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Optimizing Human-Robot Interactions through Differential Game
Control

Abdelwaheb Hafs , Dorian Verdel , Waldez Gomes , Olivier Bruneau , Bastien Berret

I. INTRODUCTION
Contact robots have been increasingly used to physically

assist humans in industrial or medical contexts. To fully
exploit the potential of these devices, it is essential to
improve the intuitiveness of interaction control [1]. One way
of doing it is estimating the human motion intent and sharing
the task effort [2]. Here, we present a method for co-adaptive
shared control wherein a human and a robot adapt their
respective control towards each other, particularly when the
intended motion is known over a finite time horizon.

An appealing framework to formalize interaction control
is the theory of differential games (DG) [2]. By estimating
the human cost function, we could theoretically predict the
upcoming human control input and adapt the robot’s cost
following DG optimality principles [3]. Recent studies have
illustrated the potential of such game-theoretic approaches
for sharing effort during physical human-robot interaction.
For example, Li et al. successfully used non-cooperative
DG to optimally assist humans during reaching movements
[4]. Musić et al. generalized this approach to the tracking
of arbitrary trajectories [1]. However, these works used an
infinite time horizon in practical implementations, which is
unlikely in real scenarios. We propose a solution to this
limitation to enable effort sharing in a finite-horizon context.

II. METHODS
A. Dyadic system model

We consider the physical interaction between a robot and
a human during a trajectory-tracking task, the reference
trajectory being known a priori. We focus on the problem
of effort sharing. To this aim, we assume that the two agents
continuously play a non-cooperative DG over a finite time
horizon. We assume that the human cost function summarizes
all human motor behavior, so it must be inferred during
task execution. We present below a method to estimate its
parameters, which is an instance of inverse DG problem [5].

Let us assume that the interaction dynamics can be de-
scribed by the following control system:

ẋ(t) = f(x(t),u(t), t) (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and control
of the system at time t, respectively. The control u includes
the human and robot inputs.
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Fig. 1: Control and cost estimation workflow. xd and ξ are
the desired state and the state deviation respectively, u⋆

h,θ is the
(optimal) human control, θ̂ and u⋆

h,θ̂
are the estimated human cost

parameters and corresponding (optimal) human control, θ̂0 is the
initial guess of the parameters of the cost function.

We also assume that there exists a desired trajectory xd(t)
solution of (1) for t ∈ [0, T ] with an associated control
ud(t), where T is the total duration of the tracking task. By
linearizing the dynamics (1) around this reference trajectory-
control pair, the system can be described by the following
affine dynamics:

ξ̇(t) = A(t)ξ(t) +B(t)u(t)−B(t)ud(t) (2)

where A(t) and B(t) are the state and input Jacobian
matrices, ξ(t) = x(t) − xd(t) is the state deviation, and
u(t) = ur(t) + uh(t) is the input. The subscript r refers to
the robot and h refers to the human throughout the paper.

Assuming quadratic objectives for each agent, this interac-
tion dynamics fits the class of tractable DG problems (i.e., an
affine-quadratic DG for which necessary and sufficient op-
timality conditions of a feedback Nash equilibrium solution
are available [3]).

B. Human-robot differential game

Therefore, we assume that both agents minimize a
quadratic cost as defined below:

Jr =

∫ tc+∆

tc

ξ(t)⊤Qrξ(t) + ur(t)
⊤Rrur(t)

+ uh(t)
⊤Rrhuh(t) dt

(3)

Jh =

∫ tc+∆

tc

ξ(t)⊤Qhξ(t) + uh(t)
⊤Rhuh(t) dt (4)

where tc is the current (initial) time and ∆ is the finite time
horizon used for the DG. The matrices Qr and Qh ∈ Rn×n

are positive semi-definite (assumed to be diagonal here) that
define the weights associated with tracking error. Rr and
Rh ∈ Rm×m are positive definite matrices that define the
weights associated with the effort of the robot and human
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respectively. Finally, Rrh ∈ Rm×m is a positive semi-
definite matrix that specifies that the robot is designed to
assist the human, and thus aims at reducing the human
effort. In this situation, a Nash equilibrium exists, and the
optimal control of each agent can be obtained by solving a
set of ordinary differential equations backwards in time [3].
The actual optimal controls of the robot and human will be
denoted by u⋆

r and u⋆
h respectively. The latter is unknown

but could be estimated by identifying the parameters of the
human cost. These parameters are the weights defined in Qh

and Rh and then collected in a vector θ. The goal is to find
an estimate θ̂ of θ.

C. Bi-level estimation method

We used a bi-level approach to estimate θ by solving the
above lower-level DG problem (Eq. 3 and Eq. 4) together
with the following upper-level problem:

min
θ̂

∫ tc

tc−∆

∥u⋆
h,θ(t)− u⋆

h,θ̂
(t)∥2dt (5)

where the control u⋆
h,θ̂

is the optimal control of the non-

cooperative DG with the estimated cost parameters θ̂ and
u⋆
h,θ is the optimal human control with the true cost param-

eters θ, over the time horizon ∆ (called estimation horizon).
The main difficulty with this bi-level approach is that it may
be computationally intensive, which can limit its application
to real-time control. However, it is possible to use only a
few iterations of the optimization to improve θ̂, which can
be used as the initial guess for the next time step. Note that
the method is applied in a receding horizon fashion, so the
problem at each time step of the robot control loop will be
different as new observations come in.

D. Simulation

To test the control and estimation method presented above,
we simulated a trajectory tracking task involving the human
forearm connected to a 1-dof robot. The task was to track a
trajectory in the vertical plane (with simulated gravitational
forces). We simulated a human with a height of 1.70 m
and weight of 70 kg using anthropometric values in [6].
The human was assumed to know the robot control strategy,
while the robot estimated the human control. The effort cost
parameters were set to 1 because inputs are scalars and of
the same order of magnitude. We assumed that the error
cost matrices were Qr = Qh = diag([20, 5]), so that the
human cost parameters are represented in one vector of 2
parameters θ = [θ1, θ2]

⊤ = [20, 5]⊤. The task duration was
set to T = 30 s. We included white noise at an intensity
of 0.1 Nm to simulate variability in human input u⋆

h. The
finite control horizon and the estimation horizon were set
to ∆ = 1 s. Finally the human cost matrix switches to
Qh = diag([30, 10]) in the middle of the task to simulate a
change in the human contribution to the task.

III. RESULTS AND DISCUSSION

Fig. 2 illustrates the simulated and estimated human cost
parameters with their corresponding control inputs. The

A

B

Fig. 2: Estimation of the human control strategy. The simulated
robot mass, inertia and damping were Mr = 1 kg, Ir = 0.0625
kg.m2 and Dr = 0.5 kg.m2.s-1, and the human’s forearm mass,
inertia, damping and stiffness were Mh = 1.561 kg, Ih = 0.0456
kg.m2, Dh = 0.5 kg.m2.s-1 and Kh = 1 kg.m2.s-2. Distance to the
centers of gravity was set to L = 0.202 m. A: The true simulated
human cost parameters (position weight θ1 and velocity weight θ2)
are in faded-dashed lines, and the estimated parameters are in plain
lines. B: The true Nash equilibrium torques are in faded lines, and
the torques using the estimation method are in bold lines.

initial guess θ̂0 was set to 0, the results showed that our
approach estimates the parameters θ quite rapidly. The
root mean square (RMS) errors between the recovered and
actual parameters were [2.522 1.594]⊤. We observed that
the estimated human cost parameters generated well the
theoretical Nash equilibrium for optimal shared control of
the task with corresponding RMS errors of 0.186 Nm and
0.145 Nm for the human and robot respectively.

IV. CONCLUSIONS

This paper introduced an inverse DG approach for co-
adaptive shared control applicable to non-linear dynamical
systems when a desired state/control trajectory is available
over a relatively short time horizon. A bi-level optimization
approach for recovering the human cost parameters was
sketched and tested in simulation. Future work will consider
this approach in a real human-robot experiment and analyze
the resulting co-adaptation.
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