We investigate the effect of a forest of pillars on a granular layer steadily flowing over a rough inclined plane. We quantify experimentally how the steady flow rate of grains is affected by the inter-pillars distance for different layer thicknesses and slope angles. We then propose a model based on a depth-average approximation associated with µ(I)-rheology that considers the additional force exerted by the pillars on the granular layer. This model succeeds in accounting for most of the observed results when taking into account some inertia due to the non-vanishing Froude number of the flow.

I. INTRODUCTION

The inclined plane is a classical configuration to investigate the rheological properties of a flowing material. In steady conditions, it gives access to the unknown bottom friction that balances the known gravity force. This configuration has been proved to be suitable for studying the rheology of yield stress fluids [START_REF] Coussot | Determination of yield stress fluid behaviour from inclined plane test[END_REF], dense suspensions [START_REF] Bonnoit | Inclined plane rheometry of a dense granular suspension[END_REF] and dry granular materials [START_REF] Gdr Midi | On dense granular flows[END_REF][START_REF] Pouliquen | Scaling laws in granular flows down rough inclined planes[END_REF]. For dry granular matter, experiments on an incline show that steady flows do not exist for a thickness layer smaller than a critical value h stop which has been observed to decrease for increasing slope angle [START_REF] Pouliquen | Scaling laws in granular flows down rough inclined planes[END_REF][START_REF] Daerr | Two types of avalanche behaviour in granular media[END_REF]. Above this threshold, steady flows are well described by the µ(I)-rheology [START_REF] Jop | A constitutive law for dense granular flows[END_REF] which relates the local friction coefficient µ to the local velocity gradient taking into account the local pressure through the inertial number I [START_REF] Forterre | Flows of dense granular media[END_REF][START_REF] Andreotti | Granular media: between fluid and solid[END_REF].

Even if this rheological model suffers from some weaknesses [START_REF] Gray | A depth-averaged µ(I)-rheology for shallow granular free-surface flows[END_REF], this local rheology succeeds in explaining most of the observed results in different geometries and complex flow configurations such as the the collapse of a granular column [START_REF] Lacaze | Axisymmetric granular collapse: a transient 3d flow test of viscoplasticity[END_REF][START_REF] Lagrée | The granular column collapse as a continuum: validity of a two-dimensional navier-stokes model with a µ (i)-rheology[END_REF] or the flow around a cylinder [START_REF] Seguin | Clustering and flow around a sphere moving into a grain cloud[END_REF]. The knowledge of the rheological behavior of granular matter is crucial for both industrial [START_REF] Gaudel | Granular avalanches down inclined and vibrated planes[END_REF][START_REF] Gaudel | Effect of vibrations on granular material flows down an inclined plane using dem simulations[END_REF] and natural [START_REF] Delannay | Granular and particleladen flows: from laboratory experiments to field observations[END_REF] situations. In particular, the understanding of granular flows is a first step towards a better prediction of snow avalanches as well as other hazardous geophysical granular flows such as debris flows, lahars and pyroclastic flows. In the case of snow avalanches, the presence of natural or artificial obstacles is known to reduce the destructive power of these events [START_REF] Bebi | Snow avalanche disturbances in forest ecosystemsstate of research and implications for management[END_REF][START_REF] Teich | Snow avalanches in forested terrain: Influence of forest parameters, topography, and avalanche characteristics on runout distance[END_REF]. Thus, the physical description of the interaction between granular avalanches and obstacles is a key input for mitigation of various geophysical phenomena. In order to develop a precise understanding of the avalanche/obstacles interaction, several experimental and numerical works have investigated configurations where obstacles are placed in the path of a non-cohesive granular flow on an inclined plane. Faug et al. have inspected numerically the case of grains flowing down an incline and impacting a wall normal to the incoming flow [START_REF] Faug | Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows[END_REF]. They showed that the wall generates a triangular stagnant zone upstream that sharply increases the mean force experienced by the wall at low inertial numbers. Cui and Gray investigated the gravity-driven granular flow around a circular cylinder in the supercritical regime [START_REF] Cui | Gravity-driven granular free-surface flow around a circular cylinder[END_REF]. In this situation, they observed that a very sharp bow shock wave is generated in front of the cylinder and a grain-free region forms on the lee side. They studied the position of the bow shock and the granular vacuum as a function of the flow properties and they proposed a simple two-parameters depth-averaged avalanche model to capture their observations. Other studies have moved beyond the case of a single obstacle and considered the effect of multiple obstacles. Benito et al. have investigated the role of a forest of cylindrical pillars on the stability of a granular layer on an incline [START_REF] Benito | Stability of a granular layer on an inclined "fakir plane[END_REF]. They revealed that the presence of pillars increases the stability of the granular layer towards larger slope angles. They succeeded in rationalizing this effect by a model that takes into account the additional friction force exerted by the pillar forest onto the granular layer. More recently, Luong et al.

have studied the spreading of a mass of grains on a slope through a regular array of pillars [START_REF] Luong | Spread-out and slow-down of granular flows through model forests[END_REF]. They found that the presence of pillars slows down the spreading of the granular mass and enhances its lateral dispersion. Luong et al. proposed an empirical model to capture the slow-down of the granular mass using an effective friction coefficient that depends on inter-pillars distance. However, the stationary flow of grains through a forest of obstacles has not been considered yet while it is of interest to better understand the coupling between granular flows and multiple obstacles, and to test the ability of a continuum rheological model to account for the observed results. This paper presents experimental results and modeling of the stationary granular flow that establishes down an inclined plane where a forest of obstacles is present. Section II details the setup used to study this steady gravity-driven granular flow and presents the experimental results for the flow rate as a function of pillar density, layer thickness and slope angle. In Section III, a modeling based on a depth-average approach associated with a µ(I)-rheology that accounts for the additional resistive force exerted by the pillar forest is shown to succeed in explaining the experimental results. A final discussion is then proposed in Section IV. 

II. EXPERIMENTS

A. Setup

The experimental setup sketched in Fig. 1(a) consists of a plane of length L = 50 cm and width W = 37 cm that can be inclined by an angle θ from the horizontal up to 45 • . The originality of this setup is to include a forest of cylindrical pillars positioned regularly (according to a centered square lattice) perpendicular to the plane surface with a separating distance denoted ∆ [Fig. 1(b)]. The diameter of the pillars is D = 2 mm and their height (35 mm) is always larger than the thickness of the flowing granular layer. Three different forests have been built with ∆ = 20, 14 and 10 mm corresponding to three pillar densities χ = 1/∆ 2 equal to 0.25, 0.51 and 1.00 cm -2 , respectively. The null pillar density (χ = 0) corresponds to a plane without any pillars. The particles used in the experiments are sieved glass beads (density ρ g = 2520 kg m -3 ) of diameter d = 450 µm with a relative dispersion in diameter of order 10%. The same glass beads have been used to cover the bottom of the inclined plane and to avoid wall-slip. The cylinder/grain size ratio D/d equals 4.4 and the number of grains between two pillars (∆ -D)/d is always larger than 17, which prevents clogging [START_REF] Zuriguel | Jamming during the discharge of granular matter from a silo[END_REF].

An experiment consists in filling with grains the reservoir placed at the top of the incline and opening the gate with an aperture H at the bottom of the reservoir. Using the scale placed at the end of the incline, we measure the mass of grains M falling from the plane as a function of time t from which we derive the instantaneous mass flow rate Q = dM/dt.

A low-incident laser sheet and a camera are used to estimate the mean thickness h of the flowing layer with an accuracy of 0.1 mm. We first realize a set of 60 experiments where the slope is constant θ = 29.5 • and where the mean layer thickness is varied between 5 and 22 times the grain diameter. Then, we realize 45 experiments where the inclination is varied between 24.5 • and 32.5 • by steps of 0.5 • and the layer thickness is maintained approximately constant around 10 grain diameter. For all the experiments, no significant variation of the flowing layer thickness along the transverse direction of the plane has been observed during the steady regime (within experimental uncertainties). We also measure the velocity of the grains at the surface of the flowing layer and we do not observe any significant variation along the transverse direction, except in a thin layer near the sidewalls (∼ 3 mm wide). Neglecting the presence of this layer on the estimate of the flow velocity averaged over the layer thickness, U = Q/ρ W h, leads to a relative error less than 1%, where ρ = ϕ ρ g = 1510 kg m -3 is the bulk density of the flowing material and ϕ the grain packing fraction. The volume fraction ϕ is estimated by weighting the grains contained on a given surface averaged on the thickness of the flowing layer h. We find that the averaged volume fraction is constant, ϕ = 0.60 ± 0.01, and does not show a clear dependency on the slope inclination nor on the thickness of the flowing layer in agreement with the observations of Benito et al. [START_REF] Benito | Stability of a granular layer on an inclined "fakir plane[END_REF].

Note that our experimental device may be reminiscent of the "Galton board" that has been used to study transverse dispersion of grains along their falling path through a forest of obstacles [START_REF] Bruno | Dispersive flow of disks through a two-dimensional galton board[END_REF][START_REF] Benito | Exit distribution function crossover in a galton board[END_REF]. However, our setup presents several differences with the Galton board: a continuous injection of grains over the whole width of the plane, a large inter-obstacles distance and a significant friction of the grains with the walls.

B. Results

In order to characterize our system, we first measure the thickness h stop at which the granular flow stops as a function of θ for different pillar densities, following the procedure described by Pouliquen [4]. This critical thickness is the thickness below which no steady flow can be observed. Figure 2 shows the stopping curves h stop (θ) for the different pillar densities χ considered in this study. We observe that the presence of pillars shifts the curve towards larger slope angles for larger χ, in agreement with the observations of Benito et al. [START_REF] Benito | Stability of a granular layer on an inclined "fakir plane[END_REF]. According to [START_REF] Benito | Stability of a granular layer on an inclined "fakir plane[END_REF], these results can be fitted by the equation

h stop (θ, χ) d = λ tan θ 2 -tan θ tan θ -tan θ 1 (χ) , (1) 
where θ 1 and θ 2 correspond to the characteristic stopping angles of the granular layer of infinite height (h → ∞) and vanishing layer thickness (h → 0), respectively, and λ is a numerical prefactor characterizing the influence of the rough bottom surface on the stopping height. Note that in Eq. ( 1), the dependence of tan θ 1 with χ results from the additional friction of the granular layer on pillars and does not correspond to a change in the bulk properties of the medium. For the case without pillars (χ = 0), the best fit of the data is θ 1 as shown in the inset of Fig. 2. A linear fit of the form tan θ 1 (χ) = tan θ 1 (0) + αχDd, with α ≃ 10, passes rather well through the data and is in relatively good agreement with the previous findings of Benito et al. [START_REF] Benito | Stability of a granular layer on an inclined "fakir plane[END_REF].

found for θ 1 = 22.2 • , θ 2 = 36.
Thereafter, we focus on the granular flow that establishes during a discharge of the reservoir. Figure 3(a) presents typical evolution of the mass of grains M as a function of the time t after the opening of the reservoir for a given aperture of the gate (H = 5.5 mm), a given pillar density (χ = 0.51 cm -2 ) and different slope angles (28

• ≤ θ ≤ 32 • ).
The inset of Fig. 3(a) shows the instantaneous mass flow rate Q(t) = dM/dt derived from these measurements. After a transient regime (t ≳ 5 s), we observe that the mass flow rate quickly increases up to a constant plateau value that is maintained most of the discharge duration before vanishing when the reservoir is empty. The flow rate from the reservoir is kept approximately constant since the pressure at the outlet does not depend on the height of grains due to Janssen effect [START_REF] Bertho | Dynamical Janssen effect on granular packing with moving walls[END_REF]. In the following, we focus on the steady flow rate ⟨Q⟩ developing in between these two starting and stopping transients and its dependency with the granular layer thickness and the slope angle. Each experiment has been reproduced at least three times in order to determine the average value of the steady flow rate and to estimate the dispersion of the results. For granular flows down a rough incline without any pillar forest (χ = 0), the mean velocity U normalized by (gh) 1/2 has been observed to scale linearly with the thickness h normalized by the stopping thickness h stop [START_REF] Pouliquen | Scaling laws in granular flows down rough inclined planes[END_REF][START_REF] Andreotti | Granular media: between fluid and solid[END_REF][START_REF] Forterre | Long-surface-wave instability in dense granular flows[END_REF]. This implies that the dimensionless flow rate Q should scale as h 5/2 /(h stop d 3/2 ). By testing this scaling with our data (Fig. 5),

we notice that the different sets of data obtained for χ = 0 follow well such a scaling with the numerical coefficient 0.14 obtained by Pouliquen et al. [START_REF] Pouliquen | Scaling laws in granular flows down rough inclined planes[END_REF] for flowing glass beads on a bottom of glued glass beads. However, the data sets corresponding to a pillar forest (χ ̸ = 0)

do not follow such a scaling, or with a slope that decreases significantly as χ increases. This finding may explain the difficulty encountered by Luong et al. [START_REF] Luong | Spread-out and slow-down of granular flows through model forests[END_REF] to model the spreading of a granular mass over a rough plan through a forest of pillars when taking into account the h stop (χ) variation reported by Benito et al. [START_REF] Benito | Stability of a granular layer on an inclined "fakir plane[END_REF]. In the next Section, we present a model that rationalizes these results.

III. MODEL

Let us now model the granular flow down the incline driven by the gravity g with a depth-average approach by considering the µ(I)-rheology [START_REF] Forterre | Flows of dense granular media[END_REF]. This rheology relates the friction coefficient of the granular medium µ, defined as the ratio of the shear stress over the normal stress P , with the inertial number defined as I = γ d/ P/ρ g , where γ is the shear rate of the flow. Under the depth-average approximation, a slice of the granular layer experiences its weight and a basal friction dictated by the µ(I)-rheology, two forces that balance in a stationary regime [START_REF] Forterre | Long-surface-wave instability in dense granular flows[END_REF]. In steady state, the force balance on a slice of the granular layer of thickness h and of unit length and unit width writes Experimental results obtained in different flow configurations have permitted to establish an expression for the dependency of the basal friction coefficient with flow parameters

ρgh sin θ -µ b (I b )ρgh cos θ = 0, (2) 
µ b (I b ) = tan θ 1 + tan θ 2 -tan θ 1 1 + I 0 /I b , (3) 
where I 0 is the characteristic inertial number above which the friction coefficient increases from tan θ 1 to tan θ 2 [START_REF] Andreotti | Granular media: between fluid and solid[END_REF]. Inserting this expression in Eq. ( 2), we get a prediction for the normalized flow rate in the absence of pillars: the data with Eq. ( 4) considering the values determined previously for the angles θ 1 and θ 2 (Section II B) and considering I 0 as a free parameter. The best fits are found for I 0 = 0.35 in reasonable agreement with previous estimates made for glass beads (I 0 ≃ 0.28 -0.30) [START_REF] Jop | A constitutive law for dense granular flows[END_REF][START_REF] Forterre | Flows of dense granular media[END_REF]. The model fits quite well the experimental data in Fig. 6(a) which means that the dimensionless flow rate Q follows the expected power scaling law (h/d) 5/2 . The model also fits well the data in Fig. 6(b) for moderate slope angle θ but seems to overestimate Q for θ ≳ 30 • . Note that for a given slope angle in between θ 1 and θ 2 , this model predicts a vanishing steady flow for a vanishing thickness h and fails to predict the stopping of the flow at h stop . This is a known weakness of the µ(I)-rheology as the complex liquid-solid transition of granular matter is not captured by this local approach [START_REF] Andreotti | Granular media: between fluid and solid[END_REF].

Q(h, θ) = 2I 0 5 tan θ -tan θ 1 tan θ 2 -tan θ ϕ cos θ h d 5/2 . ( 4 
Consider now the presence of pillars in the model (χ ̸ = 0). The force experienced by a single pillar immersed in a granular flow depends on the flow regime which is determined by the Froude number Fr = U/ √ gh cos θ based on the mean flow speed U and the layer thickness h [START_REF] Faug | Macroscopic force experienced by extended objects in granular flows over a very broad froude-number range[END_REF]. In the limit of small Froude numbers (Fr ≪ 1), the drag force results from the hydrostatic-like pressure, ρgz cos θ, applying on the exposed surface of the pillar, h D, and expresses as f h = βρgh 2 D cos θ, where β is a numerical prefactor [START_REF] Albert | Slow drag in a granular medium[END_REF]. In the opposite limit of large Froude numbers (Fr ≫ 1), the drag force results from inertia and expresses corresponding to the cases with a pillar forest (χ ̸ = 0) are smaller than 0.7. In this range, the drag force is expected to correspond mainly to a quasi-static force term with a little inertia. This implies that both contributions to the drag force have to be considered in our model. For simplicity, we will consider that the resulting force in this transitional regime corresponds to the addition of the two limit terms f h + f i . This crude modelling has been already used to reproduce quite well the variation of the force with Fr [START_REF] Faug | Macroscopic force experienced by extended objects in granular flows over a very broad froude-number range[END_REF], and correctly predicts the dynamics of an object impacting a granular material [START_REF] Seguin | Sphere penetration by impact in a granular medium: A collisional process[END_REF][START_REF] Katsuragi | Drag force scaling for penetration into granular media[END_REF]. In order to account for the presence of multiple pillars, we assume that there is no interaction between pillars and that the sum of the individual forces exerted by the pillars on the granular layer results in a global force per unit surface acting on the whole layer of grains which thus simply writes (f h + f i )χ. Indeed, the granular flow that establishes in the vicinity of a cylindrical obstacle has been studied experimentally, revealing that the velocity perturbation vanishes on a distance that is roughly one cylinder diameter [START_REF] Seguin | Dense granular flow around a penetrating object: Experiment and hydrodynamic model[END_REF]. In our experiments, the minimal distance between pillars (∆ = 10 mm) is much larger than the pillar diameter (D = 2 mm) so that no interaction between pillars is expected. Under these approximations, the force balance for a slice of the granular layer in the presence of pillars becomes

ρgh sin θ -µ b (U, h)ρgh cos θ -βρgχh 2 D cos θ -C d ρχhD U 2 = 0, (5) 
which can be written in a dimensionless form as

tan θ -µ b (U, h) -βχhD -C d χD U 2 g cos θ = 0. (6) 
Solving Eq. ( 6) provides the dependency of the mean flow speed U (or equivalently the normalized flow rate Q) with the relevant parameters of the problem (h, θ, χ, . . . ). In the particular case where C d = 0, a simple analytical solution of Eq. ( 5) can be found for the normalized flow rate Q:

Q = 2I 0 5 tan θ -tan θ 1 -βχhD tan θ 2 + βχhD -tan θ ϕ cos θ h d 5/2 . ( 7 
)
In this limit of vanishing inertial drag (C d = 0) corresponding to low enough Fr, Eq. ( 7)

predicts that the presence of pillars changes the discharge flow-curve Q(h, θ) through a shift of both friction coefficients µ 1 = tan θ 1 and µ 2 = tan θ 2 (associated to the inclined plane without pillars) by a quantity βχhD that is directly proportional to the density χ of pillars and their surface hD exposed to the flow. At a given angle, this correction mitigates the increase of the flow rate with h in qualitative agreement with the observations presented in Fig. 3. The shift of tan θ 2 predicted by Eq. ( 7) in the case of a flowing layer contrasts with the fact that no variation of tan θ 2 with χ is observed in the case of a stopping layer (as discussed in Section II B). This difference can be understood from the competition between the friction of the granular layer with the bottom wall and with pillars: indeed, when θ approaches θ 2 , the stopping granular layer necessarily has a negligible thickness and its behavior is dominated by the friction with the bottom wall (βχh stop D ≪ µ b ), whereas for a flowing layer with a larger thickness the resistance of pillars can no longer be neglected (βχhD ∼ µ b ). In order to compare quantitatively the predictions of Eq. ( 7) with our data, we used the values determined in the absence of pillars for the parameters tan θ 1 , tan θ 2 , I 0 and we consider the force coefficient β as a free parameter. The best fits of our experimental data with the predictions of Eq. ( 7 Let us now consider the general case where the inertial contribution is taken into account (C d ̸ = 0). For the sake of simplicity, we do not explicit the analytical solution of Eq. ( 5) but we present its numerical solutions. We consider the two force coefficients β and C d as free parameters and we look for the best fits of our data with model predictions. The best fits are found for β = 1.5 ± 0. This discrepancy highlights the limitation of the spatial averaging assumption. In practice, the pillars have a restricted zone of influence and cannot stop the flow away from their field of action, a behavior that is not accounted for the averaging assumption.

IV. DISCUSSION

The model developed in the limit of vanishing inertia (C d ≃ 0 when Fr ≪ 1) shows that the presence of pillars is accounted through the parameter βχhD for a steady flow of thickness h. This parameter, which is proportional to h, induces a reduction of flow rate that is larger for larger h at a given slope angle θ and for a pillar forest of given density χ. Note that the stopping thickness h stop was found to depend on χ through the parameter αχDd 

  FIG. 1. (a) Sketch of the experimental setup and notations used. (b) Top view of the inclined plane with the organisation of the forest of pillars along a centered square lattice. (c) Picture of the granular medium flowing through a pillar array of separating distance ∆ = 20 mm.
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 2 FIG. 2. Normalized thickness h stop /d of the remaining layer after an avalanche as a function of the slope angle θ for different pillar densities (•) χ = 0 cm -2 , (△) χ = 0.25 cm -2 , (⋄) χ = 0.51 cm -2 , and (□) χ = 1.00 cm -2 . The solid lines are the best fits of the data by Eq. (1) with λ = 1.55, θ 2 = 36.6 • , and θ 1 = 22.2 • , 22.4 • , 25.0 • and 26.2 • . Inset: Variation of tan θ 1 with the pillar density χ. The solid line is the best linear fit through the data of equation tan θ 1 = 0.404 + 10.2 χDd.
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 6 and λ = 1.55. For the cases with pillars (χ ̸ = 0), we keep θ 2 and λ unchanged following the findings of Benito et al. who show that only θ 1 depends significantly on χ[START_REF] Benito | Stability of a granular layer on an inclined "fakir plane[END_REF]. The best fits of the curves for the three pillar densities χ = 0.25, 0.51 and 1.00 cm -2 are found for θ 1 = 22.4 • , 25.0 • and 26.2 • , respectively. These fits appear as solid lines in Fig.2and pass quite well through the data. As expected, increasing χ increases
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 3 FIG. 3. (a) Mass of grains M as a function of time t after the opening of the reservoir for a given gate aperture (H = 5.5 mm), a pillar density (χ = 0.51 cm -2 ) and nine different slope angles from 28.0 • to 32.0 • by step of 0.5 • . Inset: derived mass flow rate Q = dM/dt as a function of time. (b) Normalized steady flow rate Q = ⟨Q⟩/ρW g 1/2 d 3/2 as a function of the normalized layer thickness h/d at slope angle θ = 29.5 • , for different pillar densities (•) χ = 0 cm -2 , (△) χ = 0.25 cm -2 , (⋄) χ = 0.51 cm -2 , and (□) χ = 1.00 cm -2 .

Figure 3 (

 3 b) presents the mean normalized flow rate Q = ⟨Q⟩/ρW g 1/2 d 3/2 as a function of the normalized thickness of the flowing layer h/d for a given slope angle θ = 29.5 • . In the absence of pillars (χ = 0), a supra-linear increase of Q with h/d is observed. The presence of the pillar forest (χ ̸ = 0) reduces the granular flow rate and the trend is no more supra-linear but rather sub-linear. The reduction of the flow rate is more significant as the thickness of the granular layer or the density of pillars increases. For the smallest pillar density (χ = 0.25 cm -2 ), the flow rate is only significantly reduced for large enough layer thicknesses (h/d ≳ 7), which is consistent with the fact that the stopping layer h stop at a slope angle of θ = 29.5 • is not significantly increased by a pillar forest of such a low density. Interestingly, the addition of pillars not only reduces the mass flow rate but also changes the dependence of Q with the layer thickness in a non-trivial way.In particular, for χ = 1.00 cm -2 , the flow rate is almost constant and no longer depends on the thickness of the granular layer [Fig.3(b)].Then we measure the steady flow rate ⟨Q⟩ as a function of the slope angle while keeping the flowing layer thickness constant in the best possible way. Indeed, the layer thickness can hardly be maintained strictly constant because the relation between the gate opening and the granular layer thickness is non-trivial as pointed out by Cui et al.[START_REF] Cui | Gravity-driven granular free-surface flow around a circular cylinder[END_REF]. Figures4(a) and 4(b) show the simultaneous measurements of Q and h/d as a function of the slope angle θ. The normalized flow rate is observed to increase with θ above a threshold angle which is about 24 • in the absence of pillars (χ = 0). This threshold value corresponds to the value θ stop (h/d) for the forced thickness h/d ≃ 10 that is kept approximately constant for different θ [Fig. 4(b)]. This observation is consistent with Fig. 2 where the flow stops for h/d ≃ 10 when θ = 24 • and χ = 0. When the pillar density is increased, it induces a shift of the threshold angle towards larger values up to about 30 • for the highest density (χ = 1.00 cm -2 ). Note that this increase of the flow rate is mainly due to an increase in velocity as the thickness of the flowing layer is approximately constant in the whole range of slope angle θ for each χ value [Fig. 4(b)].
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 4 (a) Normalized steady flow rate Q = ⟨Q⟩/ρW g 1/2 d 3/2 and (b) normalized layer thickness h/d, as a function of the slope angle θ for different pillar densities (•) χ = 0 cm -2 , (△) χ = 0.25 cm -2 , (⋄) χ = 0.51 cm -2 , and (□) χ = 1.00 cm -2 .
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 5 FIG.5. Normalized steady flow rate Q = ⟨Q⟩/ρW g 1/2 d 3/2 as a function of the normalized thickness (h/d) 3/2 h/h stop (χ) for different pillar densities (•) χ = 0 cm -2 , (△) χ = 0.25 cm -2 , (⋄) χ = 0.51 cm -2 , and (□) χ = 1.00 cm -2 . The solid line corresponds to the linear trend with the slope of 0.14 proposed by Pouliquen et al.[START_REF] Pouliquen | Scaling laws in granular flows down rough inclined planes[END_REF] for glass beads flowing down a slope without pillars.
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 6 FIG. 6. (a) Normalized steady flow rate Q = ⟨Q⟩/ρW g 1/2 d 3/2 as a function of the normalized layer thickness h/d for a given slope angle θ = 29.5 • . (b) Normalized steady flow rate Q divided by (h/d) 5/2 as a function of the slope angle θ. Same data as in Figs. 3(b) and 4. Dashed lines show the non-inertial predictions (C d = 0) from Eq. (7) for each pillar density with I 0 = 0.35 and β = 1.6. Solid lines present the inertial numerical solutions of Eq. (5) with β = 1.5 and C d = 3.

FIG. 7 .

 7 FIG. 7.Froude number Fr = Q (h/d) -3/2 (cos θ) -1/2 as a function of (a) the normalized layer thickness h/d and (b) the slope angle θ for four different pillar densities (•) χ = 0 cm -2 , (△) χ = 0.25 cm -2 , (⋄) χ = 0.51 cm -2 , and (□) χ = 1.00 cm -2 .

  ) are found for β = 1.5 ± 0.1, and are shown with dashed lines in Figs. 6(a) and 6(b) for all the pillar densities investigated in this study. The predictions of the non-inertial model capture the main trend in the data, i.e., the lowering of the granular flow with increasing pillar density. Nonetheless, the assumption of null inertial drag (C d = 0) is too strong to rationalize finely our experimental observations, in particular the variation of the dimensionless flow rate Q with the slope angle θ as observed in Fig. 6(b).

  Fig.6(a) corresponding to χ = 1.00 cm -2 ), a fact that is not observed in our experiments.
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  inset of Fig.2(b)]. Combining the linear variation of tan(θ 1 (χ)) with Eq. (6) for vanishing U leads to an estimate for the stopping thickness h stop /d = α/β ≃ 6 considering α ≃ 10 and β ≃ 1.5. This estimate is in rather good agreement with our data as we do not observed any steady flow for h/d ≲ 5 [Figs.3(b) and6(a)]. According to Eq. (7), the influence of the array of pillars on the granular flow rate is significant when the parameter βχhD is of the same order as tan θ -tan θ 1 or tan θ 2 -tan θ. In the intermediate case where θ = (θ 1 + θ 2 )/2, we have tan θ -tan θ 1 = tan θ 2 -tan θ = 0.17 and the term resulting from the presence of the pillar is equal to one fifth of this value when the pillar density reaches a critical value χ c ≃ 0.02/hD. Under these conditions, the presence of pillars is expected to reduce the mass flow rate by a factor of two thirds according to Eq. (7). In the case of the setup studied previously, where the pillar diameter is D = 2 mm and the layer thickness about 5 mm, the critical pillar density above which the presence of pillars impacts significantly the flow rate is χ c = 0.2 cm -2 . Transposing the same considerations to an avalanche of granular material occurring though a tree forest with typical values h ∼ 1 m and D ∼ 0.2 m, the critical obstacle density should be 0.1 m -2 corresponding to one tree every three meters.In this work, we have explored the effect of a forest of cylindrical pillars on the steady granular flow running down an incline. This experiment constitutes a paradigm for geophysical flow mitigation by a forest of obstacles. In addition to reduce the granular flow rate, the presence of pillars changes drastically the dependency of the flow rate with the thickness of the granular layer, i.e. the discharge flow-curve. We accounted for the non-trivial impact of the forest of pillars on the granular flow with a model based on a depth-averaged approach and the µ(I)-rheology. This model includes the effect of pillars through an averaged force applying on the granular layer and neglecting interactions between pillars. This approach has been proved to predict quantitatively the reduction of the granular flow rate induced by the presence of pillars. It can be used to determine the minimal pillar density necessary to reduce significantly the energy carried by the granular flow. These results prove that the µ(I)-rheology can be used to describe non-unidirectional granular flows as the one studied here. Nonetheless, some discrepancies between model predictions and experiments are remaining and should motivate future work to relax the averaging approximation and to study the granular flow occurring in the inter-space between pillars. Finally, this work lets several questions opened such as the influence of pillar organization on the granular flow. For example, it would be interesting to consider a random distribution of pillars on the inclined plane that should generate local clogging and preferred paths for the granular flow.
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