

Tribochemical study of Ni₆₂Nb₃₃Zr₅ metallic glass depending on the Cr content of steel counterparts

Guillaume COLAS¹

María del Carmen Marco De Lucas², Luc Imhoff², Olivier Heintz², Pierre-Henri Cornuault¹, Rémi Daudin³, Alexis Lenain⁴

¹ FEMTO-ST institute – DMA Department, UBFC, CNRS UMR 6174, Besançon, France
 ² Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS-UBFC, Dijon, France
 ³ University of Grenoble Alpes, CNRS, SIMaP, 38000, Grenoble, France
 ⁴ Vulkam Inc. Amorphous metal micro casting / www.vulkam.com / France

CONTEXT

Amorphous Metallic Alloy → Bulk Metallic Glass

Direct solidification well-defined pure metals mixture

through extremely fast cooling

Amorphous Metallic Alloy → Bulk Metallic Glass

- Erratic tribological behaviours ...

Usually relatively high friction (0.3 to 0.7) High and low wear independently of the friction coefficient and hardness ... even for a single composition

Particular crack propagation impeding and accentuating wear

... Really ? ... No ! As long as contact conditions are well controlled

CONTEXT – Our previous study

 $Zr_{52.5}Ti_5Cu_{17.9}Ni_{14.6}AI_{10}$ – mechanically driven wear

Cu₆₀Zr₃₃Ti₇ & Cu₄₇Zr₄₆Al₇ – *mechanically and/or chemically driven* μ *and wear* (*C*, *Zr migration, change in accommodation*)

 $Ni_{62}Nb_{33}Zr_5$ – mainly chemically driven μ and wear (Cr migration, C detected, Nb migration like Zr)

At high loads lots of Cr in the friction track

The steel slider had 1.5% Cr...

Study the effect of Cr content in the steel slider on the tribological behaviours of the Ni₆₂Nb₃₃Zr₅ BMG in pure sliding conditions

Why? to further explore the possibility to control friction of the BMG by finely tuning the composition of the counterparts

3 Steel compositions (Ball)

Steel	Fe	С	Cr	Мо	Mn	Si	Ni	Cu
X105CrMo17	Balance	0.95-1.20	16.00-18.00	0.75 max	1.00 max	1.00 max	-	-
100Cr6	Balance	0.95-1.05	1.40-1.65	-	0.25-0.45	0.15-0.35	0.30	0.20
							max	max
C90	Balance	0.9	-	0.6	1	0.6	-	-

1 Amorphous Alloys (Plate)

Sample	Composition [at%]	Young's	Yield strength	Hardness	
denomination		modulus [GPa]	[MPa]	[HV]	
Ni	Ni ₆₂ Nb ₃₃ Zr ₅	135	2750	798	

	Steel	E (GPa)	Y (MPa)	H (HV
Mechanical	X105CrMo17	210	~1850	750
properties	100Cr6	210	~1700	800
	C90	210	~	800

METHODS

Reciprocating linear ball-on-plate friction tests

- Plate: Ni₆₂Nb₃₃Zr₅
- Ball: 3 Steels Ø 6 mm
- Contact pressure **P = 680 MPa**
- Displacement stroke $\Delta h = \pm 1 \text{ mm}$
- Motion frequency **f** = 1 Hz
- Sliding speed V = 4 mm/s
- Sliding distance **Sd = 40 m** (10,000 cycles)
- Friction coefficient calculated as :

 $\mu = \frac{1}{2 \Delta h_0} \int \left| \frac{F_T}{F_N} \right| dh$

METHODS

« Wear » and roughness analysis using variable focus microscope

 $W_{ball} = \frac{V_b - V_b}{4 N_{cyclos}}$

 $W_{tot} = W_{plate} + W_{ball}$

Morphologies and compositions of the tracks analyzed with

SEM/EDX, Raman spectroscopy, XPS, and NanoSIMS

Results

5th ICASS, Palma, Mallorca, April 2022

RESULTS – Friction coefficient

Increased Friction in line with increased Cr content ?

> => Confirmation of the effect of Cr content on Ni based BMG tribological behaviour ?

Extremely low wear, impossible to evaluate wear volumes

Even for test with X105CrMo17

=> But visible patches of material inside tracks (all) and on the edges (X105CrMo17)

RESULTS – SEM

Countomoont	Sample	Crasstan	Elemental composition (atomic %)							Datio of at0/
Counterpart		Spectrum	Ni	Nb	Zr	Fe	Cr	0	C	Ralio ol al%
X105CrMo17	Ball	S 1	16.9	5.7	1.0	15.1	3.4	48.0	10.0	signficantly
		S2	69.4	1.5	0	6.5	1.4	6.8	14.5	changed
		S 3	13.0	12.6	2.1	3.0	0.7	63.0	6.7	-
	Plate	S4	18.2	12.6	2.2	4.8	1.0	54.4	6.9	Ni transfore o
		S5	12.2	17.7	3.1	4.3	1.1	51.6	10.0	
100Cr6	Ball	S6	4.4	0.8	0.1	62.0	4.5	8.0	8.0 19.8	lot on
		S7	3.3	0.7	0.1	76.8	0.8	5.12	12.3	X105CrMo17
		S 8	0.3	0	0	56.6	0.7	0.9	41.0	
	Plate	S9	6.1	3.7	0.1	2.3	0.1	16.4	70.5	O biably
		S10	11.4	11.0	2.0	11.5	0.5	58.2	4.3	Offiginy
C90	Ball	S11	6.6	1.3	0.2	63.8	0.2	16.3	11.0	detected
	Plate	S12	24.3	20.9	3.7	3.6	0	39.1	8.4	
		-	-			-				Cr detected ?

Low wear and EDS is an analysis « in volume » ca, April 2022

RESULTS – XPS

Top Surface analysis (5 nm in depth), averaging over Ø200µm spot

- \Rightarrow X105CrMo17 :
 - \Rightarrow oxide et hydroxyde of Ni more detected than Ni metal inside the track and on the edge of it
- \Rightarrow C90 et 100Cr6 :
 - \Rightarrow Ni met >> oxide and hydroxyde Ni
 - \Rightarrow Detection similar to the outside
- \Rightarrow O and C heavily detected => contaminations + oxides ?
- ⇒ Cr not detected => hidden by C contaminations ?
 ⇒ Agree with EDS except Cr was slightly detected
- \Rightarrow Native oxide of BMG : Nb₂O₅ & ZrO₂ => OK
- \Rightarrow Nb₂O₅ and ZrO₂ detected inside friction tracks as well \Rightarrow Large spot size and very low wear

RESULTS – NanoSIMS

Analysis over 2 to 5 nm in depth, Ø few μ m

RESULTS – NanoSIMS

Definition of region of interest and in depth analysis of spectra

In both positive and negative analysis modes to get access to all fragments

- \Rightarrow Clear evidence of reverse detection of Ni vs ZrO₂ and Nb₂O₅ between pristine and transfered material
- \Rightarrow Ni detected along with Fe and Cr.
- \Rightarrow + Detection of hydrocarbones contaminant.

Agree well with EDS and XPS

RESULTS – NanoSIMS

\Rightarrow X105CrMo17

- \Rightarrow Clear evidence of reverse detection of Ni vs ZrO_2 and Nb_2O_5 between pristine and transfered material
- \Rightarrow Ni detected along with Fe and Cr.

Agree well with EDS and XPS

- \Rightarrow + Detection of hydrocarbones contaminant.
- \Rightarrow Detection of NiO, NiCrO, and NiFeO coumpounds, some Cr oxide.

\Rightarrow C90 and 100Cr6

- \Rightarrow No reverse detection: differences inside/outside tracks on Fe and Fe oxide
- \Rightarrow Nb₂O₅ is mostly detected in C90 friction tracks, followed by 100Cr6, then X105CrMo17
 - ⇒ 100Cr6: very low detection of Cr oxide and NiCrO compound

17

RESULTS – Raman (532nm , power < 1 mW)

\Rightarrow No peaks for C90 and 100Cr6 tests

CONCLUSION

CONCLUSION

TECHNOLOGIES

Thanks for your attention

5th ICASS, Palma, Mallorca, April 2022