights, and
use its motion encoder component. Then, we extract features by
feeding a motion B to the motion encoder, and use the mean of
the distribution as the feature vector f. This feature captures the
semantics of the motion as the motion space has been trained
to explicitly model motion-text matching, i.e., cross-modal
embedding space.

To calculate the TEMOS score, we feed the ground truth and
the generated motions to the motion encoder, and extract the fea-
ture vectors fgr and fi,otion, respectively. Then we compute
the score based on their cosine similarity as follows:

1
1+
2 (
The range of this score is between 0 and 1, with a maximum
at 1, which occurs when the two motions are identical.

fGT : fmotion

||fGT|| Hfmotion”

TEMOS score( far, fmotion) =
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Div. —& Multimod. 1
SINC 1.10 1.13
Real 1.34 -

Table A.5. Diversity evaluation: We report the diversity and multi-
modality metrics of [15] for our SINC model.

E. Additional Quantitative Evaluation

We report quantitative results when evaluating with various
conjunction words (Section E.1), when using various TEMOS
models to compute the TEMOS score (Section E.2), when
evaluating the diversity and multimodality metrics (Section E.3),
and, when evaluating on the full validation set for completeness
(Section E.4).

E.1. More conjunction words

In our main paper experiments, we used while as our
conjunction word. For completeness, in Table A.3 we evaluate
the Single-action method and our best model with other
conjunction words at test time. We observe that the differences
are minimal and the methods perform similarly across different
conjunctions. This is true for all conjunctions both seen and
unseen during training. The performance is similar, likely due to
the text embeddings mapping the expressions to similar points.

E.2. TEMOS score with various TEMOS models

As mentioned in Section 4.1 of the main paper, to report the
TEMOS score, we use a TEMOS model trained on Real-Singles
of BABEL. Here, we analyze whether the choice of the TEMOS
model has a large impact on the results when trained on pairs.
In Table A .4, we observe that the TEMOS score trend is similar
when computed with TEMOS models trained on Real-Singles
(Single-action) or on all real and synthetic data (SINC).



Model Tr. Data TEMOS 1 Average Positional Error | Average Variance Error |,

Real-P  Real-S score rootjoint  global traj. mean local mean global | rootjoint global traj. meanlocal mean global
Single-action X v 0.607 0.516 0.483 0.262 0.626 0.067 0.066 0.012 0.073
Single-action GPT-compositing X v 0.626 0.458 0.431 0.244 0.569 0.068 0.067 0.011 0.074
SINC-STE v X 0.630 0.502 0477 0.249 0.616 0.074 0.074 0.010 0.08
SINC v X 0.634 0.602 0.586 0.243 0.704 0.084 0.083 0.011 0.091
SINC v v 0.645 0.519 0.495 0.248 0.632 0.078 0.077 0.010 0.084

Table A.6. Baseline comparison on the full validation set of BABEL: We observe similar trends with the filtered validation set reported in Table 2
of the main paper.

Synthetic data Training Data TEMOS 1 Average Positional Error | Average Variance Error |
Y Real-P  Real-S% Synth-P % score rootjoint  global traj. meanlocal mean global | rootjoint global traj. meanlocal mean global
N/A v 0 0 0.634 0.602 0.586 0.243 0.704 0.084 0.083 0.011 0.091
v 100 0 0.645 0.519 0.495 0.248 0.632 0.078 0.077 0.010 0.084
Random composition X 50 50 0.551 0.575 0.534 0.259 0.664 0.072 0.071 0.011 0.078
X 0 100 0.552 0.454 0411 0.263 0.551 0.068 0.067 0.011 0.074
v 50 50 0.619 0.396 0.362 0.242 0.504 0.060 0.059 0.010 0.067
v 0 100 0.619 0422 0.390 0.241 0.530 0.062 0.061 0.010 0.068
GPT composition X 50 50 0.554 0.641 0.604 0.262 0.731 0.074 0.073 0.011 0.081
X 0 100 0.632 0.424 0.405 0.237 0.543 0.055 0.054 0.011 0.062
v 50 50 0.651 0418 0.397 0.234 0.533 0.055 0.054 0.010 0.062
v 0 100 0.645 0472 0453 0.237 0.581 0.053 0.053 0.010 0.060

Table A.7. Contribution of the synthetic data on the full validation set of BABEL: We complement Table 3 of the main paper, by reporting on
the full validation set (without any filtering).

E.3. Diversity

Following Guo et al. [15], we report the overall diversity
(for all action pairs), and multimodality (i.e., per-action-pair
diversity) in Table A.5. We measure the L2 distance between
the TEMOS embeddings of two sets of generations. For
multimodality we sample 20 generations per description, and
for diversity we generate 5 samples per description. Both
metrics are computed for 300 random descriptions from the
BABEL validation set. Real motions do not contain a sufficient
number of motions for each action pair, thus the reason for
omitting their multimodality.

E.4. Full validation set

As explained in Section 4.1 of the main paper, we report all
the results on a challenging subset of the validation set (i.e., with-
out the action ‘stand’, and using only unseen examples). Here,
we provide the results on the full validation set for completeness.
In particular, we repeat the Tables 2 and 3 of the main paper, in
Tables A.6 and A.7. As expected, we observe slightly improved
results overall on this ‘easier’ validation set and the conclusions
remain similar to the comparison in the main paper.
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