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Abstract

We investigate the effect of a forest of pillars on a granular layer steadily flowing over a rough

inclined plane. We quantify experimentally how the steady flow rate of grains is affected by the

inter-pillars distance for different layer thicknesses and slope angles. We then propose a model based

on a depth-average approximation associated with µ(I)-rheology that considers the additional force

exerted by the pillars on the granular layer. This model succeeds in accounting for most of the

observed results when taking into account some inertia due to the non-vanishing Froude number

of the flow.

I. INTRODUCTION

The inclined plane is a classical configuration to investigate the rheological properties

of a flowing material. In steady conditions, it gives access to the unknown bottom friction

that balances the known gravity force. This configuration has been proved to be suitable

for studying the rheology of yield stress fluids [1], dense suspensions [2] and dry granular

materials [3, 4]. For dry granular matter, experiments on an incline show that steady flows

do not exist for a thickness layer smaller than a critical value hstop which has been observed

to decrease for increasing slope angle [4, 5]. Above this threshold, steady flows are well

described by the µ(I)-rheology [6] which relates the local friction coefficient µ to the local

velocity gradient taking into account the local pressure through the inertial number I [7, 8].

Even if this rheological model suffers from some weaknesses [9], this local rheology succeeds

in explaining most of the observed results in different geometries and complex flow configu-

rations such as the the collapse of a granular column [10, 11] or the flow around a cylinder

[12]. The knowledge of the rheological behavior of granular matter is crucial for both indus-

trial [13, 14] and natural [15] situations. In particular, the understanding of granular flows

is a first step towards a better prediction of snow avalanches as well as other hazardous geo-

physical granular flows such as debris flows, lahars and pyroclastic flows. In the case of snow

avalanches, the presence of natural or artificial obstacles is known to reduce the destructive

power of these events [16, 17]. Thus, the physical description of the interaction between

granular avalanches and obstacles is a key input for mitigation of various geophysical phe-

nomena. In order to develop a precise understanding of the avalanche/obstacles interaction,

several experimental and numerical works have investigated configurations where obstacles
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are placed in the path of a non-cohesive granular flow on an inclined plane. Faug et al.

have inspected numerically the case of grains flowing down an incline and impacting a wall

normal to the incoming flow [18]. They showed that the wall generates a triangular stagnant

zone upstream that sharply increases the mean force experienced by the wall at low iner-

tial numbers. Cui and Gray investigated the gravity-driven granular flow around a circular

cylinder in the supercritical regime [19]. In this situation, they observed that a very sharp

bow shock wave is generated in front of the cylinder and a grain-free region forms on the

lee side. They studied the position of the bow shock and the granular vacuum as a function

of the flow properties and they proposed a simple two-parameters depth-averaged avalanche

model to capture their observations.

Other studies have moved beyond the case of a single obstacle and considered the effect

of multiple obstacles. Benito et al. have investigated the role of a forest of cylindrical pillars

on the stability of a granular layer on an incline [20]. They revealed that the presence

of pillars increases the stability of the granular layer towards larger slope angles. They

succeeded in rationalizing this effect by a model that takes into account the additional

friction force exerted by the pillar forest onto the granular layer. More recently, Luong et al.

have studied the spreading of a mass of grains on a slope through a regular array of pillars

[21]. They found that the presence of pillars slows down the spreading of the granular mass

and enhances its lateral dispersion. Luong et al. proposed an empirical model to capture

the slow-down of the granular mass using an effective friction coefficient that depends on

inter-pillars distance. However, the stationary flow of grains through a forest of obstacles

has not been considered yet while it is of interest to better understand the coupling between

granular flows and multiple obstacles, and to test the ability of a continuum rheological

model to account for the observed results.

This paper presents experimental results and modeling of the stationary granular flow

that establishes down an inclined plane where a forest of obstacles is present. Section II

details the setup used to study this steady gravity-driven granular flow and presents the

experimental results for the flow rate as a function of pillar density, layer thickness and

slope angle. In Section III, a modeling based on a depth-average approach associated with

a µ(I)-rheology that accounts for the additional resistive force exerted by the pillar forest is

shown to succeed in explaining the experimental results. A final discussion is then proposed

in Section IV.
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FIG. 1. (a) Sketch of the experimental setup and notations used. (b) Top view of the inclined

plane with the organisation of the forest of pillars along a centered square lattice. (c) Picture of

the granular medium flowing through a pillar array of separating distance ∆ = 20 mm.

II. EXPERIMENTS

A. Setup

The experimental setup sketched in Fig. 1(a) consists of a plane of length L = 50 cm

and width W = 37 cm that can be inclined by an angle θ from the horizontal up to 45◦.

The originality of this setup is to include a forest of cylindrical pillars positioned regularly

(according to a centered square lattice) perpendicular to the plane surface with a separating

distance denoted ∆ [Fig. 1(b)]. The diameter of the pillars is D = 2 mm and their height

(35 mm) is always larger than the thickness of the flowing granular layer. Three different

forests have been built with ∆ = 20, 14 and 10 mm corresponding to three pillar densities

χ = 1/∆2 equal to 0.25, 0.51 and 1.00 cm−2, respectively. The null pillar density (χ = 0)

corresponds to a plane without any pillars. The particles used in the experiments are sieved

glass beads (density ρg = 2520 kg m−3) of diameter d = 450 µm with a relative dispersion

in diameter of order 10%. The same glass beads have been used to cover the bottom of the

inclined plane and to avoid wall-slip. The cylinder/grain size ratio D/d equals 4.4 and the

number of grains between two pillars (∆ − D)/d is always larger than 17, which prevents

clogging [22].

An experiment consists in filling with grains the reservoir placed at the top of the incline
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and opening the gate with an aperture H at the bottom of the reservoir. Using the scale

placed at the end of the incline, we measure the mass of grains M falling from the plane

as a function of time t from which we derive the instantaneous mass flow rate Q = dM/dt.

A low-incident laser sheet and a camera are used to estimate the mean thickness h of the

flowing layer with an accuracy of 0.1 mm. We first realize a set of 60 experiments where

the slope is constant θ = 29.5◦ and where the mean layer thickness is varied between 5

and 22 times the grain diameter. Then, we realize 45 experiments where the inclination

is varied between 24.5◦ and 32.5◦ by steps of 0.5◦ and the layer thickness is maintained

approximately constant around 10 grain diameter. For all the experiments, no significant

variation of the flowing layer thickness along the transverse direction of the plane has been

observed during the steady regime (within experimental uncertainties). We also measure

the velocity of the grains at the surface of the flowing layer and we do not observe any

significant variation along the transverse direction, except in a thin layer near the sidewalls

(∼ 3 mm wide). Neglecting the presence of this layer on the estimate of the flow velocity

averaged over the layer thickness, U = Q/ρW h, leads to a relative error less than 1%, where

ρ = ϕ ρg = 1510 kg m−3 is the bulk density of the flowing material and ϕ the grain packing

fraction. The volume fraction ϕ is estimated by weighting the grains contained on a given

surface averaged on the thickness of the flowing layer h. We find that the averaged volume

fraction is constant, ϕ = 0.60 ± 0.01, and does not show a clear dependency on the slope

inclination nor on the thickness of the flowing layer in agreement with the observations of

Benito et al. [20].

Note that our experimental device may be reminiscent of the “Galton board” that has

been used to study transverse dispersion of grains along their falling path through a forest

of obstacles [23, 24]. However, our setup presents several differences with the Galton board:

a continuous injection of grains over the whole width of the plane, a large inter-obstacles

distance and a significant friction of the grains with the walls.

B. Results

In order to characterize our system, we first measure the thickness hstop at which the

granular flow stops as a function of θ for different pillar densities, following the procedure

described by Pouliquen [4]. This critical thickness is the thickness below which no steady
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FIG. 2. Normalized thickness hstop/d of the remaining layer after an avalanche as a function of the

slope angle θ for different pillar densities (◦) χ = 0 cm−2, (△) χ = 0.25 cm−2, (⋄) χ = 0.51 cm−2,

and (□) χ = 1.00 cm−2. The solid lines are the best fits of the data by Eq. (1) with λ = 1.55,

θ2 = 36.6◦, and θ1 = 22.2◦, 22.4◦, 25.0◦ and 26.2◦. Inset: Variation of tan θ1 with the pillar density

χ. The solid line is the best linear fit through the data of equation tan θ1 = 0.404 + 10.2χDd.

flow can be observed. Figure 2 shows the stopping curves hstop(θ) for the different pillar

densities χ considered in this study. We observe that the presence of pillars shifts the curve

towards larger slope angles for larger χ, in agreement with the observations of Benito et al.

[20]. According to [20], these results can be fitted by the equation

hstop(θ, χ)

d
= λ

tan θ2 − tan θ

tan θ − tan θ1(χ)
, (1)

where θ1 and θ2 correspond to the characteristic stopping angles of the granular layer of

infinite height (h → ∞) and vanishing layer thickness (h → 0), respectively, and λ is a

numerical prefactor characterizing the influence of the rough bottom surface on the stopping

height. Note that in Eq. (1), the dependence of tan θ1 with χ results from the additional

friction of the granular layer on pillars and does not correspond to a change in the bulk

properties of the medium. For the case without pillars (χ = 0), the best fit of the data is

found for θ1 = 22.2◦, θ2 = 36.6◦ and λ = 1.55. For the cases with pillars (χ ̸= 0), we keep

θ2 and λ unchanged following the findings of Benito et al. who show that only θ1 depends

significantly on χ [20]. The best fits of the curves for the three pillar densities χ = 0.25, 0.51

and 1.00 cm−2 are found for θ1 = 22.4◦, 25.0◦ and 26.2◦, respectively. These fits appear as

solid lines in Fig. 2 and pass quite well through the data. As expected, increasing χ increases
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FIG. 3. (a) Mass of grains M as a function of time t after the opening of the reservoir for a given

gate aperture (H = 5.5 mm), a pillar density (χ = 0.51 cm−2) and nine different slope angles from

28.0◦ to 32.0◦ by step of 0.5◦. Inset: derived mass flow rate Q = dM/dt as a function of time.

(b) Normalized steady flow rate Q̃ = ⟨Q⟩/ρWg1/2d3/2 as a function of the normalized layer thickness

h/d at slope angle θ = 29.5◦, for different pillar densities (◦) χ = 0 cm−2, (△) χ = 0.25 cm−2,

(⋄) χ = 0.51 cm−2, and (□) χ = 1.00 cm−2.

θ1 as shown in the inset of Fig. 2. A linear fit of the form tan θ1(χ) = tan θ1(0) + αχDd,

with α ≃ 10, passes rather well through the data and is in relatively good agreement with

the previous findings of Benito et al. [20].

Thereafter, we focus on the granular flow that establishes during a discharge of the

reservoir. Figure 3(a) presents typical evolution of the mass of grains M as a function of

the time t after the opening of the reservoir for a given aperture of the gate (H = 5.5 mm),

a given pillar density (χ = 0.51 cm−2) and different slope angles (28◦ ≤ θ ≤ 32◦). The

inset of Fig. 3(a) shows the instantaneous mass flow rate Q(t) = dM/dt derived from these

measurements. After a transient regime (t ≳ 5 s), we observe that the mass flow rate

quickly increases up to a constant plateau value that is maintained most of the discharge

duration before vanishing when the reservoir is empty. The flow rate from the reservoir is

kept approximately constant since the pressure at the outlet does not depend on the height

of grains due to Janssen effect [25]. In the following, we focus on the steady flow rate ⟨Q⟩

developing in between these two starting and stopping transients and its dependency with

the granular layer thickness and the slope angle. Each experiment has been reproduced at

least three times in order to determine the average value of the steady flow rate and to
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estimate the dispersion of the results. Figure 3(b) presents the mean normalized flow rate

Q̃ = ⟨Q⟩/ρWg1/2d3/2 as a function of the normalized thickness of the flowing layer h/d for

a given slope angle θ = 29.5◦. In the absence of pillars (χ = 0), a supra-linear increase

of Q̃ with h/d is observed. The presence of the pillar forest (χ ̸= 0) reduces the granular

flow rate and the trend is no more supra-linear but rather sub-linear. The reduction of the

flow rate is more significant as the thickness of the granular layer or the density of pillars

increases. For the smallest pillar density (χ = 0.25 cm−2), the flow rate is only significantly

reduced for large enough layer thicknesses (h/d ≳ 7), which is consistent with the fact that

the stopping layer hstop at a slope angle of θ = 29.5◦ is not significantly increased by a pillar

forest of such a low density. Interestingly, the addition of pillars not only reduces the mass

flow rate but also changes the dependence of Q̃ with the layer thickness in a non-trivial way.

In particular, for χ = 1.00 cm−2, the flow rate is almost constant and no longer depends on

the thickness of the granular layer [Fig. 3(b)].

Then we measure the steady flow rate ⟨Q⟩ as a function of the slope angle while keeping

the flowing layer thickness constant in the best possible way. Indeed, the layer thickness can

hardly be maintained strictly constant because the relation between the gate opening and

the granular layer thickness is non-trivial as pointed out by Cui et al. [19]. Figures 4(a)

and 4(b) show the simultaneous measurements of Q̃ and h/d as a function of the slope

angle θ. The normalized flow rate is observed to increase with θ above a threshold angle

which is about 24◦ in the absence of pillars (χ = 0). This threshold value corresponds to

the value θstop(h/d) for the forced thickness h/d ≃ 10 that is kept approximately constant

for different θ [Fig. 4(b)]. This observation is consistent with Fig. 2 where the flow stops

for h/d ≃ 10 when θ = 24◦ and χ = 0. When the pillar density is increased, it induces a

shift of the threshold angle towards larger values up to about 30◦ for the highest density

(χ = 1.00 cm−2). Note that this increase of the flow rate is mainly due to an increase in

velocity as the thickness of the flowing layer is approximately constant in the whole range

of slope angle θ for each χ value [Fig. 4(b)].

For granular flows down a rough incline without any pillar forest (χ = 0), the mean

velocity U normalized by (gh)1/2 has been observed to scale linearly with the thickness h

normalized by the stopping thickness hstop [4, 8, 26]. This implies that the dimensionless

flow rate Q̃ should scale as h5/2/(hstop d3/2). By testing this scaling with our data (Fig. 5),

we notice that the different sets of data obtained for χ = 0 follow well such a scaling with
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FIG. 4. (a) Normalized steady flow rate Q̃ = ⟨Q⟩/ρWg1/2d3/2 and (b) normalized layer thickness

h/d, as a function of the slope angle θ for different pillar densities (◦) χ = 0 cm−2, (△) χ =

0.25 cm−2, (⋄) χ = 0.51 cm−2, and (□) χ = 1.00 cm−2.

the numerical coefficient 0.14 obtained by Pouliquen et al. [4] for flowing glass beads on a

bottom of glued glass beads. However, the data sets corresponding to a pillar forest (χ ̸= 0)

do not follow such a scaling, or with a slope that decreases significantly as χ increases. This

finding may explain the difficulty encountered by Luong et al. [21] to model the spreading

of a granular mass over a rough plan through a forest of pillars when taking into account the

hstop(χ) variation reported by Benito et al. [20]. In the next Section, we present a model

that rationalizes these results.

III. MODEL

Let us now model the granular flow down the incline driven by the gravity g with a

depth-average approach by considering the µ(I)-rheology [7]. This rheology relates the

friction coefficient of the granular medium µ, defined as the ratio of the shear stress over

the normal stress P , with the inertial number defined as I = γ̇ d/
√

P/ρg, where γ̇ is the

shear rate of the flow. Under the depth-average approximation, a slice of the granular layer

experiences its weight and a basal friction dictated by the µ(I)-rheology, two forces that

balance in a stationary regime [26]. In steady state, the force balance on a slice of the

granular layer of thickness h and of unit length and unit width writes

ρgh sin θ − µb(Ib)ρgh cos θ = 0, (2)
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FIG. 5. Normalized steady flow rate Q̃ = ⟨Q⟩/ρWg1/2d3/2 as a function of the normalized thickness

(h/d)3/2 h/hstop(χ) for different pillar densities (◦) χ = 0 cm−2, (△) χ = 0.25 cm−2, (⋄) χ =

0.51 cm−2, and (□) χ = 1.00 cm−2. The solid line corresponds to the linear trend with the slope

of 0.14 proposed by Pouliquen et al. [4] for glass beads flowing down a slope without pillars.

where the basal friction coefficient µb is a sole function of the inertial number Ib calculated

at the base of the granular layer. For a Bagnold velocity profile in the granular layer, the

basal shear rate γ̇b is related to the mean flow speed U = ⟨Q⟩/ρWh through the relation

γ̇b = 5U/2h. Considering that the pressure at the bottom of the granular layer is P =

ρgh cos θ, we get that the inertial number at this location is Ib(h, U) = 5U d/2
√
ϕgh3 cos θ.

Experimental results obtained in different flow configurations have permitted to establish

an expression for the dependency of the basal friction coefficient with flow parameters

µb(Ib) = tan θ1 +
tan θ2 − tan θ1

1 + I0/Ib
, (3)

where I0 is the characteristic inertial number above which the friction coefficient increases

from tan θ1 to tan θ2 [8]. Inserting this expression in Eq. (2), we get a prediction for the

normalized flow rate in the absence of pillars:

Q̃(h, θ) =
2I0
5

tan θ − tan θ1
tan θ2 − tan θ

√
ϕ cos θ

(
h

d

)5/2

. (4)

In order to compare this classical prediction with our observations made in the absence of

pillars (χ = 0), we present the normalized flow rate Q̃ = ⟨Q⟩/ρWg1/2d3/2 as a function

of h/d for θ = 29.5◦ in Fig. 6(a) and the normalized flow rate Q̃ divided by (h/d)5/2 as a

function of θ in Fig. 6(b), respectively. The blue lines in these plots indicate the best fits of
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FIG. 6. (a) Normalized steady flow rate Q̃ = ⟨Q⟩/ρWg1/2d3/2 as a function of the normalized

layer thickness h/d for a given slope angle θ = 29.5◦. (b) Normalized steady flow rate Q̃ divided

by (h/d)5/2 as a function of the slope angle θ. Same data as in Figs. 3(b) and 4. Dashed lines

show the non-inertial predictions (Cd = 0) from Eq. (7) for each pillar density with I0 = 0.35 and

β = 1.6. Solid lines present the inertial numerical solutions of Eq. (5) with β = 1.5 and Cd = 3.

the data with Eq. (4) considering the values determined previously for the angles θ1 and θ2

(Section II B) and considering I0 as a free parameter. The best fits are found for I0 = 0.35

in reasonable agreement with previous estimates made for glass beads (I0 ≃ 0.28 − 0.30)

[6, 7]. The model fits quite well the experimental data in Fig. 6(a) which means that the

dimensionless flow rate Q̃ follows the expected power scaling law (h/d)5/2. The model also

fits well the data in Fig. 6(b) for moderate slope angle θ but seems to overestimate Q̃ for

θ ≳ 30◦. Note that for a given slope angle in between θ1 and θ2, this model predicts a

vanishing steady flow for a vanishing thickness h and fails to predict the stopping of the

flow at hstop. This is a known weakness of the µ(I)-rheology as the complex liquid-solid

transition of granular matter is not captured by this local approach [8].

Consider now the presence of pillars in the model (χ ̸= 0). The force experienced by a

single pillar immersed in a granular flow depends on the flow regime which is determined

by the Froude number Fr = U/
√
gh cos θ based on the mean flow speed U and the layer

thickness h [27]. In the limit of small Froude numbers (Fr ≪ 1), the drag force results from

the hydrostatic-like pressure, ρgz cos θ, applying on the exposed surface of the pillar, hD,

and expresses as fh = βρgh2D cos θ, where β is a numerical prefactor [28]. In the opposite

limit of large Froude numbers (Fr ≫ 1), the drag force results from inertia and expresses
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FIG. 7. Froude number Fr = Q̃ (h/d)−3/2 (cos θ)−1/2 as a function of (a) the normalized layer

thickness h/d and (b) the slope angle θ for four different pillar densities (◦) χ = 0 cm−2, (△) χ =

0.25 cm−2, (⋄) χ = 0.51 cm−2, and (□) χ = 1.00 cm−2.

fi = Cd ρ hDU2, where Cd is a dimensionless drag coefficient. In our experiments, the Froude

number associated to the free-surface granular flow writes Fr = Q̃ (h/d)−3/2 (cos θ)−1/2. The

variations of the Froude number Fr as a function of h/d and θ are shown in Figs. 7(a) and

7(b), respectively. Only a few Fr values are a little larger than 1 and all the Fr values

corresponding to the cases with a pillar forest (χ ̸= 0) are smaller than 0.7. In this range,

the drag force is expected to correspond mainly to a quasi-static force term with a little

inertia. This implies that both contributions to the drag force have to be considered in our

model. For simplicity, we will consider that the resulting force in this transitional regime

corresponds to the addition of the two limit terms fh + fi. This crude modelling has been

already used to reproduce quite well the variation of the force with Fr [27], and correctly

predicts the dynamics of an object impacting a granular material [29, 30]. In order to

account for the presence of multiple pillars, we assume that there is no interaction between

pillars and that the sum of the individual forces exerted by the pillars on the granular layer

results in a global force per unit surface acting on the whole layer of grains which thus simply

writes (fh + fi)χ. Indeed, the granular flow that establishes in the vicinity of a cylindrical

obstacle has been studied experimentally, revealing that the velocity perturbation vanishes

on a distance that is roughly one cylinder diameter [31]. In our experiments, the minimal

distance between pillars (∆ = 10 mm) is much larger than the pillar diameter (D = 2 mm)

so that no interaction between pillars is expected. Under these approximations, the force
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balance for a slice of the granular layer in the presence of pillars becomes

ρgh sin θ − µb(U, h)ρgh cos θ − βρgχh2D cos θ − CdρχhDU2 = 0, (5)

which can be written in a dimensionless form as

tan θ − µb(U, h)− βχhD − Cd
χDU2

g cos θ
= 0. (6)

Solving Eq. (6) provides the dependency of the mean flow speed U (or equivalently the

normalized flow rate Q̃) with the relevant parameters of the problem (h, θ, χ, . . . ). In the

particular case where Cd = 0, a simple analytical solution of Eq. (5) can be found for the

normalized flow rate Q̃:

Q̃ =
2I0
5

tan θ − tan θ1 − βχhD

tan θ2 + βχhD − tan θ

√
ϕ cos θ

(
h

d

)5/2

. (7)

In this limit of vanishing inertial drag (Cd = 0) corresponding to low enough Fr, Eq. (7)

predicts that the presence of pillars changes the discharge flow-curve Q̃(h, θ) through a shift

of both friction coefficients µ1 = tan θ1 and µ2 = tan θ2 (associated to the inclined plane

without pillars) by a quantity βχhD that is directly proportional to the density χ of pillars

and their surface hD exposed to the flow. At a given angle, this correction mitigates the

increase of the flow rate with h in qualitative agreement with the observations presented in

Fig. 3. The shift of tan θ2 predicted by Eq. (7) in the case of a flowing layer contrasts with

the fact that no variation of tan θ2 with χ is observed in the case of a stopping layer (as

discussed in Section II B). This difference can be understood from the competition between

the friction of the granular layer with the bottom wall and with pillars: indeed, when θ

approaches θ2, the stopping granular layer necessarily has a negligible thickness and its

behavior is dominated by the friction with the bottom wall (βχhstopD ≪ µb), whereas for

a flowing layer with a larger thickness the resistance of pillars can no longer be neglected

(βχhD ∼ µb). In order to compare quantitatively the predictions of Eq. (7) with our data,

we used the values determined in the absence of pillars for the parameters tan θ1, tan θ2, I0

and we consider the force coefficient β as a free parameter. The best fits of our experimental

data with the predictions of Eq. (7) are found for β = 1.5 ± 0.1, and are shown with

dashed lines in Figs. 6(a) and 6(b) for all the pillar densities investigated in this study. The

predictions of the non-inertial model capture the main trend in the data, i.e., the lowering of

the granular flow with increasing pillar density. Nonetheless, the assumption of null inertial
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drag (Cd = 0) is too strong to rationalize finely our experimental observations, in particular

the variation of the dimensionless flow rate Q̃ with the slope angle θ as observed in Fig. 6(b).

Let us now consider the general case where the inertial contribution is taken into account

(Cd ̸= 0). For the sake of simplicity, we do not explicit the analytical solution of Eq. (5) but

we present its numerical solutions. We consider the two force coefficients β and Cd as free

parameters and we look for the best fits of our data with model predictions. The best fits

are found for β = 1.5± 0.1 and Cd = 3± 1, and are presented with solid lines in Figs. 6(a)

and 6(b). Accounting for the inertial contribution of the pillar drag permits to have a much

better agreement between theory and experiments, especially for the dependency of the

normalized flow rate with the slope angle. Our value of the quasi-static coefficient, β ≃ 1.5,

is rather close to the value β = 2.4 found by Albert et al. [28] in the limit where the

object size is large compared to grain diameter (D/d > 3). The difference between these

two values remains in the usual range of incertitude for force coefficients associated to quasi-

static granular flows [27]. Concerning the drag coefficient, our value Cd ≃ 3 is in very good

agreement with the range Cd = 3±2 reported by Faug [27]. The ratio of the inertial and the

quasi-static drag forces on pillars can be written as fi/fh = (Cd/β) Fr
2. As Cd/β ≃ 2, the

transition between these two regimes is expected to be around the critical Froude number

Frc = (β/Cd)
1/2 ≃ 0.7. This confirms that our data obtained with a pillar forest (χ ̸= 0)

correspond to a quasi-static regime with a little inertia. Nonetheless, the model developed

hereby has a major limitation as it predicts that the granular flow of thick layers should be

stopped by the largest pillar density for h/d ≳ 12.5 at θ = 29.5 ◦ (see the orange solid line in

Fig. 6(a) corresponding to χ = 1.00 cm−2), a fact that is not observed in our experiments.

This discrepancy highlights the limitation of the spatial averaging assumption. In practice,

the pillars have a restricted zone of influence and cannot stop the flow away from their field

of action, a behavior that is not accounted for the averaging assumption.

IV. DISCUSSION

The model developed in the limit of vanishing inertia (Cd ≃ 0 when Fr ≪ 1) shows

that the presence of pillars is accounted through the parameter βχhD for a steady flow of

thickness h. This parameter, which is proportional to h, induces a reduction of flow rate that

is larger for larger h at a given slope angle θ and for a pillar forest of given density χ. Note
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that the stopping thickness hstop was found to depend on χ through the parameter αχDd

[inset of Fig. 2(b)]. Combining the linear variation of tan(θ1(χ)) with Eq. (6) for vanishing

U leads to an estimate for the stopping thickness hstop/d = α/β ≃ 6 considering α ≃ 10 and

β ≃ 1.5. This estimate is in rather good agreement with our data as we do not observed

any steady flow for h/d ≲ 5 [Figs. 3(b) and 6(a)]. According to Eq. (7), the influence of the

array of pillars on the granular flow rate is significant when the parameter βχhD is of the

same order as tan θ− tan θ1 or tan θ2− tan θ. In the intermediate case where θ = (θ1+θ2)/2,

we have tan θ − tan θ1 = tan θ2 − tan θ = 0.17 and the term resulting from the presence of

the pillar is equal to one fifth of this value when the pillar density reaches a critical value

χc ≃ 0.02/hD. Under these conditions, the presence of pillars is expected to reduce the mass

flow rate by a factor of two thirds according to Eq. (7). In the case of the setup studied

previously, where the pillar diameter is D = 2 mm and the layer thickness about 5 mm, the

critical pillar density above which the presence of pillars impacts significantly the flow rate

is χc = 0.2 cm−2. Transposing the same considerations to an avalanche of granular material

occurring though a tree forest with typical values h ∼ 1 m and D ∼ 0.2 m, the critical

obstacle density should be 0.1 m−2 corresponding to one tree every three meters.

In this work, we have explored the effect of a forest of cylindrical pillars on the steady

granular flow running down an incline. This experiment constitutes a paradigm for geophys-

ical flow mitigation by a forest of obstacles. In addition to reduce the granular flow rate, the

presence of pillars changes drastically the dependency of the flow rate with the thickness of

the granular layer, i.e. the discharge flow-curve. We accounted for the non-trivial impact of

the forest of pillars on the granular flow with a model based on a depth-averaged approach

and the µ(I)-rheology. This model includes the effect of pillars through an averaged force

applying on the granular layer and neglecting interactions between pillars. This approach

has been proved to predict quantitatively the reduction of the granular flow rate induced

by the presence of pillars. It can be used to determine the minimal pillar density neces-

sary to reduce significantly the energy carried by the granular flow. These results prove

that the µ(I)-rheology can be used to describe non-unidirectional granular flows as the one

studied here. Nonetheless, some discrepancies between model predictions and experiments

are remaining and should motivate future work to relax the averaging approximation and

to study the granular flow occurring in the inter-space between pillars. Finally, this work

lets several questions opened such as the influence of pillar organization on the granular
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flow. For example, it would be interesting to consider a random distribution of pillars on

the inclined plane that should generate local clogging and preferred paths for the granular

flow.
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