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Introduction

In the solid-state physics of ordinary crystals, interactions way beyond the nearest atomic neighbors can be of crucial importance, for example for the crystal's ionic binding energy [START_REF] Kittel | Introduction to solid state physics[END_REF]. The Madelung constant [START_REF] Hoppe | Madelung constants[END_REF] summarizes the effects of this long-range Coulomb interaction. In electromagnetism and optics, for artificial crystals called metamaterials [START_REF] Liu | Locally resonant sonic materials[END_REF][START_REF] Smith | Metamaterials and negative refractive index[END_REF], long-range interactions are well known to play an important role as well [START_REF] Cai | Optical metamaterials[END_REF][START_REF] Decker | Retarded long-range interaction in split-ring-resonator square arrays[END_REF]. For example, the dynamic electric dipole-dipole interaction asymptotically decays inversely with the distance between dipoles just like the static Coulomb potential [START_REF] Kittel | Introduction to solid state physics[END_REF][START_REF] Decker | Magnetization waves in split-ring-resonator arrays: Evidence for retardation effects[END_REF]. So far, however, long-range interactions in electromagnetic or optical metamaterials have mainly been considered as a nuisance that complicates the physics rather than as a useful design feature [START_REF] Cai | Optical metamaterials[END_REF].

In contrast, when conceptually introducing acoustical and optical phonons in ordinary crystals by massand-spring type models [START_REF] Kittel | Introduction to solid state physics[END_REF], the Hooke's springs emerging from a given mass are usually only connected to the immediate neighbors of this mass [START_REF] Liu | Broadband elastic metamaterial with single negativity by mimicking lattice systems[END_REF][START_REF] Chen | Topological phase transition in mechanical honeycomb lattice[END_REF][START_REF] Zhang | An asymmetric elastic metamaterial model for elastic wave cloaking[END_REF][START_REF] Chen | A study of topological effects in 1D and 2D mechanical lattices[END_REF]. In few cases, springs between next-nearest neighbors have been considered as a correction [START_REF] Gazis | Surface elastic waves in cubic crystals[END_REF][START_REF] Tersoff | Empirical interatomic potential for silicon with improved elastic properties[END_REF]. For many years, this only-nearest-neighbor spirit has also been taken for designing phonon dispersion relations in mechanical or acoustical metamaterials [START_REF] Liu | Locally resonant sonic materials[END_REF][START_REF] Zhang | An asymmetric elastic metamaterial model for elastic wave cloaking[END_REF][START_REF] Cummer | Controlling sound with acoustic metamaterials[END_REF][START_REF] Bertoldi | Flexible mechanical metamaterials[END_REF][START_REF] Dong | Topology optimization of anisotropic broadband doublenegative elastic metamaterials[END_REF][START_REF] Kadic | 3D metamaterials[END_REF]. Few exceptions have discussed the influence of long-range interactions in linear elastic materials [START_REF] Cottone | Elastic waves propagation in 1D fractional non-local continuum[END_REF][START_REF] Carpinteri | Nonlocal elasticity: an approach based on fractional calculus[END_REF][START_REF] Di Paola | Long-range cohesive interactions of non-local continuum faced by fractional calculus[END_REF] or in phononic crystals [START_REF] Cho | Engineering the mechanics of heterogeneous soft crystals[END_REF][START_REF] Frieder | Bandgap engineering of three-dimensional phononic crystals in a simple cubic lattice[END_REF][START_REF] Daniel | Reconfigurable topological phases in next-nearestneighbor coupled resonator lattices[END_REF], albeit not in the spirit of a design tool but again rather as a correction to ordinary behavior.

Recently, we showed that suitable metamaterial designs using sufficiently strong 𝑁𝑁-th nearest-neighbor interactions with 𝑁𝑁 = 3 , in addition to the usual nearest-neighbors interactions ( 𝑁𝑁 = 1 ), allow for obtaining unusual acoustical-wave dispersion relations [START_REF] Chen | Roton-like acoustical dispersion relations in 3D metamaterials[END_REF][START_REF] Martínez | Experimental Observation of Roton-Like Dispersion Relations in Metamaterials[END_REF], which mimic the famous rotons in superfluid helium [START_REF] Landau | Theory of the Superfluidity of Helium II[END_REF][START_REF] Feynman | Atomic theory of the two-fluid model of liquid helium[END_REF][START_REF] Feynman | Energy spectrum of the excitations in liquid helium[END_REF][START_REF] Godfrin | Dispersion relation of Landau elementary excitations and thermodynamic properties of superfluid He 4[END_REF]. However, the three-dimensional (3D) architectures discussed therein [START_REF] Chen | Roton-like acoustical dispersion relations in 3D metamaterials[END_REF][START_REF] Martínez | Experimental Observation of Roton-Like Dispersion Relations in Metamaterials[END_REF][START_REF] Fleury | Non-local oddities[END_REF] were restricted in three regards, i)-iii). i) They were limited to tailoring the dispersion relation along only a single propagation direction. ii) They were not flexible enough to provide interactions way beyond 𝑁𝑁 = 3. iii) They could not easily be generalized to support more than just two types of interactions (nearest-neighbor and third-nearest-neighbor) simultaneously.

We note in passing that another recent publication [START_REF] Peri | Experimental characterization of fragile topology in an acoustic metamaterial[END_REF] used beyond-nearest-neighbor interactions in mechanical metamaterials to design and tailor the properties of higher phonon bands and states with the aim of obtaining topological band gaps. This work is not of immediate importance here because we focus on the lowest acoustical band.

Herein, we introduce and analyze by numerical and analytical calculations a flexible effectively twodimensional metamaterial platform that allows for tailoring the lowest acoustical phonon dispersion relation for airborne sound by using beyond-nearest-neighbor interactions along two orthogonal directions. We design the long-range interactions by a network of cylindrical tubes, which connect cuboid compartments in a two-dimensional square array. The numerically calculated phonon bands reveal multiple roton-like minima along multiple directions. Through a simplified discrete analytical model for the lowest (acoustical) band that is mathematically equivalent to a mass-and-spring model, we show that the long-range interactions directly determine the Fourier coefficients of the acoustical-wave dispersion relation. Based on the simple model, we further demonstrate interesting negative refraction [START_REF] Zhu | Negative refraction of elastic waves at the deepsubwavelength scale in a single-phase metamaterial[END_REF][START_REF] Liu | An elastic metamaterial with simultaneously negative mass density and bulk modulus[END_REF] and triple refraction at an interface between two metamaterials with and without beyond-nearest-neighbor interactions, respectively. We emphasize the importance of the transition region between an ordinary medium and the metamaterial comprising beyond-nearest-neighbor interactions as to which mode in the metamaterial the incident wave couples to. These calculations highlight the aspect of nonlocality [START_REF] Di Paola | Long-range cohesive interactions of non-local continuum faced by fractional calculus[END_REF][START_REF] Peri | Experimental characterization of fragile topology in an acoustic metamaterial[END_REF], which is due to the beyond-nearest-neighbor interactions. We also propose a refined analytical model that can capture the higher bands in the band structure as well. The combination of these aspects shows that nonlocal effects are a powerful tool for designing acoustic and elastic metamaterials.

Results and Discussion

Metamaterial design and numerical calculations. To implement the Fourier-synthesis idea in the simplest possible yet practical way, we consider airborne acoustical sound. Here, only longitudinally polarized pressure waves occur [START_REF] Pierce | Acoustics: an introduction to its physical principles and applications[END_REF]. We consider the air in tubes with rigid walls as mediator of the interactions.

In acoustics, such hollow tubes do not lead to a finite minimum ("cut-off") frequency, below which propagating waves do not occur. The behavior of airborne waves can easily be transferred to waterborne acoustical waves. In contrast, for waves in general elastic structures, two transverse modes occur in addition to the longitudinal modes. The situation would also be more complex for transversely polarized electromagnetic waves, for which tubes with walls made of a perfect electrical conductor do lead to a finite cut-off frequency [START_REF] Griffiths | Introduction to electrodynamics[END_REF]. Such finite-frequency cut-off obviously inhibits an "acoustical" mode starting from zero frequency at zero wavenumber.

Figure 1(a) shows one unit cell of the suggested 3D structure of the metamaterial for airborne sound for the example of 𝑁𝑁 = 3. Panel (b) illustrates the resulting two-dimensional lattice. Panel (c) shows the unit cell for the fix cases 𝑁𝑁 = 4, 5, 6, 7, 8. In all of these cases, we consider a two-dimensional square lattice of hollow compartments with lattice constant 𝑎𝑎. The walls of these compartments are treated as rigid bodies.

Mathematically, this corresponds to Neumann boundary conditions for the pressure field [START_REF] Pierce | Acoustics: an introduction to its physical principles and applications[END_REF]. Intuitively, the compartments can be seen as the "atoms". Tubes connecting the compartments can be seen as mediators of the interactions among the atoms. Four thin tubes with inner radius 𝑟𝑟 1 directly connect each of these compartments with its four immediate neighbors. The walls of all tubes are treated as Neumann boundaries, too. These tubes mediate the nearest-neighbor interactions between the compartments. The thicker tubes with inner radius 𝑟𝑟 𝑁𝑁 > 𝑟𝑟 1 mediate the beyond-nearest-neighbor interactions with 𝑁𝑁 ≥ 2. To avoid collision of the tubes along the 𝑥𝑥and the 𝑦𝑦-direction, respectively, one set of tubes is located above the 𝑥𝑥𝑦𝑦-plane spanned by the thin tubes and the other one below. Therefore, the metamaterial structure itself has only two-fold rotational symmetry with respect to the 𝑧𝑧-axis. However, the structure exhibits an additional rotation-reflection symmetry with respect to the 𝑥𝑥𝑦𝑦-plane. This symmetry ensures that the phonon dispersion relation 𝜔𝜔 𝑛𝑛 (𝑘𝑘 𝑥𝑥 , 𝑘𝑘 𝑦𝑦 ), which connects the angular frequency 𝜔𝜔 𝑛𝑛 of the band with band index 𝑛𝑛 and wave vector 𝐤𝐤 = (𝑘𝑘 𝑥𝑥 , 𝑘𝑘 𝑦𝑦 ), has four-fold rotational symmetry, i.e., wave propagation along the 𝑥𝑥and 𝑦𝑦-direction are strictly equivalent by symmetry. For a given fixed radius of the tubes, the maximum possible integer 𝑁𝑁 is clearly limited by geometrical constrains (cf. Fig. 1(c)). For the radii chosen in Fig. 1, the maximum possible value is 𝑁𝑁 = 8 as the tubes would overlap for 𝑁𝑁 = 9 . However, conceptually, one can consider the limit of 𝑟𝑟 1 → 0 at fixed finite ratio 𝑟𝑟 𝑁𝑁 /𝑟𝑟 1 . In this limit, integers up to 𝑁𝑁 → ∞ are possible mathematically.

So far, we have only considered structures supporting nearest-neighbor interactions and 𝑁𝑁-th nearestneighbor interactions with a single specific value of 𝑁𝑁. However, the metamaterial platform in Fig. 1(b) can easily be generalized to support several different beyond-nearest-neighbor interactions simultaneously. Figure 2 shows as an example a metamaterial structure supporting the three interactions with 𝑁𝑁 = 1, 𝑁𝑁 = 3, and 𝑁𝑁 = 5. The 𝑁𝑁 = 3 interactions lie in planes parallel to the 𝑥𝑥𝑦𝑦-plane at different 𝑧𝑧-positions than the 𝑁𝑁 = 5 interactions. Clearly, for the chosen metamaterial platform, any further values of 𝑁𝑁 can be realized at yet different 𝑧𝑧-positions without imposing any geometrical constrains or difficulty (not depicted).

To compute the phonon dispersion relation of airborne acoustical waves propagating in the channel system shown in Figs. 12, we consider the scalar wave equation for the spatial air-pressure modulation 𝑃𝑃 � 𝐤𝐤,𝑖𝑖 (𝐫𝐫) on top of a constant background air pressure 𝑃𝑃 0 ≫ 𝑃𝑃 � 𝐤𝐤,𝑖𝑖 (𝐫𝐫) at spatial position 𝐫𝐫 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) and twodimensional wave vector 𝐤𝐤 = (𝑘𝑘 𝑥𝑥 , 𝑘𝑘 𝑦𝑦 ) [START_REF] Kittel | Introduction to solid state physics[END_REF]. We neglect damping. This assumption is expected to be reasonable if all absolute dimensions are sufficiently large [START_REF] Frenzel | Three-dimensional labyrinthine acoustic metamaterials[END_REF]. Furthermore, we have also performed calculations including damping (see Supplementary Note 1). The relative differences of the (real part of the) eigenfrequencies with respect to the lossless case are smaller than 4% for all cases (cf. Figure 3 and Supplementary Figures 1 and2). The qualitative behavior is not changed at all. In the Fourier-domain, the resulting eigenvalue problem [START_REF] Pierce | Acoustics: an introduction to its physical principles and applications[END_REF] reads

𝛁𝛁 ⋅ �𝛁𝛁𝑃𝑃 � 𝐤𝐤,𝑛𝑛 (𝐫𝐫)� = - 𝜔𝜔 𝑛𝑛 2 (𝐤𝐤)
𝑣𝑣 air 2 𝑃𝑃 � 𝐤𝐤,𝑛𝑛 (𝐫𝐫).

The band with index 𝑛𝑛 = 1 corresponds to an acoustical branch, the bands with 𝑛𝑛 ≥ 2 can be seen as "optical" phonon bands. We will focus our below design and discussion on the lowest band with 𝑛𝑛 = 1, but we will graphically also show several higher-frequency bands for completeness. We choose 𝑣𝑣 air = 343 m/s as the constant speed of sound in air. We solve this eigenvalue equation by a finite-element method (FEM) implemented in the commercial software Comsol Multiphysics. We assume Bloch periodic boundary conditions along the 𝑥𝑥and the 𝑦𝑦-direction and treat the walls of all compartments and tubes as rigid immovable bodies via Neumann boundary conditions [START_REF] Griffiths | Introduction to electrodynamics[END_REF]. All geometrical parameters of the metamaterial architecture are defined and given in Figs. 12. As usual, the first 2D Brillouin zone of the 2D square lattice is given by the conditions |𝑘𝑘 𝑥𝑥 | ≤ 𝜋𝜋/𝑎𝑎 and �𝑘𝑘 𝑦𝑦 � ≤ 𝜋𝜋/𝑎𝑎.

Examples of calculated band structures are given in Figs. 345. Figure 3 shows the band structure of the metamaterial depicted in Fig. 1. It contains beyond-nearest-neighbor interactions with 𝑁𝑁 = 3. These 2D band structures can be compared with our previous quasi-1D band structures [START_REF] Chen | Roton-like acoustical dispersion relations in 3D metamaterials[END_REF]. Figure 3(a) shows the angular frequency for the usual tour through the 2D Brillouin zone (also see inset). Figure 3(b) represents the same results in 2D 𝐤𝐤-space. It can be seen that we obtain local minima of the dispersion relation of the lowest acoustical band along the (𝑘𝑘 𝑥𝑥 , 0) direction and the equivalent (0, 𝑘𝑘 𝑦𝑦 ) direction. These local minima resemble the roton-like dispersion relations discussed in detail previously [START_REF] Chen | Roton-like acoustical dispersion relations in 3D metamaterials[END_REF]. In addition, we find four further (roton-like) local minima along the diagonals. As expected from the symmetry of the metamaterial structure (see above), the dispersion relation 𝜔𝜔 1 (𝑘𝑘 𝑥𝑥 , 𝑘𝑘 𝑦𝑦 ) exhibits four-fold rotational symmetry. However, it is clearly not isotropic. The depth of the minima can be tailored by the effective strength of the beyond-nearest-neighbor interaction compared to the nearest-neighbor interactions, i.e., by the ratio of the tube radii 𝑟𝑟 3 /𝑟𝑟 1 (not depicted). The minimum is absent for 𝑟𝑟 3 /𝑟𝑟 1 > 0, becomes deeper for increasing ratio 𝑟𝑟 3 /𝑟𝑟 1 = 0, and touches zero angular frequency, 𝜔𝜔 1 = 0, in the limit of 𝑟𝑟 3 /𝑟𝑟 1 → ∞.

Figure 4 shows the same as Fig. 3(a), but for different values of 𝑁𝑁 instead of 𝑁𝑁 = 3. These results correspond to the metamaterial unit cells shown in Fig. 1. We find that the number of oscillations versus wave number within the first Brillouin zone increases with increasing 𝑁𝑁. This behavior already suggests a connection between the integer 𝑁𝑁 and the corresponding Fourier component. We will come back to this aspect in more detail in the following section. We consider the mass-and-spring model shown in Fig. 6. We show that Newton's equation of motion for the masses in this 2D lattice is mathematically equivalent to the approximate equation of motion for the air mass in the cuboid compartments shown in yellow in Fig. 1(b). The hollow tubes connecting these compartments correspond to Hooke's springs. This ansatz follows our previous reasoning [START_REF] Chen | Roton-like acoustical dispersion relations in 3D metamaterials[END_REF][START_REF] Martínez | Experimental Observation of Roton-Like Dispersion Relations in Metamaterials[END_REF] and is consistent with the numerically calculated air-pressure fields. An example referring to the parameters used in Figure 3 is depicted in Supplementary Figure 3. We emphasize that this simple model accounts for the lowest (acoustical) band with 𝑛𝑛 = 1 only, as the model contains only one degree of freedom (the position of the single mass in the unit cell). We will expand the analytical modelling to also include the higher bands with 𝑛𝑛 ≥ 2 in the following section. Let us now derive the discrete model with a discrete set of equations of motion for the metamaterial structures illustrated in Figs. 12.

Within the cuboid air compartment with volume 𝑉𝑉 c at the 2D lattice site defined by the pair of integers (𝑚𝑚, 𝑛𝑛), the air pressure 𝑃𝑃 𝑚𝑚𝑛𝑛 = 𝑃𝑃 0 + 𝑃𝑃 � 𝑚𝑚𝑛𝑛 shall be approximated by the constant mean pressure in that compartment. The air pressure directly translates into the number of air molecules 𝑁𝑁 𝑚𝑚𝑛𝑛 = 𝑁𝑁 0 + 𝑁𝑁 � 𝑚𝑚𝑛𝑛 in one compartment. 𝑁𝑁 0 is the number of air molecules in the compartment at fixed room temperature 𝑇𝑇, corresponding to the background pressure 𝑃𝑃 0 . The ideal-gas equation becomes 𝑃𝑃 𝑚𝑚𝑛𝑛 = 𝑁𝑁 𝑚𝑚𝑛𝑛 𝑘𝑘 B 𝑇𝑇/𝑉𝑉 c or 𝑃𝑃 � 𝑚𝑚𝑛𝑛 = 𝑁𝑁 � 𝑚𝑚𝑛𝑛 𝑘𝑘 B 𝑇𝑇/𝑉𝑉 c , with the Boltzmann constant 𝑘𝑘 B . Furthermore, in each 𝑁𝑁 th-nearest-neighbor horizontal and vertical tube with radius 𝑟𝑟 𝑁𝑁 (see above), hence cross section 𝜋𝜋𝑟𝑟 𝑁𝑁 2 , and length 𝐿𝐿 𝑁𝑁 , we approximate the air velocity along the tube axis as being constant throughout that tube. We define the corresponding velocities in the horizontal (𝑥𝑥-direction) tubes, ℎ 𝑚𝑚𝑛𝑛 (𝑁𝑁) , and those in the vertical (𝑦𝑦-direction) tubes, 𝑣𝑣 𝑖𝑖𝑖𝑖 (𝑁𝑁) , mediating the 𝑁𝑁-th order interaction. The mass density, 𝜌𝜌 0 , within all tubes is approximated as being constant, with 𝜌𝜌 0 = 𝑚𝑚 0 𝑃𝑃 0 /(𝑘𝑘 B 𝑇𝑇) , where 𝑚𝑚 0 is the mass of one air molecule. With these definitions, the continuity equation applied to compartment (𝑚𝑚, 𝑛𝑛) describes the in-and out-flux of air molecules from the tubes into the compartment and reads

d d𝑡𝑡 𝑚𝑚 0 𝑁𝑁 𝑚𝑚𝑛𝑛 = d d𝑡𝑡 𝑚𝑚 0 𝑁𝑁 � 𝑚𝑚𝑛𝑛 = ∑ -𝜌𝜌 0 𝜋𝜋𝑟𝑟 𝑁𝑁 2 ��ℎ 𝑚𝑚𝑛𝑛 (𝑁𝑁) -ℎ 𝑚𝑚-𝑁𝑁,𝑛𝑛 (𝑁𝑁) � + �𝑣𝑣 𝑚𝑚𝑛𝑛 (𝑁𝑁) -𝑣𝑣 𝑚𝑚,𝑛𝑛-𝑁𝑁 (𝑁𝑁) �� ∞ 𝑁𝑁=1
.

(

) 1 
The acceleration 𝑁𝑁) in the 𝑁𝑁th-order horizontal tubes results from the net force corresponding to the pressure difference between the two ends of the tube with length 𝐿𝐿 𝑁𝑁 , i.e., from

d d𝑡𝑡 ℎ 𝑚𝑚𝑛𝑛 ( 
𝜌𝜌 0 d d𝑡𝑡 ℎ 𝑚𝑚𝑛𝑛 (𝑁𝑁) = - 𝑃𝑃 � 𝑚𝑚+𝑁𝑁,𝑛𝑛 -𝑃𝑃 � 𝑚𝑚𝑛𝑛 𝐿𝐿 𝑁𝑁 , (2) 
and likewise for the 𝑁𝑁th-order vertical tubes

𝜌𝜌 0 d d𝑡𝑡 𝑣𝑣 𝑚𝑚𝑛𝑛 (𝑁𝑁) = - 𝑃𝑃 � 𝑚𝑚,𝑛𝑛+𝑁𝑁 -𝑃𝑃 � 𝑚𝑚𝑛𝑛 𝐿𝐿 𝑁𝑁 . (3) 
Taking the time derivative of Eq. ( 1), inserting Eqs. ( 2) and (3) into Eq. ( 1), and replacing

𝑁𝑁 � 𝑚𝑚𝑛𝑛 = 𝜌𝜌 0 𝑉𝑉 c 𝑀𝑀𝑃𝑃 0 𝑃𝑃 � 𝑚𝑚𝑛𝑛 leads to 𝑀𝑀 d 2 d𝑡𝑡 2 𝑃𝑃 � 𝑚𝑚𝑛𝑛 = ∑ 𝐾𝐾 𝑁𝑁 ��𝑃𝑃 � 𝑚𝑚-𝑁𝑁,𝑛𝑛 -2𝑃𝑃 � 𝑚𝑚𝑛𝑛 + 𝑃𝑃 � 𝑚𝑚+𝑁𝑁,𝑛𝑛 � + �𝑃𝑃 � 𝑚𝑚,𝑛𝑛-𝑁𝑁 -2𝑃𝑃 � 𝑚𝑚𝑛𝑛 + 𝑃𝑃 � 𝑚𝑚,𝑛𝑛+𝑁𝑁 �� ∞ 𝑁𝑁=1 , (4) 
where we have introduced the two abbreviations

𝑀𝑀 = 𝜌𝜌 0 𝑉𝑉 c (5) 
and

𝐾𝐾 𝑁𝑁 = 𝑃𝑃 0 𝜋𝜋𝑟𝑟 𝑁𝑁 2 𝐿𝐿 𝑁𝑁 . ( 6 
)
Equation ( 4) is identical to Newton's equation for the mass-and-spring model shown in Fig. 6 if the pressure variation 𝑃𝑃 � 𝑚𝑚,𝑛𝑛 in Eq. ( 4) is replaced by the out-of-plane displacement. 𝑀𝑀 in Eq. ( 4) is the air mass in one compartment. It is the same for all lattice sites at this point. Below, when addressing interfaces, we will consider different values of 𝑀𝑀 at different locations. According to Eq. ( 5), the mass 𝑀𝑀 can be varied in practice by changing the volume of the compartment 𝑉𝑉 c . 𝐾𝐾 𝑁𝑁 is the effective Hooke's spring constant for the 𝑁𝑁th order interaction. According to Eq. ( 6), it can be tailored by the radius of the 𝑁𝑁th order tube, 𝑟𝑟 𝑁𝑁 .

Obviously, at fixed tube radius 𝑟𝑟 𝑁𝑁 , the effective spring constant 𝐾𝐾 𝑁𝑁 decreases inversely versus increasing order 𝑁𝑁 of the interaction, hence with increasing length 𝐿𝐿 𝑁𝑁 ≈ 𝑁𝑁𝐿𝐿 1 of the tube for 𝑁𝑁 ≥ 2. This behavior is perfectly analogous to that of an ordinary elastic Hooke's spring. As the tube diameter 2𝑟𝑟 𝑁𝑁 is geometrically constrained in size from above (cf. Fig. 1), and must eventually decrease with increasing 𝑁𝑁, the effective relative strength of the 𝑁𝑁th-order interaction eventually tends to zero inversely proportional to the order 𝑁𝑁, or stronger than that. In the previous section, we have seen that values up to 𝑁𝑁 = 8 can be achieved in practice.

Making a plane-wave ansatz for Eq. ( 4) according to

𝑃𝑃 � 𝑚𝑚𝑛𝑛 = 𝑃𝑃 � exp�i(𝑚𝑚𝑘𝑘 𝑥𝑥 𝑎𝑎 + 𝑛𝑛𝑘𝑘 𝑦𝑦 𝑎𝑎 -𝜔𝜔𝜔𝜔)�, (7) 
with constant amplitude prefactor 𝑃𝑃 � , we obtain the dispersion relation for acoustical pressure waves with band index 𝑛𝑛 = 1 in the discrete model

𝜔𝜔 1 2 �𝑘𝑘 𝑥𝑥 , 𝑘𝑘 𝑦𝑦 � = ∑ 𝐹𝐹 𝑁𝑁 cos(𝑁𝑁𝑘𝑘 𝑥𝑥 𝑎𝑎) ∞ 𝑁𝑁=0 + ∑ 𝐹𝐹 𝑁𝑁 cos�𝑁𝑁𝑘𝑘 𝑦𝑦 𝑎𝑎� ∞ 𝑁𝑁=0 . ( 8 
)
This expression is central to our paper. We see that, for 𝑁𝑁 ≥ 1, the Fourier coefficient 𝐹𝐹 𝑁𝑁 in the two Fourier series on the right-hand side is directly connected to the 𝑁𝑁th nearest-neighbor effective Hooke's spring constant 𝐾𝐾 𝑁𝑁 and is given by

𝐹𝐹 𝑁𝑁 = -2𝐾𝐾 𝑁𝑁 /𝑀𝑀. (9) 
The constant 0 th -order term of the Fourier series with

𝐹𝐹 0 = ∑ 2𝐾𝐾 𝑁𝑁 ′ /𝑀𝑀 ∞ 𝑁𝑁 ′ =1 (10) 
guarantees that the dispersion relation Eq. ( 7) starts according to

𝜔𝜔 1 (𝑘𝑘 𝑥𝑥 , 𝑘𝑘 𝑦𝑦 ) ∝ |𝐤𝐤| (11) 
in the limit |𝐤𝐤| → 0. This is equivalent to saying that we restrict ourselves to "acoustical" dispersion relations. In the Fourier series on the right-hand side of Eq. ( 8), only cosine terms appear as sine terms would generally violate the reciprocity condition 𝜔𝜔(-𝐤𝐤) = 𝜔𝜔(𝐤𝐤).

For suitable parameters, the above simple 2D discrete model again exhibits roton-like dispersion relations along multiple directions (see Supplementary Note 2 and Supplementary Figure 4). To allow for a direct comparison with the above numerical calculations, we plot the calculated dispersion relations of this model (red dots) together with those of the numerical calculations (gray curves) in Fig. 3 and Fig. 4. For the lowest band, the overall agreement is excellent for all values of 𝑁𝑁. This especially holds true for the principal direction 𝚪𝚪𝚪𝚪. Quantitative discrepancies occur for other directions, but the agreement is still qualitatively good. Note, however, that we have taken the freedom to use fitted ratios 𝐾𝐾 𝑁𝑁 /𝑀𝑀. In principle, these ratios could be calculated from Eqs. ( 5) and ( 6) and from the known geometrical parameters therein.

The fitting procedure gives us freedom to correct for the simplicity of the mass-and-spring model. We will come back to a more stringent treatment in the following section.

Before we get there, we now apply the mass-and-spring model to treating metamaterials that are not infinitely extended, but that rather contain interfaces. The treatment of such configurations would be computationally very expensive on the level of the complete numerical calculations.

As a representative example, we consider only nearest-neighbor interactions and third-nearest-neighbor interactions (𝑁𝑁 = 3). In such a system [START_REF] Chen | Roton-like acoustical dispersion relations in 3D metamaterials[END_REF], the dispersion relation does not monotonically increase but features a region of backward waves, with negative scalar product of the phase and group velocity vectors, and a roton-like [START_REF] Landau | Theory of the Superfluidity of Helium II[END_REF][START_REF] Feynman | Energy spectrum of the excitations in liquid helium[END_REF] local minimum in the dispersion relation. We expect interesting wave behavior, including negative refraction and triple refraction, which we shall study in the remainder of this section.

The considered interface and excitation configuration is illustrated in Fig. 7. In the region above the interface, we consider a discrete system simultaneously with nearest-neighbor interactions and thirdnearest-neighbor interactions ( 𝑁𝑁 = 3 ). In the region below the interface, we assume only nearestneighbor interactions. We force displacements of masses located on the indicated black line according to 

7(d)).

Due to the mismatch of interaction orders between the two regions at the interface, one of the Hooke's springs that mediate the third-nearest-neighbor interactions for the first three masses above the interface (see Fig. 7(b)) is truncated by the interface. Therefore, the connections at the interface are modified slightly (see Fig. 7(b)). These modifications in the transition region between the two media will turn out to be crucial for controlling the transmitted and reflected partial waves. As shown in the below simulations, which are based on a trial-and error procedure for the design and for the parameters of the transition layer, we can even achieve nearly 100% transmission for each of the three possible modes individually by fine-tuning the indicated interface parameters, including the two mass parameters, 𝑀𝑀 01 and 𝑀𝑀 02 , and three spring constants, 𝐾𝐾 01 , 𝐾𝐾 02 and 𝐾𝐾 03 in Fig. 7. Alternatively, the parameters for the transition region can be chosen such that an incident wave couples to all three refracted modes simultaneously (see Supplementary Figure 7).

We note in passing that an explicit and rational construction procedure for the transition layer between a local and a non-local medium and its parameters is presently elusive to our knowledge. Defining such a procedure beyond a trial-and-error approach is beyond the scope of our present paper.

In Figure 8, we first demonstrate negative refraction at the interface. For the incidence region, we choose the parameters 𝑀𝑀/𝑀𝑀 0 = 1.0, 𝐾𝐾 1 /𝐾𝐾 0 = 1.2, and 𝐾𝐾 3 /𝐾𝐾 0 = 0. Here, 𝑀𝑀 0 and 𝐾𝐾 0 are not relevant to the results and can take any constant reference values. In Fig. 8(a), red (blue) solids lines represent isofrequency contours for the discrete system in the incidence (transmission) region at carrier frequency (= center frequency) 𝜔𝜔/𝜔𝜔 0 = 0.7 of the Gaussian wave packed used in the numerical simulation. Dashed lines correspond to a slightly larger frequency. From two nearby iso-frequency contours, we can identify the group velocity vector 𝐯𝐯 g . From Snell's law, one negatively refracted mode with wave vector 𝐤𝐤 t and group velocity 𝐯𝐯 g is expected. A snapshot of the simulated displacement fields at one instant in time, 𝜔𝜔/𝑇𝑇 c = 150, is shown in Fig. 8(b). The interface parameters, as indicated in the figure, are tuned to achieve a nearly zero reflected partial wave. As expected, the refracted waves exactly move along the direction of the predicted group velocity 𝐯𝐯 g . The phase fronts of the refracted waves move along the wave vector 𝐤𝐤 t .

The dashed lines are guides to the eye for the wave propagation trajectory. The negative refraction can be seen yet more clearly in the Supplementary Movie 1.

Next, we demonstrate triple refraction. In this case, we choose different parameters for the incidence region, namely 𝑀𝑀/𝑀𝑀 0 = 0.44, 𝐾𝐾 1 /𝐾𝐾 0 = 2.3 , and 𝐾𝐾 3 /𝐾𝐾 0 = 0 . The carrier frequency of the Gaussian packet is chosen as 𝜔𝜔 c /𝜔𝜔 0 = 0.9. Iso-frequency contours are depicted in Fig. 9 the same manner as in Fig. 8(a). For this case, there are three possible refracted modes, with the wave vectors and the group velocities, 𝐤𝐤 t1 and 𝐯𝐯 g1 , 𝐤𝐤 t2 and 𝐯𝐯 g2 , and 𝐤𝐤 t3 and 𝐯𝐯 g3 , respectively, instead of a single mode as in the previous example. The third mode is again a backward wave with 𝐤𝐤 t3 ⋅ 𝐯𝐯 g3 < 0. The importance of the interface parameters becomes evident from the three different calculations shown in Fig. 10(a)-(c). In each of the three cases, one of the three different modes is excited almost exclusively. This means that one can select a wanted mode by appropriately choosing the parameters of the transition region between the two media. For all three cases, we further illustrate the behavior by the Supplementary Movies 2-4.

We note in passing that the rich physics of the transition region can likely also be captured by generalizing the effective-medium approximation of the mass-and-spring model in terms of a generalized wave equation for homogeneous non-local media, as introduced in [START_REF] Martínez | Experimental Observation of Roton-Like Dispersion Relations in Metamaterials[END_REF], to the case of heterogeneous non-local elastic media. However, this aspect goes well beyond the scope of the present paper.

Refined analytical model.

In this section, we present a refined analytical model, which captures not only the behavior of the lowest band but also that of the higher bands for the proposed metamaterials. We make the following two assumptions: i) The acoustic pressure in the cuboid compartments in Fig. 1 is approximated as being constant within. ii) The pressure modes in all tubes are the fundamental waveguide mode, i.e., at a given position along the tubes, the pressure is constant over the cross section [START_REF] Pierce | Acoustics: an introduction to its physical principles and applications[END_REF]. These two assumptions are expected to be valid for low-frequency sound, for which the wavelength in air is much larger than the unit cell size.

On this basis, we derive the metamaterial dispersion relations analytically based on the Floquet-Bloch theorem [START_REF] Kittel | Introduction to solid state physics[END_REF]. As an ansatz, the acoustic pressure modulation at the lattice site defined by the pair of integers (𝑚𝑚, 𝑛𝑛) is given by 𝑃𝑃 � 𝑚𝑚𝑛𝑛 = 𝑃𝑃 � exp�i(𝑘𝑘 𝑥𝑥 𝑚𝑚𝑎𝑎 + 𝑘𝑘 𝑦𝑦 𝑛𝑛𝑎𝑎 -𝜔𝜔𝜔𝜔)�, with 𝑃𝑃 � being a constant prefactor as in Eq. ( 7). The key point to derive the dispersion relation is to analyze acoustic pressure wave propagation in the tubes. As one example, we consider the tube that connects the cuboid compartment at site (𝑚𝑚, 𝑛𝑛)

to its 𝑁𝑁th nearest neighbor along 𝑥𝑥-direction at site (𝑚𝑚 + 𝑁𝑁, 𝑛𝑛). The pressure field inside the tube is composed of a forward waveguide mode, from the cuboid at site (𝑚𝑚, 𝑛𝑛) to that at site (𝑚𝑚 + 𝑁𝑁, 𝑛𝑛), and a corresponding backward waveguide mode

𝑝𝑝(𝑠𝑠) = �𝐴𝐴 + exp �i 𝜔𝜔 𝑣𝑣 air 𝑠𝑠� + 𝐴𝐴 -exp �-i 𝜔𝜔 𝑣𝑣 air 𝑠𝑠�� exp(-i𝜔𝜔𝜔𝜔). (12) 
Herein, 𝑠𝑠 indicates the distance along the central axis of the tube, with 𝑠𝑠 = 0 corresponding to one end of the tube, where it connects the cuboid at site (𝑚𝑚, 𝑛𝑛). We further have 𝑠𝑠 = 𝐿𝐿 𝑁𝑁 , with 𝐿𝐿 𝑁𝑁 = 𝑑𝑑 -𝑤𝑤 + 2ℎ 𝑁𝑁 + √𝑑𝑑 2 + 𝑁𝑁 2 𝑎𝑎 2 being the tube length, representing the other end. 𝐴𝐴 + and 𝐴𝐴 -are two unknown amplitude coefficients. The corresponding particle velocity is derived as

𝑣𝑣(𝑠𝑠) = 1 i𝜔𝜔𝜌𝜌 0 ∂𝑝𝑝 𝜕𝜕𝜕𝜕 = 1 𝜌𝜌 0 𝑣𝑣 air �𝐴𝐴 + exp �i 𝜔𝜔 𝑣𝑣 air 𝑠𝑠� -𝐴𝐴 -exp �-i 𝜔𝜔 𝑣𝑣 air 𝑠𝑠�� exp(-i𝜔𝜔𝜔𝜔), (13) 
with 𝜌𝜌 0 representing the average air density as previously. Due to continuity, the acoustic pressure at the two ends of the tube must be the same as in the corresponding cuboids [START_REF] Pierce | Acoustics: an introduction to its physical principles and applications[END_REF] 

𝑝𝑝(0) = 𝑃𝑃 � exp�i𝑘𝑘 𝑥𝑥 𝑚𝑚𝑎𝑎 + i𝑘𝑘 𝑦𝑦 𝑛𝑛𝑎𝑎 -i𝜔𝜔𝜔𝜔�, (14) 
𝑝𝑝(𝐿𝐿 𝑁𝑁 ) = 𝑃𝑃 � exp (i𝑘𝑘 𝑥𝑥 (𝑚𝑚 + 𝑁𝑁)𝑎𝑎 + i𝑘𝑘 𝑦𝑦 𝑛𝑛𝑎𝑎 -𝑖𝑖𝜔𝜔𝜔𝜔). (15) 
The two amplitude coefficients, 𝐴𝐴 + and 𝐴𝐴 -, result from

𝐴𝐴 + = 𝑃𝑃 � 2𝑖𝑖 exp�i𝑘𝑘 𝑥𝑥 𝑚𝑚𝑎𝑎 + i𝑘𝑘 𝑦𝑦 𝑛𝑛𝑎𝑎� csc � 𝜔𝜔𝐿𝐿 𝑁𝑁 𝑣𝑣 air � �exp(i𝑘𝑘 𝑥𝑥 𝑁𝑁𝑎𝑎) -exp(-i 𝜔𝜔𝐿𝐿 𝑁𝑁 𝑣𝑣 air )�, (16) 
𝐴𝐴 -= 𝑃𝑃 � 2𝑖𝑖 exp�i𝑘𝑘 𝑥𝑥 𝑚𝑚𝑎𝑎 + i𝑘𝑘 𝑦𝑦 𝑛𝑛𝑎𝑎� csc � 𝜔𝜔𝐿𝐿 𝑁𝑁 𝑣𝑣 air � �-exp(i𝑘𝑘 𝑥𝑥 𝑁𝑁𝑎𝑎) + exp(i 𝜔𝜔𝐿𝐿 𝑁𝑁 𝑣𝑣 air )�. (17) 
Substitution of the above two equations into Eq. ( 13) leads to the particle velocity

𝑣𝑣(𝑠𝑠) = i 𝑃𝑃 � 𝜌𝜌 0 𝑣𝑣 air csc � 𝜔𝜔𝐿𝐿 𝑁𝑁 𝑣𝑣 air � exp�i𝑘𝑘 𝑥𝑥 𝑚𝑚𝑎𝑎 + i𝑘𝑘 𝑦𝑦 𝑛𝑛𝑎𝑎 -𝑖𝑖𝜔𝜔𝜔𝜔� �cos � 𝜔𝜔𝜕𝜕-𝜔𝜔𝐿𝐿 𝑁𝑁 𝑣𝑣 air � -cos � 𝜔𝜔𝜕𝜕 𝑣𝑣 air � exp(i𝑘𝑘 𝑥𝑥 𝑁𝑁𝑎𝑎)�. (18) 
From this expression, the total air mass flowing away from the cuboid at lattice site (𝑚𝑚, 𝑛𝑛) through the above tube is given by

𝑄𝑄 𝑚𝑚+𝑁𝑁,𝑛𝑛 = 𝜌𝜌 0 𝑆𝑆 𝑁𝑁 𝑣𝑣(0) = i 𝑆𝑆 𝑁𝑁 𝑃𝑃 � 𝑚𝑚𝑛𝑛 𝑣𝑣 air csc � 𝜔𝜔𝐿𝐿 𝑁𝑁 𝑣𝑣 air � �cos � 𝜔𝜔𝐿𝐿 𝑁𝑁 𝑣𝑣 air � -exp(i𝑘𝑘 𝑥𝑥 𝑁𝑁𝑎𝑎)�. (19) 
Here, the area 𝑆𝑆 𝑁𝑁 = 𝜋𝜋𝑅𝑅 𝑁𝑁 2 represents the cross section of the tube and 𝑣𝑣(0) the particle velocity at one end of the tube. Similarly, we derive the average mass flow away from the cuboid at lattice site (𝑚𝑚, 𝑛𝑛) through the tube that connects the two cuboids at sites (𝑚𝑚, 𝑛𝑛) and (𝑚𝑚, 𝑛𝑛 + 𝑁𝑁) as

𝑄𝑄 𝑚𝑚,𝑛𝑛+𝑁𝑁 = i 𝑆𝑆 𝑁𝑁 𝑃𝑃 � 𝑚𝑚𝑛𝑛 𝑣𝑣 air csc � 𝜔𝜔𝐿𝐿 𝑁𝑁 𝑣𝑣 air � �cos � 𝜔𝜔𝐿𝐿 𝑁𝑁 𝑣𝑣 air � -exp�i𝑘𝑘 𝑦𝑦 𝑁𝑁𝑎𝑎��. (20) 
With the conservation law for the air mass inside the cuboid compartment at site (𝑚𝑚, 𝑛𝑛), we have [START_REF] Pierce | Acoustics: an introduction to its physical principles and applications[END_REF] i

𝜔𝜔 𝑣𝑣 air 2 𝑉𝑉 c 𝑃𝑃 � 𝑚𝑚𝑛𝑛 = ∑ �𝑄𝑄 𝑚𝑚+𝑁𝑁,𝑛𝑛 + 𝑄𝑄 𝑚𝑚-𝑁𝑁,𝑛𝑛 + 𝑄𝑄 𝑚𝑚,𝑛𝑛+𝑁𝑁 + 𝑄𝑄 𝑚𝑚,𝑛𝑛-𝑁𝑁 � ∞ 𝑁𝑁=1 . ( 21 
)
𝑄𝑄 𝑚𝑚-𝑁𝑁,𝑛𝑛 is the mass flow through the tube that connects the two cuboids at sites (𝑚𝑚, 𝑛𝑛) and (𝑚𝑚 -𝑁𝑁, 𝑛𝑛).

𝑄𝑄 𝑚𝑚,𝑛𝑛-𝑁𝑁 is defined analogously. After some mathematical simplifications, we arrive at the following expression for the dispersion relation

𝜔𝜔 𝑣𝑣 air 𝑉𝑉 𝑐𝑐 = ∑ �𝜋𝜋𝑅𝑅 𝑁𝑁 2 csc � 𝜔𝜔𝐿𝐿 𝑁𝑁 𝑣𝑣 air � �4 cos � 𝜔𝜔𝐿𝐿 𝑁𝑁 𝑣𝑣 air � -2 cos(𝑘𝑘 𝑥𝑥 𝑁𝑁𝑎𝑎) -2cos (𝑘𝑘 𝑦𝑦 𝑁𝑁𝑎𝑎)�� ∞ 𝑁𝑁=1 . ( 22 
)
𝑉𝑉 c represents the volume of the compartment. This equation connects the angular frequency 𝜔𝜔 with 𝑘𝑘 𝑥𝑥 and 𝑘𝑘 𝑦𝑦 . For a given Bloch wave vector 𝐤𝐤 = (𝑘𝑘 𝑥𝑥 , 𝑘𝑘 𝑦𝑦 ), the implicit formula Eq. ( 22) provides multiple solutions for 𝜔𝜔. These solutions correspond to the different bands. Compared to the previous section, the price we pay for the refined modelling in the present section is that we do not obtain a closed explicit expression for the angular frequency 𝜔𝜔 as a function of the Bloch wave vector. However, the implicit Eq. ( 22) can easily be solved numerically. Results are shown by the blue dots in Figs. 3 and4. They agree well with the numerical FEM calculations (gray curves) regarding the lowest bands as well as the higher bands.

For the case of two different orders of long-range interaction in parallel shown in Fig. 5(a)-(c), the qualitative agreement for the lowest bands is again good, but quantitative differences occur, especially along the 𝚪𝚪𝐌𝐌 direction. The differences are yet more pronounced for the higher bands. We assign these differences to the fact that the vertical parts of the tubes for different 𝑁𝑁 partially overlap (cf. Fig. 2, part with height ℎ 3 ), leading to interference of the respective partial waves. The refined model neglects these interferences. However, we recall that the focus of this study lies on the lowest bands. For these, the refined model generally performs better than the simple discrete model in Figs. 345.

Elastic waves instead of airborne sound. So far, we have exclusively discussed longitudinally polarized airborne sound waves. It is interesting to investigate whether we can translate the overall approach of the metamaterial platform illustrated in Figs. 1 and 2 to elastic waves, for which three modes emerge from the 𝚪𝚪 point rather than just a single mode for airborne sound. For elastic waves, the structures in Figs. 1 and 2 should be interpreted as being composed of a single ordinary elastic material (e.g., a polymer, see Supplementary Note 3) rather than as air channels. Supplementary Figure 8 provides numerically calculated example band structures for 𝑵𝑵 = 𝟑𝟑, 𝟒𝟒, and 𝟓𝟓, that can be compared with Fig. 4 (a)-(c). Clearly, the overall behavior of the lowest elastic band is closely similar to that of the lowest band for airborne sound. Specifically, the number of extrema of 𝝎𝝎(𝐤𝐤), with 𝐤𝐤 = (𝒌𝒌, 𝟎𝟎) or 𝐤𝐤 = (𝟎𝟎, 𝒌𝒌), versus 𝒌𝒌 in the interval 𝒌𝒌 ∈ [𝟎𝟎, 𝝅𝝅/𝒂𝒂] is equal to 𝑵𝑵 -in agreement with the Fourier synthesis idea presented above.

It is presently not clear whether this idea can also be translated to experimentally accessible metamaterial structures for yet other types of waves, such as, e.g., surface water waves, microwaves or light waves. We hope that our work stimulates future experiments and further design studies in this direction. An animated version of (b) is provided in the Supplementary Movie 1. The displacement component 𝑢𝑢 𝑧𝑧 for the two cuts perpendicular to the propagation direction at positions A (brown) and B (blue), respectively, is shown in Supplementary Figure 5.

Fig. 9. Triple refraction at an interface as illustrated in Fig. 7. Iso-frequency contours for the nonlocal system, with the same parameters as in Supplementary Figure 4, and the local system, with parameters 𝑀𝑀/𝑀𝑀 0 = 0.44, 𝐾𝐾 1 /𝐾𝐾 0 = 2.3, and 𝐾𝐾 3 /𝐾𝐾 0 = 0. The solid lines correspond to the carrier frequency 𝜔𝜔 c /𝜔𝜔 0 = 0.9 of the excited Gaussian wave packet. By using Snell's law, triple refraction with wave vectors, 𝐤𝐤 t1 , 𝐤𝐤 t2 and 𝐤𝐤 t3 , and corresponding group velocity vectors, 𝐯𝐯 g1 , 𝐯𝐯 g2 and 𝐯𝐯 g3 , becomes possible. The partial wave with wave vector 𝐤𝐤 t3 and group velocity vector 𝐯𝐯 g3 is a backward wave with 𝐤𝐤 t3 ⋅ 𝐯𝐯 g3 < 0. 

Figure 5 3 .

 53 Figure 5 is as Fig. 4 (where 𝑁𝑁 = 3 only), but for two different orders of long-range interaction in parallel, namely (a) 𝑁𝑁 = 4 in addition to 𝑁𝑁 = 3, (b) 𝑁𝑁 = 5 in addition to 𝑁𝑁 = 3, and (c) 𝑁𝑁 = 6 in addition to 𝑁𝑁 = 3. The corresponding metamaterial unit cells have already been shown in Fig.2. Again, the angular frequency of the lowest acoustical band exhibits an oscillatory behavior versus wave number 𝐤𝐤, however, now with two different Fourier components superimposed. We will come back to this aspect in more detail in the following section.

  cos(2𝜋𝜋𝑓𝑓 c 𝜔𝜔)exp(-(𝜋𝜋𝑓𝑓 c 𝜔𝜔/50)2 )exp (-((𝑥𝑥 -𝑥𝑥 c ) 2 + (𝑦𝑦 -𝑦𝑦 c ) 2 )/37.5 2 ) , with 𝑥𝑥 c = -100 , 𝑦𝑦 c = -130 being the coordinate of the middle point of the line in units of the lattice constant 𝑎𝑎, and 𝑓𝑓 c being the carrier frequency of the temporally Gaussian excitation signal. This excitation launches a spatially Gaussian wave packet towards the interface at an oblique angle of 45 o . We have chosen this particular angle just as an example to illustrate the principle. The temporal Gaussian envelope contains about 50 oscillation cycles (see Fig.7(c)), corresponding to a fairly narrow spread in the frequency domain (see Fig.
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 1 Figures and Captions

Fig. 2 .

 2 Fig. 2. Same as Fig.1, but tubes (red) mediating the fifth-nearest-neighbor interactions (𝑵𝑵 = 𝟓𝟓) are added as an example. (a) Single metamaterial unit cell. (b) 2D square lattice composed thereof. Clearly, yet further values of 𝑁𝑁 could easily be implemented in other planes parallel to the 𝑥𝑥𝑦𝑦-plane at other 𝑧𝑧positions below and above the plane spanned by the yellow tubes (𝑁𝑁 = 1 ). Again, due a rotationreflection symmetry of the overall structure, wave propagation along the 𝑥𝑥and 𝑦𝑦-direction is equivalent.

Fig. 3 .

 3 Fig. 3. Calculated phonon dispersion relation for the metamaterial structure shown in Fig. 1, i.e., for 𝑵𝑵 = 𝟑𝟑 beyond-nearest-neighbor interactions only. (a) Tour through the first Brillouin zone (see inset) of the 2D square lattice with lattice constant 𝑎𝑎. The gray curve is obtained by numerical finite-element-method (FEM) calculations. The analytical results of the simple discrete model are shown by the red curve. Here, only the lowest band occurs. The results of the refined analytical model are shown by the blue dots. These almost completely overlap with the numerical calculations. The agreement with the simple discrete model is qualitatively very good, especially for the principal directions. The parameters for the gray and blue data are given in Fig. 1. The used parameters for the simple discrete model are: 𝑀𝑀 = 𝜌𝜌𝑉𝑉 c = 9.3 × 10 -5 g, 𝐾𝐾 1 = 27.9 N m -1 , and 𝐾𝐾 3 = 17.7 N m -1 . (b) Frequency as obtained from the numerical finite-element calculations represented on a false-color scale versus wavenumber 𝑘𝑘 𝑥𝑥 and 𝑘𝑘 𝑦𝑦 within the first Brillouin zone of the square lattice.

Fig. 4 .

 4 Fig. 4. Dispersion relations as in Fig. 3(a), but for different orders 𝑵𝑵 of beyond-nearest-neighbor interactions in addition to the nearest-neighbor interactions. (a) 𝑁𝑁 = 3. (b) 𝑁𝑁 = 4. (c) 𝑁𝑁 = 5. (d) 𝑁𝑁 = 6. (e) 𝑁𝑁 = 7. (f) 𝑁𝑁 = 8. The corresponding metamaterial structures are depicted in Fig. 1(c).

Fig. 5 .Fig. 6 .

 56 Fig. 5. Calculated phonon dispersion relations for metamaterial structures as shown in Fig. 2. Compared to the dispersion relations shown in Fig. 3, two different beyond-nearest-neighbor interactions are present simultaneously here. (a) -(c) correspond to 𝑁𝑁 = 3 and 𝑁𝑁 = 4 simultaneously, 𝑁𝑁 = 3 and 𝑁𝑁 = 5 simultaneously, and 𝑁𝑁 = 3 and 𝑁𝑁 = 6 simultaneously, respectively. Results from the numerical calculations (gray), the simple discrete model (red), and the refined analytical model (blue) are compared. (d) -(f) False-color representations of frequency versus wavenumber 𝑘𝑘 𝑥𝑥 and 𝑘𝑘 𝑦𝑦 from the numerical calculations. The behavior is due to the combined action of two different beyond-nearest-neighbor interactions.

Fig. 7 .

 7 Fig. 7. Simulation setup of wave refraction at interface. (a) Wave transmission at an interface between a local system with only nearest-neighbor interactions (bottom, gray) and a nonlocal system additionally including third-nearest-neighbor interactions, 𝐾𝐾 3 ≠ 0 (top, yellow). The incident wave impinges under an angle of 45 ° onto the interface. (b) Due to the mismatch of interaction orders between the two regions, some of the third-order Hooke's springs are cut away near the interface (dashed horizontal line) within the nonlocal region. To control the transmission of the incident waves, we fine-tune the mass parameters, 𝑀𝑀 01 and 𝑀𝑀 02 , and three Hooke's spring constants, 𝐾𝐾 01 , 𝐾𝐾 02 , and 𝐾𝐾 03 , at the interface. To avoid reflection of the partial waves at the boundaries of the simulation domain, we choose a much larger simulation domain than the one shown. A wave packet that is Gaussian in space and time is launched by prescribing the pressure in Eq. (4) on the black lines according tocos(2𝜋𝜋𝑓𝑓 c 𝜔𝜔)exp(-(𝜋𝜋𝑓𝑓 c 𝜔𝜔/50) 2 )exp (-((𝑥𝑥 -𝑥𝑥 c ) 2 + (𝑦𝑦 -𝑦𝑦 c ) 2 )/37.5 2 ). (c) Temporal profile of the launched pulse, containing about 50 oscillation cycles. (d) Corresponding Fourier transform (absolute value).

Fig. 8 .

 8 Fig.8. Negative refraction at an interface as illustrated in Fig.7. (a) Iso-frequency curves for the nonlocal system, with the same parameters as in Supplementary Figure4, and the local system, with parameters 𝑀𝑀/𝑀𝑀 0 = 1, 𝐾𝐾 1 /𝐾𝐾 0 = 1.2, and 𝐾𝐾 3 /𝐾𝐾 0 = 0. The solid lines correspond to the carrier frequency 𝜔𝜔 c /𝜔𝜔 0 = 0.7 of the Gaussian pulse. The blue arrow represents the incident wave vector, 𝐤𝐤 i . From Snell's law, a single negatively refracted mode with wave vector, 𝐤𝐤 t , and group velocity vector, 𝐯𝐯 g , is possible. (b) Snapshot of simulated pressure fields at 𝜔𝜔/𝜔𝜔 c = 150, with 𝜔𝜔 c = 2𝜋𝜋/𝜔𝜔 c . The interface parameters (cf. Fig.7) are 𝑀𝑀 01 /𝑀𝑀 0 = 0.5, 𝑀𝑀 02 /𝑀𝑀 0 = 1.0, 𝐾𝐾 01 /𝐾𝐾 0 = 1.0, 𝐾𝐾 02 /𝐾𝐾 0 = 1.0 , and 𝐾𝐾 03 /𝐾𝐾 0 = 1.0 . The black dashed straight lines indicate the propagation path of the incident and the refracted wave. In the nonlocal region, the wave propagation direction agrees well with the group velocity vector as derived in panel (a). An animated version of (b) is provided in the Supplementary Movie 1. The displacement component 𝑢𝑢 𝑧𝑧 for the two cuts perpendicular to the propagation direction at positions A (brown) and B (blue), respectively, is shown in Supplementary Figure5.

Fig. 10 .

 10 Fig. 10. Relative amplitude control of the three refracted modes at the interface between a nonlocal system and a local system by tuning the interface parameters illustrated in Fig. 7(b). (a) of simulated pressure fields with the interface parameters, 𝑀𝑀 01 /𝑀𝑀 0 = 0.5 , 𝑀𝑀 02 /𝑀𝑀 0 = 1.0 , 𝐾𝐾 01 /𝐾𝐾 0 = 6.0 , 𝐾𝐾 02 /𝐾𝐾 0 = 1.0, and 𝐾𝐾 03 /𝐾𝐾 0 = 1.0, respectively. In this case, only the refracted mode with the wave vector 𝐤𝐤 t1 and group velocity vector 𝐯𝐯 g1 occurs. The dashed lines indicate the propagation path of the incident and refracted waves. (b), (c) Same as (a), but with interface parameters 𝑀𝑀 01 /𝑀𝑀 0 = 0.8, 𝑀𝑀 02 /𝑀𝑀 0 = 0.5, 𝐾𝐾 01 /𝐾𝐾 0 = 2.0 , 𝐾𝐾 02 /𝐾𝐾 0 = 0.2 , 𝐾𝐾 03 /𝐾𝐾 0 = 6.0 , and 𝑀𝑀 01 /𝑀𝑀 0 = 1.0 , 𝑀𝑀 02 /𝑀𝑀 0 = 0.6 , 𝐾𝐾 01 /𝐾𝐾 0 = 1.0 , 𝐾𝐾 02 / 𝐾𝐾 0 = 1.0, and 𝐾𝐾 03 /𝐾𝐾 0 = 4.0, respectively. Animated versions of the three scenarios are provided in the Supplementary Movies 2-4. The displacement component 𝑢𝑢 𝑧𝑧 for the cuts perpendicular to the propagation direction at the positions A (brown) and B (blue) in panels (a)-(c) is shown in Supplementary Figure 6.
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Muamer Kadic is a Guest Editor of Communications Materials and was not involved in the editorial review of, or the decision to publish, this Article. All other authors declare no competing interests. Supplementary Note 1: Impact of damping effect. Supplementary Figure 1 exhibits the numerically calculated phonon dispersion relations for the metamaterial structure as in Fig. 3 (no damping), but accounting for damping. Panels (a) and (b) show the real and imaginary part of the eigenfrequencies, respectively. For comparison, results without damping are reproduced by the gray solid lines. In the numerical simulations, we include damping through the setting of "narrow region acoustics" in COMSOL Multiphysics. As for the case of zero damping, we employ the usual Bloch periodic boundary conditions. This choice leads to purely real-valued wave vectors. The material parameters chosen for air are: heat capacity 𝐶𝐶 p = 1.01 × 10 3 J kg -1 K -1 , thermal conductivity 𝜅𝜅 = 2.57 × 10 -2 W m -1 K -1 , ratio of specific heats 𝛾𝛾 = 1.4, and dynamic viscosity 𝜂𝜂 = 1.81 × 10 -5 Pa ⋅ s, respectively. The mass density and the speed of sound for air are the same as in the main text. The real part of the eigenfrequencies changes by less than 4% when considering damping. The imaginary part is nearly two orders of magnitude smaller than the real part. Most importantly, the overall qualitative behavior is not changed in the presence of damping and roton-like dispersion relations are still obtained. An example for a frequency contour plot versus wave numbers 𝑘𝑘 𝑥𝑥 and 𝑘𝑘 𝑦𝑦 is shown in Supplementary Figure 2. The real part in panel (b) can be directly compared with Fig. 3(b). These calculations justify the assumption of zero damping that we use throughout the entire main paper. 1 corresponding to a wave vector 𝒌𝒌 = (0.5 𝜋𝜋/𝑎𝑎, 0). For clarity, an array of 4 × 1 unit cells is depicted. It can be seen that the pressure is nearly constant within the compartments but exhibits a gradient along the axes of the tubes. This gradient can be interpreted in terms of an effective force, hence in terms of a Hooke's spring constant of the tube. Supplementary Note 2: Simple discrete model (mass-and-spring model). Supplementary Figure 4 shows an exemplary analytically calculated dispersion relation of the 2D simple discrete model according to Eq. [START_REF] Liu | Broadband elastic metamaterial with single negativity by mimicking lattice systems[END_REF]. The chosen parameters are given in the figure caption. In panel (b), we have highlighted selected isofrequency contours to ease the discussion in the main text. Supplementary Figure 4. Example dispersion relation of the 2D mass-and-spring system in Fig. 6. Here, we only include nearest-neighbor interactions and third-nearest-neighbor interactions (cf. Fig. 3). (a) Dispersion relation for the usual tour through the first Brillouin zone of the square lattice. Roton-like minima occur along both, the 𝚪𝚪𝚪𝚪 and the 𝚪𝚪𝚪𝚪 direction. (b) 2D Frequency contour plot, 𝜔𝜔/𝜔𝜔 0 , versus the wavenumbers 𝑘𝑘 𝑥𝑥 and 𝑘𝑘 𝑦𝑦 . We choose the parameters 𝑀𝑀/𝑀𝑀 0 = 1.0 and 𝐾𝐾 1 /𝐾𝐾 0 = 𝐾𝐾 3 /𝐾𝐾 0 = 1.0 . The reference frequency is 𝜔𝜔 0 = �10𝐾𝐾 0 /𝑀𝑀 0 . This reference frequency is also used in the calculations shown in Figs. 8910. Supplementary Note 3: Metamaterials for elastic waves rather than airborne sound. We investigate whether the metamaterial platform including beyond-nearest-neighbor interactions along two orthogonal directions suggested in Fig. 1 for airborne (longitudinal) pressure waves can also serve to realize corresponding elastic metamaterials. In this case, all rods and cuboids are massive (rather than hollow) and made from only a single constituent material. We choose typical polymer parameters with 𝐸𝐸 = 4.19 GPa for the Young's modulus, 𝜈𝜈 = 0.4 for the Poisson's ratio, and 𝜌𝜌 = 1140 kg m -3 for the mass density [START_REF] Kittel | Introduction to solid state physics[END_REF]. Floquet-Bloch periodic boundary conditions are applied to the four sides of the unit cell shown in Fig. 1, while all other boundaries are treated as stress free. We solve the band structure by using the built-in Solid Mechanics Module in COMSOL Multiphysics. The geometry is meshed with around 80 thousand tetrahedral to ensure convergence.

Supplementary Figure 1. Comparison between numerically calculated phonon dispersion relations for the metamaterial as in

Supplementary Figure 5. Calculated displacement (normalized) versus perpendicular coordinate at the marked positions A and B for the negative refraction in

In Supplementary Figure 8 (a)-(c), we plot the calculated phonon band structure for the example of thirdnearest-neighbor (𝑁𝑁 = 3) , forth-nearest-neighbor (𝑁𝑁 = 4) , and fifth-nearest-neighbor (𝑁𝑁 = 5) interactions, respectively. In order to increase the beyond-nearest-neighbor interactions, we choose slightly different rod diameters than above here, i.e., 𝑟𝑟 1 /𝑎𝑎 = 0.02 and 𝑟𝑟 𝑁𝑁 /𝑎𝑎 = 0.06. With the latter, we can obtain a maximum of 𝑁𝑁 = 6 , i.e., for 𝑁𝑁 ≥ 7 the rods overlap. For the plate-like 2D metamaterial structure, as expected, three bands originate from the 𝚪𝚪 point. The one starting quadratically from the 𝚪𝚪 point (marked in blue) corresponds to an out-of-plane flexure wave. This mode is similar to an out-ofplane vibration. We find minima in the dispersion relation along both, the 𝚪𝚪𝚪𝚪 and the 𝚪𝚪𝚪𝚪 directions. As for the case of airborne sound waves (cf. Fig. 4), the number of oscillations on this band increases with increasing 𝑁𝑁. This behavior is in agreement with the discussion on the mass-and-spring model in section 3. The other two modes start linearly at the 𝚪𝚪 point. The one with larger (smaller) phase velocity is an inplane longitudinal (shear) wave. The shear band exhibits roton-like minima of the dispersion relation along multiple directions, while the longitudinal band strongly interacts with higher bands, leading to a more complicated behavior. Supplementary References [START_REF] Kittel | Introduction to solid state physics[END_REF] T. Frenzel, M. Kadic and M. Wegener, Three-dimensional mechanical metamaterials with a twist, Science 358, 6366 (2017).
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